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Abstract

Current face recognition tasks are usually carried out on high-quality face im-

ages, but in reality, most face images are captured under unconstrained or poor

conditions, e.g., by video surveillance. Existing methods are featured by learning

data uncertainty to avoid overfitting the noise, or by adding margins to the angle

or cosine space of the normalized softmax loss to penalize the target logit, which

enforces intra-class compactness and inter-class discrepancy. In this paper, we

propose a deep Rival Penalized Competitive Learning (RPCL) for deep face

recognition in low-resolution (LR) images. Inspired by the idea of the RPCL,

our method further enforces regulation on the rival logit, which is defined as the

largest non-target logit for an input image. Different from existing methods that

only consider penalization on the target logit, our method not only strengthens

the learning towards the target label, but also enforces a reverse direction, i.e.,

becoming de-learning, away from the rival label. Comprehensive experiments

demonstrate that our method improves the existing state-of-the-art methods to

be very robust for LR face recognition.
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1. Introduction

Face recognition has been an active research topic in computer vision over

decades [1, 2, 3, 4]. It includes two sub-tasks: face identification and face

verification under the open-set setting. Face identification classifies a face to a

known identity, while face verification decides whether two input faces are from

the same identity by measuring their similarity in the feature space. In real

applications, the label space of the training set is usually different from that

of the test set, and thus many efforts have been made to learn discriminant

features for face recognition.

Due to the recent development of deep convolutional neural networks (CNN),

face recognition has achieved an unprecedented level of accuracy [5, 6, 7, 8, 9, 10].

One stream of methods is featured by the design of margin-based softmax loss,

e.g., imposing multiplicative angular margin [6] or additive margin [8] into the

angle space, or additive margin into the cosine space [7]. The margin-based

methods are able to effectively tackle the drawbacks of the original softmax loss,

under which the learned features are separable for identities in the training set

but not discriminative enough for testing identities out of the training set. There

also exists a stream of research on learning embedding directly by maximizing

face class separability, e.g., penalizing the softmax loss with the center loss

[11] for smaller intra-class variance, enlarging the Euclidean margin between

triplet samples by the triplet loss [5]. Another stream of research is to consider

data uncertainty in face recognition [9, 10] by estimating each face image as a

Gaussian instead of a fixed point, to avoid overfitting the noise.

The above methods achieve high accuracy in high-quality face images. How-

ever, when applying these methods to low-quality images, we usually see a signif-

icant decline in accuracy. In real-world applications such as video surveillance,

faces in these images are generally in small size and low-resolution (LR), due to

the poor environmental conditions, e.g., bad illumination, long-distance surveil-

lance, and so on [12]. To directly tackle the LR face recognition problem, LR

images are often transformed into high-resolution (HR) ones by super-resolution
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technique, and then train the model on HR images; or a shared feature space

is created for learning LR and HR images [13, 14, 15]. However, even with the

super-resolution process, details are predicted rather than real information, so

classifier may not enhance the discriminative power from enlarged images.

There are also works that use knowledge distillation [16, 17, 18, 19, 20]

to make an LR network mimic a HR network which is obtained under a rich

HR training set. With paired LR and HR images of the same identity, the

LR network is supervised by both class label and the soft target of HR net-

work, corresponding to classification loss and distillation loss, respectively. The

distillation process is to make student network output close to the soft target

of teacher’s output, narrowing the performance gap between the HR network

and the LR network. But it is difficult for the existing knowledge distillation

methods to control what and how to learn from the teacher, which requires a

lot of tuning parameters, such as the temperature parameter and the balance

coefficient between classification and distillation.

As illustrated in Fig. 1, there are obvious differences between LR and HR

face images. LR face images lose a lot of details and lighting information of the

face, and have only blurred outlines. In the testing phase of LR setting, it is

required to determine whether the LR image pairs are from the same person.

As demonstrated in Fig. 2 and Fig. 3, it is difficult for even humans to tell

whether these face pairs are from the same person or not. It is observed in

Fig. 4 that the learned deep features of LR faces tend to have larger variation

than those of HR faces1. As a result, the LR faces of similar persons are easily

overlapped in the feature space, leading to high recognition error rate.

In this paper, we devise a new margin-based method for LR face recognition.

The existing margin-based methods only consider margin penalization on the

target class for each face image, and it still does not work well for the persons

with embeddings close in the feature space. When competing for the correct

1Download VGGFace2 [21] with SENet-50 from https://github.com/cydonia999/

VGGFace2-pytorch for feature extraction.
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Figure 1: The first and second rows are LR and corresponding HR images in the training set

CASIA, the resolutions are 16× 16 and 120× 120 respectively.

