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Abstract

Recent studies have shown that the choice of activation function can significantly affect the per-
formance of deep learning networks. However, the benefits of novel activation functions have been
inconsistent and task dependent, and therefore the rectified linear unit (ReLU) is still the most
commonly used. This paper proposes a technique for customizing activation functions automatically,
resulting in reliable improvements in performance. Evolutionary search is used to discover the
general form of the function, and gradient descent to optimize its parameters for different parts of the
network and over the learning process. Experiments with four different neural network architectures
on the CIFAR-10 and CIFAR-100 image classification datasets show that this approach is effective.
It discovers both general activation functions and specialized functions for different architectures,
consistently improving accuracy over ReLU and other activation functions by significant margins.
The approach can therefore be used as an automated optimization step in applying deep learning to
new tasks.

Keywords: Activation Functions, Evolutionary Computation, Gradient Descent, AutoML, Deep
Learning

1. Introduction

The rectified linear unit (ReLU(x) = max{x, 0}) is the most commonly used activation function
in modern deep learning architectures [28]. When introduced, it offered substantial improvements
over the previously popular tanh and sigmoid activation functions. Because ReLU is unbounded as
x→∞, it is less susceptible to vanishing gradients than tanh and sigmoid are. It is also simple to
calculate, which leads to faster training times.

Activation function design continues to be an active area of research, and a number of novel
activation functions have been introduced since ReLU, each with different properties [29]. In certain
settings, these novel activation functions lead to substantial improvements in accuracy over ReLU,
but the gains are often inconsistent across tasks. Because of this inconsistency, ReLU is still the
most commonly used: it is reliable, even though it may be suboptimal.

The improvements and inconsistencies are due to a gradually evolving understanding of what
makes an activation function effective. For example, Leaky ReLU [25] allows a small amount of
gradient information to flow when the input is negative. It was introduced to prevent ReLU from
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creating dead neurons, i.e. those that are stuck at always outputting zero. On the other hand, the
ELU activation function [5] contains a negative saturation regime to control the forward propagated
variance. These two very different activation functions have seemingly contradicting properties, yet
each has proven more effective than ReLU in various tasks.

There are also often complex interactions between an activation function and other neural
network design choices, adding to the difficulty of selecting an appropriate activation function for
a given task. For example, Ramachandran et al. [30] warned that the scale parameter in batch
normalization [18] should be set when training with the Swish activation function; Hendrycks and
Gimpel [16] suggested using an optimizer with momentum when using GELU; Klambauer et al.
[19] introduced a modification of dropout [17] called alpha dropout to be used with SELU. These
results suggest that significant gains are possible by designing the activation function properly for a
network and task, but that it is difficult to do so manually.

This paper presents an approach to automatic activation function design. The approach is
inspired by genetic programming [20], which describes techniques for evolving computer programs
to solve a particular task. In contrast with previous studies [3, 4, 24, 30], this paper focuses on
automatically discovering activation functions that are parametric. Evolution discovers the general
form of the function, while gradient descent optimizes the parameters of the function during training.
The approach, called PANGAEA (Parametric ActivatioN functions Generated Automatically by an
Evolutionary Algorithm), discovers general activation functions that improve performance overall
over previously proposed functions. It also produces specialized functions for different architectures,
such as Wide ResNet, ResNet, and Preactivation ResNet, that perform even better than the general
functions, demonstrating its ability to customize activation functions to architectures.

2. Related Work

Prior work in automatic activation function discovery includes approaches based on either
reinforcement learning (RL), evolutionary computation, or gradient descent. In contrast, PAN-
GAEA combines evolutionary computation and gradient descent into a single optimization process.
PANGAEA achieves better performance than previous work, and therefore is a promising approach.

2.1. Reinforcement Learning

Ramachandran et al. [30] used RL to design novel activation functions. They discovered multiple
functions, but analyzed just one in depth: Swish(x) = x ·σ(x). Of the top eight functions discovered,
only Swish and max{x, σ(x)} consistently outperformed ReLU across multiple tasks, suggesting
that improvements are possible but often task specific.

2.2. Evolutionary Computation

Bingham et al. [4] used evolution to discover novel activation functions. Whereas their functions
had a fixed graph structure, PANGAEA utilizes a flexible search space that implements activation
functions as arbitrary computation graphs. PANGAEA also includes more powerful mutation
operations, and a function parameterization approach that makes it possible to further refine
functions through gradient descent.

Liu et al. [24] evolved normalization-activation layers. They searched for a computation graph
that replaced both batch normalization and ReLU in multiple neural networks. They argued that
the inherent nonlinearity of the discovered layers precluded the need for any explicit activation
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function. However, experiments in this paper show that carefully designed parametric activation
functions can in fact be a powerful augmentation to existing deep learning models.

Basirat and Roth [3] used a genetic algorithm to discover task-specific piecewise activation
functions. They showed that different functions are optimal for different tasks. However, the
discovered activation functions did not outperform ELiSH and HardELiSH, two hand-designed
activation functions proposed in the same paper [3]. The larger search space in PANGAEA affords
evolution extra flexibility in designing activation functions, while the trainable parameters give
customizability to the network itself, leading to consistent, significant improvement.

2.3. Gradient Descent

Learnable activation functions (LAFs) encode functions with general functional forms such as
polynomial, rational, or piecewise linear, and utilize gradient descent to discover optimal parameteri-
zations during training [2, 12, 27, 35]. The general forms allow most LAFs to approximate arbitrary
continuous functions. In theory, a LAF could approximate any activation function discovered with
PANGAEA. However, just because a LAF can represent an activation function does not guarantee
that the optimal activation function will be discovered by gradient descent. Indeed, by synergizing
evolutionary search and gradient descent, PANGAEA is able to outperform existing LAF approaches.

3. The PANGAEA Method

Activation functions in PANGAEA are represented as computation graphs, which allow for
comprehensive search, efficient implementation, and effective parameterization. Regularized evolution
with reranking is used as the search method to encourage exploration and to reduce noise.

3.1. Representing and Modifying Activation Functions

Activation functions are represented as computation graphs in which each node is a unary or a
binary operator (Table 1). All of these operators have TensorFlow [1] implementations, which allows
for taking advantage of under-the-hood optimizations. Safe operator implementations are chosen
when possible (e.g. the binary operator x1/x2 is implemented as tf.math.divide no nan, which
returns 0 if x2 = 0). Operators that are periodic (e.g. sin(x)) and operators that contain repeated
asymptotes are not included; in preliminary experiments they often caused training instability. All
of the operators have domain R, making it possible to compose them arbitrarily. The operators in
Table 1 were chosen to create a large and expressive search space that contains activation functions
unlikely to be discovered by hand. Indeed, all piecewise real analytic functions can be represented
with a PANGAEA computation graph (Theorem 1 of Appendix E).

PANGAEA begins with an initial population of P random activation functions. Each function is
either of the form f(x) = unary1(unary2(x)) or f(x) = binary(unary1(x), unary2(x)), as shown
in Figure 1. Both forms are equally likely, and the unary and binary operators are also selected
uniformly at random. The computation graphs in Figure 1 represent the simplest non-trivial
computation graphs with and without a binary operator. This design choice is inspired by previous
work in neuroevolution, which demonstrated the power of starting from simple structures and
gradually complexifying them [33].

During the search, all ReLU activation functions in a given neural network are replaced with a
candidate activation function. No other changes to the network or training setup are made. The
network is trained on the dataset, and the activation function is assigned a fitness score equal to the
network’s accuracy on the validation set.
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Table 1: The operator search space consists of basic unary and binary functions as well as existing activation
functions (Appendix C). σ(x) = (1 + e−x)−1. The unary operators bessel i0e and bessel i1e are the exponentially
scaled modified Bessel functions of order 0 and 1, respectively.

Unary Binary

0 |x| erf(x) tanh(x) arcsinh(x) ReLU(x) Softplus(x) x1 + x2 xx2
1

1 x−1 erfc(x) ex − 1 arctan(x) ELU(x) Softsign(x) x1 − x2 max{x1, x2}
x x2 sinh(x) σ(x) bessel i0e(x) SELU(x) HardSigmoid(x) x1 · x2 min{x1, x2}
−x ex cosh(x) log(σ(x)) bessel i1e(x) Swish(x) x1/x2

f(x)

Unary

Unary

x

f(x)

Binary

Unary Unary

x x

Figure 1: Random activation function initialization. The initial population consists of random samples of two kinds
of computation graphs, randomly initialized with the operators in Table 1. In this manner, the search starts with
simple graphs and gradually expands to more complex forms.

Given a parent activation function, a child activation function is created by applying one of four
possible mutations (Figure 2). The possible mutations include elementary graph modifications like
inserting, removing, or changing a node. These mutations are useful for local exploration. A special
“regenerate” mutation is also introduced to accelerate exploration. Other possible evolutionary
operators like crossover are not used in this paper. All mutations are equally likely with two special
cases. If a remove mutation is selected for an activation function with just one node, a change
mutation is applied instead. Additionally, if an activation function with greater than seven nodes is
selected, the mutation is a remove mutation, in order to reduce bloat.

