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ABSTRACT

Background noise and scale variation are common problems that have been long recognized in crowd
counting. Humans glance at a crowd image and instantly know the approximate number of human
and where they are through attention the crowd regions and the congestion degree of crowd regions
with a global receptive filed. Hence, in this paper, we propose a novel feedback network with Region-
Aware block called RANet by modeling human’s Top-Down visual perception mechanism. Firstly,
we introduce a feedback architecture to generate priority maps that provide prior about candidate
crowd regions in input images. The prior enables the RANet pay more attention to crowd regions.
Then we design Region-Aware block that could adaptively encode the contextual information into
input images through global receptive field. More specifically, we scan the whole input images and its
priority maps in the form of column vector to obtain a relevance matrix estimating their similarity. The
relevance matrix obtained would be utilized to build global relationships between pixels. Our method

outperforms state-of-the-art crowd counting methods on several public datasets.

1. Introduction

Crowd counting is an essential work in the field of
computer vision. It has wide range of applications such as
video surveillance, urban planning, public safety et al. For
example, with the rapid growth of population and urban-
ization, the situations of crowd gathering such as stadium,
concerts and parades are more and more frequent. In these
scenarios, crowd counting plays an indispensable role for
public safety (Ali, Zhu & Zakarya, 2022).

Although crowd counting task is important and useful,
the real usage remains limited since the dense crowd count-
ing is challenging. One of the main challenges is background
noise. The influence of complex and irrelevant background is
not conducive to correctly identify the crowd. Scale variation
may also hurt the counting performance. Since the scale of
people varies dramatically in images and across different
images, it is hard to extract effective features for density
regression.

To alleviate noises caused by cluttered backgrounds,
attention mechanism is usually introduced to focus on crowd
regions (Liu, Long, Zou, Niu, Pan & Wu, 2019a; Rong &
Li, 2021; Jiang, Zhang, Xu, Zhang, Lv, Zhou, Yang & Pang,
2020; Hossain, Hosseinzadeh, Chanda & Wang; Gao, Wang
& Yuan, 2019b). For instance, (Liu et al., 2019a) proposed
an attention-injective deformable convolutional network to
generate crowd regions and congestion priors . With similar
idea, (Rong & Li, 2021) presented a novel attention network
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by incorporating attention maps to better focus on the crowd
area .

Although these attention-based methods have shown
great success in dealing with issue about background noise,
they ignore the context information accounting for scale
variation in congested scenes by using pixel-wise product
of image and corresponding attention map.

Meanwhile, as the heart of these CNNs-based approaches,
standard convolutions always exploit the same filters and
pooling operations over the whole image to obtain multi-
scale features. This operation leads to the situation that
the actual size of receptive fields in the networks is much
smaller than the theoretical size (Onoro-Rubio & Lopez-
Sastre, 2016a). It means that normal CNN networks may
have limited effect for rapid scale changes in complex scenes
as they may assign a fixed scale for large objects (Liu,
Salzmann & Fua, 2019b).

People’s Top-Down visual perception mechanism can
solve these above problems well. As Fig. 1 shows, when
human observer crowd scenes, they quickly scan the whole
crowd scenes and focus on the crowd regions based on the
prior knowledge. It is conducive to reduce the interference
of background noise. Then human estimate the approximate
number in crowd scenes through the congestion degree of
crowd regions and global receptive fields accounting for
scale variation.

Inspired by the human’s Top-Down visual perception
mechanism, we propose a novel method to address the
issues above for precise crowd counting in this paper. First,
we introduce a feedback architecture to generate priority
map focusing on crowd regions for reducing interference
caused by the background noise. Then, we design a Region-
Aware block to adaptively encoder context information for
understanding scale variation through global receptive field.
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Human Top-Down visual system
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Focus on crowd regions and their congestion
to estimate approximate number

Input Images

Fig. 1: Human's Top-Down visual system: According to the
goal of the current task and previous prior knowledge, human
scan a crowd image and instantly know the approximate
number of human and where they are through attention the
crowd regions and the congestion degree of crowd regions
with a global receptive filed. The color is brighter, the crowd
congestion degree is higher. 'GT' means Ground Truth.

In the Region-Aware block, we first do a similarity measure-
ment between the input images and corresponding priority
maps through scanning them in the form of column vector.
Then, the obtained similarity measurement matrix will be
embedded into input images to enhance the crowd regions
and build global context relationship accounting for regional
consistencies and scale variation.
The main contributions of this paper are as follows:

e We exploit the feature information from priority maps
to focus on crowd regions for reducing interference
caused by the background noise.

e Through the designed Region-Aware block, the net-
work can encoder the context information and expand
the size of receptive field for understanding scale
variation.

e With the proposed framework, we achieve state-of-
the-art performance on most crowd counting bench-
marks.

The remainder of the paper is organized as follows.
Section 2 outlines the related works including traditional
counting methods, CNNs-based methods and column-based
methods. Section 3 describes our proposed models. Section
4 shows the results of our experiments and section 5 con-
cludes this paper.

2. Related work

2.1. Traditional counting methods

Traditional crowd counting algorithms are mainly di-
vided into two categories: detection-based methods and
regression-based methods.

Early researchers in crowd counting focus on detection-
based methods. (Dollar, Wojek, Schiele & Perona, 2011)
used sliding window based detection algorithms to estimate
the number of people in images. Also some low-level fea-
tures such as histogram oriented gradients (HOG), Haar

wavelets and edge were often extracted from human heads
or human bodies for human detection (Dalal & Triggs; Viola
& Jones, 2004; Wu & Nevatia, 2005). While for partially
occluded pedestrians, detection is disappointing.