Figure 2: Positive pairs of every column in LR setting of LFW, where the resolution is 16×16.

label, the rival class that has the closest embedding to the target is the main

cause of recognition error. This situation is much worse under LR setting as

indicated in Fig. 4. Motivated from the idea of Rival Penalized Competitive

Learning (RPCL) [22, 23], we further impose margin into the rival class to

force the deep neural network to learn more discriminative features. RPCL

is a further development of competitive learning by appropriately balancing a

participating mechanism and a leaving mechanism. When the centers compete

for each coming sample, not only the winner is learned towards the sample but

also the rival (i.e., the second winner) is pushed away a little bit from the sample

for compact and discriminative information allocation. Based on this property,

we present a deep RPCL learning for face recognition. Our main contributions

can be summarized from the following aspects:
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Figure 3: Negative pairs of every column in LR generation of LFW, where the resolution is

16× 16.

Figure 4: The left and right figures illustrate the hidden space distribution of features of HR

and corresponding LR faces. The numbers represent different people.

• We present an RPCL-based method to enhance the discriminative power

of the deeply learned LR features. This is fulfilled by imposing a margin,

for each input LR face image, into the rival logit which is defined as the

highest non-target logit. The rival margin is devised as a reverse direction

in contrast to the penalization on the target logit, and it enforces a de-

learning on the CNN parameters, which would push the new embedding

of the input sample away from the rival identity.

• Our method is not a trivial application of RPCL over the centers of each

identity during training, because the embedding by the deep CNN changes

as the network parameters change. Moreover, discriminative power con-

veyed by face centers is not able to generalize to open-set face verification.

Instead, both the target margin and the rival margin are imposed to guide
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the parameter learning of CNN. The learned features are not only compact

in the same class but also separate in competitive classes.

• Our deep RPCL can improve the existing margin-based methods or the

data-uncertainty based methods, especially in low-resolution face recogni-

tion. This is demonstrated by comprehensive experiments on benchmark

datasets, in comparisons with state-of-the-art methods.

2. Related work

2.1. Margin methods based on softmax classifier

With the emergence of a large amount of face data, deep CNNs have proved

their strength in face detection, face alignment, and facial recognition. Deep-

Face [2] first used deep CNNs to extract facial features, and it laid the basic

framework for face detection, alignment, cropping, CNN extraction, and clas-

sification. Later, DeepID [3, 24, 25] and FaceNet [5] made some improvements

based on DeepFace, by increasing the data set, adding identification signals and

verification signals, or by a triplet loss to enforce intra-class compactness and

inter-class discrepancy. Softmax classifier is used in this line of methods to

classify different identities in the training set.

The softmax loss has been found to have some drawbacks in generalizing

the discriminative power from the training set to the open-set face verification

problem. One popular way is to incorporate margins in the logit of the soft-

max. For example, Sphereface [6] introduced a multiplicative angular margin

penalty to the target logit, which corresponds to the identity of the input face

image. CosFace [7] penalized the target logit directly by adding a cosine margin.

ArcFace [8] advocated an additive angular margin loss to improve the discrim-

inative power and to stabilize the training process. The above margin-based

methods all reached a very high accuracy in high-quality images, e.g., 99%+ in

LFW dataset [26]. However, it is still far from perfect when applying them in

low-resolution images, e.g., from the urban video surveillance system.

6



2.2. Face embedding by triplet loss and others

The face recognition model can be trained to directly learn discriminative

features. FaceNet [5] trained the deep CNNs using a triplet loss, i.e., two match-

ing face features of the same identity and a non-matching face feature from a

different identity form a triplet, and a Euclidean margin was added to enlarge

the distance between the positive pair and the negative. In [11], a center loss

was proposed to minimize the intra-class variance of the deep features, in com-

bination with the softmax loss. In [8], other loss functions, e.g., Intra-Loss and

Inter-Loss, were also designed based on the angles between the face feature and

the ground-truth center, and the angles between different centers, respectively.

