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Abstract—Graph Neural Networks (GNNs) have been widely applied to various fields due to their powerful representations of
graph-structured data. Despite the success of GNNs, most existing GNNs are designed to learn node representations on the fixed and
homogeneous graphs. The limitations especially become problematic when learning representations on a misspecified graph or a
heterogeneous graph that consists of various types of nodes and edges. To address this limitations, we propose Graph Transformer
Networks (GTNs) that are capable of generating new graph structures, which preclude noisy connections and include useful connections
(e.g., meta-paths) for tasks, while learning effective node representations on the new graphs in an end-to-end fashion. We further propose
enhanced version of GTNs, Fast Graph Transformer Networks (FastGTNs), that improve scalability of graph transformations. Compared
to GTNs, FastGTNs are 230× faster and use 100× less memory while allowing the identical graph transformations as GTNs. In addition,
we extend graph transformations to the semantic proximity of nodes allowing non-local operations beyond meta-paths. Extensive
experiments on both homogeneous graphs and heterogeneous graphs show that GTNs and FastGTNs with non-local operations achieve
the state-of-the-art performance for node classification tasks.
The code is available: https://github.com/seongjunyun/Graph_Transformer_Networks

Index Terms—Graph Neural Networks, Heterogeneous Graphs, Machine learning, Graphs and networks.
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1 INTRODUCTION

Graph Neural Networks (GNNs) have become an in-
creasingly popular tool to learn the representations of graph-
structured data. They are widely used in a variety of tasks
such as node classification [1], [2], [3], [4], [5], link prediction
[6], [7], [8], [9], [10], graph classification [11], [12], [13], [14],
and graph generation [15], [16], [17], [18], [19].

Despite their effectiveness to learn representations on
graphs, most GNNs assume that the given graphs are fixed
and homogeneous. Since the graph convolutions discussed
above are determined by a fixed graph structure, a noisy
graph with missing/spurious connections results in inef-
fective convolution with wrong neighbors on the graph.
In addition, in some applications constructing a graph
to operate GNNs is not trivial. For example, a citation
network has multiple types of nodes (e.g., authors, papers,
conferences) and edges defined by their relations (e.g., author-
paper, paper-conference), which referred to as heterogeneous
graphs. In heterogeneous graphs, the importance of each
node type and edge type can vary depending on the task,
and some node/edge types may even become completely
useless. A naïve approach to deal with the heterogeneous
graphs is to ignore the node/edge types and treat them as
in a homogeneous graph (a standard graph with one type
of nodes and edges). This, apparently, is suboptimal since
models cannot exploit the type information. A more recent
remedy is to manually design useful meta-paths, which
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are paths connected with heterogeneous edge types, and
transform a heterogeneous graph into a homogeneous graph
defined by the meta-paths. Then conventional GNNs can
operate on the transformed homogeneous graphs [20], [21].
Despite improving on previous approaches, this is a two-
stage approach and requires hand-crafted meta-paths for
each problem. The accuracy of downstream analysis can be
significantly affected by the choice of these meta-paths.

To address this limitation, we develop the Graph Trans-
former Networks (GTNs) that learn to transform an original
graph into new graphs that preclude noisy connections and
include useful multi-hop connections (e.g., meta-paths) for
each task, and learn node representation on the new graphs
in an end-to-end fashion. Specifically, the Graph Transformer
layer, a core layer of GTN, learns a soft selection of adjacency
matrices for edge types and multiply two selected adjacency
matrices to generate useful meta-paths. Also, by leveraging
an identity matrix, GTN can generate new graph structures
based on arbitrary-length composite relations connected with
softly chosen edge types in a heterogeneous graph.

Furthermore, we address the scalability issue of GTNs. To
transform graphs, GTNs explicitly compute a new adjacency
matrix of meta-paths by the matrix multiplications of huge
adjacency matrices. This requires substantial computational
costs and large memory making it infeasible to apply GTNs
to a large graph. To address this issue, we propose an en-
hanced version of GTNs, Fast Graph Transformer Networks
(FastGTNs), that implicitly transform the graphs without the
multiplication of two adjacency matrices. Compared to GTNs,
FastGTNs are 230× faster and use 100× less memory while
allowing the identical graph transformations as GTNs.

Another issue of GTNs is its edge generation is limited to
the nodes connected by a meta-path of the input graphs,
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which do not take into account the semantic proximity
of nodes. We further extend graph transformations to the
semantic proximity of nodes allowing non-local operations
beyond meta-paths.

The new graph structures from GTNs and FastGTNs
lead to effective node representations resulting in state-of-
the-art performance, without any predefined meta-paths
from domain knowledge, on six benchmark classification
on heterogeneous graphs. In addition, since GTNs and
FastGTNs learn variable lengths of useful meta-paths (i.e.,
the neighborhood range of each node), GTNs and FastGTNs
achieve state-of-the-art performance on six homogeneous
graph datasets by adjusting neighborhood ranges for each
dataset.

Our contributions are as follows:

(i) We propose a novel framework Graph Transformer
Networks, to learn a new graph structure which in-
volves identifying useful meta-paths and multi-hop
connections for learning effective node representation
on graphs.

(ii) We propose Fast Graph Transformer Networks (Fast-
GTNs) that implicitly transform the graphs without the
multiplication of adjacency matrices which requires
excessive resources while allowing the identical trans-
formations of GTNs.

(iii) We extend graph transformations to non-local oper-
ations incorporating the node features to utilize the
semantic proximity of nodes beyond meta-paths.

(iv) We prove the effectiveness of node representation learnt
by Graph Transformer Networks and FastGTNs with
non-local operations resulting in the best performance
against state-of-the-art GNN-baselines in six benchmark
node classification on heterogeneous graphs and six
benchmark node classification on homogeneous graphs.
Also, our experiments demonstrate that on a large graph
dataset FastGTNs show 230x faster inference time and
100x less memory usage than the GTNs.

2 RELATED WORKS

Recent years have witnessed significant development in
deep learning architectures for graphs. [22] first proposed
a convolution operation on graphs leveraging the Fourier
transform and convolution kernels in a spectral domain.
[2], [23] extended and improved spectral-based Graph Con-
volutional Networks (GCNs). On the other hand, spatial-
based GNNs [3], [12], [24], [25], [26] have been proposed
to improve the scalability of GNNs by performing graph
convolution operations in the graph domain. [1] proposed
the first-order approximation of the spectral filter using the
Chebyshev polynomials. GCNs, the simplified spectral-based
GNNs, can be viewed as spatial-based GNNs as well. Graph
Attention Networks (GATs) [25] incorporate the attention
mechanism into GNNs, which differentially aggregate the
representations of neighbors on graphs using attention scores.
GraphSAGE [24] expanded the operating range of GNNs for
the inductive setting generating representations for unseen
nodes by variable aggregation operations. Jumping Knowl-
edge Networks (JKNets) [3] utilized flexible neighborhood
ranges by adopting the skip-connection and Mixhop [26]

leveraged a combination of powers of normalized adjacency
matrices to aggregate features at various distances.

In contrast to the above works on homogeneous graphs,
several studies [7], [20], [27] have attempted to extend GNN
architectures to heterogeneous graphs that contain multiple
types of nodes and edges. They are categorized into two
approaches: GNNs with relation-specific parameters [7],
[27] and GNNs with relation-based graph transformations
[20]. Relational Graph Convolutional Networks (R-GCNs)
[7] employed GCNs with relation-specific convolutions (or
weight matrices) to deal with heterogeneous graphs. [27]
proposed the Heterogeneous Graph Transformer (HGT) to
parameterize the meta relation triplet of each edge type
and used a structure that utilizes the self-attention of the
transformer architecture [28] to learn specific patterns of
different relationships. The second approaches, GNNs with
relation-based graph transformations, generally utilize meta-
paths. The Heterogeneous Graph Attention Network (HAN)
[20] first transforms heterogeneous graphs into homogeneous
graphs using manually selected meta-paths and applies an
attention-based GNN on the graphs. However, the HAN
has limitations that it is a multi-stage approach and requires
the manual selection of meta-paths in each dataset. Also,
performance can be significantly affected by the choice of
meta-paths. Unlike this approach, our Graph Transformer
Networks can operate on a heterogeneous graph and trans-
form the graph for tasks while learning node representations
on the transformed graphs in an end-to-end fashion.