Hence, regression-based methods are gradually used to
solve the problem of crowd counting. Regression-based
methods aim to learn the mapping function from low-level
features in images such as foreground and texture to the
count or density (Ryan, Denman, Fookes & Sridharan, 2009;
Chan & Vasconcelos, 2009; Fiaschi, Kothe, Nair & Ham-
precht, 2012). These regression methods are more efficient
than detection methods, however, they do not fully utilized
information in images.

2.2. CNN-based counting methods

Recently, CNN-based methods have demonstrated sig-
nificant improvements over the traditional methods. Differ-
ent network architectures are designed to handle various
challenges such as background noise and scale changes
(Yang, Li, Wu, Su, Huang & Sebe, 2020; Wang, Lv, Zhao,
Yang & Ruan, 2020c; Zhang, Li, Wang & Yang, 2015;
Chen, Papandreou, Kokkinos, Murphy & Yuille, 2017,
Sam, Peri, Sundararaman, Kamath & Radhakrishnan, 2020;
Rodriguez-Vazquez, Alvarez-Fernandez, Molina & Cam-
poy, 2022).

The crowd density we want to estimate is the num-
ber of people per unit area. However, the density maps
will be severely affected by background noise, that is, the
background terms with similar texture features to congested
crowd scenes will be mistaken as heads easily. With attention
model succeeded in various computer vision tasks, many
researchers attempted to use the attention method to deal
with background noise in crowd counting (Rong & Li, 2021;
Zhu, Zhao, Lu, Lin, Peng & Yao, 2019; Liu, Gao, Meng &
Hauptmann, 2018; Hossain et al.; Gao et al., 2019b; Zhang,
Yue, Shen, Zhu, Zhen, Cao & Shao, 2019b; Zhang, Shen,
Xiao, Zhu, Zhen, Cao & Shao, 2019a; Jiang et al., 2020;
Wang et al., 2020c). Some researchers use refinement-based
algorithms to focus the crowd region and improve the quality
of density maps (Rong & Li, 2021; Zhu et al., 2019; Gao
et al., 2019b). (Zhu et al., 2019) proposed a dual path multi-
scale fusion network architecture to generate the final high-
quality density maps by fusing attention maps and density
maps. (Rong & Li, 2021) devised a from-coarse-to-fine pro-
gressive attention mechanism to better focus on the crowd
area for people count estimation. (Gao et al., 2019b) intro-
duced the Spatial-/Channel-wise Attention Models to alle-
viate the mistaken estimation for background regions. (Liu
et al., 2019a) proposed an attention-injective deformable
convolutional network for crowd understanding that can
suppress background noise in highly congested noise scenes.
Another way to improve the performance of crowd counting
is to adopt the idea of classification (Liu et al., 2018; Zhang
et al., 2019b,a; Jiang et al., 2020). (Liu et al., 2018) designed
an attention module to adaptively estimate the crowd den-
sity based on its real density conditions with detection and
regression. (Zhang et al., 2019b,a) incorporated non-local
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Fig. 2: The architecture of the proposed region-aware network for crowd counting.

attention mechanism to conquer huge scale variations. (Jiang
et al., 2020) provided different attention masks related to
regions of different density levels aiming to attenuate the es-
timation errors in different regions. These attention methods
could effectively reduce background interference.However,
these attention methods use attention map as mask to do
pixel-wise product, which may ignore the relationship be-
tween pixels.

Scale variation is also a problem that has been long
recognized. Most works handled the large-scale variations
issue using different architectures (Zhang, Zhou, Chen, Gao
& Ma, 2016; Babu Sam, Surya & Venkatesh Babu, 2017,
Onoro-Rubio & Lépez-Sastre, 2016b). (Zhang et al., 2016)
designed a Multi-Column Convolutional Neural Network
(MCNN) architecture to estimate crowd number accurately
in a single image from almost any perspective. Based on
multi-scale CNN architecture, (Babu Sam et al., 2017)
designed the independent CNN regressor with different
receptive fields and trained a switch classifier relay the
crowd scene patch to the best CNN regressor. In contrast
to these methods that propose specific architectures directly
addressing scale variations, the recent methods concen-
trate on incorporating related information like high-level
semantic information (Boominathan, Kruthiventi & Babu,
2016; Sindagi & Patel, 2017) and contextual information
(Shang, Ai & Bai, 2016; Liu et al., 2019b) respectively
into the network. These related information is useful for
network to understand the congested scenes. For example,
(Boominathan et al.,, 2016) used a combination of high-
level semantic information and the low-level features from
deep learning framework to deal with large scale variations
for estimating crowd density. (Sindagi & Patel, 2017) in-
corporated a high-level prior into the density estimation
network enabling the network to learn globally relevant
discriminative features for lower count error (Sindagi &

Patel, 2017). And (Shang et al., 2016) designed an end-to-
end CNN architecture to predict both local and global count
by making use of contextual information. (Liu et al., 2019b)
proposed an end-to-end trainable deep architecture that can
adaptively encodes the scale of the contextual information
aiming to accurately predict crowd density. These methods
could alleviate the problem of scale variation to a certain
extent. However, these methods may not capture sufficient
global contextual information as they focus on local regions.

