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Abstract

The vanishing gradient problem (i.e., gradients prematurely becoming extremely small during
training, thereby effectively preventing a network from learning) is a long-standing obstacle to
the training of deep neural networks using sigmoid activation functions when using the standard
back-propagation algorithm. In this paper, we found that an important contributor to the problem
is weight initialization.

We started by developing a simple theoretical model showing how the expected value of gradi-
ents is affected by the mean of the initial weights. We then developed a second theoretical model
that allowed us to identify a sufficient condition for the vanishing gradient problem to occur. Using
these theories we found that initial back-propagation gradients do not vanish if the mean of the
initial weights is negative and inversely proportional to the number of neurons in a layer.

Numerous experiments with networks with 10 and 15 hidden layers corroborated the theoretical
predictions: if we initialized weights as indicated by the theory, the standard back-propagation
algorithm was both highly successful and efficient at training deep neural networks using sigmoid
activation functions.

Keywords: Deep neural networks, vanishing gradient, weights initialization, logistic activation
function, supervised learning.

1. Introduction

The Multi-layer Perceptron (MLP) is one of the most widely used types of artificial neural
network [1]. The connection weights of an MLP are traditionally optimized by the standard
back-propagation (SBP) algorithm which is a form of gradient descent [2, 3, 4].

Initially, only MLPs with one or a few hidden layers (now called “shallow” networks) were
common. So, their properties were studied in depth. For instance, they were proven to be general
function approximators [5, 6, 7, 8, 9, 10, 11]. Deeper MLPs, having more than a few hidden layers,
were tested, but they suffered from the so called vanishing gradient problem [12] which was a
strong obstacle to train such networks.

The vanishing gradient problem may be briefly described as a situation where gradients prema-
turely become extremely small during the training, thereby effectively freezing the corresponding
weights and preventing the network from learning. This usually happens when a deep network uses
the logistic or hyperbolic tangent (TanH) activation functions, and in recurrent neural networks
where gradients are propagated through time as well as layers [12, 13, 14, 15, 16]. So, deep MLPs
did not receive much attention by the neural network scientific community until Hinton [17, 18]
found a method (based on a greedy learning algorithm and pre-training) that could successfully
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train them. After this achievement, deep learning has become a very popular area of machine
learning.

While there are a small number of techniques that can ameliorate the vanishing gradient
problem (we will review them in Section 3), it is fair to say that no method based on a precise
identification of root causes of the problem and its solution has been proposed so far.1

In this paper, we found that an important contributor to the problem is weight initialization
and that, if properly initialized, deep MLPs using sigmoid activation functions can be effectively
trained using the standard back-propagation algorithm without experiencing the vanishing gradi-
ent problem.

The paper is organized as follows. In Section 2, we provide minimalist descriptions of MLPs
and the SBP both for completeness and for the purposes of defining the notation used in the rest
of the paper. We look at previous work on the vanishing gradient problem and methods proposed
to overcome it (including, among other techniques, also a small number of initialization strategies)
in Section 3. In Section 4 we present two theoretical contributions and use them to derive a new
initialization method for deep neural networks with sigmoid activation function. More specifically,
we develop a simple theoretical model that illustrates how the expected value of the gradient
is affected by the expected value of the initial weight distribution (Section 4.1) and we identify
a sufficient condition for the vanishing gradient problem to occur in MLPs (Section 4.2). We
then (Section 4.3) use these models to understand the interplay between number of neurons in a
layer, mean and standard deviation of the weight distribution and gradient magnitudes. Using
the lessons learnt from the theory, in Section 4.4 we derive a new initialization method that should
prevent vanishing gradients at least at the very beginning of the training process. The method sets
the mean initial weights to max(-1, -8 / number of neurons in layer). In Section 5 we report
results of experiments with six classification problems (Section 5.1) using deep neural networks
with 10 and 15 hidden layers and 10 and 100 neurons in the hidden layers. More specifically,
we first corroborate the predictions on initial gradients obtained from the theory (Section 5.2),
finding that they were accurate. Then (Section 5.3), we train neural networks initialized with our
method and three other initialization methods proposed in the literature, finding that, with our
initialization, the networks do not suffer from the vanishing gradient problem at all, suggesting
that our initialization method is an effective solution to the vanishing gradient problem. We discuss
the lessons learnt from theoretical and empirical evidence in Section 5.4. Finally, in Section 6,
we present some conclusions, highlight limitations of the work and describe possible avenues for
future research.

2. Multilayer Perceptron

2.1. Normal Operation
An MLP consists of multiple layers of neurons connected by corresponding layers of weights.
Let al be a vector representing the activation of the neurons in layer l. If l is not the output

layer, this can also be considered as the input vector for the neurons in layer l + 1. Let wl be a
matrix representing the weights between layer l and layer l + 1.2 Let net l be net input vector of
layer l, which has elements

net lj = wl−1
0j +

∑
i

al−1
i wl−1

ij , (1)

where

alj =

{
f(net lj) if 1 < l ≤ L,

xj if l = 1,
(2)

1Over time, several improvements to SBP have been developed including gradient-based and non-gradient-based
ones [19, 20, 21, 22, 23, 24, 25]. Naturally, the vanishing gradient problem and, so, our results, are not relevant for
methods that are not based on gradient descent. Also, here we only consider gradients under the SBP learning rule,
leaving extensions of the work to gradient-based improvements of SBP to future research (as discssed in Section 6).

2Following standard convention, we include in this matrix also the bias vector wl
0 which includes the biases of

the neurons in layer l + 1.
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xj being the j-th element of input pattern x and f is the activation function. We will use the
logistic activation function in the experiments in this study, for which

f(net) =
1

1 + e−net
. (3)

2.2. Learning by Error Back-propagation

The aim of back-propagation is to decrease the error of the network calculated at the output
layer, by apportioning and back-propagating the “blame” to the weights using a gradient descent
on the error function. The error is the difference between the actual activation values in the
output layer and the desired values over the training set of the network. In vector form, the error
produced when training pattern xk is presented in input to the network is

ek = aL(xk)− yk, (4)

where aL(xk) is the activation vector of the last (L-th) layer in the presence of input pattern xk

and yk is the corresponding desired output vector.
Various methods have been proposed in the literature to evaluate training performance. In

this study we used the average cross-entropy loss, that is:

L = − 1

m

m∑
k=1

yk · log aL(xk), (5)

where m is the number of examples in the data set.
In the online version of the SBP learning rule, at each epoch, t, each weight is updated with a

fraction of the derivative of the error with respect to the weight, i.e.,

∆wl
ij(t) = ηδl+1

j ali, (6)

where η is the learning rate and

δlj =

ej if l = L,

f ′(net lj)
∑

i w
l
jiδ

l+1
i otherwise,

(7)

where ej in the error in output neuron j and f ′ is the derivative of the activation function f . For
the logistic function considered here, this can be written as f ′(net lj) = alj(1− alj). This equation
is applicable on the assumption that the output layer is a soft-max layer.