The margin-penalized softmax loss, e.g., CosFace or ArcFace, are essentially

related to triplet loss, if we assign the identity label to the image embedding

by finding the nearest neighbor rather than by computing the closest distance

or highest similarity to the center vector representing the face identity. Thus,

the triplet loss is to penalize the target distance with a Euclidean margin based

on the k-nearest neighbors (k-NN) classifier. Here, the goal of this paper is

not to propose a new type of margin loss, but to enforce a rival penalized

mechanism into the deep representation learning. Our deep RPCL method

not only penalizes the target similarity but also oppositely penalizes the rival

similarity for more discriminative power. As a result, we can develop deep

RPCL versions of CosFace, ArcFace, triplet loss, and also center loss.

Probabilistic Face Embedding (PFE) [9] is the first to consider uncertainty

by modeling each face image embedding as a Gaussian distribution, with the

mean being the pre-trained face feature and the variance capturing the un-

certainty of the feature. Later, the work in [10] proposed to learn the mean

and the variance simultaneously by data uncertainty learning (DUL) with a

KL-divergence constraining the Gaussian to be close to the standard normal

distribution. Our method is compatible with PFE or DUL, i.e., they can be

used jointly for face recognition.
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2.3. LR face recognition

LR face recognition has attracted increasing studies over the past few years.

Although the existing HR face recognition methods show outstanding perfor-

mance, these models do not perform well when directly deployed on LR setting.

The distributions between HR and LR faces are very different as demonstrated

in Fig. 1-4. Since massive wild or surveillance LR faces are not available for

training, the existing LR methods are based on down-sampling HR faces. [27]

investigated the face crop factors that would affect the LR face recognition per-

formance, and trained the model by leveraging the factors to improve the accu-

racy. [28] conducted experimental research in actual surveillance applications,

and empirically evaluated super-resolution methods for LR face recognition. Ex-

periments showed that the recognition performance decreases as the resolution

of the face image reduces. Basically, two stream of efforts have been made to

advance LR face recognition.

The first is to embed HR and LR faces into the same feature space through

a shared network [29, 30, 15, 31]. Mixed-training method [31] has been demon-

strated to be effective in LR face recognition when training on both HR and

LR images, or training on HR images first and then fine-tuning on LR images.

The DCR model [15] consisted of a big trunk network, to learn discriminative

features shared by face images of various resolutions, and a branch network, to

reduce the distance between the HR feature and its LR counterpart. [13] pro-

posed a partially coupled network, and suggested that partial network sharing

has more flexibility and better results than full sharing.

The second is knowledge distillation by considering HR network as teacher

and LR network as student, respectively. Abundant knowledge is transferred

from teacher to student, so that the student’s recognition ability is equivalent

to that of the teacher. [16] aimed to address the problem of identifying LR faces

with extremely low computational cost via selective knowledge distillation. [18]

proposed that the direct transfer from private HR to wild LR may be difficult,

and used public HR and LR as a bridge to distill and compress knowledge. In

order to fully transfer HR recognition knowledge to LR network, [20] not only
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focuses on the first-order knowledge learning between points, but also considers

high-order distillation. The knowledge of various order relationships is extracted

from the teacher network as a supervision signal for student network.

The above works devise and train LR network by utilizing the common

characteristics between HR and LR faces. In this paper, we adapt the HR

network to LR recognition by tackling the difficulty of LR induced large variation

of the deeply learned features. This is fulfilled by further imposing a deep

penalization on the rival class, to control the variation due to the increasing

uncertainty when the resolution becomes low.

3. Method

3.1. A brief review of RPCL

Proposed in the early 1990s for clustering analysis [22], RPCL is a further

development of competitive learning by appropriately balancing a participating

mechanism and a learning mechanism such that an appropriate number of clus-

ters will be determined [23]. Specifically, as shown in Fig. 5, suppose we use

parametric centers {µk}Kk=1 to cluster the data {xi}Ni=1. For each coming data

point xi, not only the winner center is learned towards it but also its rival (i.e.,

the second winner) is pushed away a little bit from it to reduce a duplicated

information allocation:

µnewk ← µoldk + ηpki(xi − µoldk ), (1)

pki =


1, if k = c, c = arg mink d(xi, µk);

−γ, if k = r, r = arg mink 6=c d(xi, µk);

0, otherwise ,

where γ > 0 is a small number for controlling the penalizing strength, d(xi, µk)

measures the distance between xi and µk, e.g., ‖xi − µk‖2.

3.2. Deep RPCL for face recognition

As illustrated in Fig. 4, LR faces are blurry, lack personalized details, and

different subjects overlap more easily than HR faces in the feature space, making
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Figure 5: A sketch of the original RPCL learning. The figure is adapted from Figure 6 in [23].

