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Abstract

We study the expressive power of deep ReLU neural networks for approximating
functions in dilated shift-invariant spaces, which are widely used in signal processing,
image processing, communications and so on. Approximation error bounds are estimated
with respect to the width and depth of neural networks. The network construction is based
on the bit extraction and data-fitting capacity of deep neural networks. As applications
of our main results, the approximation rates of classical function spaces such as Sobolev
spaces and Besov spaces are obtained. We also give lower bounds of the Lp(1 ≤ p ≤ ∞)
approximation error for Sobolev spaces, which show that our construction of neural network
is asymptotically optimal up to a logarithmic factor.

Keywords: deep neural networks, approximation complexity, shift-invariant spaces,
Sobolev spaces, Besov spaces

1 Introduction

In the past few years, machine learning techniques based on deep neural networks have been
remarkably successful in many applications such as computer vision, natural language process-
ing, speech recognition and even art creating [LeCun et al., 2015, Gatys et al., 2016]. Despite
their state-of-the-art performance in practice, the fundamental theory behind deep learning
remains largely unsolved, including function representation, optimization, generalization and
so on. One cornerstone in the theory of neural networks is their expressive power, which has
been studied by many pioneer researchers in many different aspects such as VC-dimension and
Pseudo-dimension [Bartlett et al., 1999, Goldberg and Jerrum, 1995, Bartlett et al., 2019],
number of linear sub-domains [Montufar et al., 2014, Raghu et al., 2017, Serra et al., 2018],
data-fitting capacity [Yun et al., 2019, Vershynin, 2020] and data compression [Bölcskei et al.,
2019, Elbrächter et al., 2021].

In this paper, we study the expressive power of deep ReLU neural networks in terms of their
capability of approximating functions. It is well known that, under certain mild conditions
on the activation function, two-layer neural networks are universal. They can approximate
continuous functions arbitrarily well on compact set, if the width of network is allowed to
grow arbitrarily large [Cybenko, 1989, Hornik, 1991, Pinkus, 1999]. Recently, the universality
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of neural networks with fixed width have also been established in Hanin [2019], Hanin and
Sellke [2017]. A further question is about the order of approximation error, or equivalently, the
required size of a neural network that is sufficient for approximating a given class of functions,
determined by the application at hand, to a prescribed accuracy. The study of this question
mainly focused on shallow neural networks in the 1990s. Recent breakthrough of deep learning
in practical areas has attracted many researchers to work on estimating approximation error
of deep neural networks on different types of function classes, such as continuous functions
[Yarotsky, 2018], band-limited functions [Montanelli et al., 2019], smooth functions [Lu et al.,
2020] and piecewise smooth functions [Petersen and Voigtlaender, 2018].

The purpose of this paper is to approximate functions in dilated shift-invariant spaces using
neural networks. More specifically, we construct deep ReLU neural networks to approximate
functions of the form

g(x) =
∑
n∈Zd

cnϕ(2jx− n),

which are functions in the dilated shift-invariant spaces generated by a continuous function ϕ.
Our main contribution is that we provide a systematical way to construct such neural networks
and that we characterize their expressive power by rigorous estimation of the approximation
error. Our work is closely related to signal processing, image processing, communication of
information and so on, for in these areas, shift-invariant spaces are widely used [Gröchenig,
2001, Mallat, 1999]. For example, digital signals transmitted in communication systems are
expressed by functions in these spaces [Oppenheim and Schafer, 2009]. Recently, many efforts
are made to apply neural networks to solve problems in these areas [Purwins et al., 2019,
Yu and Deng, 2010, Ker et al., 2017, Mousavi et al., 2015, Kiranyaz et al., 2019, Fan et al.,
2020]. Despite their success in practice, theoretical understanding of deep learning in such
applications still remains open. We hope that our work provides a theoretical justification
and explanation for the application of deep neural networks in such areas.

Our results on shift-invariant spaces can also be used to study the approximation on other
function spaces. Shift-invariant spaces are closely related to wavelets [Daubechies, 1992, Mallat,
1999], which can be used to approximate classical function spaces such as Sobolev spaces,
Besov spaces and so on [De Boor et al., 1994, Jia and Lei, 1993, Lei et al., 1997, Kyriazis, 1995,
Jia, 2004, 2010]. By combining our construction with these existing results, we can estimate
approximation errors of Sobolev functions and Besov functions by deep neural networks, which
generalize the results of Yarotsky [Yarotsky, 2017, 2018, Yarotsky and Zhevnerchuk, 2020]
and Shen et al. [Shen et al., 2019, 2020, Lu et al., 2020]. Besides, we also give lower bounds
of the approximation error using the nonlinear n-width introduced by Ratsaby and Maiorov
[1997], Maiorov and Ratsaby [1999]. It is worth to point out that our lower bounds hold for
Lp error with 1 ≤ p ≤ ∞, while, as far as we know, it is only proved for L∞ error in the
literature. These lower bounds indicate the asymptotic optimality of our error estimates on
Sobolev spaces.

The rest of this paper is organized as follows. Notations and necessary terminology are
summarized in section 2. A detailed discussion of our main results is presented in section 3.
In section 4, we apply our main theorem to Sobolev spaces and Besov spaces, and show the
optimality of the approximation result in Sobolev spaces. In section 5, we make a summary of
our result and discuss the its relation with other studies. Finally, the detail of the network
construction and the proofs of main theorems are contained in sections 6 and 7.
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2 Preliminaries

2.1 Notations

Let us first introduce some notations. We denote the set of positive integers by N = {1, 2, . . . }.
For each j ∈ N, we denote Zdj := [0, 2j − 1]d ∩ Zd. Hence, the cardinality of Zdj is |Zdj | = 2jd.

