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Learning in deep neural networks (DNNs) is implemented through minimizing a highly non-convex
loss function, typically by a stochastic gradient descent (SGD) method. This learning process can
effectively find good wide minima without being trapped in poor local ones. We present a novel
account of how such effective deep learning emerges through the interactions of the SGD and the
geometrical structure of the loss landscape. We find that the SGD exhibits rich, complex dynamics
when navigating through the loss landscape; initially, the SGD exhibits anomalous superdiffusion,
which attenuates gradually and changes to subdiffusion at long times when approaching a solution.
Such learning dynamics happen ubiquitously in different DNNs types such as ResNet and VGG-like
networks and are insensitive to batch size and learning rate. The anomalous superdiffusion process
during the initial learning phase indicates that the motion of SGD along the loss landscape possesses
intermittent, big jumps; this non-equilibrium property enables the SGD to escape from sharp local
minima. By adapting the methods developed for studying energy landscapes in complex physical
systems, we find that such superdiffusive learning dynamics are due to the interactions of the SGD
and the fractal-like regions of the loss landscape. We further develop a simple model to demonstrate
the mechanistic role of the fractal-like loss landscape in enabling the SGD to effectively find global
minima. Our results reveal the effectiveness of deep learning from a novel perspective and have

implications for designing efficient deep neural networks.

I. INTRODUCTION

Deep neural networks (DNNs) trained by stochastic
gradient descent (SGD) have achieved great success in
many application areas [I]. As often assumed, the SGD
optimizer of highly non-convex loss functions is rarely
trapped in local minima, and effectively finds wide ones
with good generalization [2, [3]. Understanding how this
property emerges from the DNNs is of fundamental im-
portance for deciphering the secret of the remarkable ef-
fectiveness of deep learning [4].

Recently, progress has been made in either character-
izing the structure of loss functions or the dynamics of
SGD for gaining comprehension of deep learning. For
instance, loss functions have been studied by using ran-
dom matrix theory [5], algebraic geometry methods [6]
and visualization-based methods [7]. The dynamics of
SGD have been examined via models of stochastic gra-
dient Langevin dynamics with an assumption that gra-
dient noise is Gaussian [8, 9]; in these models, the SGD
is assumed to be driven by Brownian motion in partic-
ular. However, it has been increasingly realized that
such Brownian motion-based characterizations of SGD
dynamics are inappropriate, as SGD dynamics commonly
exhibit highly anisotropic and dynamic-changing prop-
erties [IOHI3], suggesting the presence of rich, complex
learning dynamics in DNNs. Recently, it has been shown
that an inverse relation holds between the landscape flat-
ness and the weight variance [14]. Despite the progress
made by these studies, the fundamental questions of how
the interaction of SGD with the structure of the loss
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function gives rise to complex learning dynamics, and
whether and how such dynamics enable SGD to find wide
minima remain unknown.

In this study, by adapting the methods developed in
nonequilibrium physical systems, we find that the in-
teractions of the loss landscape and the SGD give rise
to complex learning dynamics; these include anomalous
superdiffusion during the initial learning phase, which
changes to subdiffusion at long times when approaching
a solution. During this process, the SGD walker moves
from rougher (fractal-like) regions to flatter regions of
the loss landscape. The fractal-like regions of the loss
landscape indicate that they possess varying steepness
(Fig. and that the corresponding loss gradient dis-
plays large fluctuations with heavy-tailed distributions,
thus resulting in superdiffusive learning dynamics. Su-
perdiffusion consists of small movements that are inter-
mittently interrupted by big jumps; these enable SGD
to escape from local minima, thus effectively exploring
the loss landscape. This computational advantage of su-
perdiffusion is further illustrated in a simple model where
the SGD interacts with a low-dimensional fractal loss
landscape. Due to its movement even slower than a nor-
mal diffusive process (i.e. Brownian motion), the sub-
diffusive dynamics, on the other hand, may consolidate
the residence of the SGD in the flatter areas with good
solutions.
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Schematic diagram of non-convex loss landscape with a fractal-like structure. (a) The log-value of loss

landscape projected to 2D shows complex structures. The training process based on SGD can be regarded as a SGD optimizer
moving on the loss landscape. (b) The fine structure of non-convex loss landscape with a fractal structure shows self-affine and

hierarchical properties.

II. DNNS SETUP AND CHARACTERIZATIONS
OF ANOMALOUS DIFFUSION DYNAMICS

A. DNNs setup

We consider two classes of neural networks: 1)
ResNet-14/20/56/110 [I5], where each type is labeled
with the total number of layers it has. 2) “VGG-
like” networks that do not contain shortcut/skip con-
nections. We produce these networks simply by re-
moving the shortcut connections from ResNets, termed
ResNet-14/20/56/110-noshort. All models are trained
by vanilla SGD on multiple datasets including MNIST
and CIFAR-10, by using two types of loss functions
(i.e., cross-entropy, and Kullback Leibler divergence
losses). The training processes each run for 500 epochs.
All networks are initialized in the standard proce-
dures of the PyTorch library (version 1.3.0). Source
code is available at https://github.com/ifgovh/
Anomalous-diffusion-dynamics-of-SGD.git.