Red µ denotes class center, and d represents the distance between the blue sample x and the

class center. The first and second class centers closest to the sample point are winner and

rival, respectively. In (a), since d1 < d2 < d3, µ1, µ2 are winner and rival. In (b), RPCL

enforces the winner to approach sample and the rival to stay away from it. µ2 is a threat, a

potential competitor for µ1.

it difficult for classification. RPCL enforces a regulation on the largest or closest

non-target, which suggests that RPCL would increase the discriminative power

in representation learning. With the help of RPCL, similar but not the same

subject would be pushed far away from each other in the feature space, which

would make classification easier and more accurate. Thus, not applying RPCL

directly in the raw face sample space, we develop a deep RPCL learning over

the feature space for LR face recognition.

We start from the commonly-used softmax loss, which is

Ls = − 1

N

N∑
i=1

log pi = − 1

N

N∑
i=1

log
eβyi∑n
j=1 e

βj
, (2)

where pi denotes the posterior probability of the face feature xi being correctly

classified to the target identity yi, n and N is the number of classes and samples,

and βj is the logit score of xi to the identity j, usually given by the activation

of a fully-connected layer with weight vector Wj and bias bj . For simplicity, we

may ignore the subscript of xi when there is no confusion. Then, we have

βj = WT
j x+ bj . (3)

Following [6, 7, 8], we fix bj = 0, and set ‖Wj‖ = 1, ‖x‖ = s > 0. It follows
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Figure 6: An overview of deep RPCL learning for face recognition in comparisons with existing

methods. Neural network f(z|w) map input image z to face feature x in latent space, and

the classification logit β are obtained through a fully connected network. wi denotes class

center. Suppose x belongs to class w1 and w1 is the target center. We compute the distance

from the predictive probability. Existing method increases the distance between x and target

center w1 on loss function, with x becoming x′, and finally achieves the goal of enforcing intra-

class compactness by punishing target logit. Our deep RPCL learning not only increases the

distance between x and target center w1, but also takes into account the closest non-target

center w3 (rival) and shortens the distance between x and w3, with x becoming x′. Finally, x

can get closer to the target center and away from potential threats. At the same time, class

w3 will have less interference and establish a clearer boundary.

from WT
j x = ‖Wj‖ · ‖x‖ cos θj = s cos θj that the logit βj can be represented

as a function of θj in the angle space, where θj is the angle between the weight

vector Wj and the feature x.

The weight vector Wj can be regarded as the center of the face features

corresponding to the identity j. Thus, the logit by Eq.(3) measures the similarity

between the face feature x and the center Wj . It can be further noted that

the logit is equivalent to the negative Euclidean distance because −d(x,Wj) =

−‖x−Wj‖2 = −‖Wj‖2 − ‖x‖2 + 2WT
j x = 2βj − 1− s2. As a result, one direct

application of RPCL for deep face recognition is to use Wj as cluster centers.

The difference from Eq.(1) is that the winner is given by the target identity

because we would like Wyi to get close to the feature xi for smaller clustering

error. The rival is defined as the non-target identity which has the highest logit

value. Ideally, enforcing RPCL learning over the face feature centers will further
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separate the centers from each other. In real practice, if the cluster center is

disturbed or moved inappropriately, the neural network may be disordered and

difficult to train and converge. Moreover, it is also difficult to generalize the

trained centers to the open-set face verification problem, which requires learning

discriminative features for the input face images of identities different from the

training set. Therefore, we need an RPCL scheme that can affect the parameter

learning over deep CNN.

Suppose the face feature x is the embedding of the input image z by a deep

CNN f(·|ω), i.e., x = f(z|ω) with ω being the network parameters. Notice

that x changes as ω updates. Thus, learning over the face features is different

from the traditional RPCL which is conducted over fixed observations. Here,

inspired by Eq.(1) and the existing margin loss methods [6, 7, 8], we develop an

RPCL-based margin loss for deep face recognition as follows:

Lrpcl = − 1

N

N∑
i=1

log
eβyi∑n
j=1 e

βj
, (4)

βj =


g (xi,Wj ,m) , if j = yi;

g (xi,Wj ,−γ) , if j = arg maxk 6=yi βk;

βj , otherwise;

(5)

where g(xi,Wj ,m) is designed as a function to compute the logit, satisfying

that g(xi,Wj ,m) = βj if the margin m = 0; g(xi,Wj ,m) < βj for some given

m > 0; and g(xi,Wj ,−γ) > βj for some given γ > 0, γ � m. For example, if

the logit is computed by Eq.(3) with an additive margin, then g(xi,Wj ,m) =

WT
j x−m.