3.1.1. Insert

In an insert mutation, one operator in the search space is selected uniformly at random. This
operator is placed on a random edge of a parent activation function graph. In Figure 2b, the unary
operator Swish(x) is inserted at the edge connecting the output of tanh(x) to the input of x1 + x2.
After mutating, the parent activation function (tanh(x) + |erf(x)|)2 produces the child activation
function (Swish(tanh(x)) + |erf(x)|)2. If a binary operator is randomly chosen for the insertion,
the incoming input value is assigned to the variable x1. If the operator is addition or subtraction,
the input to x2 is set to 0. If the operator is multiplication, division, or exponentiation, the input
to x2 is set to 1. Finally, if the operator is the maximum or minimum operator, the input to x2
is a copy of the input to x1. When a binary operator is inserted into a computation graph, the
activation function computed remains unchanged. However, the structure of the computation graph
is modified and can be further altered by future mutations.
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f(x)

x2

x1 + x2

tanh(x) |x|

erf(x)

xx

(a) Parent

f(x)

x2

x1 + x2

Swish(x)

tanh(x)

|x|

erf(x)

xx

(b) Insert

f(x)

x2

|x|

erf(x)

x

(c) Remove

f(x)

x2

x1 · x2

tanh(x) |x|

erf(x)

xx

(d) Change

f(x)

−x

max{x1, x2}

0 tanh(x)

SELU(x)

xx

(e) Regenerate

Figure 2: Evolutionary operations on activation functions. In an ‘Insert’ mutation, a new operator is inserted in one
of the edges of the computation graph, like the Swish(x) in (b). In a ‘Remove’ mutation, a node in the computation
graph is deleted, like the addition in (c). In a ‘Change’ mutation, an operator at a node is replaced with another,
like addition with multiplication in (d). These first three mutations are useful in refining the function locally. In
contrast, in a ‘Regenerate’ mutation (e), every operator in the graph is replaced by a random operator, thus increasing
exploration.

3.1.2. Remove

In a remove mutation, one node is selected uniformly at random and deleted. The node’s input
is rewired to its output. If the removed node is binary, one of the two inputs is chosen at random
and is deleted. The other input is kept. In Figure 2c, the addition operator is removed from the
parent activation function. The two inputs to addition, tanh(x) and |erf(x)|, cannot both be kept.
By chance, tanh(x) is discarded, resulting in the child activation function |erf(x)|2.

3.1.3. Change

To perform a change mutation, one node in the computation graph is selected at random and
replaced with another operator from the search space, also uniformly at random. Unary operators
are always replaced with unary operators, and binary operators with binary operators. Figure 2d
shows how changing addition to multiplication produces the activation function (tanh(x) · |erf(x)|)2.

3.1.4. Regenerate

In a regenerate mutation, every operator in the computation graph is replaced with another
operator from the search space. As with change mutations, unary operators are replaced with unary
operators, and binary operators with binary operators. Although every node in the graph is changed,
the overall structure of the computation graph remains the same. Regenerate mutations are useful
for increasing exploration, and are similar in principle to burst mutation and delta coding [9, 37].
Figure 2e shows the child activation function −max{0, tanh(SELU(x))}, which is quite different
from the parent function in Figure 2a.

3.1.5. Parameterization of Activation Functions

After mutation (or random initialization), activation functions are parameterized (Figure 3). A
value k ∈ {0, 1, 2, 3} is chosen uniformly at random, and k edges of the activation function graph are
randomly selected. Multiplicative per-channel parameters are inserted at these edges and initialized

5



f(x)

σ(x)

x1 − x2

|x| arctan(x)

x x

f(x)

α

σ(x)

x1 − x2

β

|x|

arctan(x)

γ

x x

Figure 3: Parameterization of activation functions. In this example, parameters are added to k = 3 random edges,
yielding the parametric activation function ασ(β|x| − arctan(γx)).

to one. Whereas evolution is well suited for discovering the general form of the activation function in
a discrete, structured search space, parameterization makes it possible to fine-tune the function using
gradient descent. The function parameters are updated at every epoch during backpropagation,
resulting in different activation functions in different stages of training. As the parameters are
per-channel, the process creates different activation functions at different locations in the neural
network. Thus, parameterization gives neural networks additional flexibility to customize activation
functions.

3.2. Discovering Activation Functions with Evolution

Activation functions are discovered by regularized evolution [31]. Initially, P random activation
functions are created, parameterized, and assigned fitness scores. To generate a new activation
function, S functions are sampled with replacement from the current population. The function with
the highest validation accuracy serves as the parent, and is mutated to create a child activation
function. This function is parameterized and assigned a fitness score. The new activation function
is then added to the population, and the oldest function in the population is removed, ensuring the
population is always of size P . This process continues until C functions have been evaluated in
total, and the top functions over the history of the search are returned as a result.

Any activation function that achieves a fitness score less than a threshold V is discarded. These
functions are not added to the population, but they do count towards the total number of C
activation functions evaluated for each architecture. This quality control mechanism allows evolution
to focus only on the most promising candidates.

To save computational resources during evolution, each activation function is evaluated by
training a neural network for 100 epochs using a compressed learning rate schedule. After evolution
is complete, the top 10 activation functions from the entire search are reranked. Each function
receives an adjusted fitness score equal to the average validation accuracy from two independent
200-epoch training runs using the original learning rate schedule. The top three activation functions
after reranking proceed to the final testing experiments.
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During evolution, it is possible that some activation functions achieve unusually high validation
accuracy by chance. The 100-epoch compressed learning rate schedule may also have a minor effect
on which activation functions are optimal compared to a full 200-epoch schedule. Reranking thus
serves two purposes. Full training reduces bias from the compressed schedule, and averaging two
such runs lessens the impact of activation functions that achieved high accuracy by chance.

4. Datasets and Architectures

The experiments in this paper focus primarily on the CIFAR-100 image classification dataset [21].
This dataset is a more difficult version of the popular CIFAR-10 dataset, with 100 object categories
instead of 10. Fifty images from each class were randomly selected from the training set to create a
balanced validation set, resulting in a training/validation/test split of 45K/5K/10K images.

To demonstrate that PANGAEA can discover effective activation functions in various settings, it
is evaluated with three different neural networks. The models were implemented in TensorFlow [1],
mirroring the original authors’ training setup as closely as possible (see Appendix A for training
details and Appendix D for code that shows how to train with custom activation functions).

Wide Residual Network [WRN-10-4; 40] has a depth of 10 and widening factor of four. Wide
residual networks provide an interesting comparison because they are shallower and wider than
many other popular architectures, while still achieving good results. WRN-10-4 was chosen because
its CIFAR-100 accuracy is competitive, yet it trains relatively quickly.

Residual Network [ResNet-v1-56; 14], with a depth of 56, provides an important contrast to
WRN-10-4. It is significantly deeper and has a slightly different training setup, which may have an
effect on the performance of different activation functions.

Preactivation Residual Network [ResNet-v2-56; 15] has identical depth to ResNet-v1-56, but
is a fundamentally different architecture. Activation functions are not part of the skip connections,
as is the case in ResNet-v1-56. Since information does not have to pass through an activation
function, this structure makes it easier to train very deep architectures. PANGAEA should exploit
this structure and discover different activation functions for ResNet-v2-56 and ResNet-v1-56.

5. Main Results

5.1. Overview

Separate evolution experiments were run to discover novel activation functions for each of the
three architectures. Evolutionary parameters P = 64, S = 16, C = 1,000, and V = 20% were used
since they were found to work well in preliminary experiments.

Figure 4 visualizes progress in these experiments. For all three architectures, PANGAEA quickly
discovered activation functions that outperform ReLU. It continued to make further progress,
gradually discovering better activation functions, and did not plateau during the time allotted for
the experiment. Each run took approximately 1,000 GPU hours on GeForce GTX 1080 and 1080 Ti
GPUs (see Appendix B for implementation and compute details).

Table 2 shows the final test accuracy for the top specialized activation functions discovered by
PANGAEA in each run. For comparison, the accuracy of the top general functions discovered in
this process are also shown, as well as the accuracy of several baseline activation functions (see
Appendix C for baseline activation function details and Appendix G for additional results with
learnable baseline functions). In sum, PANGAEA discovered the best activation function for each of
the three architectures.
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Figure 4: Progress of PANGAEA with three different neural networks. The plots show the best accuracy achieved
among all activation functions evaluated so far. The stars on the plot specify the time when notable activation
functions were discovered during evolution; the expression for each such function is written next to the star. Evolution
quickly discovered activation functions that outperform ReLU (accuracy with ReLU shown at x = 0), and continued
to improve throughout the experiment. Note that this figure shows validation accuracy, while Table 2 lists test set
accuracy.

5.2. Specialized Activation Functions

For all three architectures, there are baseline activation functions that outperform ReLU by
statistically significant margins. This result already demonstrates that activation functions should be
chosen carefully, and that the common practice of using ReLU by default is suboptimal. Furthermore,
the best baseline activation function is different for different architectures, suggesting that specializing
activation functions to the architecture is a good approach.

Because PANGAEA uses validation accuracy from a single neural network to assign fitness scores
to activation functions, there is selective pressure to discover functions that exploit the structure
of the network. The functions thus become specialized to the architecture. They increase the
performance of that architecture; however, they may not be as effective with other architectures.
Specialized activation function accuracies are highlighted with the gray background in Table 2. To
verify that the functions are customized to a specific architecture, the functions were cross-evaluated
with other architectures.