B. Characterizations of anomalous diffusion
learning dynamics

Given that full-batch gradient descent is computation-
ally expensive, in the SGD algorithm, the weight param-
eters w = (w1, ws, - ,wq) are estimated by minimizing
the minibatch loss function VL(w) : R? — R, according
to

Wip1 = Wi — ﬂVf/t (Wt) » (1)

where w; denotes the d-dimension weight vector
(wy,wsa, -+ ,wq) at time ¢, and 7 is the learning rate. The

partial absence of the dataset generates gradient noise
Us & VL; (w;) — VL; (w;). The updating rule can be
rewritten as:

Wt+1 = Wy — 7’]VLt (Wt) + Uta (2)

Hence the SGD training process is also a random diffu-
sive process, where w can be geometrically interpreted as
coordinates of the SGD optimizer in the loss landscape
L (Fig. [1).

The loss function of DNN exhibits complex structures,
as demonstrated by the projected 2D loss landscape of
ResNet-56-noshort [7] (Fig. , analogous to complex en-
ergy landscape in physical systems [I6HI9]. In these
physical systems, energy landscapes possess fractal-like
structures and anomalous diffusion motions of particles
stem directly from such kinds of structures. In this study,
we apply similar methods used in these systems to quan-
tify the diffusion dynamics of the SGD optimizer. Par-
ticularly, the time-averaged mean squared displacement
(MSD) |20l 21] is used to characterize the dynamics of
SGD moving through the loss landscape, which is defined
as

tw+T d

APt = 3 3 Yt —w @) ()

t=t, i=1

where 7 is lag time, T is the length of the time interval
[tw,tw + T], and w;(t) is the value of the i*" weight at
time t. t,, is the time lapse after the start of the training
process (i.e., waiting time). The time variables ¢, t,,
and T are in units of iteration, and the unit time step
corresponds to a single update of the weights.

We characterize the diffusion dynamics based on time-
averaged MSD. Although ensemble-averaged MSD is the
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FIG. 2. SGD dynamics are anomalous diffusion. (a) MSD Ar?(7) of SGD as a function of lag time 7 in interval
[tw,tw + T, T = 1000 for ResNet-14 (batch size of 1024, 500 epochs). (b) Same as in (a) but the starting time of the interval
tw gradually increases from 1 to 24000 steps, covering the whole training process. (c¢) Logarithmic derivative 8(7) of the MSD
shown in (b). Inset: Logarithmic derivative 8(7) of the MSD shown in (a). The color scheme is the same as in (b). (d)
Same as in (b) but for T = 10000. (e) Same as in (a) but for training ResNet-14 5000 epoch. (f-i) Same as in (a) but for
ResNet-110 (batch size: 512), ResNet-56 (batch size: 128), ResNet-20-noshort (batch size: 128), and ResNet-20 (batch size:
128), respectively.

most appropriate in theory [22], averaging the ensem- at time t,, + 7 decorrelates from the one at time ¢,, [11].

ble of a high-dimension system is impossible in practice.

Therefore, time-averaged MSD is a common tool used

to quantify anomalous diffusive processes [20, 21]. No-

averaged MSD (Eq. E[) has been used to demonstrate how

much the configuration of DNNs and spin glass models  However, we have calculated no-averaged MSD and found
that no-averaged MSD curves are too noisy to character-
ize the anomalous diffusion learning dynamics.
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Brownian motion is identified by Ar?(r) o 7%, for
large T' with the diffusion exponent o = 1; the MSD is
a linear function of lag time 7. When « # 1, the cor-
responding diffusion process has a nonlinear relationship
with respect to 7 and is defined as anomalous diffusion
23]. If1 < a < 2, it is a superdiffusive process; su-
perdiffusion consists of small movements that are inter-
mittently interrupted by long-range jumps. This process
has been widely observed in complex physical and bio-
logical systems [22]; the mixture of small movements and
big jumps in this process is essential for optimally trans-
porting energy in turbulent fluid [24], and for animals
to optimally search for spatially distributed food [25]. If
0 < a < 1, the optimizer is subdiffusive, indicating that
it moves slower on average than a normal diffusion pro-
cess.

III. RESULTS
A. Anomalous diffusion of SGD dynamics

We first illustrate that anomalous diffusion processes
characterize SGD learning dynamics. As the findings of
different DNN settings are similar, we thus demonstrate
all results in ResNet-14 with a batch size of 1024, trained
on CIFAR-10 with the cross-entropy loss function and a
learning rate of 0.1, unless stated otherwise.