Assume n ∈ Nd, the asymptotic notation f(n) = O(g(n)) means that there exists M,C > 0
independent of n such that f(n) ≤ Cg(n) for all ‖n‖`∞ ≥ M . The notation f(n) � g(n)
means that f(n) = O(g(n)) and g(n) = O(f(n)). For any x ∈ [0, 1), we denote the binary
representation of x by

Bin 0.x1x2 · · · =
∞∑
i=1

2−ixi = x,

where each xi ∈ {0, 1} and lim infi→∞ xi 6= 1. Notice that the binary representation defined in
this way is unique for x ∈ [0, 1).

We will need the following notation to approximately partition [0, 1]d into small cubes. For
any j, d ∈ N, let 0 < δ < 2−j , we denote

Q(j, δ, 1) := [0, 1) \ ∪2j−1k=1 (k2−j − δ, k2−j), (2.1)

and for d ≥ 2,

Q(j, δ, d) := {x = (x1, . . . , xd) : xi ∈ Q(j, δ, 1), 1 ≤ i ≤ d}. (2.2)

Figure 2.1 shows an example of Q(j, δ, d).

Figure 2.1: An example of Q(j, δ, d) with j = 2 and d = 2. It is the union of the white region
in [0, 1]d.

Finally, for any function f : Ω ⊆ R→ R, we will extend its definition to Ωd by applying f
coordinate-wisely to x = (x1, . . . , xd) ∈ Ωd, i.e. f(x) := (f(x1), . . . , f(xd)), without further
notification.

In Table 2.1, we summarize a set of symbols that are used throughout this paper. Some of
the notations will be introduced later.

2.2 Neural networks

In this paper, we only consider feed-forward neural networks with ReLU activation function
σ(x) := max{0, x}. Let 2 ≤ L ∈ N and N0, . . . , NL ∈ N. We say η = (A(`),a(`))L`=1 is a

3



Notation Definition

Zdj [0, 2j − 1]d ∩ Zd

Bin 0.x1x2 · · · Binary representation of x =
∑∞

i=1 2−ixi, xi ∈ {0, 1}
Q(j, δ, d) Approximately partition of [0, 1]d, Eq.(2.2)

NN (N,L) Function class of neural networks with width N and depth L

Sj(ϕ,M) Dilated shift-invariant space generated by ϕ, Eq.(2.4)

E(f,H;B) Approximation error of f from H in the norm of B, Eq.(2.5)

mj : [0, 1)→ Zj mj(x) = b2jxc, Lemma 3.1

rj : [0, 1)→ [0, 1) rj(x) = 2jx−mj(x), Lemma 3.1

Zdϕ {n ∈ Zd : ∃x ∈ [0, 1)d s.t. ϕ(x− n) 6= 0}, Lemma 3.1

Cϕ |Zdϕ|, the cardinality of Zdϕ

Table 2.1: A list of notations used in this paper.

network architecture, if A(`) ∈ RN`×N`−1, a(`) ∈ RN` and each entry of A(`) and a(`) is in
{0, 1}. We say a function f : RN0 → RNL can be implemented (or represented) by a neural
network with architecture η if it can be written in the form

f(x) = TL(σ(TL−1(· · ·σ(T1(x)) · · · ))),

where T`(x) := (A(`) �B(`))x+ a(`) � b(`) is an affine transformation with B(`) ∈ RN`×N`−1

and b(`) ∈ RN` , and � is entry-wise product. L is called the depth of neural network. The
width is referred to N = max{N1, . . . , NL−1}. The number of parameters of the architecture
η is W =

∑L
`=1 ‖A(`)‖`0 + ‖a(`)‖`0 and the number of (hidden) neurons is U =

∑L−1
`=1 N`.

We will mainly focus on fully connected neural networks, which we refer to the case that
all entries of A(`) and a(`) are ones. Hence, we have no restriction on the coefficients of the
affine maps T`(x) := B(`)x+ b(`). When the input dimension N0 and output dimension NL

are clear from contexts, we denote by NN (N,L) the set of functions that can be represented
by neural networks with width at most N and depth at most L. The expression “a neural
network φ with width N and depth L” means φ ∈ NN (N,L).

2.3 Shift-invariant spaces

Let ϕ : Rd → R be a continuous function with compact support. The shift-invariant space
S(ϕ) generated by ϕ is the set of all finite linear combinations of the shifts of ϕ, i.e. liner
combination of ϕ(· − n) with n ∈ Zd. For each j ≥ 0, the dilated shift-invariant space Sj(ϕ)
is defined to be the dilation of S(ϕ) by 2j . That is, every function g ∈ Sj(ϕ) is of the form

g(x) =
∑
n∈Zd

cnϕ(2jx− n), (2.3)

where (cn)n∈Zd is zero except for finitely many n. Note that the space Sj(ϕ) is invariant
under the translations T2−jmg(x) := g(x− 2−jm) with m ∈ Zd. For any M > 0, we denote

Sj(ϕ,M) :=

∑
n∈Zd

cnϕ(2jx− n) ∈ Sj(ϕ) : |cn| < M for any n ∈ Zd
 . (2.4)
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2.4 Sobolev spaces and Besov spaces

For 1 ≤ p ≤ ∞, the p-norm of Lp(Rd) is denoted by ‖ · ‖p for convenience. Let k ∈ N, the
Sobolev space W k,p(Rd) is the set of functions f ∈ Lp(Rd) which have finite Sobolev norm

‖f‖Wk,p :=

 ∑
‖α‖`1≤k

‖Dαf‖pp

1/p

,

where Dα is the weak derivative of order α. There are several ways to generalize the definition
of Sobolev norms to non-integer regularity. Here, we introduce the Besov spaces. Let us
denote the difference operator by ∆yf(x) := f(x+y)− f(x) for any x,y ∈ Rd. Then, for any
positive integer m, the m-th modulus of smoothness of a function f ∈ Lp(Rd) is defined by

ωm(f, h)p := sup
‖y‖`2≤h

‖∆m
y (f)‖p, h ≥ 0,

where

∆m
y (f)(x) :=

m∑
j=0

(
m

j

)
(−1)m−jf(x+ jy).