PANGAEA discovered two specialized activation functions for WRN-10-4 that outperformed all
baseline functions by a statistically significant margin (p ≤ 0.05). The top specialized function on
ResNet-v1-56 also significantly outperformed all baseline functions, except APL (for which p = 0.19).
The top specialized activation function on ResNet-v2-56 similarly significantly outperformed all
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Table 2: CIFAR-100 test set accuracy aggregated over ten runs, shown as mean ± sample standard deviation.
Asterisks indicate a statistically significant improvement in mean accuracy over ReLU, with * if p ≤ 0.05, ** if
p ≤ 0.01, and *** if p ≤ 0.001; p-values are from one-tailed Welch’s t-tests. The top accuracy for each architecture is
in bold. Baseline activation function details and references are given in Appendix C.

WRN-10-4 ResNet-v1-56 ResNet-v2-56

Specialized for WRN-10-4
log(σ(αx)) · βarcsinh(x) 73.20±0.37 ∗∗∗ 18.63±21.04 45.88±30.70

log(σ(αx)) · arcsinh(x) 73.16±0.41 ∗∗∗ 19.34±20.14 64.30±21.32

−Swish(Swish(αx)) 72.49±0.55 ∗∗∗ 58.86±2.88 74.71±0.20 ∗

Specialized for ResNet-v1-56
αx− β log(σ(γx)) 70.28±0.37 71.01±0.64 ∗∗∗ 74.35±0.45

αx− log(σ(βx)) 70.47±0.53 70.30±0.58 ∗ 74.70±0.23 ∗

max{Swish(x), 0} 72.10±0.33 ∗∗ 69.43±0.69 74.97±0.25 ∗∗

Specialized for ResNet-v2-56
Softplus(ELU(x)) 71.36±0.34 69.96±0.39 75.61±0.42 ∗∗∗

min{log(σ(x)), α log(σ(βx))} 72.04±0.34 ∗∗ 69.56±0.48 75.19±0.39 ∗∗∗

SELU(Swish(x)) 01.00±0.00 01.00±0.00 75.02±0.35 ∗∗

General Activation Functions
max{Swish(x), α log(σ(ReLU(x)))} 72.54±0.26 ∗∗∗ 69.91±0.37 75.20±0.41 ∗∗∗

min{Swish(x), αELU(ReLU(βx))} 72.39±0.29 ∗∗∗ 69.82±0.40 75.27±0.38 ∗∗∗

log(σ(x)) 72.33±0.32 ∗∗∗ 69.58±0.35 75.53±0.37 ∗∗∗

Fixed Baseline Functions
ReLU 71.46±0.50 69.64±0.65 74.39±0.44

ELiSH 01.00±0.00 01.00±0.00 75.20±0.31 ∗∗∗
ELU 72.30±0.32 ∗∗∗ 69.67±0.46 74.95±0.30 ∗∗
GELU 71.95±0.35 ∗ 70.19±0.40 ∗ 74.86±0.33 ∗∗
HardSigmoid 54.99±1.00 32.55±4.06 64.90±0.69

Leaky ReLU 71.73±0.33 69.78±0.33 74.73±0.35 ∗
Mish 71.95±0.41 ∗ 69.88±0.54 75.32±0.29 ∗∗∗
SELU 70.53±0.42 68.52±0.29 73.79±0.36

sigmoid 56.10±0.98 36.47±3.32 66.45±0.92

Softplus 72.27±0.26 ∗∗∗ 69.71±0.36 75.46±0.52 ∗∗∗
Softsign 56.30±2.16 58.38±0.96 69.33±0.39

Swish 72.26±0.28 ∗∗∗ 69.68±0.38 75.08±0.36 ∗∗∗
tanh 56.52±1.53 63.88±0.38 70.44±0.40

Parametric Baseline Functions
PReLU 72.23±0.37 ∗∗∗ 69.77±0.40 75.10±0.53 ∗∗

PSwish = x · σ(βx) 72.40±0.31 ∗∗∗ 70.16±0.46 ∗ 75.39±0.28 ∗∗∗

Learnable Baseline Functions
APL 72.88±0.32 ∗∗∗ 70.81±0.20 ∗∗∗ 75.02±0.28 ∗∗∗
PAU 41.46±22.66 01.00±0.00 02.38±4.36

SPLASH 72.16±0.81 ∗ 01.00±0.00 73.45±0.43

except Softplus (p = 0.25) and PSwish (p = 0.09). These results strongly demonstrate the power of
customizing activation functions to architectures. Indeed, specializing activation functions is a new
dimension of activation function meta-learning not considered by previous work [3, 4, 30].

5.3. General Activation Functions

Although the best performance comes from specialization, it is also useful to discover activation
functions that achieve high accuracy across multiple architectures. For instance, they could be
used initially on a new architecture before spending compute on specialization. A powerful albeit
computationally demanding approach would be to evolve general functions directly, by evaluating
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candidates on multiple architectures during evolution. However, it turns out that each specialized
evolution run already generates a variety of functions, many of which are general.

To evaluate whether the PANGAEA runs discovered general functions as well, the top 10
functions from each run were combined into a pool of 30 candidate functions. Each candidate was
assigned three fitness scores equal to the average validation accuracy from two independent training
runs on each of the three architectures. Candidate functions that were Pareto-dominated, were
functionally equivalent to one of the baseline activation functions, or had already been selected as
a specialized activation function were discarded, leaving three Pareto-optimal general activation
functions.

These functions indeed turned out to be effective as general activation functions. All three
achieved good accuracy with ResNet-v1-56 and significantly outperformed ReLU with WRN-10-4
and ResNet-v2-56. However, specialized activation functions, i.e. those specifically evolved for each
architecture, still give the biggest improvements.

5.4. Shapes of Discovered Functions

Many of the top discovered activation functions are compositions of multiple unary operators.
These functions do not exist in the core unit search space of Ramachandran et al. [30], which requires
binary operators. They also do not exist in the S1 or S2 search spaces proposed by Bingham et al.
[4], which are too shallow. The design of the search space is therefore as important as the search
algorithm itself. Previous search spaces that rely on repeated fixed building blocks only have limited
representational power. In contrast, PANGAEA utilizes a flexible search space that can represent
activation functions in an arbitrary computation graph (see Appendix F for an analysis on the size
of the PANGAEA search space).

Furthermore, while the learnable baseline functions can in principle approximate the functions
discovered by PANGAEA, they do not consistently match its performance. PANGAEA utilizes
both evolutionary search and gradient descent to discover activation functions, and apparently this
combination of optimization processes is more powerful than gradient descent alone.

Figure 5 shows examples of parametric activation functions discovered by PANGAEA. As
training progresses, gradient descent makes small adjustments to the function parameters α, β, and
γ, resulting in activation functions that change over time. This result suggests that it is advantageous
to have one activation function in the early stages of training when the network learns rapidly, and a
different activation function in the later stages of training when the network is focused on fine-tuning.
The parameters α, β, and γ are also learned separately for the different channels, resulting in
activation functions that vary with location in a neural network. Functions in deep layers (near the
output) are more nonlinear than those in shallow layers (closer to the input), possibly contrasting
the need to form regularized embeddings with the need to form categorizations. In this manner,
PANGAEA customizes the activation functions to both time and space for each architecture.

6. Diving Deeper: Experiments on Ablations, Variations, and Training Dynamics

PANGAEA is a method with many moving parts. The main results from Section 5 already showed
the power of PANGAEA, and the experiments from this section illuminate how each component of
PANGAEA contributes to its success. Evolutionary search and gradient descent working in tandem
provided a better strategy than either optimization algorithm alone (Section 6.1). The top activation
functions benefitted from their learnable parameters (Section 6.2), but baseline functions did not
(Section 6.3), showing how PANGAEA discovered functional forms well-suited to parameterization.
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Figure 5: Adaptation of parametric activation functions over time and space. Top: The parameters change during
training, resulting in different activation functions in the early and late stages. The plots were created by averaging
the values of α, β, and γ across the entire network at different training epochs. Bottom: The parameters are updated
separately in each channel, inducing different activation functions at different locations of a neural network. The
plots were created by averaging α, β, and γ at each layer of the network after the completion of training.

PANGAEA is robust: the activation functions it discovers transfer to larger networks (Section
6.4) and PANGAEA achieves impressive results with a new dataset and architecture (Section 6.5).
The activation functions discovered by PANGAEA improve accuracy by easing optimization and
implicitly regularizing the network (Section 6.6).

6.1. Additional Baseline Search Strategies

As additional baseline comparisons, two alternative search strategies were used to discover acti-
vation functions for WRN-10-4. First, a random search baseline was established by applying random
mutations without regard to fitness values. This approach corresponds to setting evolutionary pa-
rameters P = 1, S = 1, and V = 0%. Second, to understand the effects of function parameterization,
a nonparametric evolution baseline was run. This setting is identical to PANGAEA, except functions
are not parameterized (Figure 3). Otherwise, both baselines follow the same setup as PANGAEA,
including evaluating C = 1,000 candidate functions and reranking the most promising ones (Section
3.2).
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Table 3: WRN-10-4 accuracy with different activation functions on CIFAR-100, shown as mean ± sample standard
deviation across ten runs. PANGAEA discovers better activation functions than random search and nonparametric
evolution.