The MSD of each interval [ty,t, + T is calculated
according to Eq. 3| (T' = 1000) for a given ¢,. To
demonstrate how the diffusion dynamics of SGD opti-
mizer change during the training process, we change t,,
systematically. As shown in Fig. a), there are dis-
tinct regimes of the learning dynamics characterized by
the diffusion exponent «. For the first regime ¢,, < tq,
to = 21000 (blue curve, Fig. [J(a)), MSD curves have
two segments on the scale 7 € [1,7] with the smooth
transitions around 7o (79 is labeled in Fig. 2[a)). When
the lag time 7 > 79, the MSD curves can be fitted to
Ar?(7) < 7@ with a > 1, indicating that the SGD opti-
mizer exhibits superdiffusive dynamics. However, when
T < 719, @ < 1, i.e. the SGD dynamics are subdiffu-
sive (Fig. [J(a)). The diffusion exponent « is calculated
via the least-squared fitting method. We attempt to fit
Ar?(ty, ) o< 7@ for 7 € [/, T]. We determine 7’ € [0,T)
as the smallest value such that the root-mean-square de-
viation RMSE < 0.03; this 7" is denoted as 7.

During the initial phase of the training process, the
interval of the superdiffusion is much longer than that
of the subdiffusion. Nevertheless, as t,, increases, the
superdiffusion gradually attenuates, as demonstrated by
the decrease of the diffusion exponent o and the increase
of 79 (brown curve in Fig. [a); all curves are shown in
Fig. 2[b)). In the second regime t,, > to, the diffusion
exponent o = (.78, i.e., the subdiffusion process even-
tually becomes dominant, as shown by the red curve in
Fig. a). To identify the change from the first regime to
the second one, we estimate ty by fitting the MSD curves

([tw, tw + T]). To do this, we shift ¢,, from 1 to 23001,
and [to,to + T is the first curve whose goodness of fit
has RMSE < 0.03 (0.03 is the standard deviation of all
RMSE values). These phenomena can be summarized as
below:

T if t, < to, T < To
T2 if £, < to,T > To (5)
T8 if £, >t

A?"z(tw7 T) X

where ay,a3 € (0,1) and as > 1. Such complex dy-
namics can be further quantitatively characterized by the
logarithmic derivative of the MSD, 3 [26] 27],

In Ar2(ty, T+ AT) —In Ar2(ty, T
Sy = AT )~ In Art(tu, 7
In(r+A7)—In 7

) (6)

where (A7 = 20, Fig. c)); in the first regime, 5 quickly
increases from a value smaller than 1 to a value larger
than 1, but in the second regime, 3 is larger than 1 only
when 7 > 532.

The time-inhomogeneous anomalous diffusion dynam-
ics are not sensitive to the interval 7. For other values
such as T' = 5000, T' = 10000, the SGD process exhibits
similar dynamics with a change from a superdiffusion-
dominated regime to a subdiffusion one. Figure d)
shows an example of T" = 10000; initially, the SGD op-
timizer shows subdiffusion when 7 < 79 (blue curve);
gradually, the superdiffusion attenuates and subdiffusion
process eventually emerges (red curve). Note that we
show the results in 500 epochs (24000 steps) because the
dynamics after 500 epochs remain the same. The same
model is also trained for 5000 epochs, the corresponding
MSD curves for t,, > 24000 still demonstrate subdiffu-
sion (Fig. [2e)).

In addition, the time-inhomogeneous anomalous dy-
namics are not specifically unique to DNN models. Fig-
ures f—i) illustrate several models and they also demon-
strate similar learning dynamics, including ResNet-14
with the batch size of 128, ResNet-14-noshort with the
batch size of 1024, and ResNet-56 with the batch size
of 1024. These models are trained with a learning rate
of 0.1. This result thus indicates that the SGD learn-
ing dynamics generally possess an initial superdiffusion-
dominated phase, which gradually evolves to a subdiffu-
sion phase.

The anomalous diffusion learning dynamics provide a
way to characterize contributions of network structures
and different hyperparameters to the training process.
To demonstrate this, we train two types of DNNs, i.e.,
ResNet and VGG-like networks. VGG-like networks are
produced simply by removing shortcut connections from
ResNets. As shown in Figs. Bfa-b) and (d-b), shortcut
connections do not change the diffusion exponent « sig-
nificantly in both regimes, with « being greater than 1.
However, they do affect the scale range of superdiffu-
sion characterized by 79 when t,, = 1. 79 indicates the
crossover of MSD in the first 1000 steps. Specifically,
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The effects of the depth, batch size, and shortcut connections of DNNs on the anomalous diffusion

dynamics of SGD. The orange and blue colors represent the network with/without shortcut connections (SC) respectively.
The digits in legends of the first reow (a-c) represent network depth; for example, no SC 14 denotes ResNet-14-noshort. Those
in the second row (d-f) represent minibatch size; for example, no SC 128 denotes ResNet training using the minibatch size of
128. (a) The diffusion exponents « on larger lag times (7 > 79) when ¢, = 1 as a function of minibatch size. (b) Similar to
(a) but for « in the second regime (when t,, = #9). (c) The crossover 79 as a function of minibatch size. Here, 719 is the lag
time when the MSD curve transitions from subdiffusion to superdiffusion when ¢, = 1. (d-f) Similar to (a-c) but for varying
network depth. The error bars represent the standard deviation calculated over 10 trials.

with shortcut connections, ¢ is smaller than those with-
out shortcut connections, indicating that the scale of su-
perdiffusion is elongated (Fig. [3[c) and Fig. [3(f)). The
superdiffusion dynamics enable the SGD walker to ex-
plore larger areas of loss landscape in a fixed time than
normal diffusion and subdiffusion processes. From this
perceptive, DNNs with shortcut connections can facili-
tate training, which is consistent with previous studies
17, 3.