2.3. Column-Based methods

The patch-based and super pixel-based operations are
common and consistent with human visual system. This is
consistent with common cognition. However, Deep Convo-
lutional Neural Networks (DCNNSs) likely achieve an object
recognition competence through a set of mechanisms that
are distinct from those in humans (Lonngvist, Clarke &
Chakravarthi, 2020). Thus, the patch-based and super pixel-
based operations may not be optimal choices for some ap-
plications. In the task of place recognition within 3D point
cloud, Scan Context (Kim & Kim, 2018), made a column-
wise comparison to achieve effective localization for dy-
namic objects, by considering global information. In similar
way, Kim proposed an analogous column scanning method
named Scan Context Image, to improve the localization
performance in SLAM task (Kim, Park & Kim, 2019). Image
transformer flattens the input tensor in raster-scan order,
and computes 1D local attention (similar to column-based
operation) for generating natural-looking images (Parmar,
Vaswani, Uszkoreit, Kaiser, Shazeer, Ku & Tran, 2018). Sze-
skin proposed a custom column based convolutional neural
network, which is used in the classification of light scattering
patterns in columns of vertical pixel-wide vectors in OCT
slices (Szeskin, Yehuda, Shmueli, Levy & Joskowicz, 2021).
These works use a similar idea of column-based operation
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and have achieved good results, which shows that column-
based operation is reasonable in some works. Thus, we
consider designing column-based region-aware block, which
is used to adaptively encoder the global context information
into features.

3. Proposed method

As discussed above, we aim to deal with the issues of
background noise and scale variation. Human’s Top-Down
visual perception mechanism can well deal with these issues.
When human do crowd counting, according to the goal
of the current task and prior knowledge, they firstly focus
on crowd regions. Meanwhile, people would not trouble
in scale variation as they will take the context information
into consideration with a global receptive field. Inspired by
this, we proposed a feedback structure with Region-Aware
(RA) block modeling human’s Top-Down visual perception
mechanism for crowd region enhancement and context in-
formation capturing through global receptive field.

3.1. Model architecture

As shown in Fig. 2, the model architecture contains
4 components, VGG16 backbone, Dual path multi-scale
fusion (Thanasutives, Fukui, Numao & Kijsirikul, 2021),
Feedback to provide prior and Region-Aware block. Input
images are first fed into VGG16 backbone feature map
extractor to extract multi-scale features. Then, the features
of high-level semantics information are passed through
context-aware module (CAN) (Liu et al., 2019b) and atrous
spatial pyramid pooling (ASPP) (Chen et al., 2017) to obtain
the scale-aware contextual features. CAN module combines
features obtained in Conv4_3 using multiple receptive field
sizes of average pooling operation. The pooling output scales
are 1,2,3,6. ASPP module applies dilated convolution with
different rates (1,6,12,18) to features obtained in Conv5_3
for multi-scale information. There is a skip connection
between conv5_3 and conv3_3 for embedding high-level
semantical information (Thanasutives et al., 2021). Then,
the Dual path multi-scale fusion uses concatenate and up-
sample to fuse these multi-scale features to generate priority
map. The priority map would provide input images prior
information that where are the important regions through
feedback. Then, input images and corresponding priority
map are put into the Region-Aware block together to obtain
new inputs which would enhance the crowd regions and
contain global context information. The new inputs are
passed through the encoder-decoder based deep convolu-
tional neural networks again to generate feature map and
corresponding attention map. At last, the feature map and
corresponding attention map would be fused to generate the
final high-resolution density map.

3.2. Feedback to provide prior

According to goal of current task and prior knowledge,
human could focus on region of interest. With similar idea,
we would like to boost the crowd regions in input images for
reducing background interference. Given a set of N training

images {Qi} |<i<n> Our goal is to train corresponding pri-
ority maps {Ai}1 <<y to focus on crowd regions in input
images. In order to combine more efficient information,
we choose the output fusing the multi-scale features which
generated from the VGG16 backbone as shown in Fig. 2:

fi=Fugg(Q)’i={2939495} (1)
Ai=Famg(f2’f3’f4sf5) (2)
where F,,, is the VGG16 backbone that extracts multi-scale

1%
features ;f; F,, is the decoder network that fuses multi-
scale features by using bilinear interpolation and concatena-
tion.

The priority map could find the boundary between per-
sons and background as Fig. 3(b) shows. Taking the priority
map to boost input images will provide prior about candidate
crowd region. The prior enables the inputs pay more atten-
tion to those crowd regions. Traditional attention map is an
image-sized weight map where crowd regions have higher
values (Liu et al., 2019a). They often take an element-wise
multiplication while ignore the context information in the
crowd region. Different from the general attention mecha-
nism, we enhance the input images by learning the similarity
between input images and priority maps and embedding the
obtained relevance into inputs as Fig. 4 shows. The details
will be illustrated in the following Region-Aware Block.

(b) Priority map

(c) New input (d) Difference between (a) Input

images and (c) New inputs

Fig. 3: Visualization of the outputs of RANet. (a) is input
image; (b) is the corresponding priority map; (c) is the new
input obtained from the Region-Aware Block; (d) is obtained
by subtracting (a) input images from (c) new inputs.

3.3. Region-Aware Block
As the heart of convolution neural networks, standard
convolutions always exploit the same filters and pooling
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Fig. 4: The proposed region-aware block.

operations over the whole image. This means that standard
convolutions can only capture the local spatial correlation
(except the ones at top-most layers). Lack of global receptive
field is hard to account for large scale variation and capture
context information fully.

In order to deal with scale variation, we introduce global
context information into the input images by designing the
Region-Aware Block. Specifically, as Fig. 4 shows, we scan
the whole input images and its priority maps in the form
of column vector to estimate their similarity for ontaining
relevance matrix. Then we embed the relevance matrix W
into the input images to build global relationships between
pixels. By doing this, the network can encoder context
information for understanding scale variation and expand the
size of receptive field.

3.3.1. Similarity Measurement: Global Information
Capturing

Similarity Measurement aims to obtain global relation-
ships between pixels in input images by estimating the
similarity between each column in the input images and that
in its priority maps.