3 METHOD

The goal of our framework, Graph Transformer Networks, is
to generate new graph structures and learn node represen-
tations on the learned graphs simultaneously. Unlike most
GNNs on graphs that assume the graph is given, GTNs seek
for new graph structures using multiple candidate adjacency
matrices to perform more effective graph convolutions and
learn more powerful node representations. Learning new
graph structures involves identifying useful meta-paths,
which are paths connected with heterogeneous edges, and
multi-hop connections. Before introducing our framework,
we first briefly review the basic notions of heterogeneous
graphs and GCN, and then introduce our Graph Transformer
Networks.

3.1 Preliminaries

Heterogeneous Graph [29]. Let G = (V, E , Tv, Te) denote a
directed graph where each node v ∈ V and each edge e ∈ E
are associated with their type mapping functions τv(v) : V →
Tv and τe(e) : E → Te, respectively. The heterogeneous graph
G can be represented by a set of adjacency matrices {At}|Te|t=1

or a tensor (i.e., A ∈ R|V |×|V |×|Te|), where At ∈ RN×N is an
adjacency matrix of the t-th edge type and |V | = N . At[i, j]
denotes the weight of the t-th type edge from node j to node
i. When a graph has a single type of nodes and edges, i.e.,
|Tv| = 1 and |Te| = 1, it is called a homogeneous graph.

Meta-Path [20]. In heterogeneous graphs, a multi-hop
connection is called a meta-path, which is a path connected

with heterogeneous edge types, i.e., v1
τe(e1)−−−−→ v2

τe(e2)−−−−→
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Fig. 1. Graph Transformer Layer softly selects adjacency matrices (edge types) from the set of adjacency matrices A of a heterogeneous graph G
and learns a new meta-path graph represented by A(k) via the matrix multiplication of the output matrix of the previous (k − 1)-th GT Layer and the
selected adjacency matrix F (A;φ(k)). The soft adjacency matrix selection is a weighted sum of candidate adjacency matrices obtained by 1× 1
convolution with non-negative weights from softmax(φ(k)).

. . .
τe(e`)−−−−→ v`+1, where τe(e`) ∈ Te denotes the edge type of

edge e` on the meta-path.
Graph Convolutional network (GCN). In this work, a

graph convolutional network (GCN) [30] is used to learn
useful representations for node classification in an end-to-
end fashion. Let H(l) be the feature representations of the lth
layer in GCNs, the forward propagation becomes

H(l+1) = σ
(
D̃−

1
2 ÃD̃−

1
2H(l)W (l)

)
, (1)

where Ã = A + I ∈ RN×N is the adjacency matrix A of
the graph G with added self-connections, D̃ is the degree
matrix of Ã, i.e., D̃ii =

∑
i Ãij , and W (l) ∈ Rd×d is a

trainable weight matrix. One can easily observe that the
convolution operation across the graph is determined by the
given graph structure and it is not learnable except for the
node-wise linear transform H(l)W (l). So the convolution
layer can be interpreted as the composition of a fixed
convolution followed by an activation function σ on the
graph after a node-wise linear transformation. Since we
learn graph structures, our framework benefits from the
different convolutions, namely D̃−

1
2 ÃD̃−

1
2 , obtained from

learned multiple adjacency matrices. The architecture will
be introduced later in this section. For a directed graph
(i.e., asymmetric adjacency matrix), Ã in (1) can be normal-
ized by the inverse of in-degree diagonal matrix D−1 as
H(l+1) = σ(D̃−1ÃH(l)W (l)).

3.2 Learning Meta-Path Graphs

Previous works [20], [21] require manually defined meta-
paths and perform Graph Neural Networks on the meta-path
graphs. Instead, our Graph Transformer Networks (GTNs)
learn meta-path graphs for given data and tasks and operate
graph convolution on the learned meta-path graphs. This
gives a chance to find more useful meta-paths and lead to
virtually various graph convolutions using multiple meta-
path graphs.

The main idea of learning meta-path graphs is that a new
adjacency matrix AP of a useful meta-path P connected by a

particular order of edge types (e.g., t1, t2 . . . t`) is obtained by
the multiplications of adjacency matrices of the edge types
as

AP = At` . . . At2At1 . (2)

Based on this idea, each k-th Graph Transformer (GT) Layer
in GTN learns to softly select adjacency matrices (edge types)
by 1× 1 convolution with the weights from softmax function
as

F (A;φ(k)) = conv1×1(A; softmax(φ(k))) (3)

=

|Te|∑
t=1

α
(k)
t At, (4)

where φ(k) ∈ R1×1×|Te| is the parameter of 1×1 convolution
and α(k) = softmax(φ(k)) (i.e., the convex combination of
adjacency matrices as α(k) ·A). Then the meta-path adjacency
matrix is computed by matrix multiplication of an output
and the output matrix of the previous (k − 1)-th GT Layer
as A(k−1)F (A;φ(k)). For numerical stability, the matrix is
normalized by its degree matrix as

A(k) =
(
D̂(k)

)−1
A(k−1)F (A;φ(k)), (5)

where A(0) = F (A;φ(0)) and D̂(k) is a degree matrix
of the output after the multiplication of two matrices
A(k−1)F (A;φ(k)).

Now, we need to check whether GTN can learn an
arbitrary meta-path with respect to edge types and path
length. The adjacency matrix of arbitrary length k + 1 meta-
paths can be calculated by

AP =

 ∑
t0∈T e

α
(0)
t0 At0

 ∑
t1∈T e

α
(1)
t1 At1

 . . .
 ∑
tk∈T e

α
(k)
tk Atk


(6)

where AP denotes the adjacency matrix of meta-paths, T e
denotes a set of edge types and α(k)

tl is the weight for edge
type tk at the k-th GT layer. When α is not one-hot vector,
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Fig. 2. Graph Transformer Networks (GTNs) learn to generate a set of new meta-path adjacency matrices A(K) using GT layers and perform graph
convolution as in GCNs on the new graph structures. Multiple node representations from the same GCNs on multiple meta-path graphs are integrated
by concatenation and improve the performance of node classification. F (A; Φ(K)) is an intermediate adjacency tensor to compute meta-paths at the
Kth layer.

AP can be seen as the weighted sum of all length-(k + 1)
meta-path adjacency matrices. So a stack of k GT layers
allows to learn length k + 1 meta-path graph structures as
the architecture of GTN shown in Fig. 2. One issue with
this construction is that adding GT layers always increase
the length of meta-path and this does not allow the original
edges. In some applications, both long meta-paths and short
meta-paths are important. To learn short and long meta-paths
including original edges, we include the identity matrix I in
A, i.e., A0 = I . This trick allows GTNs to learn any length of
meta-paths up to k + 1 when k GT layers are stacked.

3.3 Graph Transformer Networks

We here introduce the architecture of Graph Transformer
Networks. To consider multiple types of meta-paths simul-
taneously, the GTN generates multiple graph structures by
setting the output channels of 1 × 1 filter to C. Then the
output matrix of k-th GT layer A(k) becomes the output
tensor A(k) ∈ RN×N×C and the weight vector φ(k) of the
k-th GT Layer becomes the weight matrix Φ(k). Eq (5). can
be represented in the form of tensor equations as

A(k) =
(
D̂(k)

)−1
A(k−1) ∗ F (A; Φ(k)), (7)

where A(k−1) ∗F (A; Φ(k)) =

C

Ş
c=1

A
(k−1)
c F (A;φ(k,c)) and D̂(k)

is a degree tensor of the output after the multiplication of two
tensors A(k−1) ∗ F (A; Φ(k)). It is beneficial to learn different
node representations via multiple different graph structures.