The anomalous diffusion learning dynamics are not
very sensitive to minibatch sizes. As shown in Fig. [3(a),
the diffusion exponent « in the first regime does not
significantly vary (+15%) with respect to the change of
minibatch size from 128 to 1024 in all networks, although
79 decreases in ResNet-14,20 with the increase of mini-
batch size (Fig. [3(c)).

Furthermore, as shown in Fig. d), «a changes nonlin-
early with respect to the network depth. However, the
network depth reduces the scale range of superdiffusion,
characterized by 7y (Fig. f)); this result suggests that
the deeper DNNs are more difficult to be trained [28] due

to the shorter scale of superdiffusion.

We next study the effect of the learning rate 7 on
the anomalously diffusive learning dynamics. By vary-
ing learning rates from 0.001 to 0.5, we find that it only
influences the emerging sequence of the superdiffusion
learning dynamics (Fig. [f{a)). As shown in Fig. [4b),
DNN training with small learning rates is much slower
than that with large learning rates. Thus, a small or
large learning rate can only slow down or speed up the
training procedure, but does not change the fundamental
occurrence of anomalous diffusion dynamics. When the
learning rate is small (n < 0.05), during 500 epochs, the
training processes remain in the first regime; there is no
pure subdiffusion in Fig. [f{c) and Fig. [f(d). For exam-
ple, when n = 0.001, the MSD curves for ¢,, < 5000 have
only one segment instead of two and a diffusion expo-
nent of & = 2. This is because small learning rates delay
the training process. However, DNNs trained with larger
learning rates grant superdiffusion in the first regime
and pure subdiffusion dynamics in the second regime,
as shown in Fig. [(e) and Fig. [4(f).
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FIG. 4.

The effect of learning rate on the anomalous diffusion dynamics of SGD. All results are from ResNet-14

with a batch size of 1024 on CIFAR10 dataset. (a) The diffusion exponent « on larger lag times (7 > 79) when ¢, =1 as a
function of learning rate n. (b) The loss value as a function of time. (c-f) The MSD of SGD for the learning rates of 0.001,
0.01, 0.05, and 0.5, respectively. Jet colormap represents the starting time point (¢.,) as in Fig. b). One curve represents
MSD in 1000 steps. Inset: The MSD of SGD when t,, = 1,7001,23001. The black lines are eye guides.

B. Heavy-tailed gradients

To gain further insights into the physical origin of the
anomalous diffusion dynamics, we next demonstrate the
statistical property of minibatch gradients VL. We first
introduce the definition of the Lévy a-stable distribution.
Given a Lévy stable random variable X, it is character-
ized by the characteristic function [29]

@(u; aaist, B,7,0) = exp (1ud — [yul**=(1 — ifsgn(u)®))
(7)
where sgn(u) is the sign of u and

o= (%955)  aisy # 1

—= log || Ogist = 1
Quist 1s the stability parameter with the range 0 < agist <
2. The probability density function (PDF) decays with
a power-law tail |z|~%¢=t~1 which is slower compared to
Gaussian distributions; thus the distribution is heavy-

tailed [30]. When agist = 2, the distribution is Gaus-
sian. [ is the skewness parameter. In particular, for a
symmetric Lévy a-stable (SaS) random variable X, i.e.
X ~ Sas, the skewness parameter 8 = 0 which indicates
the PDF is symmetric around 0. = is the scale parameter
and ¢ is the shift parameter.

We next estimate the minibatch gradient VL in Eq.
(vanilla SGD) with respect to each w; at each time
point. In the first regime (¢, < to, to = 21000), it
can be fitted to a symmetric Lévy a-stable distribution
by the maximum likelihood method; stability parameter
aqist = 1.46528 [1.46509, 1.46546] (the brackets denote
the 95% confidence interval).

The power-law tail of the distribution of VL shown in
Fig. a) inset further validates the heavy-tailed distribu-
tion. We further compare log-likelihood ratios between
the fitted Lévy a-stable distribution and Gaussian distri-
bution, and find that the log-likelihood ratios (1.52 x 10?)
are sufficiently positive, indicating that the distributions
most likely follow Lévy a-stable distribution (p < 10715,
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Vuong test).