For µ > 0 and 1 ≤ p, q ≤ ∞, the Besov space Bµ
p,q(Rd) is the collection of functions f ∈ Lp(Rd)

that have finite semi-norm |f |Bµp,q <∞, where the semi-norm is defined as

|f |Bµp,q :=


(∫ ∞

0

∣∣∣∣ωm(f, t)p
tµ

∣∣∣∣q dtt
)1/q

, 1 ≤ q <∞,

sup
t>0

ωm(f, t)p
tµ

, q =∞,

where m is an integer larger than µ. The norm for Bµ
p,q is

‖f‖Bµp,q := ‖f‖p + |f |Bµp,q .

Note that for k ∈ N, we have the embedding Bk
p,1 ↪→ W k,p ↪→ Bk

p,∞ and Bk
2,2 = W k,2. A

general discussion of Sobolev spaces and Besov spaces can be found in DeVore and Lorentz
[1993].

2.5 Approximation

Let B be a normed space and f ∈ B, we denote the approximation error of f from a set H ⊆ B
under the norm of B by

E(f,H;B) := inf
h∈H
‖f − h‖B. (2.5)

The approximation error of a set F ⊆ B is the supremum approximation error of each function
f ∈ F , i.e.

E(F ,H;B) := sup
f∈F
E(f,H;B) = sup

f∈F
inf
h∈H
‖f − h‖B.

Let f ∈ B and G,H ⊆ B, then for any g ∈ G,

E(f,H;B) = inf
h∈H
‖f − h‖B ≤ ‖f − g‖B + inf

h∈H
‖g − h‖B ≤ ‖f − g‖B + E(G,H;B).

5



By taking infimum over g ∈ G, we get the “triangle inequality” for approximation error:

E(f,H;B) ≤ E(f,G;B) + E(G,H;B).

Since we will mainly characterize the approximation error by width and depth of neural
networks (or by number of neurons), we define the approximation order as follows.

Definition 2.1 (Order). We say that the approximation order (by neural networks) of a
function ϕ : Rd → R is at least α > 0 if

E(ϕ,NN (N,L);L∞(Rd)) = O((NL)−α).

More precisely, this definition means that there exist constants C,M > 0 such that for any
positive integers N,L ≥M , there exists a ReLU network φ with width N and depth L such
that

‖ϕ− φ‖∞ ≤ C(NL)−α.

3 Approximation in shift-invariant spaces

Let ϕ : Rd → R be a continuous function with compact support. We consider the question
that how well deep neural networks can express functions in the shift-invariant space Sj(ϕ,M)
generated by ϕ. More precisely, we want to estimate the size of network that is sufficient to
approximate any function g ∈ Sj(ϕ,M) on (0, 1)d with given accuracy.

Our estimation is based on a special representation of the function g ∈ Sj(ϕ,M).

Lemma 3.1. For x ∈ [0, 1)d, any g ∈ Sj(ϕ,M) can be written as

g(x) =
∑
k∈Zdϕ

cmj(x)+kϕ(rj(x)− k),

where the coefficients |cmj(x)+k| < M , the functions mj : [0, 1)→ Zj and rj : [0, 1)→ [0, 1) are

defined by mj(x) = b2jxc and rj(x) = 2jx−mj(x) and apply to x ∈ [0, 1)d coordinate-wisely,
and

Zdϕ := {n ∈ Zd : ∃x ∈ [0, 1)d s.t. ϕ(x− n) 6= 0}.

Proof. Recall that we denote Zdj = [0, 2j − 1]d ∩Zd and notice that {[0, 2−j)d + 2−jm}m∈Zdj is

a partition of the cube [0, 1)d. If we denote the characteristic function of a set A by 1A, i.e.
1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise, then for x ∈ [0, 1)d,∑

m∈Zdj

1[0,2−j)d+2−jm(x) = 1.

For any g ∈ Sj(ϕ,M) of the form (2.3), one has

g(x) =
∑
n∈Zd

cnϕ(2jx− n)

=
∑
m∈Zdj

∑
n∈Zd

cnϕ(2jx− n) · 1[0,2−j)d+2−jm(x)

=
∑
m∈Zdj

∑
k∈Zdϕ

cm+kϕ(2jx−m− k) · 1[0,2−j)d+2−jm(x).

6



To see the last equality, notice that for each m ∈ Zdj , x ∈ [0, 2−j)d + 2−jm if and only if

2jx−m ∈ [0, 1)d. If we denote k := n−m, then ϕ(2jx−n) = ϕ(2jx−m− k) is a nonzero
function of x if and only if k ∈ Zdϕ by the definition of Zdϕ. Hence the last equality holds.

Observing that 1[0,2−j)d+2−jm(x) 6= 0 if and only if m = mj(x), we have

g(x) =
∑
k∈Zdϕ

cmj(x)+kϕ(2jx−mj(x)− k).