After the stack of K GT Layers, multi-layer GNNs are
applied to the each channel of the output tensor A(K) and

update node representations Z as follows:

Z(l+1) = fagg

 C

Ş
c=1

σ(D̃−1c Ã(K)
c Z(l)W (l))

 , (8)

where Ş is the concatenation operator, C denotes the number
of channels, Z(l) denotes the node representations at the
l-th GNN layer, Ã(K)

c = A
(K)
c + γI is the adjacency matrix

with self-loops from the c-th channel of A(K), D̃c is the
degree matrix of Ã(K)

c , W (l) ∈ Rd
(l)×d(l+1)

is a trainable
weight matrix shared across channels, Z(0) is a feature matrix
X ∈ RN×F and fagg is a channel aggregation function.

The final node representations Z(l) after l GNN layers
can then be used for downstream tasks. For the node
classification task, we applied dense layers followed by a
softmax layer to the node representations. Then with ground
truth labels of nodes, we can optimize the model weights
by minimizing the cross-entropy via backpropagation and
gradient descent.

3.4 Fast Graph Transformer Networks
In the previous sections, we demonstrated that GTNs can
transform the original graphs into new meta-path graphs
while learning representations on the meta-path graphs.
However, GTNs have a scalability issue. GTNs explicitly
compute a new adjacency matrix of meta-paths by the matrix
multiplication of two adjacency matrices and store the new
adjacency matrix at each layer. So a graph transformation in
GTNs involves huge computational costs and large memory.
This makes it infeasible to apply GTNs to a large graph.
To address these issues, we develop the enhanced version
of GTNs, FastGTNs, which implicitly transform the graph
structures without storing the new adjacency matrices of
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Fig. 3. Fast Graph Transformer Networks (FastGTNs) implicitly transform graph structures by a sequence of feature transformations using differently
constructed adjacency matrices from Fast Graph Transformer Layers (FastGT Layers). Each k-th FastGT Layer first generates a non-local adjacency
matrix A(l,k)

nonlocal using the hidden representations Z(l,k−1) from (k − 1)-th FastGT layer and appends it to the set of adjacency matrices A. To
generate diverse graphs, k-th FastGT layer generates C(l) new adjacency matrices A(l,k) ∈ RN×N×C(l)

by applying a 1 × 1 convolution filter.
Using the C(l) new adjacency matrices in A(l,k), a FastGT layer transforms the hidden presentations Z(l,k−1) into Z(l,k). After K FastGT layers, the
final representations are obtained by channel aggregation after a convex combination of the expanded input representations Z(l,0) and the output
representations of the K-th FastGT layer, i.e., Z(l+1) = fagg(γZ(l,0) + (1− γ)Z(l,K)), where γ ∈ (0, 1).

meta-paths. In this section, we describe our FastGTNs in
detail.

To derive FastGTNs, we first begin with the equation of
GTNs. Our goal here is to derive a new architecture without
the need for the explicit multiplications of large adjacency
matrices. For simplicity, we assume that the number of
channels is one, i.e., C=1, one GCN Layer is applied on
top of the new graph structure and a channel aggregation
function is an identity function i.e., fagg(x) = x. Then the
node representations Z of the GTNs are given as follows:

Z = σ(D̃−1(A(K) + I)XW ), (9)

where A(K) ∈ RN×N is a new adjacency matrix from a
GTN with K GT layers, and X ∈ RN×F is input features,
W ∈ RF×d

′
is a linear transformation in a GCN layer, D̃−1 ∈

RN×N is an inverse degree matrix of (A(K) + I). We observe
that a GT Layer multiplies two softly selected adjacency
matrices and normalizes the output adjacency matrix. So (9)
can be written as

Z = σ(D̃−1XW + D̃−1A(K)XW )

= σ(D̃−1XW + D̃−1
((
D̂(K)

)−1
A(K−1)(α(K) · A)

)
XW )

= σ(D̃−1XW + D̃−1
((

D̂(K)
)−1

. . .

((
D̂(1)

)−1
(α(0) · A)(α(1) · A)

)
. . . (α(K) · A)

)
XW ).

(10)

The Equation (10) clearly shows the computational bottleneck
in (10) is the multiplications of huge adjacency matrices, e.g.,
(α(0) · A)(α(1) · A) . . . (α(K) · A). To resolve this problem, we
can rewrite (10) using the associative property of matrix
multiplication as

Z = σ(D̃−1XW + D̃−1
(
D̂(K)

)−1
. . .
(
D̂(1)

)−1
(11)

(α(0) · A(α(1) · A . . . (α(K) · AXW )))).

Now, Equation (11) implies that at each layer, without the
matrix multiplications of huge adjacency matrices, the identical
features can be obtained by a sequence of feature transfor-
mations using a differently constructed adjacency matrix,
e.g., α(k) ·AHk . It efficiently reduces the computational cost
from O(N3) to O(N2F ) and memory usage from O(N2) to
O(NF ). However, note that since we do not compute the
multiplication of two adjacency matrices anymore, we cannot

compute degree matrices D̃−1
(
D̂(K)

)−1
. . .
(
D̂(1)

)−1
.

To address this challenge, now we show that given a
condition of input data and a proposition of normalized
matrices, we can make all degree matrices in (11) into identity
matrices. Then we can compute (11) without the matrix
multiplications of huge adjacency matrices. We begin with a
proposition and a condition, then derive an equation of our
FastGTNs from (11) by using the Proposition 1.
Proposition 1. Given two normalized adjacency matrices A,

B ∈ RN×N , the followings are equivalent:
(i)
(
D−1A A

) (
D−1B B

)
=
(
D−1ABAB

)
(ii) D−1AB = I
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(iii) D−1A+I = (DA + I)−1 =
1

2
I

The proof of Proposition 1 is provided in A.2 in the supple-
ment. We first assume that each adjacency matrix in A is row-
wise normalized i.e.,

∑
j
At[i, j] = 1. The convex combination

of adjacency matrices at each k-th layer i.e., α(k) · A is also

a normalized matrix. Then
(
D̂(k)

)−1
is an inverse degree

matrix of the output after multiplication of two normalized
matrices A(k−1)(α(K) ·A). It means that by (ii) in Proposition

1, all
(
D̂(k)

)−1
at each k-th layer are the identity matrix I

and, thus, (11) can be rewritten as

Z = σ(D̃−1XW + D̃−1(α(0) · A(α(1) · A . . . (α(K) (12)
· AXW )))).

By (iii) in Proposition 1, we can also know that D̃−1 =
(DA(K) + I)−1 = 1

2I , then Z can be represented as

Z = σ(
1

2
XW +

1

2
(α(0) · A(α(1) · A . . . (α(K) · AXW )))).

(13)

Since each layer constructs one convex combination of
adjacency matrices, K-layers generate K-adjacency matrices
as

Z = σ(
1

2
XW +

1

2
(α(1) · A(α(2) · A . . . (α(K) · AXW )))).

(14)

Now this derivation means that our FastGTNs are not an
approximation of GTNs. Mathematically, they are exactly
identical. We’ll discuss more in Section 4.3 about the identity.

We reverse the order of layers from 1 to K and replace
1

2
with

a hyper-parameter γ, then the output of a FastGTN can be
represented as

Z = σ(γXW + (1− γ)(α(K) · A . . . (α(1) · AXW )))). (15)

We finally rewrite our FastGTNs for multi-channel and multi-
layer settings as

Z(l+1) = fagg

( C(l)

Ş
c=1

σ(γZ(l)W (l)
c + (1− γ)Z(l,K)

c )

)
, (16)

Z(l,K)
c = (α(l,K,c) · A . . . (α(l,1,c) · AZ(l)W (l)

c )), (17)

where C(l) denotes the number of channels, Z(l) denotes
the node representations from the l-th FastGTN layer,
W

(l)
c ∈ Rd

(l)×d(l+1)

is a linear transformation in c-th channel
of the l-th FastGTN layer, A is a set of normalized adjacency
matrices, α(l,k,c) is a convolution filter in the c-th channel
of the k-th FastGT layer in the l-th FastGTN layer, Z(0) is a
feature matrix X ∈ RN×F and fagg is a channel aggregation
function. Furthermore, to deal with huge graphs with about
30 million edges, we additionally propose a mini-batch
training algorithm for GTNs and FastGTNs in A.1 in the
supplement.