3. Prior Work the Vanishing Gradient Problem and Methods to Tackle It

The vanishing gradient problem is a major obstacle to the training of deep networks, especially
when using a sigmoidal activation function. In this section, we will review prior work on this
problem as well as attempts to solve it.

3.1. Vanishing Gradient Problem

The vanishing gradient problem was first identified in [12], in particular in the context of re-
current neural networks. As we indicated above, it occurs when gradients prematurely become
extremely small during the training, thereby preventing the network from learning. A correspond-
ingly problematic situation was also described, the exploding gradients problems, where gradients
grow exponentially bigger over time leading to instability that also prevent the network from
learning.

A theoretical exploration of this problem was provided in [26] for the case of recurrent neural
networks, which proved that a sufficient condition for vanishing gradients to occur in one such
network is that the spectral radius ρ of the weight matrix be smaller than a constant c = 1

maxx f ′(x) .

By inverting the direction of they proof, it was found that a necessary condition for the occurrence
of exploding gradients is that the spectral radius be larger than c. In the case of the sigmoid
activation function considered in here, c = 4.
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3.2. Methods to Tackle the Vanishing Gradient Problem

3.2.1. Pre-training and Normalization

Bengio et al. [27] proposed to use unsupervised greedy layer-wise pre-training. This method
initially trains the first hidden layer of a network and then adds a new hidden layer. The outputs
of the pre-trained layer are used as inputs for the added hidden layer. The process of adding and
pre-training layers continues until all hidden layers in the architecture have been processed. At
the end of pre-training, the algorithm adds an output layer and trains the whole network. This
method was reported to improve not only the network performance but also its generalization.
However, it may be computationally expensive depending on the depth of the network trained.

Batch normalization [28] is another technique to avoid the vanishing gradient problem. This
basically normalizes the net input values in the hidden layers before feeding them into the activa-
tion function. This technique was tested on a three-hidden-layered fully-connected network with
the logistic activation function, resulting in significantly accelerated learning.

3.2.2. Changing Activation Function

The Rectified Linear Unit (ReLU) [29] uses an activation function that was proposed to make
deep neural networks trainable. This function directly transfers the net input to the output of the
neuron when the net input is positive; otherwise, it sets the output to zero. Because the derivative
of ReLU is 1 when the net input is positive, the error can be propagated to the weights in the
earlier layers through the active neurons without getting smaller. Therefore, ReLU does not suffer
from the vanishing gradient problem as much as sigmoid activation functions. However, it suffers
from the so-called dying neuron problem: if there is a large gradient for a connection weight, when
the weight is updated, the corresponding neuron may become sufficiently inhibited to output zero
thereafter (or die). If a neuron dies, it can never be active again. Another drawback of ReLU is
that non-zero mean activations lead to the bias shift problem [30, 31, 32]. With ReLU, the mean
of the activations in the layers is bigger than zero. Therefore, layer by layer, the activations grow
bigger and bigger. This causes oscillations in the learning process.

To obviate to such problems, other versions of ReLU, such as the Leaky-ReLU [33] and
Parametric-ReLU [34], were introduced. The Leaky-ReLU and Parametric-ReLU produce non-
zero activations in the negative interval by replacing the constant part of ReLU with a linear
function with a very small slope. The slope of the line (α) is a predefined constant value (typically
0.01) in the Leaky-ReLU, while it is a parameter learnt by the network in the Parametric-ReLU.
These functions do not suffer from the dying neuron problem. However, Clevert et al. [30] reported
that these activation functions are not robust to noise.

The Exponential Linear Unit (ELU) [30] and Hyperbolic Linear Unit (HLU) [31] were proposed
to overcome this sensitivity to noise and the bias shift problem. ELU and HLU use the same
function as the other ReLU family functions in the positive interval. The difference is that they
are non-linear functions in the negative interval.

A related approach was presented in [35] which slightly improves the vanishing gradient problem
for the logistic activation function. More specifically, the authors found that adding a carefully
chosen small positive constant to the derivative of the logistic function made it possible to train
networks with up to 7 hidden layers.

3.2.3. Weight Initialization

Weight initialization is another approach that has been proposed to reduce the vanishing
gradient problem in deep networks. Glorot and Bengio [36] analyzed the difficulty of training
deep neural networks and proposed to initialize the connection weights for deep MLPs using the
distribution W l ∼ N (0, σ2), where σ =

√
2/(nl + nl+1) and nl is the number of neuron in layer l.

Learning in networks with the logistic, TanH and soft-sign [37] activation functions was analyzed
and compared. It was found that this method shows poor performance in networks where the
logistic activation function is used. Kumar [38] suggested that the distribution of initial weights

should vary according to activation function used and proposed to use σ = 3.6/
√
nl to initialize

networks with the logistic activation function.
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Unfortunately, these methods did not identify and directly address the root causes for the
vanishing gradient problem. So, they suffer from it in a very significant manner when networks
are deep and neurons use the logistic activation function.

4. Theoretical Derivation of a new Initialization Strategy

In this section we first develop a theoretical model that shows how the expected value of the
gradient in weight space is affected by the expected value of the initial weight distribution (Sec-
tion 4.1). Then, we extend the theory developed in [26] for recurrent neural networks (Section 4.2)
to the case of feed forward MLPs deriving a sufficient condition for vanishing gradients to occur in
such networks. We show that both theories imply that initial gradients may not vanish if weights
are initialized with a mean that is inversely proportional to the number of neurons in a layer (Sec-
tion 4.3). Finally, we determine that the proportionality constant should be negative and propose
a new initialization method based on this (Section 4.4).

4.1. Approximate Model of Expected Initial Gradients

In Section 2 we have reviewed the equations determining the dynamics of net lj , a
l
j , δ

l+1
j and

∆wl
ij . In this section, we want to perform an analysis of the magnitude of ∆wl

ij from these
equations at the very first iteration of the learning process, i.e., when a training example has been
propagated forward once and error has been back-propagated once, but the weights have not been
updated yet, in a batch-type back-propagation learning algorithm. We will perform our analysis by
introducing drastic approximations. However, results are reasonably accurate as will be confirmed
both theoretically (later in the rest of Section 4) and empirically (in Section 5.2).

In relation to the initialization phase of a network, the weights can be seen as stochastic
variables wl−1

ij ∼ N (µl, σ2).3 Because of this, also the net input net lj is a stochastic variable, and

so are the activations, alj , and the delta’s, δl+1
j .

The net input is a sum of products of stochastic variables. Let us consider its expectation.
From Equation (1), we have:

E[net lj ] = E
[
wl−1

0j +
∑
i

al−1
i wl−1

ij

]
= µl−1 +

∑
i

E[al−1
i wl−1

ij ]

= µl−1
(
1 +

∑
i

E[al−1
i ]

)
, (8)

where the last step is the result of al−1
i and wl−1

ij being initially uncorrelated and, so, E[al−1
i wl−1

ij ] =

E[al−1
i ]E[wl−1

ij ] = µl−1E[al−1
i ].