PANGAEA
log(σ(αx)) · βarcsinh(x) 73.20±0.37

log(σ(αx)) · arcsinh(x) 73.16±0.41

−Swish(Swish(αx)) 72.49±0.55

Random Search
αSwish(x) 72.85±0.25

Softplus(x) · arctan(αx) 72.81±0.35

ReLU(αarcsinh(βσ(x))) · SELU(γx) 72.69±0.21

Nonparametric Evolution
cosh(1) · Swish(x) 72.78±0.24

(e1 − 1) · Swish(x) 72.52±0.34

ReLU(Swish(x)) 72.04±0.54

ReLU 71.46±0.50

Swish 72.26±0.28

Table 3 shows the results of this experiment. Random search is able to discover good functions that
outperform ReLU, but the functions are not as powerful as those discovered by PANGAEA. This result
demonstrates the importance of fitness selection in evolutionary search. The functions discovered by
nonparametric evolution similarly outperform ReLU but underperform PANGAEA. Interestingly,
without parameterization, evolution is not as creative: two of the three functions discovered are
merely Swish multiplied by a constant. Random search and nonparametric evolution both discovered
good functions that improved accuracy, but PANGAEA achieves the best performance by combining
the advantages of fitness selection and function parameterization.

6.2. Effect of Parameterization

To understand the effect that parameterizing activation functions has on their performance, the
specialized functions (Table 2) were trained without them. As Table 4 shows, when parameters
are removed, performance drops. The function log(σ(x)) is the only exception to this rule, but
its high performance is not surprising, since it was previously discovered as a general activation
function (Table 2). These results confirm that the learnable parameters contributed to the success
of PANGAEA.

6.3. Adding Parameters to Fixed Baseline Activation Functions

As demonstrated in Tables 2 and 4, learnable parameters are an important component of
PANGAEA. An interesting question is whether accuracy can be increased simply by augmenting
existing activation functions with learnable parameters. Table 5 shows that this is not the case:
trivially adding parameters to fixed activation functions does not reliably improve performance.
This experiment implies that certain functional forms are better suited to taking advantage of
parameterization than others. By utilizing evolutionary search, PANGAEA is able to discover these
functional forms automatically.
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Table 4: CIFAR-100 test set accuracy aggregated over ten runs, shown as mean ± sample standard deviation. The
parametric evolved functions tend to outperform their nonparametric counterparts, demonstrating the value of
parameterization.

WRN-10-4
log(σ(αx)) · βarcsinh(x) 73.20±0.37

log(σ(αx)) · arcsinh(x) 73.16±0.41

log(σ(x)) · arcsinh(x) 72.51±0.30

−Swish(Swish(αx)) 72.49±0.55

−Swish(Swish(x)) 71.97±0.22

ResNet-v1-56
αx− β log(σ(γx)) 71.01±0.64

αx− log(σ(βx)) 70.30±0.58

x− log(σ(x)) 69.29±0.45

ResNet-v2-56
min{log(σ(x)), α log(σ(βx))} 75.19±0.39

log(σ(x)) 75.53±0.37

Table 5: CIFAR-100 test set accuracy aggregated over ten runs, shown as mean ± sample standard deviation.
Trivially parameterizing existing fixed activation functions does not substantially improve performance. PANGAEA,
on the other hand, utilizes evolutionary search to discover functional forms that are well suited to taking advantage of
the parameters, leading to better performance.

WRN-10-4 ResNet-v1-56 ResNet-v2-56

Best Specialized Functions
log(σ(αx)) · βarcsinh(x) 73.20±0.37

αx− β log(σ(γx)) 71.01±0.64

Softplus(ELU(x)) 75.61±0.42

Parameterized Functions
αReLU(βx) 71.96±0.31 68.93±0.22 73.52±0.37

αELiSH(βx) 01.00±0.00 01.00±0.00 73.94±0.33

αELU(βx) 71.98±0.24 69.06±0.37 73.97±0.45

αGELU(βx) 71.96±0.34 69.39±0.35 73.83±0.24

αHardSigmoid(βx) 66.70±0.64 34.33±6.53 65.10±0.40

αLeaky ReLU(βx) 71.74±0.39 69.11±0.47 73.44±0.29

αMish(βx) 72.11±0.31 69.51±0.67 73.72±0.32

αSELU(βx) 71.07±0.33 68.05±0.39 73.37±0.38

αsigmoid(βx) 66.98±0.66 44.40±2.62 66.98±0.85

αSoftplus(βx) 71.73±0.31 68.84±0.30 73.95±0.37

αSoftsign(βx) 62.12±0.83 09.18±13.75 68.87±0.38

αSwish(βx) 72.26±0.29 69.25±0.28 73.93±0.22

αtanh(βx) 63.55±0.56 02.92±6.07 69.55±0.62
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Table 6: Specialized activation functions discovered for WRN-10-4, ResNet-v1-56, and ResNet-v2-56 are evaluated
on larger versions of those architectures: WRN-16-8, ResNet-v1-110, and ResNet-v2-110, respectively. CIFAR-100
test accuracy is reported as mean ± sample standard deviation across three runs. Specialized activation functions
successfully transfer to WRN-16-8 and ResNet-v2-110, outperforming ReLU.

WRN-16-8
log(σ(αx)) · βarcsinh(x) 78.36±0.17

log(σ(αx)) · arcsinh(x) 78.34±0.20

−Swish(Swish(αx)) 78.00±0.35

ReLU 78.15±0.03

ResNet-v1-110
αx− β log(σ(γx)) 70.85±0.50

αx− log(σ(βx)) 70.34±0.60

max{Swish(x), 0} 70.36±0.56

ReLU 71.23±0.25

ResNet-v2-110
Softplus(ELU(x)) 77.14±0.38

min{log(σ(x)), α log(σ(βx))} 76.93±0.19

SELU(Swish(x)) 76.96±0.14

ReLU 76.34±0.11

6.4. Scaling Up to Larger Networks

PANGAEA discovered specialized activation functions for WRN-10-4, ResNet-v1-56, and ResNet-
v2-56. Table 6 shows the performance of these activation functions when paired with the larger
WRN-16-8, ResNet-v1-110, and ResNet-v2-110 architectures. Due to time constraints, ReLU is the
only baseline activation function in these experiments.

Two of the three functions discovered for WRN-10-4 outperform ReLU with WRN-16-8, and all
three functions discovered for ResNet-v2-56 outperform ReLU with ResNet-v2-110. Interestingly,
ReLU achieves the highest accuracy for ResNet-v1-110, where activation functions are part of the
skip connections, but not for ResNet-v2-110, where they are not. Thus, it is easier to achieve
high performance with specialized activation functions on very deep architectures when they are
not confounded by skip connections. Notably, ResNet-v2-110 with Softplus(ELU(x)) performs
comparably to the much larger ResNet-v2-1001 with ReLU (77.14 vs. 77.29, as reported by He et al.
[15]).

Evolving novel activation functions can be computationally expensive. The results in Table 6
suggest that it is possible to reduce this cost by evolving activation functions for smaller architectures,
and then using the discovered functions with larger architectures.

6.5. A New Task: All-CNN-C on CIFAR-10

To verify that PANGAEA is effective with different datasets and types of architectures, activation
functions were evolved for the All-CNN-C [32] architecture on the CIFAR-10 dataset. All-CNN-C
is quite distinct from the architectures considered above: It contains only convolutional layers,
activation functions, and a global average pooling layer, but it does not have residual connections.

As shown in Table 7, PANGAEA improves significantly over ReLU in this setting as well. The
accuracy improvement from 88.47% to 92.77% corresponds to an impressive 37.29% reduction in the
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Table 7: All-CNN-C accuracy with different activation functions on CIFAR-10, shown as mean ± sample standard
deviation across ten runs. PANGAEA improves performance significantly also with this different architecture and
task.

αReLU(β|ReLU(γx)|) 92.77±0.13

αSwish(x) · cosh(β) 92.66±0.08

αSwish(βx) 76.15±34.86

ReLU 88.47±0.14

error rate. This experiment provides further evidence that PANGAEA can improve performance for
different architectures and tasks.

6.6. Training Dynamics of Evolved Activation Functions

PANGAEA discovers activation functions that improve accuracy over baseline functions. An
interesting question is: What mechanisms do these evolved functions use in order to achieve better
performance? By examining training and validation curves qualitatively for different activation
functions, it appears that some functions ease optimization, while others improve performance
through implicit regularization.

For instance, Figure 6 shows training and validation curves for the All-CNN-C architecture and
four discovered activation functions, plus ReLU. With All-CNN-C, the learning rate starts at 0.01
and decreases by a factor of 0.1 after epochs 200, 250, and 300, with training ending at epoch 350.
With some discovered activation functions, the training and validation curves are consistently higher
than the curves from ReLU across all epochs of training, indicating easier optimization (Figure 6a).
With other activation functions, the training and validation curves actually remain lower than those
from ReLU until the final stage in the learning rate schedule, suggesting implicit regularization
(Figure 6b). In such cases, the network is learning difficult patterns in the early stages of training;
in contrast, the ReLU model memorizes simpler patterns, which leads to early gains but difficulty
generalizing later on [22].