3.5 Non-Local Operations.

One limitation of the GTNs is that its transformation is
limited to compositions of existing relations. Specifically, K
GT layers can generate edges only up to (K+1)-hop relations.
It cannot generate remote relations based on semantic prox-
imity between nodes. To address this limitation, we extend
graph transformations to non-local operations incorporating
the node features to utilize the semantic proximity of nodes
beyond meta-paths. However, as mentioned in the previous
section, since GTN itself requires large computation cost, we
extend non-local operations only to FastGTNs. Specifically,
at each k-th FastGT layer in each l-th FastGTN layer, we
construct a non-local adjacency matrix A

(l,k)
non local ∈ RN×N

based on hidden representations Z(l,k−1) from the previous
FastGT layer and append the non-local adjacency matrix
to the candidate set of adjacency matrices A to utilize the
non-local relations for graph transformations. To construct
A

(l,k)
non local, we first calculate a graph affinity matrix at each

k-th FastGT Layer M (l,k) based on the similarity between
node features. We take an average of multi-channel hidden
representations from each (k−1)-th FastGT Layer and project
the averaged representations into a latent space by a non-
linear transformation gθ . Then we compute the affinity matrix
M (l,k) using the similarity in the latent space as

M (l,k) = (gθ(H
(l,k−1))gθ(H

(l,k−1))T ), (18)

H(l,k−1) =
1

C(l)

C(l)∑
c=1

Z(l,k−1)
c , (19)

where Z(l,k−1) denotes hidden representations at a (k − 1)-
th FastGT Layer. We use the trick of a decoder in GAE
[6] as the similarity function to get the affinity matrix. The
affinity matrix can be seen as a weighted adjacency matrix
of the fully connected graph. If we include the dense affinity
matrix as an adjacency matrix for graph transformation, it
causes huge computation cost and may rather propagate
irrelevant information between nodes. Therefore, we sparsify
the affinity matrix by extracting only n largest weights
for each node i and construct non-local adjacency matrix
A

(l,k)
non local as

A
(l,k)
non local[i, j] =

{
M

(l,k)
ij , if j ∈ arg top k(M (l,k)[i, :], n)

0, otherwise
(20)

We row-wise normalize the non-local adjacency matrix by
applying the softmax function to edge weights of each row.
Then the final non-local adjacency matrix at each k-th FastGT
layer is represented as

A
(l,k)
non local[i, :] = softmax(topk(M (l,k)[i, :], n)). (21)

To use the normalized non-local adjacency matrix for trans-
formations, we add a non-local parameter to 1x1 convolution
filters of each FastGT Layer and then append the matrix
A

(l,k)
non local to the set of adjacency matrix of k-th FastGT Layer

i.e., AŞA(l,k)
non local.
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3.6 Relations to Other GNN Architectures
FastGTNs enhance the scalability of GTNs by implicitly trans-
forming graph structures. Moreover, the FastGTNs become
a flexible/general model that subsumes other graph neural
networks. In this section, we discuss relationships between
our FastGTNs and other GNN architectures. Interestingly,
if input graphs are normalized i.e., D = I , several popular
graph neural networks such as GCN [1] and MixHop [26]
can be special cases of our FastGTNs. In addition, RGCN [7]
can be subsumed by our FastGTNs with minor modifications.
We first discuss the graph convolution network (GCN). The
GCN computes the output node representations from the
l-th GCN layer as

Z(l+1) = σ
(
D̃−

1
2 ÃD̃−

1
2Z(l)W (l)

)
(22)

= σ

(
1

2
Z(l)W (l) +

1

2
AZ(l)W (l)

)
, (23)

where Ã = A + I ∈ RN×N and D̃ is the degree matrix of
Ã. If the number of FastGT layers in our FastGTNs is one
i.e., K = 1, the number of channels is one, i.e., C = 1 and γ
equals 1

2 , the output node representations are as

Z(l+1) = σ(
1

2
Z(l)W (l) +

1

2
(α(l,1) · A)Z(l)W (l)). (24)

Then if the first FastGT layer only selects the adjacency
matrix, i.e., α(l,1) ·A = 1 ·A+0 ·I , the output representations
are exactly same as the output of the GCNs.

Mixhop [26] is an extended GNN architecture which can
capture long-range dependencies by mixing powers of the
adjacency matrix as

Z(l+1) = Ş
j∈P

σ(ÂjZ(l)W
(l)
j ), (25)

where P is a set of integer adjacency powers, Â is a symmet-
rically normalized adjacency matrix with self-connections,
i.e., Â = D̃−

1
2 (A + I)D̃−

1
2 and Â(j) denotes the adjacency

matrix Â multiplied by itself j times. Since the degree matrix
of A+ I equals 2I , we can rewrite equation (25) as

Z(l+1) = Ş
j∈P

σ
(

(α · A)
j
Z(l)W

(l)
j

)
, (26)

where α · A = 1
2A + 1

2I . Then if γ equals 0, the number
of channels equals the size of P i.e., C = |P |, number of
FastGT layers in each channel equals j i.e., K=j, all FastGT
layers choose the adjacency matrix and the identity matrix
in the same ratio, i.e., α(l,k) · A = 1

2A + 1
2I and a channel

aggregation function is an identity function i.e., fagg(x) = x,
the output is same as the output of the Mixhop, i.e., the
Mixhop can be a special case of our FastGTNs.

Lastly, we discuss RGCN [7] which extends the GCN to
heterogeneous graphs by utilizing relation-specific param-
eters. Specifically, the output representations from the l-th
RGCN are as

Z(l+1) = σ

|Te|∑
t=1

D−1t AtZ
(l)

(
B∑
i=1

a
(l)
ti V

(l)
i

) (27)

= σ

(
B∑
i=1

a
(l)
i · AZ

(l)V
(l)
i

)
, (28)

where At denotes an adjacency matrix for relation type t,
V

(l)
i denotes a basis parameter of l-th RGCN layer and
a
(l)
ti denotes a coefficient for relation type t. The derivation

from (27) to (28) is provided in A.3 in the supplement.
If the number of FastGT layers is one i.e., K = 1, the
number of channels equals number of basis matrices i.e.,
C = B, γ equals 0 and a channel aggregation function fagg
is summation, the output node representations are given as

Z(l+1) = σ

(
B∑
c

α(l,1,c) · AZ(l)W (l)
c

)
. (29)

Then (28) and (29) are exactly same except for that (28) apply
different linear combinations in each layer.

4 EXPERIMENTS

In this section, we evaluate our proposed methods on
both homogeneous and heterogeneous graph datasets. The
experiments aim to address the following research questions:
• Q1. How effective are the GTNs and FastGTNs with

non-local operations compared to state-of-the-art GNNs
on both homogeneous and heterogeneous graphs in node
classification?

• Q2. Can the FastGTNs efficiently perform the identical
graph transformation compared to the GTNs?

• Q3. Can GTNs adaptively produce a variable length of
meta-paths depending on datasets?

• Q4. How can we interpret the importance of each meta-
path from the adjacency matrix generated by GTNs?

4.1 Experimental Settings

Datasets. We evaluate our method on twelve benchmark
datasets for node classification including six homogeneous
graph datasets and six heterogeneous graph datasets for
node classification. Detailed statistics regarding each dataset
can be found in Table 1. The datasets for each type (i.e.,
homogeneous or heterogeneous) are as follows:

• Heterogeneous Graph Datasets
– DBLP and ACM are both citation networks. They

differ in the sense that DBLP has three types of
nodes (paper (P), author (A), conference (C)) and four
types of edges (PA, AP, PC, CP). ACM is similar
but has has subject (S) as a node type instead of
conference (C), with edge types differing accordingly.
DBLP and ACM are node classification datasets with
author research area and paper category as labels,
respectively.