To illustrate the evolution of gradient distribution, we
also fit the distributions of gradients in intervals [t,,, ., +
T] to Lévy a-stable distribution; the log-likelihood ra-
tios compared with Gaussian distribution are sufficiently
positive. Figure [5(b) demonstrates the distribution in
the first interval, t,, = 1; the stability parameter agis; =
1.09 [1.05,1.12] . Figure[5c) demonstrates the distribu-
tion in the last interval, t,, = 23001 and correspondingly
aqist = 1.58 [1.54,1.63]. The stability parameter st
increases as training evolves (Fig. d)), indicating a re-
duction in the heavy-tailedness of gradient distribution.
Because the heavier the tail, the larger the fluctuations
of gradient values, and as the changes of gradient are di-
rectly related to the MSD (Eq. |1] and Eq. , the result
regarding the changes of gradient distributions is consis-
tent with the time-inhomogeneous anomalous diffusion
dynamics where superdiffusion attenuates gradually to
subdiffusion. It is also interesting to note that in the
physics literature, it has been found that the increase

of the heavy-tailedness of step sizes of random walkers
results in super-diffusive motions [22]. Such superdiffu-
sive processes with intermittent long-range jumps might
help the optimizer jump out local minima, facilitating
basin hopping during the initial exploratory phase of
training. This point is further illustrated below, based
on a simple model of SGD. Entering and leaving lo-
cal minima give rise to the fluctuations of loss values
(L). To demonstrate the changes of these fluctuations,
we first calculate the absolute value of change-of-loss
|AL| = L(w(t + 1) — w(t)). As shown in Fig. [§[e), as
t, increases, |AL| decreases. Such behavior is further
quantified by the decreasing moving variance of the loss
L against time (Fig. [5[f)); the moving variance is calcu-
lated over a sliding window of 100 steps across neighbor-
ing L.
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The fractal-like loss landscape of DNN and SGD path. (a) Schematic diagram of contour length As and
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C. Fractal trajectory of SGD

In complex physical systems, the anomalous diffusion
of particles may associate with its fractal trajectories [17].
To verify that the SGD path is fractal, we character-
ize the power-law scaling of its end-to-end length and
contour length as used in [I7]. Specifically, the contour
length is the path length from one end to another and
is calculated by accumulating step sizes (curve length)
as illustrated in Fig. [6(a). As shown in Fig. [6(b), the
segmented end-to-end distance (Ar) of SGD path ap-
pears to scale with its contour length, As. The data
is smoothed to be clear; the example of raw data and
the smoothed data are shown in Fig. [6[b) inset. The
blue and brown curves in Fig. @(b) display two distinct
scaling regimes, illustrating the fractal property of SGD
paths in certain ranges [I7]. The fractal dimension Ds
is calculated by the scaling of As and Ar (Ar? ~ As?),
D¢ = (2/X) € [1.32,2.67]. Separated by the crossover
I (labeled in Fig. [6b) inset), A on longer length scales
(As > 1) is larger than that on short length scales
(As < 1). Ast,, increases, MSL collapse to a power law
with an exponent of 0.75 (red curve in Fig. [6(b)). The
time-inhomogeneous dynamical changes of SGD trajec-
tory are similar to the case of the MSD (Fig. [2(a)).

To further determine whether the SGD path is self-
affine or self-similar, we calculate the transverse distance
and compare it with the end-to-end distance. The trans-
verse distance between two points on the trajectory is
the maximal distance perpendicular to the straight line
connecting these two points [I7]. We find the trans-
verse distances of different points along paths do not
scale to their end-to-end distances; this indicates self-
affine rather than self-similar fractal, because the former
contains non-uniform scaling, i.e. the shapes are (statisti-
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FIG. 7. The top 20 eigenvalues of Hessian matrix of

loss landscape decrease as training epoch increases.
This indicates that the SGD optimizer leaves narrow local
minima and enters a flatter area in the loss landscape of DNN.

cally) invariant under transformations that scale different
coordinates by different amounts [31].

D. Fractal-like loss landscape

In physical systems, anomalous diffusion motions and
fractal path of moving particles could be consequences
of the energy landscape itself being fractal [16, 17, [19].
Inspired by these studies, we hypothesize that the loss
landscapes of DNNs could have fractal-like structures.
It is impossible to directly quantify the fractal dimen-
sions of high-dimensional loss landscape; we thus use an
approach proposed in [32]. From [31], the definition of
fractal is as the following:

Definition A random function f on a metric space is
fractal if the distribution of f(X’) conditional on f(X),



X, and X', is normal with mean 0 and variance propor-
tional to Ar(X’, X)2H where H is a parameter in (0, 1)
and Ar(X’, X) is the distance between point X and X'.

The distribution of X and X’ in the definition is over
the probability space from which f is drawn, but exper-
imentally we sample over random values of X and X’
for a given sample function f. The equivalence of these
two procedures is referred to as ergodicity and we take
it for granted. Checking the distributions for each value
of distance in practice is difficult; hence we measure the
expectation of [f(X’)— f(X)]? to characterize the fractal-
like structure and check if it satisfies Eq.[8| In the context
of a SGD optimizer on the loss landscape, f is the loss
function L; X and X' are a pair of weights (w and w)
on the loss landscape. Thus, the expectation is referred
to as mean squared loss (MSL),

MSL x Ar (w, w)*" (8)

where Ar (w,w)?" is the end-to-end distance between
w and w. Note that in the field of machine learning,
the same method has been used to quantify fractal land-
scapes for simulated annealing [32].