Even more complex behavior can be observed in some cases. For example, some discovered
functions have training and validation curves that start out higher than those from ReLU, plateau
to a lower value, but then again surpass those from ReLU at later stages in the learning rate
schedule (Figure 6c). Others have curves that start out lower than those from ReLU, but surpass
it within a few dozen epochs (Figure 6d). Such diverse behavior suggests that these mechanisms
can be combined in complex ways. Thus, the plots in Figure 6 suggest that in the future it may be
feasible to search for activation functions with specific properties depending on the task at hand.
For example, a larger network may benefit from an activation function that implicitly regularizes it,
while a smaller network may be better suited to an activation function that eases optimization.

7. Evaluating Robustness: Experiments on Reliability, Flexibility, and Efficiency

This section demonstrates robustness of PANGAEA with three experiments. In the first
experiment, two independent PANGAEA processes were run from scratch. The processes discovered
similarly powerful activation functions, demonstrating that PANGAEA reliably discovers good
activation functions each time it is run. In the second experiment, variations of PANGAEA with
per-layer and per-neuron learnable parameters were run, to complement the original PANGAEA
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(a): ReLU(x) vs. α · ReLU(β · x) (b): ReLU(x) vs. SELU(α · tanh(β · x))

(c): ReLU(x) vs. |α · x| (d): ReLU(x) vs. max{Swish(α · x), log(σ(β · x))}

Figure 6: Training curves of All-CNN-C on CIFAR-10 with different activation functions. Accuracy with ReLU is
shown in gray, and accuracy with the discovered functions in different colors. The training accuracy is shown as a
solid line, and validation accuracy as a dashed line. All of these discovered functions outperformed ReLU, but the
training curves show different behavior in each case. In (a) both curves are above those of ReLU the whole time,
suggesting ease of learning. In (b), they exceed those of ReLU only in the end, suggesting early regularization. More
complex profiles (such as those in (c) and (d)) are also observed, suggesting that their combinations are possible as
well.

with per-channel parameters. The results show that PANGAEA is effective with all three variations.
Third, statistics from activation functions across the per-layer, two per-channel, and the per-neuron
variations were aggregated to demonstrate computational efficiency of PANGAEA. Every PANGAEA
run discovers an activation function that outperforms ReLU early on in the search process, before
much compute is spent; they also eventually discover activation functions that perform much better
and train almost as quickly as ReLU.

7.1. Reliability of PANGAEA

PANGAEA is inherently a stochastic process. Therefore, an important question is whether
PANGAEA can discover good activation functions reliably every time it is run. To answer this
question, PANGAEA was run from scratch on ResNet-v1-56 independently two times. These runs
utilized per-channel parameters, and were identical to the original PANGAEA run, except they were
allowed to evaluate up to C = 2,000 activation functions instead of C = 1,000 from the original run.
They were run on ResNet-v1-56 since it proved to be the most difficult architecture to optimize
(Table 2).

There are multiple ways to analyze the similarity of the two PANGAEA runs. First, a simple and
relevant metric is to look at the test accuracies of the functions discovered by each search. Table 8
shows that both PANGAEA runs discovered multiple good activation functions. The accuracies
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Figure 7: Average population fitness across time for four independent PANGAEA runs. The plots show the average
validation accuracy achieved with the 64 most recently evaluated activation functions at any given time in the search
process. All four PANGAEA runs gradually discover better activation functions as they explore the search space,
with the per-layer run slightly below the others. Importantly, the two per-channel PANGAEA runs progress at similar
rates, demonstrating the reliability of PANGAEA.

achieved by these functions are substantially higher than those achieved by ReLU. Most importantly,
although the functions themselves are different, they resulted in similar accuracies as functions from
the original PANGAEA run.

A second way is to compare the time course of discovery. To this end, Figure 7 shows how the
populations of P = 64 activation functions improved over time in the two PANGAEA runs. In both
cases, the initial functions are relatively poor. As evolution progresses, both runs discover better
functions at similar rates. This result shows that in addition to the final results, the PANGAEA
process as a whole is stable and reliable.

A third way is to compare the complexity, i.e. time it takes to train the network with the
discovered functions. Figure 8 shows the cost of all of the activation functions considered throughout
each PANGAEA run. The runtimes of activation functions are comparable across different validation
accuracies, suggesting that both runs discovered functions of similar complexity.

In sum, the two PANGAEA runs produced comparable final results, progressed at comparable
rates, and searched through functions of similar complexity. These results suggest that PANGAEA
is a reliable process that can consistently outperform baseline activation functions.
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variants explore activation functions of similar complexity and reliably discover many novel functions that outperform
ReLU.
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7.2. Parameters: per-layer, per-channel, or per-neuron?

Learnable parameters in activation functions can be per-layer, per-channel, or per-neuron. It
is not clear which setting is the best. For example, per-neuron parameters are the default setting
in the TensorFlow implementation of PReLU [13]. However, He et al. [13] also experimented with
per-channel and per-layer implementations. Further preliminary experiments for this paper (Table 9)
suggest that per-neuron PReLU is best for WRN-10-4 and ResNet-v2-56, but this setting is the
worst for ResNet-v1-56, which benefits most from per-layer parameters.

Similarly, no clear trends were observed in preliminary PANGAEA experiments. For some
activation functions and architectures per-neuron parameters were beneficial, presumably due to the
added expressivity of each neuron learning its own optimal activation function. In other cases per-
layer was better, possibly due to an implicit regularization effect caused by all neurons within a layer
using the same activation function. As a compromise between the expressivity and regularization of
these two strategies, per-channel parameters were utilized in the main experiments. However, the
preliminary results suggest that performance may be further optimized by specializing the parameter
setting to the activation function and to the architecture.

To explore this idea further, per-layer and per-neuron versions of PANGAEA were run from
scratch on ResNet-v1-56. Both of these PANGAEA runs produced good activation functions that
outperformed ReLU substantially (Table 8). Interestingly, although per-layer PReLU outperformed
per-neuron PReLU with ResNet-v1-56 (Table 9), PANGAEA performed the best in the per-neuron
setting (Table 8). Indeed, although the per-layer PANGAEA runs still discovered good activation
functions, their average performance during search was often lower than that of the per-channel or
per-neuron variants (Figure 7). These findings suggest that the distribution of per-layer activation
functions may be long-tailed: Powerful per-layer activation functions do exist, but they may be
more difficult to discover compared to per-channel or per-neuron activation functions.

In order to separate the search space from the search algorithm, in a further experiment 500
per-layer, per-channel, and per-neuron activation functions were randomly created and trained once
with ResNet-v1-56 (the functions were first initialized randomly as shown in Figure 1, and then
mutated randomly three times as shown in Figure 2). The best activation functions from these
random samples are included in Table 8. The best per-layer activation function outperformed ReLU
by a large margin, but was not as powerful as those discovered with PANGAEA; the best per-neuron
function outperformed all other variants. These results thus suggest that the distribution of good
per-neuron functions may be long-tailed as well, but at a higher level of performance than per-layer
and per-channel functions.

In sum, although more research is needed to discover a principled way to select per-layer, per-
channel, or per-neuron parameters in a given situation, PANGAEA is flexible enough to discover
good functions for all three of these cases.

7.3. Efficiency of PANGAEA

PANGAEA’s computational efficiency needs to be evaluated from two perspectives. First, how
much compute is necessary to find good activation functions? Second, once a good activation
function is found, how much more expensive is it to use it in a network compared to a baseline
function like ReLU? This section aggregates data from the per-layer, the two per-channel, and
the per-neuron PANGAEA runs to demonstrate that PANGAEA is surprisingly efficient in both
respects.

First, Figure 9 shows how the four PANGAEA runs discovered better activation functions with
increasingly more compute. All four runs discovered an activation function that outperformed ReLU
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Per-layer PANGAEA
max{Swish(x), x} 71.00±0.28

max{x, α · log(σ(SELU(x)))} 70.76±0.29

max{α ·max{β · ReLU(arcsinh(x)), x},max{γ · ReLU(arcsinh(x)), x}} 70.63±0.35

Original Per-channel PANGAEA Run
αx− β log(σ(γx)) 71.01±0.64

αx− log(σ(βx)) 70.30±0.58

max{Swish(x), 0} 69.43±0.69

Additional Per-channel PANGAEA Run 1
max{min{α · x,ELU(x)}, 0} 70.53±0.31

α ·max
{
β · ReLU

(
Swish(x)

γ

)
, x
}

70.52±0.39

max{ReLU(Swish(α · x)), β · x} 70.44±0.44

Additional Per-channel PANGAEA Run 2
max{Swish(α · x), x} 71.03±0.40

max{Swish(x), arcsinh(α · β · x)} 70.52±0.35

max{Swish(x), arcsinh(α · x)} 70.41±0.38

Per-neuron PANGAEA
α ·max{β · Swish(γ · x),Swish(x)} 71.25±0.35

α · x− (β · Swish(γ · x)) 71.23±0.18

ELU(ELU(α · x) + log(σ(0))) 71.20±0.25

Random Sample (n = 500)
Per-layer max{α · Swish(β · x),Softplus(x)} 70.32
Per-channel α · x2 70.91
Per-neuron bessel i0e(|x|) + α · |x| 71.66

ReLU 69.64±0.65

Table 8: Performance of the best activation functions from multiple PANGAEA runs with ResNet-v1-56. CIFAR-100
test accuracy is shown as the mean ± sample standard deviation across three runs. The three independent per-channel
runs produce activation functions of similar performance, demonstrating the reliability of PANGAEA. PANGAEA
also discovers good activation functions with per-layer or per-neuron parameters, showing its flexibility. The very best
per-layer and per-neuron functions are difficult to find, suggesting that their distribution is long-tailed.