Traditional attention mechanism takes pixel-wise prod-
uct between the input image and its attention map. However,
such a pixel-wise product may cause lack of context informa-
tion and local receptive field as they focus on a single pixel
and ignore the relationship between pixels. This would not
account for scale variation well in images.

In order to capture global relationships between pixels,
we scan the whole input images and its priority maps in the
form of column vector to estimate their similarity. That is,
we estimate the similarity between each column vector in
input images and that in its priority maps to obtain weight
matrix representing relevance between pixels.

More specifically, the sizes of input image Q and its
priority map A are both N X M, denoted as:

11 = dm
Q= : =~ €))
| qnl cee qnm )
ap ot A
A= : : (@]
| any Aum |

Then for each column Q (:,i) in Q and A (:, j) in A, we
calculate the similarity s; ; between these two columns by
inner product:

5;; =40, D, AC)) = anﬂrj )
r=1
sll cee Slm
S=0"xA=| : - ©
sml Smm

Then, we use softmax function to get the relevance
matrix W from similarity matrix .

W =softmax(S) = soft max(QT x A)
“u ©

w

ml mm

The value of w; ; can be regarded as an index, which
represents the relevance between i — th column in input
image and j — th column in corresponding priority map.
Consequently, the relevance matrix W can provide input
image with access to global information. In other word, the
relevance matrix W is further embedded into input images

to adaptively build relationship between pixels..

3.3.2. Relevance Embedding: Adaptive Recalibration

We proposed a relevance embedding module to exploit
relevance matrix obtained from similarity measurement to
build global relationships between pixels. That is, we use
the similarity between column vectors in input image and
priorty map to adaptively recalibrate relationship between
pixels.

More specifically, we calculate the output O by inner
product between the input image Q and relevance matrix W
as follows:

o1 = O
o=0xwlh= : -~ (8)

o

nl nm
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m m n
0;j = 21 4 Ww;,= 21 iy [softmax <1 1q,j . k,,)] )
r= r= =

Discussion: we can build global relationship between
pixels through similarity measurement and relevance em-
bedding. The new input is displayed in Fig. 3(c). Compare
Fig. 3(c) and Fig. 3(d), we could find that the new input could
enhance the crowd regions.

Afterward, we train the encoder-decoder networks based
deep convolutional neural networks again using the output as
new input.

3.4. Loss Function

As we introduce the priors and context information
into input images, we use the Bayesian loss as the loss
function (Ma, Wei, Hong & Gong, 2019). Suppose that
x(x, =m:m=1,2,..,M) is arandom variable that rep-
resents the spatial location and y (y, =n : n=1,2,..,N)
is a random variable that denotes the annotated head points,
Yo 1s the background pixels. According to bayes’ theorem,
the posterior probability of x,, obtaining the annotation y,
and background label y, can be calculated as:

2
Xp =Y
p(xm|yn) = \/21_5 exp <_” mzazn”z) (10)
T
1 (d = lxw = 5211,)°
p(xplyo) = Voos exp| - 5 (11
T
P (X 1) P (3)
p(y.lx,)=

SN0 (% 1 90) 2 (7)) + 2 (X 1 90) 2 (30)
_ P (X | ¥)
SN0 (X | ¥0) + 2 (X | 0)

(12)

where 6 is the variance of a 2D Guassian distribution, yﬁ
denotes the nearest head point of x,, and d is a parameter
that defines the background points by controlling the dis-
tance between the head and background points. Due to the
different density of scenes in different datasets, the choice of
parameter d is also different which will be shown in Table 2.

The last equation is simplified with the assumption
p(¥,) = p(») = 1/ (N +1). Then the estimated counts
for each person and background are defined as:

Ele,] = Ty p (v %) D (x,,) a3

E [eo] = Xty P (v %) D (x,)

where D%' (x,, ) is the estimated density map and x,, denotes
a 2D pixel location.

In this case, we would like the foreground count at each
annotation point equals to one and the background count to
be zero. Thus, the final loss function is as follows:

[Bayes + _ ]zvlp(l_E[cn])+F(0—E[c0]) (14)

n=1

4. Experiment

In this section, we present the experimental details
and evaluation results on 4 public challenging datasets:
ShanghaiTech (Zhang et al., 2016), UCF_CC_50 (Bansal
& Venkatesh, 2015), UCF-QRNF (Idrees, Tayyab, Athrey,
Zhang, Al-Maadeed, Rajpoot & Shah, 2018), JHU-CROWD++
(Sindagi, Yasarla & Patel, 2020) and NWPU (Wang, Gao,
Lin & Li, 2020b).

4.1. Evaluation Metrics and Implementation
Details
We use the following metrics mean absolute error (MAE),
mean square error (MSE) and mean normalized absolute
error (NAE) to evaluate the performance of our method.

N
1
MAE = — ,; ’c,. _ ciGT‘ (15)
| < 2
MSE = N;|c,.—c[GT’ (16)
L |-
NAE = — Z a7)

where N is the number of test images, C; and CI.GT are the
estimated count and the ground truth respectively.

We do the image augmentation using random crop. As
shown in Table 2, the sizes of the cropped images differ
across datasets. Therefore, when training different datasets,
we use different learning rates and batch sizes.

4.2. ShanghaiTech dataset

ShanghaiTech (Zhang et al., 2016) crowd counting dataset
contains 1198 labeled images with 330165 people annotated
totally. The dataset is divided into two parts named Part A
and Part B. Part A consists of 482 (300 for train, 182 for
test) images with highly congested scenes collected from
the internet. The images in Part A are highly dense with
crowd counts between 33 to 3139. While Part B contains 716
(400 for train, 316 for test) images taken from busy streets
in Shanghai. The images in Part B are less dense with the
number of people varying from 9 to 578. Because of limited
numbers of training samples, we pre-train our models on
UCF-QNRF.