– IMDB is a movie network dataset. It contains three
types of nodes (movies (M), actors (A), directors (D))
and uses the genres of movies as labels.

– CS, ML, NN each refer to domain-specific subgraphs
from the Open Academic Graph (OAG) [31]. OAG
is a large citation network with ten types of nodes
(paper (P), author (A), field (L0, L1, L2, L3, L4, L5),
venue (V), institute (I)) and ten types of edges (PA,
PL0 − PL5, PV, AI, PP). The task is to predict the
venue that each paper is published at.

• Homogeneous Graph Datasets
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Type Dataset # Nodes # Edges # Features # Classes # Training # Validation # Test

Heterogeneous

DBLP 18405 67496 334 4 800 400 2857
ACM 8994 25922 1902 3 600 300 2125
IMDB 12772 37288 1256 3 300 300 2339

CS 1116163 28427508 768 3505 147769 33582 46711
ML 227144 4249598 768 1447 19902 6112 7911
NN 66211 845916 768 929 4745 1057 2311

Homogeneous

AIR-USA 1190 13599 238 4 119 238 833
BLOGCATALOG 5196 171743 8189 6 519 1039 3638

CITESEER 3327 4552 3703 6 120 500 1000
CORA 2708 5278 1433 7 140 500 1000

FLICKR 7575 239738 12047 9 757 1515 5303
PPI 10076 157213 50 121 1007 2015 7054

TABLE 1
Statistics of both homogeneous and heterogeneous graph datasets.

– AIR-USA is a dataset made up of graphs representing
airport traffic within the US. Each node represents
an airport and edges between nodes indicate the
existence of commercial flights between the two
airports [32].

– BLOGCATALOG and FLICKR are both social network
datasets, with the former being a blogging platform
and the latter being an image and video sharing
platform. In both dataset, each node represents a user
of the online community and the edges correspond to
whether or not users are following each other [33].

– CORA and CITESEER are citation network datasets.
Both datasets are comprised of nodes which represent
papers published in various fields and edges which
represent citation links [30].

– PPI refers to the protein-protein interaction network
dataset. The network’s nodes represent a protein
structure that contains features corresponding to
different gene sets. Edges refer to the relation between
such proteins [24].

Baselines. To evaluate the effectiveness of representations
learnt by the Graph Transformer Networks in node clas-
sification, we compare GTNs with conventional random
walk based baselines as well as state-of-the-art GNN based
methods. Since homogeneous graph neural networks (e.g.,
GCN, GAT, JK-Net, MixHop and GCNII) cannot differentially
handle the different types of nodes and edges, we apply them
after converting the heterogeneous graphs into homogeneous
graphs.

• MLP is a simple baseline model that uses only node
features for prediction.

• Node2Vec [34] is a random walk based network em-
bedding method which was originally designed for
embedding homogeneous graphs. In heterogeneous
graphs, we ignore the heterogeneity of nodes and edges
and run DeepWalk on the entire heterogeneous graph.

• GCN [1] utilizes a first-order approximation of the spec-
tral graph filter to aggregate features from neighbors.

• GAT [25] leverages an attention mechanism to learn the
relative weights between the neighborhood nodes.

• JK-Net [3] leverages a variable range of neighborhoods
by connecting the last layer of the network with all
preceding hidden layers.

• MixHop [26] mixes powers of the adjacency matrices

and applies a GCN to capture long-range dependencies.
• GCNII [35] improves GCN with initial residual connec-

tion and identity mapping to prevent over-smoothing.
• RGCN [7] employs GCNs with relation-specific weight

matrices to deal with heterogeneous graphs.
• HAN [20] uses manually selected meta-paths to trans-

form a heterogeneous graph into a homogeneous graph
and then applies GNNs on the homogeneous graph.

• HGT [27] parameterizes the meta relation triplet of each
edge type and uses a structure that utilizes the self-
attention of the transformer architecture [28] to learn
specific patterns of different relationships.

Implementation details. All the models in this paper are
implemented using PyTorch and PyTorch Geometric [36] and
the experiments are conducted on a single GPU (Quadro RTX
8000). For Node2Vec, GCN, GAT, JK-Net, GCNII, and RGCN,
we used the implementations in PyTorch Geometric. We re-
implemented HAN and HGT referencing the code from the
authors of the papers [20], [27]. We set the dimensionality of
hidden representations to 64 throughout the neural networks
and apply the Adam optimizer for all models. For each
model and each dataset, we perform a hyper-parameter
search within the following ranges: the learning rate is from
1e-3 to 1e-6, the dropout rate is from 0.1 to 0.8 and the
epoch is from 50 to 200.Based on the accuracy on validation
sets, the best models are selected and the models are used
for evaluation. From ten independent runs, the mean and
standard deviation of micro-F1 scores on test datasets are
computed. In our FastGTNs, as discussed in Proposition 1,
we perform the row-wise normalization of the adjacency
matrices in A. To avoid the division-by-zero, we add a small
positive number to the diagonal elements of the adjacency
matrices, i.e., D−1(A+ εI).

4.2 Results on Node Classification
We evaluated the effectiveness of our GTNs and Fast-
GTNs with non-local operations in six heterogeneous graph
datasets and six homogeneous graph datasets. By analysing
the result of our experiment, we will answer the research Q1.
Effectiveness of Graph Transformer Networks on hetero-
geneous graph datasets. Table 2. and 3. show the clas-
sification results on six heterogeneous graph datasets. In
large-scale graph datasets (e.g., CS, ML, NN, DBLP, BLOG-
CATLOG, and FLICKR), we trained GNN-based methods
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Model
CS ML NN

NDCG MRR NDCG MRR NDCG MRR

MLP 28.57±0.005 12.34±0.004 30.89±0.007 14.38±0.007 25.99±0.002 12.03±0.002
Node2Vec 26.92±0.005 10.93±0.003 31.62±0.001 15.04±0.001 26.16±0.006 11.27±0.007

GCN 34.72±0.006 17.87±0.005 37.76±0.005 20.66±0.005 31.30±0.002 15.89±0.003
GAT 41.40±0.009 24.01±0.008 37.83±0.012 20.87±0.012 29.38±0.007 14.03±0.009
RGCN 41.83±0.009 24.35±0.007 39.04±0.004 21.71±0.003 29.84±0.006 14.76±0.007
HGT 42.57±0.017 25.00±0.017 37.31±0.011 20.26±0.009 28.43±0.016 13.70±0.014

GTN−I 41.81±0.018 24.53±0.017 40.17±0.014 23.27±0.015 31.57±0.006 16.33±0.003
GTN 42.75±0.012 25.35±0.011 39.60±0.016 22.70±0.017 31.76±0.006 16.49±0.008
FastGTN 42.32±0.018 24.96±0.019 38.65±0.018 21.72±0.018 32.02±0.006 16.72±0.006

TABLE 2
Node classification performance (NDCG and MRR) on large-scale heterogeneous graph datasets.