The MSL is calculated by the following equation,

NAr‘
1 . ~ .
MSL(t, Ar) = 57— 3 _[LWZ" (7)) = LR ()
T j:1
(9)
where the pair of weights th“;jT(j) and VAOZ”;T(j) are

sampled at different time steps along the trajectory in
[tw,tw + T] with the end-to-end distance between them
equal to Ar, and Na, is the total number of pairs at a
distance of Ar. To be consistent with piecewise MSD,
we choose T" = 1000 steps. We use the points sampled
by SGD (i.e., points along the optimization trajectory)
to estimate MSL; it illuminates certain structure on the
local area of the loss landscape that we would like to
explore.

As shown in Fig. [6[c) (blue curve), in the first regime
(tw < to), the MSL curve can be fitted to a power-law
function with an exponent of 1.8 on the larger distance
scale (Ar € [0.4,10]). It satisfies Eq. [§ and indicates
that the loss landscape of DNN has fractal-like struc-
tures at the initial phase of learning process. Note that
the power-law scalings do not hold within the whole scale
([0.1,10]). As the superdiffusion attenuates, the end-to-
end distance Ar in T decreases and the power-law expo-
nent of the MSL with respect to Ar flattens from period
to period (brown curve in Fig. [|c)). Eventually, in the
second regime (t,, > o), the MSL is around a constant
value against varying Ar (red curve in Fig. @(c)) Based
on the above definition, this indicates that the optimizer
now reaches a relatively flat region on the landscape. We
use “flat” colloquially to indicate approximate flatness
[14, [33H35]. Our results thus indicate that the SGD opti-
mizer moves from rougher (more fractal-like) to relatively
flatter regions of the loss landscape. The change to the
flatter regions can also be quantitatively demonstrated

by the fact that eigenvalues of the Hessian matrix gradu-
ally decrease to near-zero values (Fig. [7)), which has also
been found in [36]. Note that there has been increasing
evidence showing that the optimizer can eventually find
a good generalizable solution existing at the flat regions
of the loss landscape [33] 35, B7]. Our work suggests that
it would be relevant to use the methods in these previous
studies to characterize how the SGD moves from rougher
to flatter regions of the loss landscape.

Importantly, we find that when ¢,, < tg, the fractal-like
hierarchical structure provides highly fluctuating gradi-
ents and thus superdiffusion emerges; when t,, > to,
the flatter structure causes fewer fluctuations of gradi-
ents and results in subdiffusion. In a recent study [I4],
it has been shown that during the training process of
DNNs, the SGD moves towards flatter regions of the loss
landscape and correspondingly the anisotropic SGD noise
strength decreases. In future work, it would be interest-
ing to explore whether the changes from superdiffusion
to subdiffusion underlie the changes of noise strength as
reported in [I4].

To further justify the fractal-like structure of loss land-
scape, we use the method of filter-wise normalized direc-
tions [7] to project the loss landscape of ResNet-14 (batch
size of 1024, learning rate of 0.1, trained on CIFAR-10
with cross-entropy loss function) to 2D space. We then
calculate the Hausdorff dimension of a 2D projected loss
landscape via the box-counting method [38]; the fractal
dimension is approximately 1.8.

E. Fractal-like landscapes can cause anomalous
diffusion learning dynamics

To further understand the contributions of fractal-like
loss landscapes to the anomalous diffusion of learning
dynamics, we develop a simplified model of SGD with a
2D fractal loss landscape, as described below.

Wip1 = Wy — VL (W) +n0Zy, (10)

where w; is the weight parameters at time t, 7 is the
learning rate, and Z; is drawn from Gaussian distribu-
tion A (0,0). The landscapes of L are fractal on a 2D
space and are generated by the algorithm in [39] with
fractal dimension € [1,2] (Fig. [§[a)). Among the gener-
ated landscapes, those which contain a wide minimum
are selected, simulating the flat basin (local optima) in
loss landscapes of DNNs. In such landscapes, the SGD
walker moves from rougher regions to flatter regions of
the loss landscape, as observed in DNNs. we iterate
Eq.[10]1000 times with the learning rate n € [0.002,0.01]
and o € [0.005,0.05], and the gradient VL is calculated
by the numerical gradient of the landscape. The SGD
optimizer moves from a high-altitude point to the global
minimum, as the example ( = 0.02 and ¢ = 0.01) shown
in Fig. [8a). The MSD also illustrates that the SGD op-
timizer is dominantly superdiffusive when t,, < tq = 139
(before entering the final minimum; curve with a square
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FIG. 8. The simplified model unravels the anomalous diffusion nature of the SGD optimizer. (a) Black curve
represents the trajectory of the SGD optimizer in the simplified model on the 2D fractal loss landscape illustrated by the
contour plot. (b) MSD of the SGD optimizers in the fractal landscape as the function of lag time. The curve is averaged over
10 trials. (c) Distributions of gradients (AL) in fractal, convex, and randomly shuffled landscapes, respectively. (d) Trajectory
of the SGD optimizer and the landscape in (a) are zoomed in around a local minimum. The colormap from black to golden
encodes the step sizes. (e) Same as in (a) but for random landscape. (f) Same as in (b) but for random landscape and convex

landscape.