Note that this equation shows that E[net lj ] does not depend on j, so we can use the term E[net l]
to indicate the expected net input of any neuron in layer l. Note also that, with the exception
of the input layer, due to symmetries, initially E[ali] does not depend on i. So, we can use the
term E[al] to indicate the expected activation of any neuron in layer l. Thus, we can rewrite
Equation (8) as:

E[net l] = µl−1
(
1 +

∑
i

E[al−1]
)
= µl−1

(
1 + nl−1E[al−1]

)
. (9)

Let us now consider the expectation of al. By definition, we have that

E[al] = E
[
f(net l)

]
, (10)

3Normally µl = 0 for all l, but here we do not make this assumption. Also, we do not assume that all µl are the
same. However, for simplicity, we use the same σ for all l.
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where we omitted the subscript j for the reasons mentioned above. This cannot be computed
readily. However, as a first order approximation we have:

E[al] ∼= f
(
E
[
net l

])
. (11)

Then, substituting Equation (9) into this equation, we obtain the following approximate forward
propagation equation:

E[al] ∼= f
(
µl−1

(
1 + nl−1E[al−1]

))
. (12)

We should note that this equation gives us an approximate recursion which allows us to estimate
E[al] for the whole network. The initial condition for the recursion is E[a0] = E[x], E[x] being
the mean value of the input activation across all neurons and input patterns in the training set.

Turning now our attention on the expectation for the δ’s, we have

E[δl+1
j ] = E

[
f ′(net l+1

j )
∑
i

wl+1
ji δl+2

i

]
∼= E[f ′(net l+1

j )]E
[∑

i

wl+1
ji δl+2

i

]
, (13)

where the last step is true on the assumption that f ′(net l+1
j ) and

∑
i w

l+1
ji δl+2

i are weakly corre-

lated. Since δl+2
i and wl−1

ij are initially uncorrelated, the last equation transforms into:

E[δl+1
j ] ∼= E[f ′(net l+1

j )]
∑
i

E[wl+1
ji ]E[δl+2

i ]

= µl+1E[f ′(net l+1
j )]

∑
i

E[δl+2
i ] (14)

∼= µl+1f ′(E[net l+1
j ])

∑
i

E[δl+2
i ]. (15)

For the same reasons that E[net lj ] does not depend on j, so does any function of net lj . Hence, in

Equation (15), the subscript j can be omitted in f ′(E[net l+1
j ]). Because of this also E[δl+1

j ] does
not depend on the subscript j. Also, for reasons of symmetry (except for the output neurons),
E[δl+2

i ] does not depend on i. So, the previous equation can be rewritten as

E[δl+1] ∼= f ′(E[net l+1])µl+1nl+2E[δl+2]. (16)

Substituting Equation (9) into it, we obtain the following approximate backpropagation equation:

E[δl+1] ∼= f ′ (µl
(
1 + nlE[al]

))
µl+1nl+2E[δl+2]. (17)

We should note that, once the values of E[al] are known via Equation (12), Equation (17) gives
us a recursion that allows us to estimate E[δl+1] for the whole network. The initial conditions are
E[δL] ∼= E[aL](1 − E[aL])E[e] for the logistic activation function, where E[e] is the mean error
across all output neurons and teaching-input patterns in the training set.4

We should note that for specific activation functions, alternative formulations to Equation (17)
can be derived. For the logistic activation function f ′(net lj) = alj(1− alj). So, we can directly use
the more precise Equation (14), which can be rewritten as

E[δl+1] ∼= E[al+1(1− al+1)]µl+1nl+2E[δl+2]
∼= E[al+1](1− E[al+1])µl+1nl+2E[δl+2]. (18)

4In the initial conditions for the forward and backward recursions, we have ignored, without loss of generality,
the fact that the expected input E[x] and the expected error E[e] may differ from neuron to neuron. This is because
with all weights in a layer having the same mean in the first training epoch, any neuron-to-neuron differences in
E[x] and E[e] are averaged out at the level of first hidden layer and penultimate hidden layer, respectively.
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Similarly, for the hyperbolic tangent activation function f ′(net lj) = 1− (alj)
2 and, so, we have

E[δl+1] ∼= E[1− (al+1)2]µl+1nl+2E[δl+2]
∼= (1− E[al+1]2)µl+1nl+2E[δl+2]. (19)

With similar arguments we have that E[∆wl
ij ] does not depend on either i or j and, so, we

term it E[∆wl] hereafter. Then

E[∆wl] = ηE[alδl+1] ∼= ηE[al]E[δl+1], (20)

on the assumption that al and δl+1 are weakly correlated.
In conjunction with the results of the previous recursions for E[δl+1] and E[al], Equation (20)

allows one to estimate the expected initial gradients in weight-space for every layer in the network,
as a function of the choice of the mean initial weights µl, the depth of the network L, the number
of neurons in each layer nl, the characteristics of the problem with its encoding (represented by
E[x] and E[e]) and, of course, the learning rate η.

4.2. A Sufficient Condition for Vanishing Gradients in Feed-forward Networks

To obtain a more rigorous theory and one that would also apply to phases of training other
than the very beginning, in this section we adapt some of the theoretical results obtained in [26]
for recurrent networks to the case of feed-forward neural networks. For simplicity we considered
only the case of networks with equally sized hidden layers, i.e., where the weight matrices are
square.

Equations (1) and (2) can be combined and re-written in vector notation as:

al = f(Wl−1al−1 + bl−1) (21)

where subscripts represent layers and quantities in boldface represent vectors and matrices.
If f is a sigmoid, it is invertible (being monotonic). So, we can apply its inverse function, f−1,

to both sides of Equation (21) obtaining

f−1(al) = f−1(f(Wl−1al−1 + bl−1)).

Simplifying both sides produces

netl = Wl−1al−1 + bl−1.

Finally, this leads to
netl = Wl−1f(netl−1) + bl−1 (22)

which is the parametrization used in [26, Equation (2)] for recurrent neural networks.
Adapting the steps in [26, Equations (3)–(5)], computing the gradient of the cost function, E ,

to be minimised with respect to a generic weight θl from layer l, and applying the chain rule we
obtain:

∂E
∂θl

=
∂E

∂netL

∂netL
∂netl

∂netl
∂θl

, (23)

where
∂netL
∂netl

=
∂netL

∂netL−1

∂netL−1

∂netL−2
· · · ∂netl+1

∂netl
, (24)

L is the index of the output layer and ∂E
∂netL

is the error gradient at the output layer that we want
to back propagate. Then, using Equation (22), we obtain

∂netk
∂netk−1

= WT
k−1diag(f

′(netk−1))
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and
∂netl
∂θl

= f(netl−1).

Substituting these expressions in Equation (23), we obtain

∂E
∂θl

=
∂E

∂netL

(
L∏

k=l+1

WT
k−1diag(f

′(netk−1))

)
f(netl−1). (25)

This equation makes it clear that whether the gradients grow or shrink as l decreases (as we
move from the output to the input layer) depends on whether each additional factor of the form
WT

k−1diag(f
′(netk−1)) produces an amplification or a contraction.