Model DBLP ACM IMDB

MLP 79.18±0.015 86.19±0.003 49.51±0.019
Node2Vec 86.10±0.001 76.27±0.002 47.32±0.005

GCN 85.63±0.003 91.70±0.003 60.41±0.009
GAT 94.68±0.002 91.99±0.003 59.64±0.016
RGCN 93.16±0.002 91.93±0.004 59.87±0.008
HAN 92.17±0.005 91.10±0.004 59.80±0.013
HGT 94.21±0.005 91.14±0.005 60.98±0.002

GTN−I 94.74±0.005 85.36±0.021 59.27±0.021
GTN 94.47±0.003 91.96±0.005 61.02±0.018
FastGTN 94.85±0.003 92.51±0.005 64.63±0.008

TABLE 3
Node classification (micro F1-score) on heterogeneous graph datasets.

and GTN in the mini-batch setting with graph sampling
algorithm [24], [27]. We observe that our propsed methods,
GTN and FastGTN, consistently outperform all network
embedding methods and graph neural network methods
in six heterogeneous graph datasets. GNN-based methods
perform better than random walk-based network embedding
methods. Interestingly, though the HAN is a modified GAT
for a heterogeneous graph, the GAT usually performs better
than the HAN. This result shows that using the pre-defined
meta-paths as the HAN may cause adverse effects on per-
formance. In contrast, Our GTN and FastGTN achieved the
best performance compared to all other baselines on all the
datasets. It demonstrates that the GTN can learn a new graph
structure which consists of useful meta-paths for learning
more effective node representation. Also, the performance
gap between GTNs and FastGTNs on IMDB (60.02% vs.
64.64%) shows that in FastGTNs the graph transformations
based on the semantic similarity (i.e., non-local operations)
are effective. We additionally provide an ablation study of
non-local operations in A.6 in the supplement.
Effectiveness of Graph Transformer Networks on homoge-
neous graphs. In homogeneous graphs, although a number
of edge types is only one, as we add an identity matrix
to the candidate adjacency matrix, our GTNs can find the
effective neighborhood range for each dataset. Table 4 shows
the performance of GTNs, FastGTNs and other baselines

in homogeneous graphs. We additionally compared our
methods with three well-known GNN models MixHop [26],
JK-Net [3] and GCNII. [35]. We can observe that our GTN
and FastGTN consistently outperform all GNN baselines in
homogeneous graph datasets, especially on BLOGCATALOG
and FLICKR datasets. Interestingly, in BLOGCATALOG and
FLICKR datasets, the Multi-Layer Perceptron (MLP) model
using the only node features achieved better performance
than all GNN baseline models. It implies that noisy input
graphs rather hinder learning of most GNNs whereas GTNs
and FastGTNs successfully suppress the noisy edges by
weighing an attention score of an identity matrix and learn a
high accuracy classifier.
Identity matrix in A to learn variable-length meta-paths.
As mentioned in Section 3.2, the identity matrix is included
in the candidate adjacency matrices A. To verify the effect
of identity matrix, we trained and evaluated another model
named GTN−I as an ablation study. the GTN−I has exactly
the same model structure as GTN but its candidate adjacency
matrix A doesn’t include an identity matrix. In general, the
GTN−I usually performs worse than the GTN. In heteroge-
neous graph datasets, it is worth to note that the difference
is greater in IMDB than DBLP. One explanation is that the
length of meta-paths GTN−I produced is not effective in
IMDB. As we stacked 3 layers of GTL, GTN−I always
produce 4-length meta-paths. However shorter meta-paths
(e.g. MDM) are preferable in IMDB. Also, in homogeneous
graph datasets, the differences in BLOGCATALOG and FLICKR
are extremely big, which are 48% and 150%. It demonstrates
that including identity matrix is effective in learning GTNs
on noisy graphs.

4.3 Exactness and Efficiency of FastGTNs
In this section, we show the exactness and efficiency of
FastGTN compared to GTN. First, As discussed in (11) in
Section 3.4, Our FastGTN without non-local operations is an
exact version of GTN. It means that the model parameters
from GTN are compatible with FastGTN and the graph
transformations of GTN can be identically performed by
FastGTN. To show the exactness of FastGTN, we first train a
GTN on the IMDB dataset and copy the model parameters
of the GTN ({Φ(k)}Kk=1) and the GNN {W (l)}Ll=1 to the
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Model AIR-USA BLOGC CITESEER CORA FLICKR PPI

MLP 55.10±0.006 82.42±0.010 59.23±0.007 55.78±0.014 69.10±0.009 40.38±0.001
Node2Vec 45.86±0.013 61.23±0.001 33.51±0.007 54.30±0.006 46.50±0.002 40.87±0.001

GCN 57.30±0.009 75.25±0.006 68.42±0.006 79.65±0.005 52.95±0.009 42.56±0.003
GAT 53.06±0.001 55.63±0.021 68.92±0.006 79.85±0.009 36.10±0.017 40.63±0.013
JK-NET 57.15±0.009 68.47±0.004 68.11±0.007 79.57±0.006 54.01±0.006 42.38±0.003
MixHop 55.15±0.011 66.96±0.003 67.74±0.013 79.32±0.007 48.91±0.014 42.52±0.002
GCNII 56.25±0.010 64.17±0.004 68.11±0.017 79.24±0.014 33.71±0.008 42.36±0.004

GTN−I 61.51 ±0.013 60.73 ±0.009 64.64 ±0.009 76.97 ±0.005 30.65 ±0.008 42.95 ±0.004
GTN 61.80 ±0.008 90.30 ±0.006 68.68 ±0.011 79.99 ±0.008 76.77 ±0.009 42.64 ±0.003
FastGTN 57.73±0.008 87.97±0.008 69.14±0.016 80.29±0.009 73.64±0.015 42.40±0.010

TABLE 4
Node classification performance (micro F1-score) on homogeneous graph datasets.

Dataset
Predefined Meta-path learnt by GTNs
Meta-path Top 3 (between target nodes) Top 3 (all)

DBLP APCPA, APA APCPA, APAPA, APA CPCPA, APCPA, CP

ACM PAP, PSP PAP, PSP APAP, APA, SPAP

IMDB MAM, MDM MDM, MAM, MDMDM DM, AM, MDM

TABLE 5
Comparison with predefined meta-paths and top-ranked meta-paths by GTNs. Our model found important meta-paths that are consistent with

pre-defined meta-paths between target nodes (a type of nodes with labels for node classifications). Also, new relevant meta-paths between all types
of nodes are discovered by GTNs.

Fig. 4. Confidence scores of GTNs (x-axis) and FastGTNs (y-axis). On
50 random samples from the test set of IMDB, the confidence scores of
GTNs and FastGTNs are practically identical. All 50 points are on the
Identity line i.e., y = x.

corresponding model parameters in our FastGTN. Figure
4 proves that the predictions (confidence scores) by the
FastGTN and the GTN are identical. All 50 randomly drawn
data points from a test set are on the Identity line (i.e., y = x).
Note that the GTN parameters {Φ(k)}Kk=1 should be reversely
copied as in (15). As our FastGTNs also generalize of other
popular graph neural networks such as GCN and MixHop,
we prove that predictions (confidence scores) by special cases
of our FastGTNs and the two GNNs are identical (see A.5 in
the supplement).

Second, the main contribution of our FastGTN is im-
proving the efficiency of graph transformations. For more

detailed efficiency comparisons with GTN, we measured
the inference time and memory consumption of the two
methods. Figure 5 shows that FastGTN is significantly more
efficient than GTN in both the inference time and memory
consumption. The performance gain is larger on larger
graphs. In particular, on the PPI dataset, our experiments
show that our FastGTN is 230× faster and 100× more
memory-efficient than the GTN. Again, this speed-up and
memory efficiency are achieved without any accuracy loss.
During training, a similar performance gain is observed (see
A.4 in the supplement).

4.4 Interpretation of Graph Transformer Networks

We examine the transformation learnt by GTNs to discuss
the question interpretability Q4. We first describe how to
calculate the importance of each meta-path from our GT
layers. For the simplicity, we assume the number of output
channels is one. Then, the new adjacency matrix from the lth
GT layer can be written as

A(k) =
(
D(k−1)

)−1
. . .
(
D(1)

)−1 (
(α(0) · A)(α(1) · A)

. . . (α(k) · A)

)
=
(
D(k−1)

)−1
. . .
(
D(1)

)−1 ( ∑
t0,t1,...,tk∈T e

α
(0)
t0 α

(1)
t1

. . . α
(k)
tk At0At1 . . . Atk

)
,

(30)



11

Fig. 5. Inference time (up) and memory usage (down) of GTNs (blue) and our FastGTNs (orange) on both homogeneous and heterogeneous graph
datasets. To show how efficiently FastGTNs can perform the identical graph transformations, FastGTNs were measured without the non-local
operations. FastGTNs significantly speed up the graph transformations and reduce the memory usuage in all datasets. Especially, on a large-scale
graph dataset (PPI) FastGTNs show 230× faster inference time and 100× less memory usuage than the GTNs.