Finally, using rj(x) = 2jx−mj(x), we get the desired representation.

Notice that mj(x) and rj(x) are just the integer part and fractional part of 2jx. They can
be represented in binary forms. Let the binary representation of x ∈ [0, 1) be

x =
∞∑
l=1

2−lxl = Bin 0.x1x2 · · · ,

with xl ∈ {0, 1}. Then, by straightforward calculation,

mj(x) = 2j−1x1 + 2j−2x2 + · · ·+ 20xj ,

rj(x) = 2jx−mj(x) = Bin 0.xj+1xj+2 · · · .
(3.1)

So mj(x) and rj(x) can be computed if we can extract the first j bits of x, which can be done
using the bit extraction technique (see section 6.1).

Now, suppose we can construct a network φ0 to approximate the generating function ϕ with
given accuracy: ‖ϕ− φ0‖∞ ≤ ε. According to Lemma 3.1, we can approximate g ∈ Sj(ϕ,M)
by concatenating Cϕ := |Zdϕ| sub-networks:

g(x) ≈
∑
k∈Zdϕ

cmj(x)+kφ0(rj(x)− k).

To approximate each term, we can first extract the location information x 7→ (mj(x), rj(x))
using bit extraction. Then, for fixed k, the coefficient cmj(x)+k = ck(mj(x)) can be regard

as a function of mj(x) ∈ Zdj . Therefore, approximating the coefficient function ck(mj(x))

is equivalent to fit O(|Zdj |) = O(2jd) samples, which can be done using O(2jd/2) neurons by

bit-extraction technique (see Lemma 6.7). Thus, we need O(Cϕ2jd/2) neurons to approximate
g in general.

Alternative to use the representation in Lemma 3.1, one can approximate g by computing
each term in (2.3) directly. This straightforward approach is used in Shaham et al. [2018], which
constructs a wavelet series using a network of depth 4. Similar ideas appear in Yarotsky [2017],
Petersen and Voigtlaender [2018], Elbrächter et al. [2021], Bölcskei et al. [2019]. However, the
size of neural networks constructed in this approach is larger than ours. One can show that,
for x ∈ [0, 1)d, the non-zero terms in the summation (2.3) are those for n ∈ Zdϕ + Zdj . Since

each term is approximated by one sub-network, it requires totally O(Cϕ2jd) sub-networks to
approximate g in general, which needs O(Cϕ2jd) neurons.

For our construction of ReLU neural networks, the main difficulty is that the function
mj is discontinuous, hence it can not be implemented by ReLU neural networks exactly. To
overcome this, we first consider the approximation on Q(j, δ, d) defined in (2.2), where we can

7



compute mj(x) and rj(x) using the binary representation of x and the bit extraction technique.
Combined with the data fitting results of deep neural networks, we can then approximate
g on Q(j, δ, d) to any prescribed accuracy. The approximation result is summarized in the
following theorem. It also gives explicitly the required size of the network in our construction.
The detailed proof is deferred to section 6.

Theorem 3.2 (Approximation on Q(j, δ, d)). Given any j ∈ N, 0 < δ < 2−j and 0 < ε < 1.
Assume that ϕ : Rd → R is a continuous function with compact support and there exists a
ReLU network φ0 with width Nϕ(ε) and depth Lϕ(ε) such that

‖ϕ− φ0‖∞ ≤ ‖ϕ‖∞ε.

Then for any g ∈ Sj(ϕ,M) and any r, s, r̃, s̃ ∈ N with 2(s+ r) ≥ dj and r̃s̃ ≥ dlog2(1/ε)e+ 1,
there exists a ReLU network φ with width Cϕ(max{7dr̃2r, Nϕ(ε)}+4d) and depth 14s̃2s+Lϕ(ε)
such that for any x ∈ Q(j, δ, d),

|g(x)− φ(x)| ≤ 3CϕM‖ϕ‖∞ε.

To estimate the uniform approximation error, we will use the “horizontal shift” method
proposed in Lu et al. [2020]. The key idea is to approximate the target function on several
domain, which have similar structure as Q(j, δ, d), that cover [0, 1]d and then use the middle
function mid (·, ·, ·) to compute the final approximation, where mid (·, ·, ·) is a function that
return the middle value of the three inputs. Specifically, for each x ∈ [0, 1]d, we compute three
approximation of g(x). If at least two of these approximation have the desired accuracy, then
their middle value also has the same accuracy. Using this fact, we get the following uniform
approximation result.

Theorem 3.3 (Uniform approximation). Under the assumption of Theorem 3.2, for any
g ∈ Sj(ϕ,M) and any r, s, r̃, s̃ ∈ N with 2(s+ r) ≥ dj and r̃s̃ ≥ dlog2(1/ε)e+ 1, there exists a
ReLU network φ with width 3d · 2Cϕ(max{7dr̃2r, Nϕ(ε)}+ 4d) and depth 14s̃2s + Lϕ(ε) + 2d
such that

‖g − φ‖L∞([0,1]d) ≤ 6CϕM‖ϕ‖∞ε.

Before preceding, we would like to give a remark and a corollary on these theorems.

Remark 3.4. Guaranteed by universality theorems [Pinkus, 1999], there always exist neural
networks that approximate ϕ arbitrarily well. But the required width Nϕ(ε) and depth Lϕ(ε)
are generally unknown, except for certain types of ϕ, such as piecewise polynomials.