WRN-10-4 ResNet-v1-56 ResNet-v2-56

Per-layer PReLU 71.92±0.41 71.40±0.59 73.54±0.21

Per-channel PReLU 71.15±0.41 71.25±0.54 74.52±0.24

Per-neuron PReLU 72.23±0.37 69.77±0.40 75.10±0.53

Table 9: CIFAR-100 test accuracy with different architectures and PReLU variants reported as mean ± sample
standard deviation across ten runs. Per-neuron PReLU gets the best performance on WRN-10-4 and ResNet-v2-56,
but per-layer PReLU is the best for ResNet-v1-56.
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Figure 9: Computational efficiency of PANGAEA. The plot shows the performance of the best activation function
discovered so far (y-axis) after a given amount of compute was spent (x-axis). All four PANGAEA runs discover
activation functions that outperform ReLU with relatively little compute, demonstrating the efficiency of PANGAEA.
If even better performance is needed, additional compute can be spent.

relatively early in the search. Because some activation functions are unstable and cause training to
fail, they require negligible compute. Computational resources can instead be focused on functions
that appear promising. The implications of Figure 9 are that in practice, PANGAEA can be used
to improve over a baseline activation function relatively cheaply. If better performance is needed,
additional compute can be used to continue the search until the desired performance is achieved.

Second, Figure 8 shows the distribution of accuracy and compute cost of all activation functions
evaluated in all four PANGAEA runs on ResNet-v1-56. Each point in the scatter plot represents a
unique activation function discovered in one of the searches, and the distribution of accuracies and
compute costs are shown as histograms above and to the side of the main plot. The results confirm
earlier conclusions: All strategies find many activation functions that beat ReLU, and per-neuron
PANGAEA discovers more high-performing functions than per-channel or per-layer PANGAEA.
The total amount of time it took to train the architecture with the given activation function is
shown as “runtime” in the vertical axis. Interestingly, there is a wide range in this metric: some
activation functions are significantly more expensive than ReLU, while others are essentially the
same. Thus, the figure shows that there exist plenty of activation functions that significantly beat
ReLU but do not incur a significant computational overhead. This distribution also suggests that a
multi-objective approach that optimizes for both accuracy and computational cost simultaneously
could be effective.
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8. Future Work

It is difficult to select an appropriate activation function for a given architecture because the
activation function, network topology, and training setup interact in complex ways. It is especially
promising that PANGAEA discovered activation functions that significantly outperformed the
baselines, since the architectures and training setups were standard and developed with ReLU. A
compelling research direction is to jointly optimize the architecture, training setup, and activation
function.

More specifically, there has been significant recent research in automatically discovering the
architecture of neural networks through gradient-based, reinforcement learning, or neuroevolutionary
methods [8, 31, 38]. In related work, evolution was used discover novel loss functions automatically
[10, 11, 23], outperforming the standard cross entropy loss. In the future, it may be possible to
optimize many of these aspects of neural network design jointly. Just as new activation functions
improve the accuracy of existing network architectures, it is likely that different architectures will
be discovered when the activation function is not ReLU. One such example is EfficientNet [34],
which achieved state-of-the-art accuracy for ImageNet [6] using the Swish activation function [7, 30].
Coevolution of activation functions, topologies, loss functions, and possibly other aspects of neural
network design could allow taking advantage of interactions between them, leading to further
improvements in the future.

Similarly, there can be multiple properties of an activation function that make it useful in
different scenarios. PANGAEA optimized for activation functions that lead to high accuracy.
Another promising area of future work is to search for activation functions that are also efficient
to compute (Figure 8), improve adversarial robustness [39], stabilize training [19], or meet other
objectives like easing optimization or providing implicit regularization [22]. These functions could
be discovered with multi-objective optimization, or through other methods like a carefully designed
search space or adding regularization to the parameters of the activation functions.

9. Conclusion

This paper introduced PANGAEA, a technique for automatically designing novel, high-performing,
parametric activation functions. PANGAEA builds a synergy of two different optimization processes:
evolutionary population-based search for the general form, and gradient descent-based fine-tuning of
the parameters of the activation function. Compared to previous studies, the search space is extended
to include deeper and more complex functional forms, including ones unlikely to be discovered by
humans. The parameters are adapted during training and are different in different locations of the
architecture, thus customizing the functions over both time and space. PANGAEA is able to discover
general activation functions that perform well across architectures, and specialized functions taking
advantage of a particular architecture, significantly outperforming previously proposed activation
functions in both cases. It is thus a promising step towards automatic configuration of neural
networks.
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Appendix A. Training Details

Appendix A.1. Wide Residual Network (WRN-10-4)

When measuring final performance after evolution, the standard WRN setup is used; all ReLU
activations in WRN-10-4 are replaced with the evolved activation function, but no other changes to
the architecture are made. The network is optimized using stochastic gradient descent with Nesterov
momentum 0.9. The network is trained for 200 epochs; the initial learning rate is 0.1, and it is
decreased by a factor of 0.2 after epochs 60, 120, and 160. Dropout probability is set to 0.3, and L2
regularization of 0.0005 is applied to the weights. Data augmentation includes featurewise center,
featurewise standard deviation normalization, horizontal flip, and random 32× 32 crops of images
padded with four pixels on all sides. This setup was chosen to mirror the original WRN setup [40]
as closely as possible.

During evolution of activation functions, the training is compressed to save time. The network is
trained for only 100 epochs; the learning rate begins at 0.1 and is decreased by a factor of 0.2 after
epochs 30, 60, and 80. Empirically, the accuracy achieved by this shorter schedule is sufficient to
guide evolution; the computational cost saved by halving the time required to evaluate an activation
function can then be used to search for additional activation functions.
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Appendix A.2. Residual Network (ResNet-v1-56)

As with WRN-10-4, when measuring final performance with ResNet-v1-56, the only change to
the architecture is replacing the ReLU activations with an evolved activation function. The network
is optimized with stochastic gradient descent and momentum 0.9. Dropout is not used, and L2
regularization of 0.0001 is applied to the weights. In the original ResNet experiments [14], an initial
learning rate of 0.01 was used for 400 iterations before increasing it to 0.1, and further decreasing
it by a factor of 0.1 after 32K and 48K iterations. An iteration represents a single forward and
backward pass over one training batch, while an epoch consists of training over the entire training
dataset. In this paper, the learning rate schedule is implemented by beginning with a learning rate
of 0.01 for one epoch, increasing it to 0.1, and then decreasing it by a factor of 0.1 after epochs 91
and 137. (For example, (48K iterations / 45K training images) * batch size of 128 ≈ 137.) The
network is trained for 200 epochs in total. Data augmentation includes a random horizontal flip and
random 32× 32 crops of images padded with four pixels on all sides, as in the original setup [14].

When evolving activation functions for ResNet-v1-56, the learning rate schedule is again com-
pressed. The network is trained for 100 epochs; the initial warmup learning rate of 0.01 still lasts
one epoch, the learning rate increases to 0.1, and then decreases by a factor of 0.1 after epochs 46
and 68. When evolving activation functions, their relative performance is more important than the
absolute accuracies they achieve. The shorter training schedule is therefore a cost-efficient way of
discovering high-performing activation functions.

Appendix A.3. Preactivation Residual Network (ResNet-v2-56)

The full training setup, data augmentation, and compressed learning rate schedule used during
evolution for ResNet-v2-56 are all identical to those for ResNet-v1-56 with one exception: with
ResNet-v2-56, it is not necessary to warm up training with an initial learning rate of 0.01 [15], so
this step is skipped.

Appendix A.4. All-CNN-C

When measuring final performance with All-CNN-C, the ReLU activation function is replaced
with an evolved one, but the setup otherwise mirrors that of Springenberg et al. [32] as closely as
possible. The network is optimized with stochastic gradient descent and momentum 0.9. Dropout
probability is 0.5, and L2 regularization of 0.001 is applied to the weights. The data augmentation
involves featurewise centering and normalizing, random horizontal flips, and random 32× 32 crops of
images padded with five pixels on all sides. The initial learning rate is set to 0.01, and it is decreased
by a factor of 0.1 after epochs 200, 250, and 300. The network is trained for 350 epochs in total.

During evolution of activation functions, the same training setup was used. It is not necessary
to compress the learning rate schedule as was done with the residual networks because All-CNN-C
trains more quickly.