in Fig.[8(b)). When t,, > o (after entering the final mini-
mum), the dynamics of SGD optimizer are only subdiffu-
sive as shown in the curve with a circle in Fig. [§(b). Such
behaviors demonstrate that the simple model can repro-

duce the time-inhomogeneous MSD of SGD as found in
DNNE.

In this model with 2D fractal landscape, the fractal
landscape generates a heavy-tailed distribution of gra-
dients (VL) of all steps (Fig. [§(c)). As found in the
DNNs, the gradient distribution can be fitted as a sym-
metric Lévy a-stable distribution which has the stability
parameter agisy = 1.9 [1.88749,1.91298]. The goodness
of fit is verified by the positive log-likelihood ratio (39.37)
of Lévy a-stable distribution and normal distribution. In
our model, VL is calculated by the numerical gradient of
the fractal landscape when t,, < ty. Such heavy-tailed
gradients provide a relatively higher possibility of long-
range jumps, which generate superdiffusion. In the fine
structure of fractal landscape, there are large gradient
values (Fig. b)) which propel the SGD optimizer to

jump out narrow minima. It is important to note that
as noise in our simplified SGD model is Gaussian, such
heavy-tailed gradients and superdiffusion dynamics solely
result from the fractal-like loss landscape.

To explicitly illustrate the benefits of fractal land-
scapes for facilitating the SGD to jump out local min-
ima, we focus on some regions around local minima. As
shown in Fig. d), the optimizer moves to the local
minimum where the SGD optimizer displays short-range
movements as illustrated by darker bars in Fig. d) and
long-range movements as illustrated by lighter bars in
Fig. d). Some long-range steps make the SGD opti-
mizer escape the minimum; however, some of them jump
to a lower altitude and then leave the minimum. This
example illustrates how the fractal landscape assists the
SGD optimizer escape local minima. As we only use
Gaussian noise in this simple model, the main source
providing long-range jumps to escape local minima is
the heavy-tailed gradients (Fig. C)) This result sug-
gests that in DNNS, the similar mechanism might en-



able the SGD walker to escape local minima in the initial
superdiffusion-dominated regime.

Although the results in the simple model are largely
consistent with DNNs, there are some differences. In
the simple model, if the learning rate is small (< 0.002),
the toy model becomes sensitive to initial conditions (the
initial position of random optimizers). The random op-
timizer would be trapped in a local minimum. For large
learning rates (> 0.01), combining with the occasional
long-range jump, the optimizer would easily go out the
landscape.

However, if we choose other types of landscapes and
maintain 7 and o, the complex MSD dynamics no longer
hold. When the landscape is generated by smoothing a
randomly shuffled fractal landscape with a Gaussian ker-
nel (standard deviation: 8) such that it is at least once-
differentiable, the optimizer gets stuck in a local mini-
mum (Fig. [§(e)) and exhibits subdiffusion (Fig.[§f)). On
the other hand, when the landscape is convex, for exam-
ple, a convex paraboloid, the MSD has an exponent close
to 2 (Fig.[§[f)), inconsistent with the results in DNNs. In
comparison to the tail of gradient distribution in fractal
landscapes, the ranges of gradients in convex or random
landscapes are far smaller (Fig. [§[c)). These results thus
indicate the fractal-like loss landscape is essential for the
emergence of the anomalous diffusion learning dynamics.

IV. DISCUSSION

We have revealed the anomalous diffusion nature of
deep learning dynamics which arises from the interac-
tions of the SGD walker with the geometry structure of
the loss landscape. Particularly, we have demonstrated
that the fractal-like loss landscape can give rise to the
superdiffusion learning dynamics with intermittent big
jumps during the initial training phase, which plays an
essential role in preventing the SGD optimizer from be-
ing trapped in narrow minima. Subdiffusion on the other
hand also occurs naturally during the final stage of the
training process, stabilizing the movement of the opti-
mizer gradually, potentially when wide minima of land-
scape are encountered. In addition, we have developed a
new SGD model to reveal the mechanistic relations be-
tween the fractal landscape, the superdiffusive learning
dynamics and their computational benefits. Our results
reveal the effectiveness of deep learning from the perspec-
tive of its rich, complex dynamics and have implications
for designing efficient deep neural networks.