To explore this, let us take the (operator induced)∞matrix norm, ||A|| = max1≤i≤n

∑n
j=1 |aij |,

of the term in bracket in Equation (25). Because this norm is submultiplicative, we have that∣∣∣∣∣
∣∣∣∣∣

L∏
k=l+1

WT
k−1diag(f

′(netk−1))

∣∣∣∣∣
∣∣∣∣∣ ≤

L∏
k=l+1

∣∣∣∣WT
k−1

∣∣∣∣ ||diag(f ′(netk−1))|| . (26)

By the definition of ∞ norm and diag(f ′(netk−1)), ||diag(f ′(netk−1))|| is the maximum element
of diag(f ′(netk−1)). Also, if we consider the logistic activation function, each such element is in
the interval [0, 1/4]. From these two facts, it follows that

||diag(f ′(netk−1))|| ≤
1

4
. (27)

Combining this result with Equation (26), we obtain∣∣∣∣∣
∣∣∣∣∣

L∏
k=l+1

WT
k−1diag(f

′(netk−1))

∣∣∣∣∣
∣∣∣∣∣ ≤

(
1

4

)L−l L∏
k=l+1

||WT
k−1||. (28)

This result implies that if for all k

||WT
k−1|| ≤ 4γ, (29)

where γ is a constant strictly smaller than 1, i.e., if the 1-norm5 of all weight matrices in the
network is strictly less than 4, then∣∣∣∣∣

∣∣∣∣∣
L∏

k=l+1

WT
k−1diag(f

′(netk−1))

∣∣∣∣∣
∣∣∣∣∣ ≤ γL−l, (30)

i.e., gradients decrease exponentially as they are propagated further and further back in the net-
work.

We should note that Equation (29) is a sufficient condition for gradients to vanish in a feed-
forward neural network with logistic activation function. This condition is related to the condition
on the spectral radius ρ < 4 introduced in [26] and mentioned in Section 3.1, which applies to
recurrent neural networks. This is because for any operator induced norm (including the norm ∞
used here), ρ(A) ≤ ||A||. So, our condition is weaker than that of [26].

4.3. Vanishing Gradients Problem in the Early Stages of Training

In this section we use the theoretical results obtained in Sections 4.1 and 4.2 to study the
potential presence of the vanishing gradients problem at the beginning of the learning process.

5The ∞ norm of the transpose of a matrix corresponds to the 1-norm of the matrix.
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4.3.1. Evidence from the Expected Gradients Model

If we unwind the recursion in Equation (17) and substitute the result in Equation (20), we
obtain

E[∆wl] ∼= ηE[al]f ′ (µl
(
1 + nlE[al]

))
µl+1nl+2f ′ (µl+1

(
1 + nl+1E[al+1]

))
µl+2nl+3.... (31)

Of course, at this stage, we know nothing about the cumulative effect on the end result of the
approximation made in the derivations in Section 4.1. However, qualitatively this equation gives
as the following useful indications that we will later verify both theoretically and empirically:

1. |µl| < 1 exponentially reduces errors, |µl| > 1 exponentially amplifies them: In
Equation (31), if |µl| > 1 for all l, then |µl × µl+1 × · · · | grows exponentially. Conversely,
if |µl| < 1, |µl × µl+1 × · · · | decreases exponentially. More precisely, if µ̄l is the geometric
mean of |µl|, |µl+1|, etc., then |µl × µl+1 × · · · | = (µ̄l)L−l.

Given this observation, if µl = 0 for all l, we have that µ̄l = 0. As a result, E[∆wl] ∼= 0
in every layer. So, the traditional choice of µl = 0 may be an initial cause of the vanish-
ing gradients problem. If this prediction is correct, we should expect better initial error
backpropagation (and potentially an improvement on the vanishing gradient problem) if we
initialize the weights using µl sufficiently different from zero.

2. Logistic-function derivatives exponentially reduce back-propagated errors: With
the logistic activation function we have that f ′ ≤ 0.25. So, in Equation (31), for any l, we
have that f ′ (µl

(
1 + nlE[al]

))
≤ 0.25. The presence of L−l terms of this form in the equation

implies that, together, they scale down the gradient by at least a factor (0.25)L−l, as errors

are back propagated. More precisely, if f̄ ′l is the geometric mean of f ′ (µl
(
1 + nlE[al]

))
,

f ′ (µl+1
(
1 + nl+1E[al+1]

))
, etc., then gradients will be scaled down by a factor (f̄ ′l)L−l.

Both this observation and directly Equation (31) suggest that to have some hope of success-
fully back-propagating errors initially, the choice of values of µl for all l, must be such as to
ensure that E[al] (via Equation (12)), f ′ (µl

(
1 + nlE[al]

))
, f ′ (µl+1

(
1 + nl+1E[al+1]

))
, etc.

are also sufficiently different from zero. In other words, neurons must not be in saturation.

3. The wider a network, the better it back-propagates errors: Equation (31) makes it
clear that terms of the form nl contribute to countering the above-mentioned error-reducing
tendency, as, typically, nl > 1, and, so, nl × nl+1 × · · · grows exponentially. More precisely,
if n̄l is the geometric mean of nl × nl+1 × · · · , then the error amplification produces by the
n terms grows like (n̄l)L−l.

Interestingly, all this implies that wider networks initially back propagate errors better than
narrower ones, everything else being equal.

Given these observations, we can see that Equation (31) effectively predicts that errors will be
back-propagated without attenuation if the three exponential relationship discussed above balance
each other in such a way that

(µ̄l × f̄ ′l × n̄l)L−l ≥ 1. (32)

which, for a generic l, implies

µ̄l × f̄ ′l × n̄l ≥ 1. (33)

Because the product of geometric means is the geometric mean of the products, a simple choice
of µl and nl that guarantees this balance is one where

|µl|nl f ′(µl(1 + nlE[al])) ≥ 1. (34)

Solving this equation for |µl|, produces

|µl| ≥ 1

nl f ′(µl(1 + nlE[al]))
. (35)

Because f ′ ≤ 0.25, one might think that, in principle, Equation (35) would be satisfied if
|µl| ≥ 4

nl . However, this is not the case as f ′ = 0.25 only when the net input is zero. So,
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f ′(µl(1+nlE[al])) = 0.25 only if µl = 0, which as we know makes all gradients zero in expectation.
So, we need to set:

µl =
d

nl
. (36)

with |d| sufficiently bigger than 4 for every l. However, in general, there exist also an upper limit
on |d|, as too large a value would lead to large |µl| which would saturate the neurons in either
direction, leading to f ′ ∼= 0 and E[∆wl] ∼= 0.

Within these limits for |d|, the choice of µl suggested in Equation (36) might remove a potential
initial cause for the vanishing gradient problem and, in fact, might even produce initial gradients
that grow (rather than shrink) as we move from the output layer towards the input layer.