Yuehai Chen et al.: Preprint submitted to Elsevier

Page 6 of 16



Region-Aware Network

Table 1
Estimation errors on ShanghaiTech dataset

Method Part A Part B

MAE MSE MAE MSE
MCNN (Zhang et al., 2016) 110.2 173.2 26.4 41.3
Switch-CNN (Babu Sam et al., 2017) 90.4 135.0 21.6 334
CSR-Net (Li, Zhang & Chen, 2018) 68.2 115.0 10.6 16.0
SA-Net (Cao, Wang, Zhao & Su, 2018) 67.0 1042 84 13.6
CAN (Liu et al., 2019b) 62.3 100 7.8 12.2
MBTTBF (Sindagi & Patel, 2019) 60.2 94.1 8.0 15.5
ADCcrowdNet (Liu et al., 2019a) 70.9 1152 7.7 12.9
LSC-CNN (Sam et al., 2020) 66.4 117.0 8.1 12.7
BL (Ma et al., 2019) 62.8 101.8 7.7 12.7
SFCN (Wang, Gao, Lin & Yuan, 2019) 67.0 104.5 8.4 13.6
CG-DRCN-CC-Res101 (Sindagi et al., 2020)  60.2 94.0 7.5 12.1
M-SFANet (Thanasutives et al., 2021) 62.49 106.11 6.38 10.22
OURS 57.92  99.23 7.15 11.86

Table 2
training settings for each datasets

Dataset Learning rate Batch size Crop size d
ShanghaiTech PartA le—6 8 256 x 256 0.1
ShanghaiTech PartB le—6 8 400 x 400 0.1
UCF_CC_50 Se—4 5 512 %512 0.15
UCF-QNRF Se—4 5 512 %512 0.15
JHU-CROWD Se—4 5 512512 0.15
NWPU Se—4 5 512512 0.15

Note: "d" is the parameter that described in the loss function.

We evaluate our model and compare it to other 12 recent
methods in Table 1. The results in Table 1 show that our
model can achieve better performance with 7.31% MAE and
6.48% MSE improvement compared with base model(M-
SFANet) on Part A. It can also be observed that the proposed
method is able to achieve comparable performance with the
base model (M-SFANet) on Part B. The effect of our model
is similar to that of other models in ShanghaiTech dataset.
The reason may be that ShanghaiTech dataset contains less
people than other popular datasets and scale variation are not
so dramatic compared to other challenging datasets.

To further explore the reasons for the different perfor-
mance of our method on the two datasets, we select rep-
resentative images from the two datasets and compare the
estimated density maps in Fig. 5. Compared to Part A, the
scenes in Part B are more simple and monotonous. More
specifically, the scenes of Part B are mainly composed of
busy streets and consist of less people. Therefore, the issues
of background noise and scale variation are not prominent
in Part B dataset. This makes our method still performs hon-
orably but looses its edge compared to the others in Part B
dataset. On the contrary, in Part A dataset which is collected
from the internet including various diverse scenarios, our
model performs better. This further illustrates the superiority

and robustness of our approach under a variety of diverse
scenarios.

Estimate:434.4

Fig. 5: Visualization of input images from ShanghaiTech and
corresponding estimated density maps. The first and third
rows are samples images from ShanghaiTech Part B and
ShanghaiTech Part A, respectively. The second and fourth
rows are the corresponding estimated density maps from our
proposed method.

4.3. UCF_CC_50 dataset

UCF_CC_50 (Bansal & Venkatesh, 2015) is an ex-
tremely dense crowd dataset including 50 images of dif-
ferent resolutions. The numbers of head annotations range
from 94 to 4543 with an average number of 1280. To
better evaluate model performance, 5-fold cross-validation
is performed following the standard setting in (Bansal &
Venkatesh, 2015). Because of limited numbers of training
samples, we pre-train our models on UCF-QNREF to speed
up convergence.
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Table 3
Estimation errors on UCF_CC_ 50 dataset

Method MAE MSE

MCNN (Zhang et al., 2016) 377.6 509.1
Switch-CNN (Babu Sam et al., 2017)  318.1 439.2
CSR-Net (Li et al., 2018) 266.1 397.5
SA-Net (Cao et al., 2018) 258.4 334.9

CAN (Liu et al., 2019b) 107 183

MBTTBF (Sindagi & Patel, 2019) 233.1 300.9
ADCcrowdNet (Liu et al., 2019a) 273.6 362.0
LSC-CNN (Sam et al., 2020) 2256 3027

BL (Ma et al., 2019) 2293 3082

SFCN (Wang et al., 2019) 258.4 334.9
M-SFANet (Thanasutives et al.,, 2021) 16233  276.76
OURS 155.01 219.45

Table 3 shows the results on UCF_CC_50 dataset. The
proposed method is compared with other recent works. It
can be observed that our model obtains the best performance
with 4.51% MAE and 20.7% MSE improvement compared
with the second best approach M-SFANet.

On the UCF_CC_50 dataset, we consistently and clearly
outperform all other methods. As shown in Fig. 6, images
in UCF_CC_50 dataset are mostly extremely dense crowd
images. This makes context more informative and our ap-
proach state-of-the-art. What’s more, compared to MAE,
the improvement of MSE is more remarkable. Compared
with MAE, MSE assesses the estimated deviation of the
overall data. The smaller the MSE, the more accurate our
estimation of the number of people in each image. This could
further prove the robustness of our method. In other word,
our approach can evaluate approximate number close to
ground truth in mostly extremely dense crowd scenes. This
is consistent with the behavior of humans observing dense
scenes, aiming to get the approximate number of people in
dense scenes.