Corollary 3.5. Suppose 1 ≤ p ≤ ∞ and ϕ satisfies the assumption of Theorem 3.2. For any
g ∈ Sj(ϕ,M), we have the following Lp approximation result: for any ε > 0 and any r, s ∈ N
with 2(s+ r) ≥ dj, there exists a ReLU network with width O(2r log2(1/ε) +Nϕ(ε)) and depth
O(2s log2(1/ε) + Lϕ(ε)) such that

‖g − φ‖Lp([0,1]d) ≤ ε.

Proof. The Lp-estimations for 1 ≤ p <∞ can be obtained directly from the uniform approxi-
mation in Theorem 3.3 or by choosing sufficiently small δ in Theorem 3.2 so that the measure
of [0, 1]d \Q(j, δ, d) is small enough. We can choose r̃, s̃ � log2(1/ε) in these theorems to get
the desired approximation result.
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Besides the importance and interest in its own right, the dilated shift-invariant spaces
are closely related to many other types of functions. These connections can be utilized to
extend the above estimations of approximation error to other functions. Specifically, let f be
a function that is approximated by neural networks NN (N,L) on the compact set [0, 1]d, we
aim to estimate

E(f,NN (N,L);Lp([0, 1]d)) = inf
φ∈NN (N,L)

‖f − φ‖Lp([0,1]d),

for some 1 ≤ p ≤ ∞. For an arbitrary f , it is in general difficult to directly construct a
neural network with given size that achieves the minimal error rate. A more feasible way is to
choose some function class G as a bridge, and estimate the approximation error by the triangle
inequality

E(f,NN (N,L);Lp([0, 1]d)) ≤ E(f,G;Lp([0, 1]d)) + E(G,NN (N,L);Lp([0, 1]d)).

Here, we choose G to be a dilated shift-invariant space Sj(ϕ,M). The success of this approach
depends on how well we can estimate the two terms on the right hand side of the triangle
inequality. The first term is well studied in the approximation theory of shift-invariant spaces,
see [De Boor et al., 1994, Jia and Lei, 1993, Lei et al., 1997, Kyriazis, 1995, Jia, 2004, 2010].
The second term E(Sj(ϕ,M),NN (N,L);Lp([0, 1]d)) can be estimated using our results, i.e.
Theorems 3.2 and 3.3. Generally, we have the following.

Theorem 3.6. Let ϕ : Rd → R be a continuous function with compact support and let its
approximation order be at least α. Then for any f : Rd → R satisfying

E(f,Sj(ϕ,M);Lp([0, 1]d)) = O(2−βj),

for some M > 0, 1 ≤ p ≤ ∞ and β > 0, we have

E(f,NN (N,L);Lp([0, 1]d)) = O
(

max
{

(NL)−α, (NL/(log2N log2 L))−2β/d
})

.

Proof. Denote ε = 2−βj . By assumption, there exists g ∈ Sj(ϕ,M) such that

‖f − g‖Lp([0,1]d) = O(2−βj) = O(ε).

Let r, s be positive integers that satisfy 2(r + s) ≥ dj. Since the approximation order of ϕ is
α, there exists a network φ0 with width Nϕ � 22βr/(dα) and depth Lϕ � 22βs/(dα) such that

‖ϕ− φ0‖∞ = O((NϕLϕ)−α) = O(2−2β(r+s)/d) = O(2−βj) = O(ε).

Observe that 2rs = rs + rs ≥ r + s ≥ dj/2 � log2 1/ε, we can choose r̃ � r and s̃ � s in
Theorems 3.2 and 3.3. Thus, there exists a network φ with width N = O(r2r + 22βr/(dα)) and
depth L = O(s2s + 22βs/(dα)) such that

‖g − φ‖Lp([0,1]d) = O(ε).

Now we consider two cases:
Case I: if α ≥ 2β/d, then we have N = O(r2r) and L = O(s2s). Hence, for any Ñ = 2r

and L̃ = 2s, there exists a network φ with width N � Ñ log2 Ñ and depth L � L̃ log2 L̃ such
that

‖f − φ‖Lp([0,1]d) = O(ε) = O(2−βj) = O((ÑL̃)−2β/d) = O((NL/(log2N log2 L))−2β/d).
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Case II: if α < 2β/d, then we have L = O(22βs/(dα)) and N = O(22βr/(dα)). Hence, there
exists a network φ with width N � 22βr/(dα) and depth L � 22βs/(dα) such that

‖f − φ‖Lp([0,1]d) = O(ε) = O(2−βj) = O((NL)−α).

Combining these two cases, we finish the proof.

Roughly speaking, Theorem 3.6 indicates that the approximation order of f is at least
min{α, 2β/d} (up to some log factors), where α is the approximation order of ϕ by neural
networks and β is the order of the linear approximation by Sj(ϕ,M). In practice, we need to
choose the function ϕ with large order α, that is, the function that can be well approximated
by deep neural networks. In particular, the approximation error E(f,Sj(ϕ,M);Lp([0, 1]d)) can
be estimated for f in many classical function spaces, such as Sobolev spaces and Besov spaces.
It will be clear in the next section that deep neural networks can approximate piecewise
polynomials with exponential convergence rate, which leads to an asymptotically optimal
bound for Sobolev spaces.

4 Application to Sobolev spaces and Besov spaces

In this section, we apply our results to the approximation in Sobolev space Wµ,p and Besov
space Bµ

p,q. Similar approximation bounds can be obtained for the Triebel–Lizorkin spaces
Fµp,q using the same method. The approximation rates of these spaces from shift-invariant
spaces have been studied extensively in the literature [De Boor et al., 1994, Jia and Lei,
1993, Lei et al., 1997, Kyriazis, 1995, Jia, 2004, 2010]. Roughly speaking, when ϕ satisfies
the Strang–Fix condition of order k, then the shift-invariant space Sj(ϕ) locally contains all
polynomials of order k − 1 and the approximation error of f ∈Wµ,p or f ∈ Bµ

p,q is O(2−µj) if
the regularity µ < k.