In the RPCL-based margin loss by Eq.(4)&(5), we have introduced a margin

m to the winner (or the target logit), and it plays the same role as in the

existing margin methods, e.g., CosFace [7] or ArcFace [8]. The margin m, which

reduces the logit to be lower, leads to a more stringent loss for classification and

induces an extra margin away from the original classification boundary. This

configuration updates the network parameters to compute the new face features

that are more discriminative. However, the existing margin method only has
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the winner part in Eq.(4)&(5), by paying all the attention to the probability

of the target winning. They ignore the non-target class that has the largest

probability value, which is potentially the biggest threat to the classification.

Different from the existing margin methods, we impose a margin γ to the

rival (or the largest non-target logit), as in Fig.6. The rival identity is the main

competitor of the face image, i.e., the chief contributor to the classification

error. Thus, we directly discourage the parameter learning by a margin in an

opposite direction to the target logit, so that the rival logit is pushed down a

bit, while still keeping the non-target non-rival logits unchanged. As a result,

the deeply learned face features become more discriminative than the existing

methods which only penalize the target logit.

When γ = 0 in Eq.(5), the reverse margin for the rival vanishes, and then the

RPCL-based loss degenerates back to the existing margin methods, like CosFace

or ArcFace. Moreover, in the scenario of two classes, the rival is always the other

non-target identity. Taking g(x,Wj ,m) = WT
j x − m for example, the class

decision boundary becomes WT
1 x−m = WT

2 x+ γ, or WT
1 x− (m+ γ) = WT

2 x.

This scenario is equivalent to penalize the target logit with a larger margin

m + γ > m. In the cases of n > 2 classes, the rival varies from any non-target

identities, and the reverse margin γ provides a unique force to derive intra-class

compactness and inter-class discrepancy. In real applications, n is usually very

large, up to thousands.

3.3. Deep RPCL for CosFace, ArcFace, DCR

According to Eq.(4)&(5), our RPCL-based margin loss can be developed by

considering different forms of the logit computing function g(x,Wj ,m). In the

following, we provide the corresponding RPCL versions of CosFace and ArcFace,

by considering margin penalization in the cosine space or angle space. Suppose

we have set ‖Wj‖ = 1 and ‖x‖ = s > 0. For CosFace, we have

gc(x,Wj ,m) = WT
j x− sm = s(cosθj −m), (6)
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where θj is the angle between the weight vector Wj and the face feature x. For

ArcFace, the margin m is directly considered in the angle space, i.e.,

ga(x,Wj ,m) = s(cos(θj +m)). (7)

Notice that both gc and ga by Eq.(6)&(7) satisfy g(x,Wj ,m) < g(x,Wj , 0) for

certain m > 0, i.e., the margin m enforces a more strict level for the logit.

Otherwise, g(x,Wj ,−γ) > g(x,Wj , 0) for certain γ > 0, enforcing a loose level

for parameter de-learning.

Different from CosFace and ArcFace, center loss [11] is to directly minimize

the distances between the deep features and their corresponding class centers,

and is used as a regularization term for the softmax loss. Center loss has been

used in DCR [15] to demonstrate robustness in LR face recognition. So, we also

develop DCR into an RPCL version for experimental comparisons. Specifically,

we add a rival loss to the DCR loss as follows:

Ld = Ls + βΣni=1 ‖xi − cyi‖
2
2 − γΣni=1 ‖xi − cr‖

2
2 , (8)

where Ls is the softmax loss given by Eq.(2), β > 0 controls the strength of the

center loss for the winner center (i.e., the target center), and −γ < 0 enforces a

reverse penalization pushing xi away from the rival center.

4. Experiments

4.1. Settings

Training datasets. There are many general face recognition training sets,

such as CASIA-WebFace [32] and MS-Celeb-1M [33]. We choose CASIA-WebFace

as the training set, and it contains 10,575 subjects, a total of about 500,000 face

images crawled from the web. For data preprocessing, we adopt insightface2

to do face detection and face alignment, and finally crop to the target size

(120× 120) as HR images. Then we use the public code3 of a recent specialized

2https://github.com/deepinsight/insightface
3https://github.com/yoon28/unpaired face sr
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LR face generation model [34] to generate LR samples (16 × 16) to simulate

real-world LR face images.