Appendix A.5. CIFAR-10

As with CIFAR-100, a balanced validation set was created for CIFAR-10 by randomly selecting
500 images from each class, resulting in a training/validation/test split of 45K/5K/10K images.
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Appendix B. Implementation and Compute Requirements

High-performance computing in two clusters is utilized for the experiments. One cluster uses
HTCondor [36] for scheduling jobs, while the other uses the Slurm workload manager. Training is
executed on GeForce GTX 1080 and 1080 Ti GPUs on both clusters. When a job begins executing,
a parent activation function is selected by sampling S = 16 functions from the P = 64 most recently
evaluated activation functions. This is a minor difference from the original regularized evolution
[31], which is based on a strict sliding window of size P . This approach may give extra influence
to some activation functions, depending on how quickly or slowly jobs are executed in each of the
clusters. In practice the method is highly effective; it allows evolution to progress quickly by taking
advantage of extra compute when demand on the clusters is low.

It is difficult to know ahead of time how computationally expensive the evolutionary search will
be. Some activation functions immediately result in an undefined loss, causing training to end. In
that case only a few seconds have been spent and another activation function can immediately be
evaluated. Other activation functions train successfully, but their complicated expressions result
in longer-than-usual training times. Although substantial, the computational cost is negligible
compared to the cost in human labor in designing activation functions. Evolution of parametric
activation functions requires minimal manual setup and delivers automatic improvements in accuracy.

Appendix C. Baseline Activation Function Details

The following activation functions were used as baseline comparisons in Table 2. Some functions
were also utilized in the search space (Table 1).

• ReLU = max{x, 0} [28].

• ELiSH = x
1+e−x if x ≥ 0 else ex−1

1+e−x [3].

• ELU = x if x ≥ 0 else α(ex − 1), with α = 1 [5].

• GELU = xΦ(x), with Φ(x) = P (X ≤ x), X ∼ N (0, 1), approximated as 0.5x(1+tanh[
√

2/π(x+
0.044715x3)]) [16].

• HardSigmoid = max{0,min{1, 0.2x+ 0.5}}.

• Leaky ReLU = x if x ≥ 0 else 0.01x [25].

• Mish = x · tanh(Softplus(x)) [26].

• SELU = λx if x ≥ 0 else λα(ex − 1), with λ = 1.05070098, α = 1.67326324 [19].

• sigmoid = (1 + e−x)−1.

• Softplus = log(ex + 1).

• Softsign = x/(|x|+ 1).

• Swish = x · σ(x), with σ(x) = (1 + e−x)−1 [7, 30].

• tanh = ex−e−x

ex+e−x .
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• PReLU = x if x ≥ 0 else αx, where α is a per-neuron learnable parameter initialized to
0.25 [13].

• PSwish = x · σ(βx), where β is a per-channel learnable parameter [30].

• APL = max{0, x} +
∑S
s=1 as max{0,−x + bs}, where S = 7 and as and bs are per-neuron

learnable parameters [2].

• PAU =
∑m

j=0 ajx
j

1+|
∑n

k=1 bkx
k| , where m = 5, n = 4, and aj and bk are per-layer learnable parameters

initialized so that the function approximates Leaky ReLU with a slope of 0.01 [27].

• SPLASH =
∑(S+1)/2
s=1 a+s max{0, x− bs}+ a−s max{0,−x− bs}, where S = 7, b = [0, 1, 2, 2.5],

and a+s and a−s are per-layer learnable parameters initialized as a+1 = 1 and all other a = 0
[35].

Appendix D. Training with Custom Activation Functions

This section demonstrates how to implement different activation functions in a TensorFlow neural
network. For example, the code to create the All-CNN-C architecture with a custom activation
function is:

def all_cnn_c(args):
inputs = Input((32, 32, 3))
x = Conv2D(96, kernel_size=3, strides=(1, 1), padding=’same’, kernel_regularizer=l2(0.001))(inputs)
x = CustomActivation(args)(x)
x = Conv2D(96, kernel_size=3, strides=(1, 1), padding=’same’, kernel_regularizer=l2(0.001))(x)
x = CustomActivation(args)(x)
x = Conv2D(96, kernel_size=3, strides=(2, 2), padding=’same’, kernel_regularizer=l2(0.001))(x)
x = Dropout(0.5)(x)

x = Conv2D(192, kernel_size=3, strides=(1, 1), padding=’same’, kernel_regularizer=l2(0.001))(x)
x = CustomActivation(args)(x)
x = Conv2D(192, kernel_size=3, strides=(1, 1), padding=’same’, kernel_regularizer=l2(0.001))(x)
x = CustomActivation(args)(x)
x = Conv2D(192, kernel_size=3, strides=(2, 2), padding=’same’, kernel_regularizer=l2(0.001))(x)
x = CustomActivation(args)(x)
x = Dropout(0.5)(x)

x = Conv2D(192, kernel_size=3, strides=(1, 1), padding=’same’, kernel_regularizer=l2(0.001))(x)
x = CustomActivation(args)(x)
x = Conv2D(192, kernel_size=1, strides=(1, 1), padding=’valid’, kernel_regularizer=l2(0.001))(x)
x = CustomActivation(args)(x)
x = Conv2D(10, kernel_size=1, strides=(1, 1), padding=’valid’, kernel_regularizer=l2(0.001))(x)
x = CustomActivation(args)(x)

x = GlobalAveragePooling2D()(x)
x = Flatten()(x)
outputs = Activation(’softmax’)(x)

return Model(inputs=inputs, outputs=outputs)

Here, CustomActivation() is a wrapper that resolves to different activation functions depending
on the args parameter. After importing from tensorflow.keras.layers import Activation,
built-in activation functions can be implemented as Activation(’relu’) or Activation(’tanh’),
for example. Activation functions that are not built in and do not contain learnable parameters can be
implemented with lambda functions. For example, the Mish activation function can be implemented
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with Activation(lambda x : x * tf.math.tanh(tf.keras.activations.softplus(x))). Fi-
nally, activation functions with learnable parameters simply require subclassing a Layer object. The
code used to implement the PAU activation function is below; APL and SPLASH are implemented
in a similar manner.

"""
Padé Activation Units: End-to-end Learning of Flexible Activation Functions in Deep Networks
https://arxiv.org/abs/1907.06732

PAU of degree (5, 4) initialized to approximate Leaky ReLU (0.01)
"""
import tensorflow as tf

from tensorflow.keras.layers import Layer
from tensorflow.keras.initializers import Constant

class PAU(Layer):
def __init__(self, num_init=None, denom_init=None, param_shape=’per-layer’, **kwargs):

super(PAU, self).__init__(**kwargs)
self.num_init = num_init if num_init else [0.02979246, 0.61837738, 2.32335207, 3.05202660, 1.48548002, 0.25103717]
self.denom_init = denom_init if denom_init else [1.14201226, 4.39322834, 0.87154450, 0.34720652]
self.num_weights = []
self.denom_weights = []
self.param_shape = param_shape

def build(self, input_shape):
if self.param_shape == ’per-layer’:

param_shape = (1,)
elif self.param_shape == ’per-channel’:

param_shape = list(input_shape[-1:])
else:

assert self.param_shape == ’per-neuron’
param_shape = list(input_shape[1:])

for i in range(6):
self.num_weights.append(

self.add_weight(
name=f’a{i}’,
shape=param_shape,
initializer=Constant(self.num_init[i]),
trainable=True))

for i in range(4):
self.denom_weights.append(

self.add_weight(
name=f’b{i+1}’,
shape=param_shape,
initializer=Constant(self.denom_init[i]),
trainable=True))

def call(self, inputs):
num = tf.add_n([self.num_weights[i] * tf.math.pow(inputs, i) for i in range(6)])
denom = 1 + tf.math.abs(tf.add_n([self.denom_weights[i] * tf.math.pow(inputs, i+1) for i in range(4)]))
return num / denom

def get_config(self):
config = super(PAU, self).get_config()
config.update({’num_init’ : self.num_init,

’denom_init’ : self.denom_init,
’param_shape’ : self.param_shape})

return config

Appendix E. Scope of PANGAEA Search Space

This section shows that any piecewise real analytic function can be represented as a PANGAEA
computation graph containing operators from Table 1. In the main text, PANGAEA computation
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graphs were restricted to having at most seven nodes and three learnable parameters α, β, and γ
for efficiency. Throughout this section the node and parameter constraints are removed. Parameters
take on the role of any real-valued constant, and the set of functions in PANGAEA without node or
parameter constraints is denoted as G∞. Before proving the main result, the following two lemmas
are needed.

Lemma 1. If f ∈ Cω is a real analytic function, then f ∈ G∞.

Proof. As f is real analytic, it can be expressed in the form

f(x) =

∞∑
n=0

an(x− x0)n, (E.1)

with parameters x0, a0, a1, . . . ∈ R. As PANGAEA contains the zero, one, addition, and negation
operators, the set of integers Z is contained in G∞. This accounts for the exponent n in the expression
above. All other operators (addition, subtraction, multiplication, exponentiation) in Equation E.1
are included in Table 1, and so f ∈ G∞.

Lemma 2. Given parameters a, b ∈ R where a < b, the indicator functions

1(−∞,b)(x) =

{
1 x < b

0 x ≥ b
(E.2)

1(a,∞)(x) =

{
1 x > a

0 x ≤ a
(E.3)

1(a,b)(x) =

{
1 x ∈ (a, b)

0 x /∈ (a, b)
(E.4)

1a(x) =

{
1 x = a

0 x 6= a
(E.5)

are in G∞.