Fig. 6: Some representative sample images from UCF_CC_ 50
datasets. These sample images are all extremely dense crowd
images. More precisely, images in this dataset are almost
extremely dense scenes.

4.4. UCF-QNRF dataset

UCF-QNRF (Idrees et al., 2018) is a large and chal-
lenging dataset due to the extremely congested scenes. The
dataset contains 1535 (1201 for train, 334 for test) jpeg
images with 1251642 people in them. What’s more, it has
a wide range of counts, complex environment and image
resolutions. We train our model on UCF-QNRF with VGG-
16bn pre-trained weights.

Table 4
Estimation errors on UCF-QNRF dataset

Method MAE  MSE
MCNN (Zhang et al., 2016) 2770 1260
Switch-CNN (Babu Sam et al., 2017) 228 445

CSR-Net(Li et al., 2018) 120.3  208.5
CAN (Liu et al., 2019b) 2122 2437
MBTTBF (Sindagi & Patel, 2019) 97.5 165.2
LSC-CNN (Sam et al., 2020) 120.5 2182
BL (Ma et al., 2019) 88.7  154.8
SFCN (Wang et al., 2019) 1020 1714

CG-DRCN-CC-Res101 (Sindagi et al., 2020)  95.5 164.3
M-SFANet (Thanasutives et al., 2021) 85.6 151.23
OURS 83.38 141.79

Table 5

Estimation errors on JHU-CROWD++ dataset
Method MAE MSE
MCNN (Zhang et al., 2016) 1889 4834
CSR-Net(Li et al., 2018) 85.9 309.2
SA-Net (Cao et al., 2018) 91.1 3204
MBTTBF (Sindagi & Patel, 2019) 81.8 299.1
LSC-CNN (Sam et al., 2020) 1127 4544
SFCN (Wang et al., 2019) 82.3 328.0
CG-DRCN-CC-Res101 (Sindagi et al., 2020)  71.0 278.6
OURS 59.36 257.56

We evaluate our model and compare it to other recent
works and results in Table 4. The results in Table 4 indicate
that our model can achieve better performance with 2.59%
MAE and 6.24% MSE improvement compared with the
second best approach M-SFANet.

In Fig. 7, we show input images form UCF-QNREF, along
with the density maps generated by the M-SFANet and
our proposed method. Compared to accurately localizing
each person in M-SFANet model, our method pays more
attention to the crowd regions. This means that our method
could take context information into consideration for more
precise crowd counting. This is exactly in line with human’s
Top-Down visual system: human scan a crowd image and
instantly know the approximate number of human through
overall perception of congestion degree of crowd regions.
What’s more, as Fig. 7 shows, our method can obtain a larger
received field which is more closely match the distribution
of the crowd regions.

4.5. JHU-CROWD++ dataset

JHU-CROWD++ (Sindagi et al., 2020) contains 4372
images containing a total of 1.51 million dot annotations
with an average of 346 dots per image and a maximum
of 25000 dots. In comparison to most datasets, the JHU-
CROWD++ dataset is a large dataset collecting under a
variety of diverse scenarios and environment conditions.

We evaluate our model and compare it to other recent
works and results in Table 5. The results in Table 5 show
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Fig. 7: Input images form UCF-QNRF, along with the density maps generated by the M-SFANet and our proposed method. From
left to right: The left column are input images; the middle column are density maps generated by M-SFANet and the right column
are density maps generated by our proposed method. Compared to accurately localizing each person in M-SFANet, our method
pays more attention to the crowd regions. What's more, our method can obtain a larger received field for crowd regions.

that our model can achieve better performance with 16.39%
MAE and 7.55% MSE improvement compared with the
second best approach CG-DRCN-CC-Res101.

In Fig. 8, we show input images form JHU-CROWD++,
along with the density maps generated by our proposed
method. We can find that our proposed method has a good
ability to estimate number in different dense scenarios. In
other word, through introducing global context information
into the input images by designing the Region-Aware Block,
our approach can deal with scale variation well.

4.6. NWPU dataset

The NWPU dataset is the largest-scale and most chal-
lenging crowd counting dataset publicly available (Wang
et al., 2020b). It is a large-scale congested crowd counting
dataset that consists of 5,109 images crawled from the Inter-
net, elaborately annotating 2,133,375 instances. The ground
truth for test images set are not released and researchers
could submit their results online for evaluation.

We evaluate our model and compare it to other recent
works and results in Table 6. The results in Table 6 show
that our model significantly outperforms the state-of-the-art
methods. Notably, on the NWPU test (obtained by submit-
ting to the evaluation server), our model reduces the MAE
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Table 6

Comparison with state-of-the-art methods on NWPU validation and test sets.

Method Validation set Test set
MAE MSE MAE MSE NAE
MCNN (Zhang et al., 2016) 2185 700.6 2325 7146 1.063
CSRNet(Li et al., 2018) 104.8 4334 1213 387.8 0.604
CAN(Liu et al., 2019b) 93,5 4899 1063 386.5 0.295
BL(Ma et al., 2019) 93.6 4703 1054 4542  0.203
SFCN(Wang et al., 2019) 954 6083 1057 4241 0.254
DM-Count(Wang, Liu, Samaras & Hoai, 2020a) 70.5 357.6 88.4 3838.6 0.169
OURS 65.3 4329 775 365.8 0.228

GT Count:6

Estimate:237.1

Fig. 8: Visualization of estimated density maps from JHU-
CROWD++. From left to right: the number of human
gradually increases.

and MSE by a large margin, from 88.4 to 77.5 in MAE and
from 388.6 to 356.8 in MSE.