4.3.2. Evidence from the Matrix Model

Because most initialization methods draw initial weights from a Normal distribution (e.g., see
Section 5.3.2), focusing on the very first iteration of training, we can assume that the matrices
Wk are random with i.i.d. entries drawn from a normal distribution N (µ, σ2). Let us focus on
the ∞ norm of a generic one, which we will call W. By definition

||W|| = max
1≤i≤n

n∑
j=1

|wij | (37)

where wij ∼ N (µ, σ2). The terms |wij | are i.i.d. according to |wij | ∼ F(µf , σf ), where F is a

folded normal distribution with mean µf = σ
√

2
π e

−µ2/2σ2

+µ(1−2Φ(−µ
σ )) and standard deviation

σf =
√
µ2 + σ2 − µ2

f , where Φ is the normal cumulative distribution function. As a result, for large

enough numbers of neurons, n, by the central limit theorem, the sum of the absolute values of the
elements in each row in Equation (37), Si =

∑n
j=1 |wij |, follows the distribution Si ∼ N (µs, σ2

s)

where µs = nµf and σs =
√
nσf . So, si =

Si−µs

σs
is a standard normal variable. Extreme value

theory (in particular, the Fisher-Tippett-Gnedenko theorem) indicates that

E

[
max
1≤i≤n

si

]
≈ (1− γ)Φ−1(1− 1/n) + γΦ−1(1− 1/(e n)), (38)

where Φ−1(.) is the inverse of Φ, i.e., the Probit function, and γ ≈ 0.5772156649 is the Euler-
Mascheroni constant. Thus,

E [||W||]

= E

[
max
1≤i≤n

Si

]
= µs + σsE

[
max
1≤i≤n

si

]
≈ µs + σs

(
(1− γ)Φ−1(1− 1/n) + γΦ−1(1− 1/(e n))

)
= nµf +

√
nσf

((
1− γ)Φ−1(1− 1/n) + γΦ−1(1− 1/(e n))

))
= n

(
σ

√
2

π
e−µ2/2σ2

+ µ
(
1− 2Φ

(
−µ

σ

)))

+
√
n

√√√√µ2 + σ2 −

(
σ

√
2

π
e−µ2/2σ2 + µ

(
1− 2Φ

(
−µ

σ

)))2

(39)

×
((
1− γ)Φ−1(1− 1/n) + γΦ−1(1− 1/(e n))

))
.

The accuracy of this formula has been verified for many values of n, σ and µ, by creating 100
random matrices for each setting and computing the mean and standard error of the mean their
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norms. Some representative results will be reported in Section 5.4 (Table 3). However, in all cases
the estimates from Equation (39) are correct within experimental errors.

As an approximation, we can interpret our sufficient condition for gradients to vanish in Equa-
tion (29) as E [||W||] < 4. Substituting Equation (39) in it yields:

4 > n

(
σ

√
2

π
e−µ2/2σ2

+ µ
(
1− 2Φ

(
−µ

σ

)))

+
√
n

√√√√µ2 + σ2 −

(
σ

√
2

π
e−µ2/2σ2 + µ

(
1− 2Φ

(
−µ

σ

)))2

(40)

×
((
1− γ)Φ−1(1− 1/n) + γΦ−1(1− 1/(e n))

))
.

While this is a complex formula, it is easy to study theoretically in special cases and it is also
easy to implement numerically. Therefore, it makes it possible to study under which combinations
of µ, n and σ the vanishing gradient problem is guaranteed to be present at the beginning of the
training process.

Let us consider Equation (40) in two cases: (1) the traditional initialization with µ = 0 and
any σ, and (2) the case |µ| ≫ σ which practically guarantee that the entries in W are either all
positive or all negative:

1. In the µ = 0 case, Equation (40) simplifies to

4 > σ

[
n

√
2

π
+ σ

√
n(1− 2/π)

((
1− γ)Φ−1(1− 1/n) + γΦ−1(1− 1/(e n))

))]
. (41)

If the typical value of σ = 0.1 is used to initialize a network, this is satisfied for any network
with n < 40 neurons in the hidden layers. In the typical conditions µ = 0, σ = 0.1 and
n < 40, gradients will be guaranteed to be vanishingly small at the first epoch of training.

2. If we now consider the |µ| ≫ σ case, we have that terms of the form e−µ2/2σ2

are approxi-
mately 0, while Φ

(
−µ

σ

)
≈ 0 if µ > 0 and Φ

(
−µ

σ

)
≈ 1 otherwise. So, 1− 2Φ

(
−µ

σ

)
= |µ| and

Equation (40) becomes:

4 > n|µ|+
√
nσ
((
1− γ)Φ−1(1− 1/n) + γΦ−1(1− 1/(e n))

))
. (42)

In this case, we see how |µ| and σ each contribute linearly to E[||W||], with |µ| having a
much larger coefficient than σ. In any case, it is clear that if one set |µ| > 4/n, the first term
of the equation is, on its own, bigger than 4 and, so, the weight matrix would not satisfy
the sufficient condition for the vanishing gradients problem to occur.

In practice, when |µ| ≫ σ, for a typical value of σ = 0.1, the sufficient condition for initially
vanishing gradients is only satisfied with particular choices of n and |µ|, such as n ≤ 11
and |µ| = 0.3, n ≤ 8 and |µ| = 0.4, n ≤ 7 and |µ| = 0.5, etc. That is, when |µ| ≫ σ
the sufficient condition for the vanishing gradients problem can be met only for very narrow
networks, suggesting that in general the use of |µ| ̸= 0 may be beneficial in relation to
ensuring gradients do not vanish.

We should note a special instance of the |µ| ≫ σ case is when |µ| ≠ 0 (but finite) and σ → 0.
In this case, from Equations (40) and (42), the sufficient condition for the vanishing gradient
problem to initially occur simplifies to n × |µ| < 4 for the logistic activation function. To avoid
this condition then one should set µ = d/n where |d| ≥ 4 (at least), which is exactly the same
result we obtained independently with our approximate model of expected gradients at the end
of Section 4.3.1. This suggests that the approximations we introduced to develop the theory in
Sections 4.1) did not render its conclusions useless.
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Table 1: Information on the data sets used in this study

Problem Inst. NF Classes IM E[x] after normalization

Mux 128 6 2 0.0000 0.500000
Iris 150 4 3 0.0000 0.614489
Wine 178 13 3 0.0125 0.562137
Authorship 841 70 4 0.0833 0.252697
BCW 699 9 2 0.0963 0.289938
DNA 3186 180 3 0.0776 0.252671

4.4. New Initialization Method

While the analyses in Sections 4.3.1 and 4.3.2 identified the need to set µ ̸= 0 and inversely
proportional to the number of neurons in the hidden layers when σ is small, they did not specify
whether the proportionality constant, d, should be positive or negative. Fortunately, this is easily
determined by reasoning on the issue or with different forms of numerical simulations (including
the results in Section 5.2).