4.1 Approximation of Sobolev functions and Besov functions

We follow the quasi-projection scheme in Jia [2004, 2010]. Suppose 1 ≤ p ≤ ∞ and 1/p+1/p̃ = 1.
Let ϕ ∈ Lp(Rd) and ϕ̃ ∈ Lp̃ be compactly supported functions, and, for each n ∈ Zd,
ϕn = ϕ(· − n) and ϕ̃n = ϕ̃(· − n). Then we can define the quasi-projection operator

Qf :=
∑
n∈Zd
〈f, ϕ̃n〉ϕn, f ∈ Lp(Rd).

For h > 0, the dilated quasi-projection operator is defined as

Qhf(x) =
∑
n∈Zd
〈f, h−d/p̃ϕ̃n(·/h)〉h−d/pϕn(x/h), x ∈ Rd.

Notice that if h = 2−j , Qhf is in the completion of the shift-invariant space Sj(ϕ).
If ϕ satisfies the Strang-Fix condition of order k:

ϕ̂(0) 6= 0, and Dαϕ̂(2nπ) = 0, n ∈ Zd \ {0}, |α| < k,

where ϕ̂(ω) =
∫
ϕ(x)e−ix·ωdx is the Fourier transform of ϕ, then we can choose ϕ̃ such that

the quasi-projection operator Q has the polynomial reproduction property: Qg = g for all
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polynomials g with order k − 1. The approximation error f −Qf has been estimate in Jia
[2004, 2010] when the quasi-projection operator has the polynomial reproduction property.
The following lemma is a consequence of the results.

Lemma 4.1. Let k ∈ N, 0 < µ < k, 1 ≤ p, q ≤ ∞ and F be either the Sobolev space Wµ,p or
the Besov space Bµ

p,q. If ϕ satisfies the Strang-Fix condition of order k, then there exists ϕ̃
and a constant C > 0 such that for any f ∈ F ,

‖f −Q2−jf‖p ≤ C2−µj‖f‖F .

A fundamental example that satisfies the Strang-Fix condition is the multivariate B-splines
of order k ≥ 2 defined by

N d
k (x) :=

d∏
i=1

Nk(xi), x = (x1, . . . , xd) ∈ Rd,

where the univariate cardinal B-spline Nk of order k is given by

Nk(x) :=
1

(k − 1)!

k∑
l=0

(−1)l
(
k

l

)
σ(x− l)k−1, x ∈ R.

It is well known that ‖Nk‖∞ = 1 and the support of Nk is [0, k]. Alternatively, the B-spline Nk
can be defined inductively by the convolution Nk = Nk−1 ∗ N1 where N1(x) = 1 for x ∈ [0, 1]

and N1(x) = 0 otherwise. Hence, the Fourier transform of Nk is N̂k(ω) =
(
1−e−iω
iω

)k
. The

relation of B-splines approximation and Besov spaces is discussed in DeVore and Popov [1988].
The following lemma gives the approximation order of Nk by deep neural networks.

Lemma 4.2. For any N,L, k ∈ N with k ≥ 3, there exists a ReLU network φ with width
d(k + 1)(9(N + 1) + k) and depth 7(k2 + d2)L such that

‖N d
k − φ‖∞ ≤ 9d

(2k + 2)k

(k − 1)!
(N + 1)−7(k−1)L + 9(d− 1)(N + 1)−7dL.

Given any k ≥ 3, this lemma implies that

E(N d
k ,NN (N,L);L∞(Rd)) = O(N−O(L)).

Hence, the approximation order of N d
k can be chosen to be any α > 0. Theorem 3.6 and

Lemma 4.1 imply that the approximation error of any f ∈Wµ,p or f ∈ Bµ
p,q is

O((NL/(log2N log2 L))−2µ/d).

A more detailed analysis reveals that this bound is uniform for the unit ball of the spaces. We
summarize the results in the following theorem.

Theorem 4.3. Let F be either the unit ball of Sobolev space Wµ,p or the Besov space Bµ
p,q.

We have the following estimate of the approximation error

E(F ,NN (N,L);Lp([0, 1]d)) = O
(

(NL/(log2N log2 L))−2µ/d
)
.
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Proof. Let f ∈ F and k > µ, then by Lemma 4.1, ‖f − Q2−jf‖p ≤ C2−µj‖f‖F , where
Q2−jf =

∑
n∈Zd cn(f)N d

k (2j · −n) is a B-spline series. It can be shown that the coefficients of

a B-spline series is bounded by the Lp norm of the series: |cn(f)| ≤ C2dj/p‖Q2−j (f)‖p (See, for
example, [DeVore and Lorentz, 1993, Chapter 5.4] and [DeVore and Popov, 1988, Lemma 4.1]).
Hence, |cn(f)| ≤ C2dj/p‖f‖F ≤ C2dj/p, which implies Q2−jf ∈ Sj(N d

k ,M) with M ≤ C2dj/p.

Let r, s ∈ N satisfy 2(r + s) ≥ dj, denote Ñ = 2r, L̃ = 2s and choose ε = 2−µj−dj/p.
By Lemma 4.2, if N,L are sufficiently large, E(N d

k ,NN (N,L), L∞(Rd)) ≤ Ck,dN
−7L ≤

Ck,d(NL)−α, where we choose α = 2 + 2µ/d. Thus, there exists a network φ0 with width

O(Ñ) and depth O(L̃) such that

‖N d
k − φ0‖∞ ≤ (ÑL̃)−α ≤ 2−djα/2 = 2−µj−dj ≤ ε.