(a) DBLP (b) IMDB

Fig. 6. After applying softmax function on 1x1 conv filter phi(k) (k: index of layer) in Figure 1, we visualized this attention score of adjacency matrix
(edge type) in DBLP (left) and IMDB (right) datasets. (a) Respectively, each edge indicates (Paper-Author), (Author-Paper), (Paper-Conference),
(Conference-Paper), and identity matrix. (b) Edges in IMDB dataset indicates (Movie-Director), (Director-Movie), (Movie-Actor), (Actor-Movie), and
identity matrix.

where T e denotes a set of edge types and α
(l)
tl is an

attention score for edge type tl at the lth GT layer. So,
A(l) can be viewed as a weighted sum of all meta-paths
including 1-length (original edges) to l-length meta-paths.
The contribution of a meta-path tl, tl−1, . . . , t0 is obtained by∏l
i=0 α

(i)
ti .

Now we can interpret new graph structures learnt by
GTNs. The weight

∏l
i=0 α

(i)
ti for a meta-path (t0, t1, . . . tl)

is an attention score and it provides the importance of the
meta-path in the prediction task. In Table 5 we summarized
predefined meta-paths, that are widely used in literature, and
the meta-paths with high attention scores learnt by GTNs.

As shown in Table 5, between target nodes, that have
class labels to predict, the predefined meta-paths by domain
knowledge are consistently top-ranked by GTNs as well. This
shows that GTNs are capable of learning the importance of

meta-paths for tasks. More interestingly, GTNs discovered
important meta-paths that are not in the predefined meta-
path set. For example, in the DBLP dataset GTN ranks CPCPA
as most importance meta-paths, which is not included in
the predefined meta-path set. It makes sense that author’s
research area (label to predict) is relevant to the venues where
the author publishes. We believe that the interpretability of
GTNs provides useful insight in node classification by the
attention scores on meta-paths.

Fig. 6 shows the attention scores of adjacency matrices
(edge type) from each Graph Transformer Layer. Compared
to the result of DBLP, identity matrices have higher attention
scores in IMDB. As discussed in Section 3.3, a GTN is capable
of learning shorter meta-paths than the number of GT layers,
which they are more effective as in IMDB. By assigning
higher attention scores to the identity matrix, the GTN tries to
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stick to the shorter meta-paths even in the deeper layer. This
result demonstrates that the GTN has ability to adaptively
learns most effective meta-path length depending on the
dataset. Also, we additionally provide an interpretation of
GTNs in homogeneous graphs in A.7 in the supplement.

5 CONCLUSION

We proposed Graph Transformer Networks for learning
node representations on both homogeneous graphs and
heterogeneous graphs. Our approach transforms graphs into
multiple new graphs defined by meta-paths with arbitrary
edge types and arbitrary length up to one less than the
number of Graph Transformer layers while it learns node
representation via convolution on the learnt meta-path
graphs. Also, we proposed the enhanced version of GTNs,
Fast Graph Transformer Networks, which are 230× faster
and use 100× less memory while allowing the identical
graph transformations as GTNs. The learnt graph structures
from GTNs and FastGTNs lead to more effective node repre-
sentation resulting in state-of-the art performance, without
any predefined meta-paths from domain knowledge, on all
twelve benchmark node classification on both homogeneous
and heterogeneous graphs.

Since our Graph Transformer layers can be combined
with existing GNNs, we believe that our framework opens
up new ways for GNNs to optimize graph structures by
themselves to operate convolution depending on data and
tasks without any manual efforts. As several heterogeneous
graph datasets have been recently studied for other network
analysis tasks, such as link prediction [37], [38] and graph
classification [39], [40], applying our GTNs to the other tasks
can be interesting future directions.
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APPENDIX A
A.1 Mini-batch training for GTNs
Since GTNs transform the entire input graph at once, when
the size of an input graph is too large, GTNs requires an
excessive amount of memory and incurs high computational
cost. To alleviate this scalability issue, we present a mini-
batch training algorithm for GTNs. Algorithm 1 describes
our mini-batch training algorithm. Specifically, we first
combine a set of input adjacency matrices {At}Te

t=1 into one
adjacency matrix A for extracting subgraphs. We then select
target nodes for each mini-batch training iteration. For each
iteration, based on the target nodes of each mini-batch, we
extract a subgraph and use its adjacency matrix A′ from the
original graph’s adjacency matrix A by using two types of
graph sampling algorithms: a neighborhood-based graph
sampling algorithm [24] and a layer-wise graph sampling
algorithm [27]. After sampling the subgraph, we separate
the sampled subgraph’s adjacency matrix A′ into a set of
adjacency matrices corresponding to each edge type such as
{A′t}

Te
t=1. The sampled adjacency matrix set {A′t}

Te
t=1 is fed

into GTNs for mini-batch training. This mini-batch training
algorithm enables GTNs to handle large-scale graph datasets
with up to 30 million edges in an efficient manner.

Algorithm 1: Mini-batch training algorithm for
Graph Transformer Networks

Input: set of adjacency matrices A; feature matrix X ;
training set Vtrain and Ytrain; Graph
Transformer Networks fθ ; number of layers L,

Output: set of adjacency matrices A′
1 Combine a set of input adjacency matrices into one

adjacency matrix A← ∪Te
t=1At ;

2 while do
3 Sample a mini-batch of m target nodes {vi}mi=1

from the training set Vtrain with corresponding
targets YB ;

4 VB ← {vi}mi=1;
5 EB ← φ ;
6 for l = 1, 2, . . . , L+ 1 do
7 Sample nodes V(l) and edges E(l) based on VB

by using graph sampling algorithm [24], [27] ;

8 VB ← VB ∪ V(l);
9 EB ← EB ∪ E(l) ;

10 Reconstruct an adjacency matrix A′ based on
sampled nodes VB and edges EB ;

11 Divide the adjacency matrix A′ into a set of
adjacency matrices corresponding to each edge
type {A′t}

Te
t=1 ;

12 Compute prediction Y ′ from fθ , X and A′ by
using Eq. (8) and the node classifier;

13 Calculate cross-entropy loss from Y ′ and YB ;
14 Update weights of fθ ;

A.2 Proofs of the Proposition 1
Proposition 1. Given two normalized adjacency matrices A,
B ∈ RN×N , the followings are equivalent:

(i)
(
D−1A A

) (
D−1B B

)
=
(
D−1ABAB

)
(ii) D−1AB = I

(iii) D−1A+I = (DA + I)−1 =
1

2
I

Since the adjacency matrices A, B are normalized, i.e.,∑
j Aij = 1, the degree matrices DA, DB are equal to the

identity matrix (I) and the inverse degree matricesD−1A , D−1B
are also equal to the identity matrix (I) respectively. Thus,
(i) in Proposition 1 can be re-written as AB = D−1ABAB and
to satisfy the (i), we need to prove that DAB is an identity
matrix. Since DAB is the degree matrix of the multiplication
of two matrices A and B, each i-th diagonal element of
DAB can be represented as DAB [i, i] =

∑
j (AB)ij =∑

j

∑
k AikBkj . Then, we can derive that DAB is equal

to the identity matrix, i.e., DAB [i, i] = 1 as follows:

DAB [i, i] =
∑
j

(AB)ij

=
∑
j

∑
k

AikBkj

=
∑
k

∑
j

AikBkj ∵ commutativity of sum

=
∑
k

Aik
∑
j

Bkj

=
∑
k

Aik∑
j

Bkj


=
∑
k

Aik ∵
∑
j

Bkj = 1

= 1 ∵
∑
k

Aik = 1

Therefore, degree matrix DAB is equal to an identity matrix
I , which satisfies (i), (ii) and (iii) in Proposition 1.