For instance, we can iterate the approximate forward-propagation equation (Equation (12),
starting from typical values of E[x] such as the ones reported in Table 1, when µl = d/nl for a
variety of positive and negative values of d such that |d| ≥ 4. Doing so, one finds that, when d ≥ 4
(positive), the sequence E[al] rapidly converges to a value very close to 1 (saturation), resulting in
all the f ′ terms in Equation (31) being near 0, leading gradients to vanish. On the contrary, when
d ≤ −4 (negative), with the same initial conditions, the sequence E[al] is oscillating (with period
2) and converges to an asymptote, E[a∞] (that does not depend on E[x]), that neither completely
saturates nor completely inhibits the neurons. For instance, E[a∞] = 0.218544 for d = −8 and
E[a∞] = 0.133642 for d = −4.

Because of this, for networks with logistic activation function, to avoid initially vanishing
gradients, it seems reasonable to set µl according to Equation (36) with d ≤ −4 so that µl < 0,
for all hidden layers.

Finally, we should note that in networks with narrow layers (or with very few input neurons)
Equation (36) results in very large (in absolute value) values of µl. We think it is reasonable avoid
such extremes and set a lower limit, µmin , for µ

l.
Based on the analysis and discussion in this and the previous sections, we propose the following

New Initialization Method (NIM) for MLPs using the logistic activation function:

wl ∼ N
(
max

(
µmin ,

d

nl

)
, σ2

)
, (43)

where σ = 0.1 as standard, µmin = −1 somewhat arbitrarily and d = −8 as this value combats
the decline in the magnitude of gradients better than the threshold value, d = −4.

5. Experimental Results

5.1. Benchmark Problems

As indicated in Section 1, we used six classification problems in our experiments: the iris,
wine, analcat data authorship (authorship), DNA, breast cancer (BCW) and 4-bit multiplexer
classification problems from the Penn Machine Learning Benchmarks [39, 40]. Information of
these data sets — number of instances (Inst.), number of features (NF), number of class (Classes),
imbalance metric (IM) and mean input E[x] (after [0, 1] normalization) — is provided in Table 1.
IM (from [40]) shows the level of class imbalance of the instances in each data set.
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5.2. Empirical Estimation of Initial Gradients in Deep Networks

In order to verify our predictions that negative values of µ could be beneficial to initially counter
the vanishing gradient problem, we did the following experiment: (1) we initialized deep networks
of different widths (number of neurons in each hidden layer) with distributions of weights having
a range of different means, µ, both positive and negative (the same µ for all layers); (2) the weight
distributions were Gaussian with standard deviation 0.1 in all cases; (3) we performed one step of
forward propagation of the training set and one of error back-propagation using Equations (1)–
(7), recording the mean |∆w| in all layers. We repeated this process for the different problems in
Table 1, testing 30 different initial random seeds for each problem and averaging the corresponding
results.

As an illustrative example (very similar results were obtained for all other problems and
depths), Figure 1 shows the mean |∆w| for the input layer and several other layers in the network,
for the authorship problem in networks with 15 hidden layers and a varying number of neurons,
n ∈ {30, 40, 50, 60, 70, 80, 90, 100}, in the hidden layers. Figure 2 represents the same quantities
at a finer resolution (n = 30, 31, · · · , 99, 100) using heat maps.

As one can see in Figures 1.1–1.4 and 2.1–2.4, for most layers, the magnitude of the initial
weight changes, |∆w|, is non-zero for negative values of µ. For such layers, we see how the optimal
µ is negative and is inversely proportional to the number of neurons in a layer, as we postulated
in Section 4 (for reference in Figure 2 we plotted the line µ = − 8

n ). However, as we move closer to
the output layer, a phase transition occurs. First, we see the emergence of a second optimum near
µ = 0 (or for slightly positive µ), as illustrated in Figures 1.5 and 2.5. This, then, becomes the
only optimum as we move further towards the output layer, as illustrated in Figures 1.6 and 2.6.

From the figures we also see that the initial gradients in the input layer and several hidden
layers near it are very sensitive to the specific value of µ (that is, the values of |∆w| decay quite
rapidly as we move away from the optimal µ). On the contrary, a much broader set of µ values
(both positive and negative) provide appreciable gradients in hidden layers near the output layer.

This confirms the prediction of our theoretical analysis that µ = 0 may lead to initially vanish-
ing gradients. The data show that while the standard practice of setting µ = 0 gives good initial
gradients in the output layer and hidden layers near it, it results in near-zero gradients in the
input layer and many hidden layers. On the contrary, selecting a negative value of µ that gives a
good initial gradient in the input layer (such as µ = −0.1 for the authorship problem) produces
non-zero initial gradients everywhere in the network.

5.3. Training Deep Networks after our New Initialization

In both the analysis in Section 4 and its empirical corroboration in Section 5.2, we focused
on initial gradients. The question we now need to address is to what degree initializing weights
with a optimal negative µ solves the vanishing gradient problem when we continue training the
network with the SBP algorithm for many interactions. In this section, we address this question.

5.3.1. Network Structures and Meta-parameters

In these experiments, we also used the problems in Table 1 to verify the benefits of our initial-
ization method over multiple training epochs.

The network structures (number of neurons in the layers and number of layers) are shown in
Table 2. These were chosen so as to represent both relatively compact and relatively big deep
networks. The input layer of each network consisted of as many neurons as the features in the
problem. The output layer of each network had as many neurons as the number of classes in that
problem. All other layers had an equal number of neurons, n. All networks were trained using
a learning rate of η = 0.25. For each problem we used two network structures to test whether
the initialization method is sensitive to network size: one with 10 hidden layers of 10 neurons
each (having of the order of 1,000 weights and 100 neurons) and one with 15 hidden layers of 100
neurons each (with approximately 150,000 weights and 1,000 neurons).
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1.1 |∆w| between layers 0 and 1 (first layer). 1.2 |∆w| between layers 3 and 4.

1.3 |∆w| between layers 6 and 7. 1.4 |∆w| between layers 9 and 10.

1.5 |∆w| between layers 12 and 13. 1.6 |∆w| between layers 14 and 15 (last layer).

Figure 1: Mean |∆w| for the authorship problem for a network with 15 hidden layers and different numbers of
neurons, n, in several representative layers.
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Figure 2: Heat maps representing the mean |∆w| for the authorship problem for a network with 15 hidden layers
and different numbers of neurons, n, in several representative layers.
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Table 2: Network structures adopted for different test problems used for comparing different forms of initialization

Problem Number of
hidden layers

Number of neurons
in each hidden layer

Iris 10 10
Wine 10 10
Authorship 10 10
DNA 10 10
Mux 10 10
BCW 10 10

Iris 15 100
Wine 15 100
Authorship 15 100
DNA 15 100
Mux 15 100
BCW 15 100

5.3.2. Initialization Methods Compared

Except with NIM, when a network is initialized with random weights, the values are usually
assigned using a zero-mean normal distribution with a small standard deviation such as 0.01, 0.05,
0.1 and 0.2. To determine if NIM was competitive with other methods, we pitted it against a
Standard Initialization Method (SIM ), Glorot and Benjo’s method [36] and Kumar’s method [38]
(both reviewed in Section 3). So, we compared the following distributions of initial weights:

SIM : W l ∼ N (0, 0.01),

Glorot : W l ∼ N (0, 2/(nl + nl+1)), (44)

Kumar : W l ∼ N (0, 12.96/nl),

NIM : W l ∼ N (max(−1,−8/nl), 0.01),

where nl is the number of neurons (including bias) in layer l.