Since 2rs = rs+ rs ≥ r + s ≥ dj/2 � log2 1/ε, we can choose r̃ � r and s̃ � s in Theorem 3.2
and Theorem 3.3. Therefore, since Q2−jf ∈ Sj(N d

k ,M), there exists a network φ with width

O(Ñ log2 Ñ) and depth O(L̃ log2 L̃) such that

‖Q2−jf − φ‖Lp([0,1]d) ≤ CMε ≤ C2−µj .

The triangle inequality gives

‖f − φ‖Lp([0,1]d) ≤ O(2−µj) = O((ÑL̃)−2µ/d).

Finally, let N = Ñ log2 Ñ and L = L̃ log2 L̃, we have

E(f,NN (N,L);Lp([0, 1]d)) = O((ÑL̃)−2µ/d) = O
(

(NL/(log2N log2 L))−2µ/d
)
.

Since the bound is uniform for all f ∈ F , we finish the proof.

So far, we characterize the approximation error by the number of neurons NL, we can
also estimate the error by the number of weights. To see this, let the width N be sufficiently
large and fixed, then the number of weights W � N2L � L and we have

E(F ,NN (N,L);Lp([0, 1]d)) = O
(

(W/ log2W )−2µ/d
)
.

Note that similar bounds have been obtained in Yarotsky and Zhevnerchuk [2020] and Lu
et al. [2020] for Hölder spaces. The paper [Suzuki, 2019] also studies the approximation in
Besov spaces, but they only get the bound O(W−µ/d).

4.2 Optimality for Sobolev spaces

We consider the optimality of the upper bounds we have derived for the unit ball F of Sobolev
spaces W k,p. The main idea is to find the connection between the approximation accuracy
and the Pseudo-dimension (or VC-dimension) of neural networks. Let us first introduce some
results of Pseudo-dimension.

Definition 4.4 (Pseudo-dimension). Let H be a class of real-valued functions defined on Ω.
The Pseudo-dimension of H, denoted by Pdim (H), is the largest integer of N for which there
exist points x1, . . . , xN ∈ Ω and constants c1, . . . , cN ∈ R such that

|{ sgn (h(x1)− c1), . . . , sgn (h(xN )− cN ) : h ∈ H}| = 2N .

If no such finite value exists, Pdim (H) =∞.
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There are some well-known upper bounds on Pseudo-dimension of deep ReLU networks in
the literature [Anthony and Bartlett, 2009, Bartlett et al., 1999, Goldberg and Jerrum, 1995,
Bartlett et al., 2019]. We summarize two bounds in the following lemma.

Lemma 4.5. Consider a network architecture η with W parameters, U neurons and depth
L. Let Hη be the set of functions that can be represented by such architecture with ReLU
activation. Then there exists constants C1, C2 > 0 such that

Pdim (Hη) ≤ C1W
2 and Pdim (Hη) ≤ C2WL log2 U.

Intuitively, if a function class H can approximate a function class F of high complexity
with small precision, then H should also have high complexity. In other words, if we use a
function class H with Pdim (H) ≤ n to approximate a complex function class, we should
be able to get a lower bound of the approximation error. Mathematically, we can define a
nonlinear n-width using Pseudo-dimension: let B be a normed space and F ⊆ B, we define

ρn(F ,B) := inf
Hn
E(F ,Hn;B) = inf

Hn
sup
f∈F

inf
h∈Hn

‖f − h‖B,

where Hn runs over all classes in B with Pdim (Hn) ≤ n.
We remark that the n-width ρn is different from the famous continuous n-th width ωn

introduced by DeVore et al. [1989]:

ωn(F ,B) := inf
a,Mn

sup
f∈F
‖f −Mn(a(f))‖B,

where a : F → Rn is continuous and Mn : Rn → F is any mapping. In neural network
approximation, a maps the target function f ∈ F to the parameters in neural network and Mn

is the realization mapping that associates the parameters to the function realized by neural
network. Applying the results in DeVore et al. [1989], one can show that the approximation
error of the unit ball of Sobolev space W k,p(Rd) is lower bounded by cW−k/d, where W is
the number of parameters in the network, see [Yarotsky, 2017, Yarotsky and Zhevnerchuk,
2020]. However, we have obtained an upper bound O((W/ log2W )−2k/d) for these spaces. The
inconsistency is because the parameters in our construction does not continuously depend on
the target function and hence it does not satisfy the requirement in the n-width ωn. This
implies that we can get better approximation order by taking advantage of the incontinuity.

The n-width ρn was firstly introduced by Maiorov and Ratsaby [1999], Ratsaby and
Maiorov [1997]. They also gave upper and lower estimates of the n-width for Sobolev spaces.
The following lemma is from Maiorov and Ratsaby [1999].

Lemma 4.6. Let F be the unit ball of Sobolev space W k,p(Rd) and 1 ≤ p, q ≤ ∞, then

ρn(F , Lq([0, 1]d)) ≥ cn−k/d,

for some constant c > 0 independent of n.