Previous studies tackled the problem from model-
ing the SGD as a process with heavy-tailed behaviors
[13,[40] 41]. Particularly, Simsekli et al reported a heavy-
tailed behavior in the stochastic gradient noise (U in
Eq. and proposed modeling the SGD dynamics as
a stochastic differential equation driven by an alpha-
stable process. They further invoked existing metasta-
bility theory to justify why these dynamics would pre-
fer wide minima [I3]. The SGD updating rule can be
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represented in terms of gradient noise, i.e., wpy; =
wi —nV L (wy)—n-gradient noise. However, the distribu-
tion of gradient noise was further found to be Gaussian
in the early phases, and changes throughout the training
process [42]. To model the gradient noise as a single type
of noise is thus inappropriate. Rather than the gradient
noise, our work focuses on the change of the drift term
throughout the training process (i.e., gradient, V.L (wy))
which is directly related to the structure of loss land-
scape.

The structure of loss landscape can give rise to the
anomalous diffusion dynamics of learning process quan-
tified from MSD [I7]. In [I1], no-averaged MSD was used
to analyze learning dynamics and the slope of MSD is not
equal to 1. However, this study did not introduce anoma-
lous diffusion in the discussion of learning dynamics but
only showed the aging phenomena. Ideally, we would like
to obtain the ensemble average of the MSD, but this is
unrealistic for DNNs. We instead used the time-averaged
MSD [20-22] 27, 43| 44], which can better demonstrate
the anomalous diffusion in the context of DNNs.

By using a similar methodology as in simulated an-
nealing [32], we have quantitatively demonstrated that
the loss-landscape of DNN is fractal-like. The fractal-like
structure can give rise to heavy-tailed gradients which
may help the SGD optimizer to jump out local minima.
Also, the fractal landscape may result in fractal trajecto-
ries of the SGD optimizer, as in complex physical systems
[I7]. Our results show that the SGD trajectories are in-
deed fractal as quantified by the contour length and end-
to-end length. Recently, it has been suggested that the
fractal trajectory of SGD optimizer may facilitate gener-
alization in DNNs [45]. Such fractal trajectories might
result from the fractal-like structure of loss landscape as
what we have demonstrated. Our results based on both
the MSD and MSL indicate that the SGD walker moves
from rougher (more fractal-like) areas to flatter areas of
the loss landscape. During this process, the learning dy-
namics change from superdiffusion-dominated dynamics,
which help the SGD to escape from local traps, to sub-
diffusive dynamics which can rather consolidate the resi-
dence of the SGD in the flatter areas with good solutions
(minima). These time-inhomogeneous anomalous diffu-
sion learning dynamics arising from the interactions of
SGD and the loss landscape thus provide insights into
understanding how the optimizer can find flat minima.

The simple SGD model on a 2D fractal landscape gen-
erates the same pattern of time-inhomogeneous learning
dynamics as in the high-dimensional DNNs, which how-
ever cannot be accounted for by the traditional formu-
lation based on the Langevin equation with Gaussian
noise [8 @]. The simple SGD model does not involve
any type of non-Gaussian noise and demonstrates that
fractal landscapes alone can lead to anomalous diffusion
learning dynamics, thus indicating that the interactions
between the fractal loss landscape and SGD are the mech-
anism underlying the emergence of the anomalous diffu-
sive learning dynamics. However, as our 2D model is not



directly derived from DNN models, the generalization of
this mechanism to DNNs is limited. Anomalous superdif-
fusion and subdiffusion are nonlinear diffusive processes
and are generally referred to as fractional motions that
can be formulated based on fractional differential equa-
tions [23], suggesting that developing a fractional mean
field theory as in [46] for understanding deep neural net-
works would be a promising direction to pursue in the
future. In addition, future studies should figure out the
major source of fractal-like loss landscape. The train-
ing landscape is composed of the data and the network
architecture. Some previous studies have shown that
realistic datasets such as handwritten digits (MNIST),
rather than random noise, have low-dimension struc-
ture/manifold [47H49]. It would be interesting to study
the effect of such data structure on the geometrical prop-
erties of loss landscape.

On the other hand, the network structure can affect
anomalous diffusion learning dynamics. We have found
that the deeper DNNSs, the shorter scale of superdiffu-
sion, indicating a more demanding training process, con-
sistent with the empirical rules of DNNs [28], [34] [50] and
extended the understanding from the aspects of train-
ing dynamics and landscape structures [12]. Addition-
ally, shortcut connections in ResNet can extend the scale
of superdiffusion, explaining why employing such tech-
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niques reduces the difficulties of training DNNs. These
findings agree with the theoretical and experimental re-
sults of gradient confusion [28] and the visualization of
2D projected loss landscapes [7]. These studies found
that shortcut connections reduce the difficulty in the
training process by smoothing out the loss landscape.
Furthermore, we find that the batch size cannot signifi-
cantly alter the anomalous diffusion dynamics, support-
ing the conclusion that gradient noise is not the only
driving force to escape critical points (saddle points or
local minima). For future studies, it remains important
to find out the quantitative relation between other archi-
tectures such as batch normalization [50] and fractal-like
landscape structure.
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