Proof. Recall that PANGAEA implements the binary division operator x1/x2 as tf.math.divide no nan,
which returns 0 if x2 = 0. The indicator function 1(−∞,b)(x) can then be implemented as

1(−∞,b)(x) =
max{b− x, 0}

b− x
. (E.6)

There are three cases: if x < b, the expression evaluates to one. If x = b or x > b, the expression
evaluates to zero. By the same reasoning,

1(a,∞)(x) =
min{a− x, 0}

a− x
, (E.7)

which evaluates to one if x > a and zero otherwise. Finally, note that

1(a,b) = 1(−∞,b)1(a,∞) (E.8)
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and
1a = (1− 1(−∞,a))(1− 1(a,∞)). (E.9)

All operators in Equations E.6-E.9 (maximum, minimum, subtraction, multiplication, division, zero,
one) are in the PANGAEA search space in Table 1, and so the indicator functions are in G∞.

Theorem 1. If a function f is piecewise real analytic, then f ∈ G∞.

Proof. If a function f is piecewise real analytic, then it is representable by the form

f(x) =



f0(x) x ∈ (−∞, k1)

K1 x = k1

f1(x) x ∈ (k1, k2)

K2 x = k2
...

fn−1(x) x ∈ (kn−1, kn)

Kn x = kn

fn(x) x ∈ (kn,∞)

, (E.10)

where parameters K1,K2, . . . ,KN , k1, k2, . . . , kn ∈ R are real-valued, k1 < k2 < · · · < kn are
increasing, and f0, f1, . . . , fn ∈ Cω are real analytic functions. An equivalent representation of f is
the following:

f(x) = 1(−∞,k1)(x)f0(x) + 1k1(x)K1 + 1(k1,k2)(x)f1(x) + 1k2(x)K2 + · · ·
+ 1(kn−1,kn)(x)fn−1(x) + 1kn(x)Kn + 1(kn,∞)(x)fn(x).

(E.11)

By Lemmas 1 and 2, the real analytic functions fi and the indicator functions 1(·,·) are in G∞.
Beyond these functions, Equation E.11 utilizes only addition and multiplication, both of which are
operators included in Table 1. Therefore, f ∈ G∞.

Appendix F. Size of the PANGAEA Search Space

This section analyzes the size of the PANGAEA search space as implemented in experiments in
the main text. Let g represent a general computation graph, and let f represent a specific activation
function representable by g. For example, if we have g(x) = binary(unary1(x), unary2(x)), then
one possible activation function is f(x) = tanh(x)+erf(x), and another could be f(x) = α|x| ·σ(β ·x).

Let U = 27 and B = 7 be the number of unary and binary operators in the PANGAEA search
space, respectively, and let E = 3 be the maximum number of learnable parameters that can
be used to augment a given activation function. Given a computation graph g, let ug and bg be
the number of unary and binary nodes and let eg be the number of edges in g. For example,
with the functional form g(x) = unary1(unary2(x)), we have ug = 2, bg = 0, and eg = 3. With
g(x) = binary(unary1(x), unary2(x)), we have ug = 2, bg = 1, and eg = 5. The quantity eg
includes the edges from the input nodes x and edges to the output node g(x) (see Figure 1 in the
main text).
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Binary Nodes bg Unary Nodes ug Edges eg Arrangements Activation Functions

G1 0 1 2 1 108

G2 0 2 3 1 5,832

G3
0 3 4 1

427,923
1 2 5 1

G4
0 4 5 1

31,177,872
1 3 6 3

G5
0 5 6 1

2,210,558,3641 4 7 6
2 3 8 2

G6
0 6 7 1

152,059,087,5661 5 8 10
2 4 9 10

G7

0 7 8 1

10,015,741,690,785
1 6 9 15
2 5 10 30
3 4 11 1

Table F.10: The number of activation functions representable by a computation graph with a given number of nodes.
The PANGAEA search space contains over ten trillion activation functions, and therefore provides a good foundation
for finding powerful activation functions with different properties.

Let Fg denote the set of all activation functions f that can be represented within the computation
graph g. By enumerating the different choices of unary and binary operators, as well as the locations
for up to three learnable parameters α, β, and γ, we find the size of the set to be

|Fg| = Uug ·Bbg ·
E∑
i=0

(
eg
i

)
. (F.1)

Let Gj denote the set of computation graphs g containing j nodes. For example,

G3 = {g(x) = unary1(unary2(unary3(x))), g(x) = binary(unary1(x), unary2(x))}. (F.2)

Table F.10 shows the possible combinations of binary nodes bg, unary nodes ug, and edges eg for
each set Gj . Additionally, the table shows the number of computation graph arrangements possible
for a given bg, ug, and eg. For example, if bg = 2, ug = 3, and eg = 8, the computation graph could
take one of two forms: either

g(x) = binary1(binary2(unary1(x), unary2(x)), unary3(x)) (F.3)

or
g(x) = binary1(unary1(x), binary2(unary2(x), unary3(x))). (F.4)

The number of activation functions in PANGAEA is therefore
7∑
j=1

∑
g∈Gj

|Fg| = 10,170,042,948,450. (F.5)
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WRN-10-4 ResNet-v2-56

Accuracy 62.56±4.84 69.59±1.66

Failed Runs 3 of 10 7 of 10

Table G.11: CIFAR-100 test accuracy with PAU using a specialized training setup. Performance is comparable to
other baseline activation functions, but some runs fail due to training instability.

Naturally there exist duplicates within this space. The functions f(x) = ReLU(x) and f(x) =
max{x, 0} have different computation graphs but are functionally identical. Nevertheless, this
analysis still provides a useful characterization of the size and diversity of the PANGAEA search
space. It is orders of magnitude larger than spaces considered in prior work [3, 4, 30], and yet
PANGAEA consistently discovers functions that outperform ReLU and other baseline functions.

Appendix G. Additional Results with Learnable Activation Functions

PAU and SPLASH achieved worse-than-expected performance in Table 2, so additional experi-
ments were run to investigate their behavior.

PAU. Molina et al. [27] utilized a specialized training setup to achieve their results with PAU. In
particular, they used a constant learning rate and no weight decay for the PAU layers, but used
a learning rate decay of 0.985 per epoch and weight decay of 0.0005 for the other weights. They
also used a smaller batch size of 64, and trained for 400 epochs instead of 200. Even though the
paper does not mention it, it is possible that such a specialized setup is necessary to achieve good
performance with PAU. The experiments in this appendix utilized this same training setup (but
only trained for 200 epochs for fairness) to verify that the PAU implementation was correct.

Unfortunately, some relevant hyperparameters were not included in the PAU paper [27]. These
settings include the fixed learning rate used for the PAU layers, whether Nesterov momentum is
utilized, and which approximation of Leaky ReLU is used to initialize the PAU weights. This
missing information makes it difficult to replicate the original performance exactly. After significant
trial-and-error, the following settings worked well: The learning rate for the PAU layers was 0.01,
the initial learning rate for other weights was also 0.01, Nesterov momentum was not used, and the
PAU weights were initialized to approximate Leaky ReLU with a slope of 0.01.

Table G.11 shows the performance of WRN-10-4 and ResNet-v2-56 using these discovered
hyperparameters and the specialized training setup from Molina et al. [27]. The performance is
comparable to other baseline activation functions. In some cases, the runs failed because of training
instability (results were filtered out if the training accuracy was below 0.5). For all hyperparameter
combinations tested, PAU was unstable with ResNet-v1-56. Thus, it is possible to get good
performance with PAU, but the performance is highly sensitive to the training setup and choice of
hyperparameters.

Note that a standard, most commonly used setup was used throughout the main experiments in
the paper for all baseline comparisons. The reason is that there are dozens of such comparisons in
this paper, and it is possible that each one could benefit from a specialized setup—a setup that may
not even be fully known at this time. Therefore, a standard setup was necessary to ensure that the
comparisons are fair.
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Figure G.10: ResNet-v1-20 and ResNet-v1-32 test accuracy on CIFAR-100 with the SPLASH activation function.
SPLASH units work well in shallow networks, but become unstable with increased depth. This result explains the
success of SPLASH in the original work by Tavakoli et al. [35], and also shows why SPLASH units fail with the
architectures considered in this work.

SPLASH. In addition to ResNet-v1-56 in the main text, SPLASH was trained with ResNet-v1-20,
ResNet-v1-32, and ResNet-v1-44 for a more thorough characterization of its performance. Each
architecture was trained ten times, resulting in training curves shown in Figure G.10.

With ResNet-v1-20, final test accuracy of the independent runs is between 0.661 and 0.684,
which agrees with the results by Tavakoli et al. [35]. However, two of the ten runs failed in the
middle of training because the loss became undefined (Figure G.10), suggesting that SPLASH units
can be unstable. Progressing to the deeper ResNet-v1-32, the effect was more pronounced. As
shown in Figure G.10, only two of the ten runs progressed past epoch 30, while no run trained to
completion. With ResNet-v1-44 and ResNet-v1-56, training failed within the first epoch, so the
training curves are not shown.

These results thus confirm that the implementation is correct, reproducing the results of Tavakoli
et al. [35]. However, they also lead to the interesting observation that SPLASH units are effective
with shallow networks but struggle with deeper ones, like the ones evaluated in this paper.
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