4.7. Ablation Study
4.7.1. complexity of the model

To evaluate the complexity of our method, we have
conducted ablation study on NWPU dataset in Table 7.
To exclude interference from other factors, we conducted
the experiment on the same experimental environment, and
reported the results in the largest online benchmark NWPU
(Wang et al., 2020b). As shown in Table 7, our model does
not have an advantage in model parameters and inference
speed. However, our model has achieved better performance
in the crowd counting. Moreover, our model could also
achieve real-time crowd counting at a speed of 0.095 seconds
per picture. It does not affect the application of our method
in reality.

To better evaluate the complexity of our method, we sim-
ply employ VGG16 with Feature Pyramid fusion like U-Net
as backbone. We add our proposed feedback architecture and
Region-Aware block on the VGG16 backbone. We named
these two models as VGG16+PFN and VGG16+PFN+RA.

The quantitative results of VGG16+FPN and VGG16+FPN
+RA on ShanghaiTech have been reported in Table 8. As
shown in Table 8, our VGG16+4+PFN+RA model is superior
to the base model VGG16+PFN. More specifically, on the
ShanghaiTech A, our model reduces the MAE and MSE,
from 68.01 to 64.84 in MAE and from 109.94 to 103.58 in
MSE. On the ShanghaiTech B, our model reduces the MAE
and MSE, from 7.48 to 6.30 in MAE and from 12.08 to
10.14 in MSE. Compared to the improvement of the result,
it is acceptable that our method has an increase the inference
time.

4.7.2. normal CNN networks for scale variation

To verity the statement that normal CNN networks
may have limited effects for rapid scale changes in com-
plex scenes as they may assign a fixed scale for large
objects, we simply employ two models named VGG16
and VGG16+SFEN respectively to conduct experiments on
ShanghaiTech dataset and UCF-QNREF dataset. For VGG16,
we simply employ the first pretrained 13 layers of VGG16
with batch normalization as encoder header. Then, we put
the output of the backbone to a decoder header which
consists of three 3x3 convolutional layers with 256, 64 and
32 channels respectively, and 1x1 convolutional layers to get
final density map. While for VGG16+FPN, considering that
different layers may focus on different abstract level features,
we up-sample and cascade these multiple features as Feature
Pyramid Networks.

As can be seen from Table 9, the normal network VGG 16
is able to achieve a similar performance with VGG16+FPN
which fuses multiple features of different layers in Shang-
haiTech A and UCF-QNRF datasets. The reason may be
that features of low layers contribute less to crowd counting
in complex dense scenes. While in ShanghaiTech B which
contains less people and scale variation are not prominent,
VGG16+FPN with fusing multiple features of different lay-
ers performs better than normal VGG16. These results fur-
ther indicate that normal networks may have limited effects
for rapid scale variation in complex scenes.

4.7.3. Comparison of different boost strategies

The work (Lonnqvist et al., 2020) shows that, Deep
Convolutional Neural Networks (DCNNs) and human vi-
sual system are not necessarily equivalent models in object
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Table 7

The parameters, FLOPs, inference speed and results in NWPU (Wang et al., 2020b) of various models.

Method Backbone  Parameters(M) FLOPs(G) Inference speed(s) MAE In NWPU
MCNN (Zhang et al., 2016) FS 0.13 7.05 0.008 232.5
PCC-Net(Gao, Wang & Li, 2019a) FS 0.51 43.87 0.013 167.4
CSR-Net(Li et al., 2018) VGG16 16.26 108.34 0.038 121.3

CAN(Liu et al., 2019b) VGG16 18.10 114.83 0.047 106.3
SCAR(Cao et al., 2018) VGG16 16.29 108.44 0.047 110.0
SFANet(Zhu et al., 2019) VGG16 15.92 93.27 0.043 -
M-SFANet(Thanasutives et al., 2021) VGG16 22.88 115.14 0.058 -

SFCN(Wang et al., 2019) ResNet101  38.60 162.03 0.096 105.7
RANet(ours) VGG16 22.88 205.97 0.095 77.5

Note: The parameters and FLOPs are computes with the input size of 512x512 on a single NVIDIA 3090 GPU. The inference
time is the average time of 100 runs on testing 1024x768 sample. “FS" represents that the model is trained From Scratch.

Table 8

The parameters and inference speeds of two models. The parameters are computes with the input size of 512x512 on a single
NVIDIA 3090 GPU. The inference time is the average time of 100 runs on testing 1024 x 768 sample.

Method Parameters(M) Inference speed(s) ShanghaiTechA ShanghaiTechB
(MAE/MSE)  (MAE/MSE)

VGG16+PFN 15.86 0.041 68.01/109.94  7.48/12.08

VGG16+PFN+RA (OURS) 15.87 0.076 64.84/103.58 6.30/10.14

Table 9
Quantitative results of VGG16 and VGG16+FPN in Shang-
haiTech and UCF-QNRF.

ShanghaiTech A ShanghaiTech B UCF-QNRF

Method (MAE/MSE)  (MAE/MSE)  (MAE/MSE)
VGGI6 67.64/10046  7.70/12.55  §9.52/154.60
VGG16+PFN 68.01/109.94  7.48/12.08  88.48/155.84

recognition. DCNNs likely achieve an object recognition
competence through a set of mechanisms that are distinct
from those in humans (Lonngvist et al., 2020). As a result,
the patch-based and superpixel-based operations which are
common and consistent with human visual system, may not
be optimal choices for some applications. There are some
column-based methods, which are applied in 3D point cloud
(Kim & Kim, 2018), localization task (Kim et al., 2019) and
classification task (Szeskin et al., 2021) and have achieved
good performances. In order to explore which method is
suitable for our dense crowd counting task, we compare the
column-based operation with patch-based and superpixel-
based operations from theoretical analysis and experimental
verification.