5.3.3. Results

Figures 3 and 4 show plots of the average cross-entropy loss and test- and training-set accuracy
when training networks initialized with the four initialization methods mentioned above for the
problems in Table 1. Results are medians of 30 independent runs.6

As shown in the figures, in SIM- and Glorot-initialized networks both the median loss and the
median accuracy get stuck to sub-optimal values. This is because, with such initializations, SBP
could not train the network to solve any of the test problems in any of the independent runs. On
the contrary, with NIM and Kumar initialization, the standard back-propagation can train the
networks successfully in nearly all problems and in nearly all independent runs.7 A key difference
between NIM and Kumar is that with NIM both the loss and the accuracy start improving straight
away, while with Kumar it typically takes several thousand epochs before loss and/or accuracy
improvements start being appreciable.

Overall, the results corroborate our theoretical analyses and the hypothesis that focusing on
initial gradients is an effective approach to understanding and dealing with the vanishing gradient
problem in deep neural networks with logistic activation function. They demonstrate that when
starting from good initial conditions (i.e., from a state where gradients are not vanishingly small
everywhere in a network) even a normal gradient descent by SBP can be extremely efficient and
effective at training deep networks.

6Please note, we do not report a testing accuracy for the Mux problem as this is identical to the training accuracy
given that this problem requires learning a full truth table.

7The only exception is Mux for networks with 15 hidden layers where, with both NIM and Kumar initialization,
there was good progress but the 10,000 training epochs used here were insufficient to complete the training.
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Figure 3: Results for our six test problems when the SIM, Glorot, Kumar and NIM methods are used to initialize
networks with 10 hidden layers and 10 neurons in each hidden layer.

5.4. Are Sufficient Conditions Sufficient?

In the previous section we have seen that NIM presents remarkable advantages in relation to
effectively and efficiently training deep networks over other initialization methods. However, we
also found that Kumar’s method was successful, albeit requiring a longer training process. On the
contrary, SIM and Glorot’s methods were completely unsuccessful. In this section we want to try
and understand the reasons for these results.
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Figure 3: (Cont.) Results for our six test problems when the SIM, Glorot, Kumar and NIM methods are used to
initialize networks with 10 hidden layers and 10 neurons in each hidden layer.

5.4.1. Initial Weight Matrix Norms

We start by looking at the norms of the initial weight matrices created by different initialization
algorithms (see Table 3), to see if the theoretical conditions on ||W|| for the vanishing gradient
problem to occur are actually sufficient to explain the success or otherwise in training networks
when using different initialization algorithms. What we mean by this is the following: while
||W|| < 4 is only a sufficient condition, one might postulate that beyond a certain threshold or
phase-transition value for the initial ||W||, SBP would start from an initial state where gradients
are not vanishingly small, which then would lead to successfully training the network. Conversely
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Figure 4: As in Figure 3 but for networks of depth 15 with 100 neurons in each hidden layer.

one might expect that below such a phase-transition value, SBP might struggle.
To test this hypothesis, in Table 3 we report both theoretical and numerical estimates for

E [||W||] for different algorithms and layer widths. The values of the parameters in each row were
determined using Equations (44).

Focusing on the case n = 10, we see that both SIM and Glorot produce E [||W||] < 4. So, for
such methods and layer width, initial gradients are guaranteed to be vanishing in corresponding
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Figure 4: (Cont.) As in Figure 3 but for networks of depth 15 with 100 neurons in each hidden layer.

networks, which may be the reason why SBP cannot train them.8 The success of NIM and Kumar,
and the correspondingly higher E [||W||] (8.5 and 12.5, respectively), suggest that the postulated
phase-transition value for ||W|| might be between 4 and 8.5.

If we now look at the case n = 100, we see some similarities and differences. The similarities
are that both SIM and Glorot have the smallest E [||W||] of the four algorithms, and SBP fails to

8Here we focus on E [||W||] because standard deviations, StdDev [||W||], are only a fraction (approximately 11%
for n = 10 and 3% for n = 100) of E [||W||]. One could replace E [||W||] with E [||W||]+ 3× StdDev [||W||], should
more precision on the argument be required.
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Table 3: Theoretical and numerical estimates of E [||W||] for the different initialization methods considered in this
paper. Theoretical estimates are from Equation (39). Numerical estimates are based on averages of the norm of 100
random weight matrices per configuration. SEM stands for Standard Error of the Mean. Corresponding standard
deviations are 10× SEM.

Initialization method µ σ n Eq. (39) Mean±SEM
SIM 0.00 0.10 10 1.10 1.10 ± 0.012
Glorot 0.00 0.32 10 3.47 3.50 ± 0.039
NIM -0.80 0.10 10 8.50 8.49 ± 0.017
Kumar 0.00 1.14 10 12.50 12.69 ± 0.142
SIM 0.00 0.10 100 9.50 9.52 ± 0.026
Glorot 0.00 0.10 100 9.50 9.54 ± 0.025
NIM -0.08 0.10 100 12.29 12.36 ± 0.033
Kumar 0.00 0.36 100 34.22 34.44 ± 0.104

train corresponding deep networks. Like for the case n = 10, we also see that Kumar produces the
largest initial E [||W||] (34.22 vs. 12.29 for NIM). In this case too, SBP is successful after NIM
and Kumar’s initialization. However, in this case the postulated phase-transition value for ||W||
would need to be bigger than for n = 10: somewhere in between 9.5 and 12.29.

This suggests that while ||W|| needs to be above a certain value to make it possible for SBP
to train a network, other factors may be at play, in that this threshold value appears to depend
on n.

5.4.2. Magnitudes of Gradients

To further analyse the reasons for the success of NIM and Kumar and the failure of SIM and
Glorot, we recorded the average of the magnitudes of the gradients measured in each layer over
time. As a representative example, Figure 5 reports the results for the Iris problem and a network
with 10 hidden layers for the four initialization methods.9 For networks initialized with SIM and
Glorot, we used a log-log scale because all the dynamics is concentrated in the first 70 or so training
epochs.

Focusing on the first epoch of training, with all three initialization methods where µ = 0 (SIM,
Glorot and Kumar), in Figure 5 initially we see reasonably big gradients near the output layers
which become smaller and smaller as we move towards the input layer, as we also observed in
the simulations described in Section 5.2. So, initially all three methods suffer from the vanishing
gradients problem, although the bigger the σ, and hence the bigger the ||W||, the bigger the
initial gradients. Indeed, for n = 10, Kumar’s method has a σ approximately 10 times bigger
than that of Glorot’s method and over 100 times bigger than that of SIM and correspondingly the
initial gradients observed in the three methods are |∆w| ∈ [10−4, 0.04], |∆w| ∈ [10−8, 10−2] and
|∆w| ∈ [10−13, 10−3], respectively.