Benchmarks. We use two LR benchmark datasets, SCFace [35] and Tiny-

Face [36], to evaluate the LR recognition performance. Moreover, we use state-

of-the-art LR face generation model[34] to generate LR samples set that simulate

real-world LR face images for more LR testing datasets from LFW [26], YTF

[37], MegaFace [38]. The corresponding generated LR versions are denoted as

LFW∗, YTF∗, MegaFace∗.

Evaluation metrics. We consider both face verification and face identifi-

cation in testing. Face verification is to judge whether the given pair of images

are from the same person by computing cosine distance according to the two

face feature vectors. Face identification is to find the image most similar to the

target face from the gallery set through cosine distance comparison.

4.2. Training details

Recent state-of-the-art face recognition methods, ArcFace [8], CosFace [7]

and SphereFace [6], are included for experimental comparisons. They are all im-

plemented under the PyTorch framework, on the basis of the ArcFace project4.

The RPCL learning for CosFace and ArcFace are developed by taking Eq.(6)&(7)

into the Eq.(4)&(5). We set the initial learning rate to 0.1, which is decremented

by 10 times every 10 epochs, for a total of 50 epochs. We use Adam optimizer

to find the optimal network parameters. Each training roughly takes 20 hours

with two Titan Xp GPUs.

4.3. On native unconstrained LR images

In real surveillance applications, LR faces usually are collected under un-

controlled conditions in background, illumination, distance and cameras. In

addition, usually the images collected in the gallery set are HR images, and

the images in the probe set we need to verify are LR, blurry. The resolution

4https://github.com/ronghuaiyang/arcface-pytorch

15



levels are not matched between HR and LR images, and this setting requires the

model’s feature learning to be robust against varied resolutions. The SCFace

[35] and TinyFace [36] are two widely-used, real LR testing datasets.

Method

Distance
1m 2.6m 4.2m

MDS [39] 69.5 66.0 60.3

DMDS [40] 62.9 67.2 61.5

LDMDS [40] 65.5 70.7 62.7

RICNN [41] 74.0 66.0 23.0

LightCNN [42] 93.8 79.0 35.8

VGGFace [43] 88.8 75.5 41.3

PeiLi’s [28] 31.7 20.8 20.4

ResNet [11] 94.3 81.1 36.3

DDL(ResNet50) [19] 98.3 98.3 86.8

TCN [44] 98.6 94.9 74.6

DCR [15] 98.0 93.5 73.3

RPCL-DCR 98.0 98.0 90.4

Table 1: Comparative results on the face images taken at three different distances from the

SCFace test set. The longer the distance, the more blurred the face image.

Results on SCFace. SCFace [35] contains 4, 160 static face images of

130 subjects. Images from different quality cameras and different distances

simulate real-world situations. For each subject, there are one HR face image

taken by the high-quality camera and 15 LR face images that are taken by low-

quality cameras at three different distances, 1m (d3), 2.6m (d2) and 4.2m (d1).

Following [15] [28] and [45], we randomly divide the data set into 80 individuals

and 50 individuals, separately as the training set and the test set, and they do

not intersect. HR images are used as gallery, LR images are used as probe.

According to the cosine distance metric, we find the most similar face image

from the gallery to match the face image in the probe, and calculate the rank-1
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accuracy rate. To test the effectiveness of RPCL, we use DCR[15] as a baseline

and develop it into RPCL versions by setting β = 0.008, γ = 0.002 in Eq.(8).

We also include other methods for comparisons, such as MDS [39], DMDS [40],

LDMDS [40], RICNN [41], LightCNN [42], and so on.

The DCR model is optimized with softmax loss and center loss, and it tackles

the cross-resolution face recognition problem using training samples in different

resolutions. We added RPCL to the center loss to impose a certain penalty

on the rival by Eq.(8), and found that it significantly improves DCR for the

challenging distances at 4.2m and 2.6m as in Tab. 1. In particular, it increases

the accuracy from 73.3.0% to 90.4% with an increment 17.1% at 4.2m, which is

the most difficult scenario for all the methods.

It is observed that RPCL is more effective in dealing with LR, blurred im-

ages than HR ones. The LR images lose their personalized features, are much

more ambiguous and difficult to distinguish than HR images. Then, in classifi-

cation process, LR images have more potential threats that are very likely to be

misjudged. RPCL takes into account the potential threats, while the existing

face recognition methods only make the winner closer to the target, and ignore

the potential threat (the second winner). Kicking out the threats is effective

to enhance the discrminative power which is very important for classification

problems.