Firstly, column-based operation is able to boost the im-
portant information of the image. If two vectors are similar,
then they will get a high score and will be boosted in our
column-based method. In dense crowd counting task, the
crowd areas occupy most of the content so that the crowd
regions would be highlighted after column-based operation.
As a result, column-based operation would boost the crowd

regions and would not destroy the semantic information
inside the image. Secondly, dividing the dense image into
patches for operation may divide the crowd into different
areas which may cause the separation of semantic informa-
tion. Moreover, patch-based operation is somewhat similar
to convolution, and the extracted information may be similar
to the features obtained by convolution. Finally, superpixel-
based operation focus on individual pixels which may be a
lack of consideration of context in dense scenes.

We perform ablation studies on ShanghaiTech A dataset
in Table 10 to evaluate the effectiveness of each proposed
component. In superpixel-based method, we do superpixel-
based operation between input images and obtained maps.
For patch-based method, we divide the input images and
maps into 16 X 16 patches, then we do similarity mea-
surement and relevance embedding for these patches as we
introduced in Region-Aware Block. Comparing base model
with superpixel-based method, patch-based method and our
column-based method, we find that using feedback to en-
hance inputs could improve the performance of base model.
As can be seen from Table 10, our column-based method
performs better than common superpixel-based method and
patch-based method in dense scenes. This further evaluates
the effectiveness of our proposed Region-Aware block.

To further explore the difference of different boost
strategies, we visualize the outputs of these three models
in Fig. 9. We respectively visualize the superpixel-based
method, patch-based method and our column-based method
in the first row, second row and third row. Comparing the
differences between input image and new input, we find
that superpixel-based method and our column-based method
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Fig. 9: Visualization of outputs of superpixel-based method, patch-based method and our column-based method. (a) is the
corresponding priority maps; (b) is the new inputs obtained from the networks; (c) is obtained by subtracting input image from

(b) new inputs; (d) is the predicted density maps.

Table 10

Comparison of different boost strategies. Superpixel-based
method mean that we do superpixel-based operation between
input images and obtained maps. For patch-based method,
we divide the input images and maps into patches, then we
do similarity measurement and relevance embedding for these
patches as we introduced in Region-Aware Block.

Method ShanghaiTech A
MAE MSE
Base Model 65.84 110.22
superpixel-based 60.13 100.34
patch-based (16x16)  64.65 106.79
column-based (OURS) 57.92 99.23

could effectively boost the dense crowd regions. This verifies
that our column-based method could boost the important
information in input images in dense scenes. While for
patch-based method, it has limited effect on boosting the
crowd regions by observing the difference between input
image and new input. The reason may be that the extracted
feature of patch-based method may be similar to the features
extracted by convolution. Moreover, the obtained new input
of column-based method is similar to input image. This
further proves that our column-based method would not
destroy the semantic information inside the image. As shown
in the third column and fourth column in Fig. 9,we observe
that our column-based method could extract more reliable
detailed edge texture feature from global receptive field
and performs better than superpixel-based method in dense
scenes which indicates our column-based method could

consider more contextual information than superpixel-based
method in dense scenes.

4.7.4. Visualization of the density maps of base model
and RANet

We first introduce a novel feedback architecture to gen-
erate priority map focusing on crowd regions. Then we
scan the images in the form of column vector to obtain
global contextual information and boost the crowd regions
in dense scenes for counting according to priority maps.
The priority map makes our model pay more attention to
crowd regions. And the column vector scanning could ex-
tract reliable edge and texture information of targets from
global receptive field. The combination of priority map
and column vector scanning could synergistically boost the
crowd regions effectively. The boosted regions are shown in
Fig. 10 (d). Therefore, our model could pay more attention
to crowd regions so that it is able to relieve the problem of
background noise. As shown in the red circles in the first and
the second rows of Fig. 10, we could observe that base model
is easier to mistake background for people. While our RANet
could distinguish people and background. Compared with
base model, the results of our RANet have more consistent
responds for crowd regions. This shows that our RANet
could relieve the problem of background noise.

Moreover, our model could extract reliable edge and
texture information of targets from global receptive field
with scanning the images in the form of column vector.
As shown in Fig. 10 (d), our model could extract the size
of each target. As a result, our model has the ability to
implicitly encode the size of each target into the feature.
Thus, our region-aware block could relieve the problem of
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Fig. 10: Visualization of the density maps of base model and RANet.

scale variation. We could also observe that the respond
ranges of base model are larger than scales of targets in green
circle 2, green circle 4 and green circle 6. Our RANet has
different responds ranges for different targets, which reflects
the scale variation. Moreover, as shown in green circle 3
and green circle 5, the density map of base model has too
large responds ranges to distinguish each people. While our
RANet has suitable respond ranges and is able to distinguish
each target. These results further indicate that our RANet has
suitable responds ranges for different targets, which reflects
our method could relieve the problem of scale variation.

5. Conclusion

In this paper, we proposed a novel feedback architecture
model with Region-Aware block modeling human’s Top-
Down visual perception mechanism, name RANet, aiming
to deal with background noise and scale variation. Firstly,
we introduce a feedback architecture to train priority map
that provide prior about candidate crowd region in input
images. This prior would be fully utilized in Region-Aware
block to reduce background noise and capture global context
information. More specifically, we scan the whole input
images and its priority maps in the form of column vector to
obtain a relevance matrix for measuring their similarity. The
relevance matrix obtained would be utilized to build global
relationships between pixels. In other word, the Region-
Aware block could adaptively encode the contextual infor-
mation into input images through global receptive field. So
that the RANet shows powerful ability to estimate different
dense scenes through attention the crowd regions and the
congestion degree of crowd regions with a global receptive
filed.
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