In terms of temporal dynamics, as shown in Figure 5, with all three methods, within the
first few tens of training epochs, all gradients become very small, thereby apparently freezing the
networks, into a very-low-gradient state from which it is very hard to recover, at least judging
from the fact that the loss function (Figure 3(top left)) stops decreasing.

However, in the case of Kumar, the network is not entirely frozen as after a few thousand
epochs (two thousand, in the case of the Iris problem) the loss function suddenly starts decreasing
eventually leading to successfully learning. In the case of the Iris problem, during the period of
constant loss, the training-set accuracy (Figure 3(top right)) kept growing from the initial 33.3%
to over 70% indicating that under the bonnet significant changes were talking place. However,
for most other problems no changes in accuracy can be observed in that period. In all cases, the
sudden drop in loss function appears to be associated with a state where hidden layers near the
input layer have fairly large gradients and such gradients are bigger than those in layers closer

9The gradient magnitudes of the very last layer are not plotted as the networks use a soft-max output layer.
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Figure 5: Mean |∆w| in each layer when for a network with 10 hidden layers for four different initialization methods
in the Iris problem.

to the output layer. As shown in Figure 3(top left) this “high input-gradients state” is what is
required for the loss function to drop.

In the case of NIM, the situation is quite different. Firstly, in the first iterations, the network
is already in a high input-gradients state, the gradients in the input layer being the biggest (see
dark blue line in Figure 5(bottom right)), thus corroborating the prediction we made at the end of
Section 4.3.1. Also, from such an initial state, unlike with SIM, Glorot and Kumar, the gradients
grow progressively bigger, rather than smaller, for 400 epochs or so. Following this phase, the
dynamics is not monotonic and there are bursts where gradients become even bigger. However, in
all cases, the biggest gradients are at the level of the input layer. This seems to be the reason why,
for NIM, both the loss function and the accuracy grow fairly smoothly and rapidly. For instance,
for Iris, NIM allows SBP to obtain an accuracy of 80% within tens of epochs whereas with Kumar
SBP does not get there for several thousand of epochs, and with SIM and Glorot SBP never gets
there.

5.4.3. Two Theories are Better than One

It is clear from the observations in the previous two sections, that looking at ||W||, as we did
when developing the theory in Section 4.2, can only partially capture the reasons for the vanishing
gradients problem. So, while it can explain the relative magnitude of initial gradients in SIM,
Glorot and Kumar, on its own, it does not explain why NIM produces so much better gradient
descents than other initializations.

Similarly, the theory developed in Section 4.1 predicts that all gradients should be zero if µ = 0
and can be non-zero only with an appropriate choice of µ ̸= 0. While this does explain why initial
gradients are big and larger in the input layers than anywhere else for NIM, it does not capture
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the fact that while small, gradients are non-zero in Kumar, Glorot and SIM.
The two theories are complementary, but neither on their own nor together they appear to

be able to explain why with Kumar initialization there is significant dynamics in classification
accuracy, but not in the loss function, and why after thousands of generations eventually large
gradients emerge and finally the training is successful.

6. Conclusions

There has been relatively little research on the root cause and the solution of the vanishing
gradient problem in deep networks using the sigmoid activation functions, very few papers on this
topic having being published in the last 20 years. Perhaps this is natural, since interest rapidly
shifted towards other activation functions such as ReLU, PReLU and LReLU, that did not suffer
from this problem, leaving the issue unsolved.

In this paper, we wanted to understand to what extent the vanishing gradient problem depends
on the choice of the initial weight distribution in networks using a sigmoid activation function. Our
hypothesis was that if one could start the training of a deep neural network from an initial position
where gradients were non-vanishing, this might allow the standard back-propagation algorithm to
succeed in training the network.

We started (Section 4) by developing two theoretical models that shows how the expected
value of the gradient is affected by the expected value and the standard deviation of the initial
weight distributions as well as the number of neurons in a layer. Using the lessons learnt from the
theory, we then derived a new initialization method (NIM) that was designed to prevent vanishing
gradients at least at the very beginning of the training process.

In Section 5, we empirically verified the predictions on initial gradients obtained from the
theory for the logistic activation function finding that they are essentially correct. We also tested
to what extend starting from such a good initial position in weight-space, the vanishing gradient
problem could be reduced in networks with the logistic activation function. To do so we used a set
of standard benchmark classification problems (four multi-class and two binary), including real-
world, large-scale problems, also comparing NIM to three other initialization algorithms proposed
in the literature. We found that when a network is initialized with NIM, the back-propagation
algorithm was both successful and efficient at training deep networks with 10 and 15 hidden layers
(and 10 and 100 neurons per hidden layer, respectively). In other words, NIM appears to solve
the vanishing gradient problem. Another initialization algorithm, Kumar, was also able to solve
all test problems but it required between one thousand and five thousand more epochs, depending
on network size and problem complexity.

Also, at the end of Section 5, we analysed the reasons for the relative performance differences
offered by different initialization algorithms, finding that our theoretical models offer explanatory
insights, but they still do not capture the full picture, in particular in relation to the delayed
training success associated with Kumar’s method. This is a limitation of this work.

The study has also other limitations. For instance, while we developed our theoretical models
in such a way that they could accommodate other sigmoid activation functions, all empirical
validation of ideas and study of the learning process were conducted only for the logistic activation
function. In the future, we plan to use other sigmoid activation functions (such as TanH) to see
whether our methods can model and optimize initial gradients leading to successfully training
deep neural networks based on such activation functions. Also, we only tested our initialization
method with a limited number of problem. So, in the future, we will also want to see whether our
methods work on a wider range of problems.

In the future we also want to consider more sophisticated forms of training, including the use
of a momentum term [3], Rprop [41], RMSprop [23] and Adam [24]. Furthermore, it is clear from
the theory, that it would be possible to refine our initialization rule so as to consider the expected
input, E[x]. Also, in this work, we optimized the initial (epoch 0) gradients. However, if one used
numerical optimization to identify optimal values of µ and σ in each layer, one could perform not
just one pass of forward and backward propagation but a few, thereby being able to get a better
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idea of the initial dynamics of the gradients, likely yielding better choices of parameters. We will
explore this in the future.

Most modern deep neural networks draw their power from their use of the ReLU activation
function (or related functions). Naturally, there are many symmetries at the beginning of the
training process even in such networks. So, there is the theoretical possibility that, with a suitable
initialization strategy, the negative effects of symmetries could be reduced, thereby speeding up
the learning process. Naturally, in this case the solution will not be in the form of an initial
weight distribution with a negative mean, as this would cause most ReLU neurons to die straight
away even before the learning process starts. In future research we will extend our theoretical
approaches to ReLU-type activation functions to see whether anything can be learnt from this in
relation to initializing modern deep neural networks.

Finally, the vanishing gradient problem is particularly insidious in applications involving re-
current neural networks. We believe most of the work presented here would be applicable to such
networks with the proviso that l (the layer number) must be interpreted to represent time and
that all W ’s, µ’s, and n’s do not depend on l. As a result, we believe our initialization method
could speed up learning also in recurrent neural networks based on the logistic activation function.
We hope to be able to explore in more depth and test this in future research.
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