Results on TinyFace. TinyFace [36] dataset provides a large scale native

LR face images and contains large gallery population size. It was collected from

snapshots of videos taken under surveillance conditions from a certain distance.

We use the training set of TinyFace to fine-tune the basic model before 1:N

identification test on the testing set of TinyFace. The results are given in Table

2.

We can observe that deep RPCL is able to improve the LR recognition meth-

ods, DCR and PeiLi’s method, slightly but consistently under various scenarios.

It should be noted that ArcFace and CosFace, which are originally devised for

HR face recognition, perform poorly in LR face recognition, but they are im-

proved by deep RPCL to outperform or at least comparable to DCR and PeiLi’s
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Methods RPCL Rank-1 Rank-10 Rank-20

DCR [15] × 0.29 0.40 0.44

RPCL DCR X 0.31 0.41 0.44

PeiLi’s [12] × 0.31 0.43 0.46

RPCL Lipei’s X 0.32 0.44 0.47

CenterFace [11] × 0.32 - 0.45

RPCL CenterFace X 0.33 0.44 0.47

Arcface [8] × 0.26 0.34 0.37

RPCL ArcFace X 0.35 0.45 0.48

CosFace [7] × 0.29 0.39 0.42

RPCL CosFace X 0.32 0.41 0.44

Table 2: Face identification rank-1, rank-10 and rank-20 accuracy of different low-resolution

models on TinyFace.

method.

4.4. On synthesized real-world LR images

To further evaluate the robustness of deep RPCL in LR face recognition, we

conduct experiments on LR generations, i.e. LFW*, YTF*, and MegaFace*.

We can check that the generated LR faces in the Fig. 7 are very close to the

faces taken by the surveillance cameras. We use 16× 16 as the LR image size.

All the 16× 16 LR images are first enlarged to 120× 120 by a commonly-used

super-resolution technology, VDSR5. For fair comparisons, we build the same

deep CNN to take 120 × 120 images as input but train the network under the

loss function of each method. For each setting of ArcFace by Eq.(7) or CosFace

by Eq.(6), using SE-Block or not, we implement the RPCL scheme (by setting

γ > 0 in Eq.(5)) or not (by setting γ = 0). Regarding the DUL [10] experiment,

we asked the original authors for some key codes for the experiment. To the

5https://github.com/twtygqyy/pytorch-vdsr
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best knowledge from our practical experience, we set the coefficient of KL loss

as 0.01.

The results are summarized in Table 3. Again, we observed that deep RPCL

is able to enhance the discriminative power of learned features, which is consis-

tent with the results on real-world datasets.

Figure 7: From the first column to the fifth column are: LFW*, TYF*, MegaFace*, TinyFace

and SCFace. The first four columns are the low-resolution data set that we simulated close

to the real-world. The last two columns are low-resolution images taken by the surveillance

cameras.
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Loss Backbone
LFW* YTF*

No RPCL RPCL No RPCL RPCL

ArcFace ResNet18 83.68 84.02 69.90 69.98

CosFace ResNet18 83.45 83.48 68.64 68.66

ArcFace
ResNet18

SE-Block
84.08 84.93 75.80 78.58

CosFace
ResNet18

SE-Block
82.97 83.37 77.36 77.26

CosFace

+DUL

ResNet18

SE-Block
83.92 84.70 78.14 78.80

Table 3: LR face recognition results on generated LR test sets. LFW*: the face image pair

verification accuracy (3, 000 positive face pairs, 3, 000 negative face pairs), YTF*: the face

video pair verification accuracy. For each test set, we conducted a comparative experiment

with or without PRCL. The last row refers to RPCL-based method on the basis of DUL

network structure (µ and σ branches).

Method Accuracy

SKD [16] 85.87

Ge’s TIP [18] 85.88

Ge’s MM [46] 93.96

ArcFace 92.30

CosFace 93.80

RPCL-Arc 94.70

RPCL-Cos 95.13

Table 4: Comparative experiment on LFW via bicubic down-sampling. The backbone of the

last four methods is ResNet18.

We also notice that some existing LR methods [16, 18, 46] have been eval-

uated on LFW using bicubic to down-sample to 16 × 16 and then up-sample

to target size. To make a fair comparison, we conduct a comparison under the
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same setting. The results in Table 4 again indicate the effectiveness of the deep

RPCL to improve the LR face recognition. The original ArcFace and CosFace

are not so good as Ge’s MM [46] for this task, but surpass it when deep RPCL

is activated.