A.3 Relation to RGCN

If input graphs are normalized, RGCN [7] can be subsumed
by our FastGTNs with minor modifications. The RGCN [7] ex-
tends the GCN to heterogeneous graphs by utilizing relation-
specific parameters. Specifically, the output representations
from the l-th RGCN are as

Z(l+1) = σ

|Te|∑
t=1

D−1t AtZ
(l)W

(l)
t

, (31)

where At denotes an adjacency matrix of t-th edge type
W

(l)
t denotes the relation specific parameters of the model.

The RGCN also address overparameterization by proposing
basis decomposition of W

(l)
t as W

(l)
t =

∑B
b=1 a

(l)
tb V

(l)
b ,

consequently the equation of the RGCN is re-written as

Z(l+1) = σ

|Te|∑
t=1

D−1t AtZ
(l)

(
B∑
i=1

a
(l)
ti V

(l)
i

), (32)
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Fig. 7. Comparisons of training time (up) and memory usage (down) between GTNs (blue) and FastGTNs (orange) on both homogeneous and
heterogeneous graph datasets (x-axis). For fair comparison, FastGTNs were measured without the non-local operations. FastGTNs significantly
speed up the graph transformations 150× (PPI) and reduce the memory usage 60× (PPI).

Then to compare with our FastGTNs, we derive the equation
similar to our FastGTNs as follows:

Z(l+1) = σ

 |T |∑
t=1

D−1t AtZ
(l)

(
B∑
i=1

a
(l)
ti V

(l)
i

) (33)

= σ

 |T |∑
t=1

AtZ
(l)

(
B∑
i=1

a
(l)
ti V

(l)
b

) (34)

= σ

 |T |∑
t=1

B∑
i=1

AtZ
(l)a

(l)
tb V

(l)
b

 (35)

= σ

 B∑
i=1

|T |∑
t=1

AtZ
(l)a

(l)
ti V

(l)
i

 (36)

= σ

 B∑
i=1

|T |∑
t=1

a
(l)
ti AtZ

(l)V
(l)
i

 (37)

= σ

 B∑
b=1

 |T |∑
t=1

a
(l)
ti At

Z(l)V
(l)
i

 (38)

= σ

(
B∑
i=1

a
(l)
i · AZ

(l)V
(l)
i

)
(39)

A.4 Training Efficiency
In this section, we compared our FastGTNs with GTNs in
terms of the training efficiency. As shown in Figure 7, we
measured the training time and the memory consumption
of the two methods. Figure 7 shows that FastGTNs are
significantly more efficient than GTNs in terms of both the
training time and memory. In particular, the comparison on
the large-scale dataset, PPI, shows our FastGTNs are 150×
faster and 60× more efficient than the GTNs.

A.5 Generalization of GCN and MixHop
As discussed in Section 3.6, our FastGTNs subsume two
popular graph neural networks, GCN and MixHop. For the

Fig. 8. Correlations of confidence scores between GCNs (x-axis) and
FastGTNs (y-axis) on 50 randomly drawn data points from a test set of
CORA dataset.

Fig. 9. Correlations of confidence scores between MixHop (x-axis) and
FastGTNs (y-axis) on 50 randomly drawn data points from a test set of
CORA dataset.

GCN, if the number of FastGT layers in FastGTNs is one i.e.,
K = 1, the number of channels is one, i.e., C = 1, γ equals 1

2
and the first FastGT layer only selects the adjacency matrix,
i.e., α(1) · A = 1 · A + 0 · I , the GCN can be a special case
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of FastGTNs. For the MixHop, if γ equals 0, the number of
channels equals the size of P i.e., C = |P |, number of FastGT
layers in each channel equals j and all FastGT layers choose
the adjacency matrix and the identity matrix in the same ratio,
i.e., α(k) ·A = 1

2A+ 1
2I , the output is same as the output of the

Mixhop, i.e., the Mixhop can be a special case of FastGTNs.
To show that special cases of FastGTNs can be identically
performed by the GCN and the MixHop, we first train a GCN
and a MixHop on the CORA dataset and copy the model
parameters of GCN({W (l)}Ll=1) and MixHop({W (l)

j }Ll=1) to
the corresponding model parameters in our FastGTN. Figure
8 and Figure 8 prove that the predictions (confidence scores)
by the FastGTN and other graph neural networks, GCN and
MixHop, are identical. All 50 randomly drawn data points
from a test set are on the Identity line (i.e., y = x).

A.6 Ablation Study for Non-local Operations
We evaluate the effectiveness of non-local operations in
FastGTNs. Table 6 shows the performance gap of FastGTNs
with/without non-local operations. Also, the attention scores
on the non-local adjacency matrix at each layer of FastGTNs
are reported to show whether the non-local operations are
adaptively applied. First, non-local operations improve the
performance in most datasets (7 out of 9) by 0.39 ∼ 4.4 in
terms of the micro-F1 score. In addition, Table 6 shows that
if the non-local operations are useful then FastGTNs have
relatively higher attention scores on non-local operations.
In contrast, in BLOGCATALOG, FLICKR datasets, FastGTNs
where non-local operations are not useful, the FastGTNs
(with non-local operations) properly reduced the attention
scores on non-local operations to 0.004 ∼ 0.012. The re-
sults show that FastGTNs can adaptively exploit non-local
operations depending on datasets.

Dataset
w/o

non-local
w/

non-local

Attention scores
on non-local op.

L1 L2

BLOGC 88.96 87.97 (↓ 0.99) 0.012 0.005
FLICKR 75.01 73.64 (↓ 1.37) 0.004 0.005
AIR-USA 56.60 57.73 (↑ 1.13) 0.153 0.158
CITESEER 68.32 69.14 (↑ 0.82) 0.099 0.095
CORA 79.17 80.29 (↑ 1.12) 0.146 0.152
PPI 40.95 42.40 (↑ 1.45) 0.243 0.223

DBLP 94.46 94.85 (↑ 0.39) 0.048 0.049
ACM 91.79 92.51 (↑ 0.72) 0.026 0.026
IMDB 60.23 64.63 (↑ 4.4) 0.066 0.069

TABLE 6
Ablation study for non-local operations on both homogeneous and
heterogeneous graph datasets. Non-local operations improve the

performance of FastGTNs on all datasets except for on BLOGCATALOG
and FLICKR datasets. The attention scores on non-local operations show
that our FastGTNs adaptively leverage non-local operations by adjusting

the attention scores on non-local adjacency matrices.

A.7 Interpretation of GTNs in Homogeneous Graphs
Fig. 10 shows ratios of each power of adjacency matrix in
the output matrix A(K) from GTNs, respectively in the AIR-
USA (left) and BLOGCATALOG (right) datasets. Based on

the Eq. (30), we calculate the ratio of each hop in the final
adjacency matrix after GTNs. Specifically, if the number of
GT layers equals two, then the ratio of the identity matrix
I is obtained by (α

(0)
I ∗ α(1)

I ∗ α(2)
I ) and the ratio of the

adjacency matrix A is obtained by (α
(0)
A ∗α

(1)
I ∗α

(2)
I +α

(0)
I ∗

α
(1)
A ∗ α

(2)
I + α

(0)
I ∗ α

(1)
I ∗ α

(2)
A ). As we discussed in Section

4.2, since graph structures in the BLOGCATALOG dataset are
noisy enough for a simple MLP to outperform other GNN
baselines, GTNs learn to assign higher attention scores to
the identity matrix, which effectively minimizes the range
of neighborhoods. In contrast, in the AIR-USA dataset, each
GT layer assigns relatively higher attention scores to the
adjacency matrix, which expands the range of neighborhoods.
GTNs can adaptively learn effective range of neighborhoods
depending on the dataset.

(a) AIR-USA

(b) BLOGCATALOG

Fig. 10. We visualized the ratios corresponding to each hop in the output
matrix A(l) from GTNs based on the attention scores of each GT Layer
in AIR-USA (left) and BLOGCATALOG (right) dataset. In (a), we use two
GT layers in GTNs, thus output matrix from GTNs can involve up to three
hop adjacency matrix. In (b), we use one GT layer, thus output matrix
from GTNs can involve up to two hop adjacency matrix.
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