4.5. Empirical analysis on the intra-class compactness and inter-class discrep-

ancy

For clear visualization, we select 8 people from the training set, and each

person has more than 500 images. We train a network that uses 2-D feature to

represent LR face (16× 16), and visualize the 2-D features in scatter plots with

different colors for different persons. As shown in Fig. 8, RPCL-Cos demon-

strates a larger classification margin between the classes than A-Softmax and

CosFace. Moreover, we calculate the angle statistics in the Table 5. The results

indicate that the face features are closer to their class centers, i.e., more intra-

class compact, by RPCL-based methods when comparing to the corresponding

CosFace or ArcFace baselines. This is because the punishment for rival keeps

the face feature away from the class center that is most likely to be misjudged,

reducing the possibility of misjudgment, and maximizing the class separability.
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Figure 8: Visualization of 2-D face features from 8 people. The 1st row: shown in the

Euclidean space. The 2nd row: mapped to the hypersphere. The columns from left to right:

A-Softmax, CosFace, RPCL-Cos.

loss backbone intra inter w-w w-c

Softmax ResNet18 51.273 55.479 68.695 29.872

ArcFace ResNet18 46.305 54.176 64.811 20.038

RPCL-Arc ResNet18 45.631 54.271 71.098 19.316

CosFace
ResNet18

(SE-Block)
52.488 59.589 70.854 27.403

RPCL-Cos
ResNet18

(SE-Block)
49.331 59.645 69.632 24.283

ArcFace
ResNet18

(SE-Block)
55.315 59.421 72.763 29.944

RPCL-Arc
ResNet18

(SE-Block)
44.859 57.594 66.787 19.476

Table 5: Statistics of angles ∈ [0
◦
, 180

◦
] between two feature vectors. The ”intra” refers to

the mean of angles between each face feature vector and its corresponding class center. The

”inter” refers to the mean of minimum angles between the class center and other centers. The

”w-w” represents the mean of minimum angles between Wj ’s. The ”w-c” represents the mean

angles between Wj and its corresponding class center.
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Figure 9: The distribution of cosine similarity score under the LR setting of LFW dataset by

(a) ArcFace, and (b) RPCL-Arc. The x-axis represents the cosine similarity of a pair of face

images, while the y-axis is the frequency. Blue and orange respectively denote negative pairs

(different persons) and positive pairs (the same person).

Results on LFW. We calculate the distribution of the cosine similarity values

between the positive pairs (the same person) and the negative pairs (different

persons) under the LR setting of LFW dataset. As shown in Fig. 9, the deeply

learned face features are more discriminative and less overlapped by RPCL-Arc

than by ArcFace, indicating that the RPCL’s de-learning is effective in enhanc-

ing the discriminative power. In terms of Fisher discriminant criterion, i.e., the

difference between the means of the two groups normalized by the within-group

scatter, the computed Fisher criterion value for RPCL-Arc is 5.264, much higher

than 3.646 for ArcFace.

Results on Megaface. We train models with different loss functions on CASIA

dataset and results are evaluated on Megaface in Fig. 10. CMC refers to the

rank-k identification rate as k grows, and ROC plots True Positive Rate (TPR)

versus False Positive Rate (FPR). We can observe that an obvious improvement

by RPCL from the CosFace and ArcFace baselines in terms of both CMC and

ROC.

5. Conclusion

In this paper, we have presented a deep RPCL representation learning for

LR face recognition, which is a challenging problem because the variation in-
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(a) CMC (b) ROC

Figure 10: CMC and ROC curves on MegaFace test set with 1M distractors. The dotted

lines represent CosFace and ArcFace, and the solid line represents RPCL-based CosFace and

ArcFace.

duced from decreasing resolution tends to make the deep face features of differ-

ent persons overlap with each other. The existing margin-based methods only

consider penalization on the target logit, while our method further imposes a

reverse margin into the rival logit, which is defined as the highest non-target

logit for the input face feature. The reverse margin discourages the face fea-

ture from approaching the rival label, providing a de-learning force to make the

deeply learned representation more discriminative. As a result, the face recog-

nition accuracy can be improved. To verify the effectiveness of our method, we

have conducted comprehensive experiments including face recognition in real LR

benchmark datasets, or in generated LR images that simulate the real-world LR

images. The results demonstrate that our method is particularly robust in LR

face recognition tasks, and has good potential applications in real-world envi-

ronments when HR or high-quality images are difficult to capture, e.g., in video

surveillance applications.
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