Combining Lemmas 4.5 and 4.6, we can give lower bound of the approximation error by
ReLU neural networks. These lower bounds show that the upper bound in Theorem 4.3 is
asymptotically optimal up to a logarithm factor.
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Corollary 4.7. Let F be the unit ball of Sobolev space W k,p(Rd) and 1 ≤ p, q ≤ ∞. For the
function class Hη in Lemma 4.5, we have

E(F ,Hη;Lq([0, 1]d)) ≥ c1W−2k/d and E(F ,Hη;Lq([0, 1]d)) ≥ c2(WL log2 U)−k/d.

for some constant c1, c2 > 0. In particular, there exists c > 0 such that

E(F ,NN (N,L);Lq([0, 1]d)) ≥ c(N2L2 log2NL)−k/d.

Proof. We choose n = Pdim (Hη), then by the definition of the n-width ρn(F , Lq([0, 1]d)) and
Lemma 4.6,

E(F ,Hη;Lq([0, 1]d)) ≥ ρn(F , Lq([0, 1]d)) ≥ c0n−k/d.

By lemma 4.5, we have n = Pdim (Hη) ≤ C1W
2 and n ≤ C2WL log2 U , which give the desired

lower bounds for E(F ,Hη;Lq([0, 1]d)).
WhenH is the fully connected networkNN (N,L), we have W = O(N2L) and U = O(NL).

Hence,

E(F ,NN (N,L);Lq([0, 1]d)) ≥ c2(WL log2 U)−k/d ≥ c(N2L2 log2NL)−k/d.

5 Discussion

In this paper, we study how well deep ReLU networks can approximate functions in dilated
shift-invariant spaces. Our main theorems, Theorem 3.2 and 3.3, give upper bounds on the
approximation error of these spaces. The results can be easily applied to wavelet, which is
widely used in signal processing. As an illustration, we consider a multiresolution approximation
{Vj}j∈Z of L2(R), which satisfies Vj+1 ⊆ Vj for all j ∈ Z. And let ψ and ϕ be the wavelet
and the scaling function that generate an orthogonal basis [Mallat, 1999, Chapter 7]. Denote
ϕj,n(x) := 2−j/2ϕ(2−jx− n), then the orthogonal projection of f ∈ L2(R) over V−j is

PV−jf =

+∞∑
n=−∞

〈f, ϕ−j,n〉ϕ−j,n,

which has the same form of functions in the dilated shift-invariant space Sj(ϕ). Hence,
Theorem 3.2 and 3.3 can be applied to derive approximation bound of the projection PV−jf .
Alternatively, we can also approximate the wavelet decomposition

f =

∞∑
j=−∞

+∞∑
n=−∞

〈f, ψj,n〉ψj,n,

using the approximation result for Sj(ψ).
The abstract approximation results for shift-invariant spaces can also be applied to study

the approximation of classical smooth function spaces by deep neural networks, which has
received much attention in recent years. When the approximation error is measured by the
number parameters W , the seminal work of Yarotsky [2017] obtained approximation bound
O(W−s/d) for the Sobolev spaces W s,∞, ignoring the logarithmic factors. The recent works
[Yarotsky, 2018, Yarotsky and Zhevnerchuk, 2020] improved the upper bound to O(W−2s/d).
In contrast, if the error is measured by the number of neurons U � NL, Shen et al. [2020],
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Lu et al. [2020] showed the bound O
(
U−2s/d

)
for smooth function class Cs([0, 1]d). All these

results are derived through approximating local Taylor expansions by neural networks. In this
paper, we take a multiresolution approximation point of view. By choosing the B-spline as the
generating function ϕ of the shift-invariant space Sj(ϕ), we can recover all the existing bounds
and generalize them to the Besov spaces Bµ

p,q. Our result improves the existing bounds for
Besov spaces obtained by Suzuki [2019]. We also prove lower bounds of the approximation
error in Lp-norm (1 ≤ p ≤ ∞), which show the optimality of the upper bounds. As far as we
know, only L∞ lower bounds for neural network approximation are obtained in the literature.

Although the lower bounds in Corollary 4.7 are proved for ReLU networks, similar lower
bounds can be derived for piecewise polynomial activation functions using the same argument
and the upper bounds of Pseudo-dimension for such activation functions in Bartlett et al.
[2019]. However, for more complicated activation functions, this kind of lower bound may not
exist. For example, Maiorov and Pinkus [1999] showed that there exists an analytic, strictly
increasing, and sigmoidal activation function such that any continuous function on [0, 1]d can
be uniformly approximated to within any error by a neural network with width 6d+ 3 and
depth 3. In other words, we can approximate any continuous function using a network of fixed
finite size with this activation function. However, by Lemma 4.6, the function class generated
by this network has infinite Pseudo-dimension, which is due to the high “complexity” of the
activation function.

6 Proof of Theorem 3.2

Without loss of generality, we can assume that M = 1 and ‖ϕ‖∞ = 1. By Lemma 3.1, for
x ∈ [0, 1)d,

g(x) =
∑
n∈Zd

cnϕ(2jx− n) =
∑
k∈Zdϕ

cmj(x)+kϕ(rj(x)− k),

where mj and rj are applied coordinate-wisely to x = (x1, . . . , xd) ∈ [0, 1)d and

mj(xi) = 2j−1xi,1 + 2j−2xi,2 + · · ·+ 20xi,j ,

rj(xi) = 2jx−mj(xi) = Bin 0.xi,j+1xi,j+2 · · · ,

if xi = Bin 0.xi,1xi,2 · · · is the binary representation of xi ∈ [0, 1).
For any fixed k ∈ Zd, we are going to construct a network that approximates the function

x 7→ cmj(x)+kϕ(rj(x)− k), x ∈ Q(j, δ, d).

We can summarize the result as follows.

Proposition 6.1. For any fixed j ∈ N and k ∈ Zd, there exists a network φ(k) with width
max{7dr̃2r, Nϕ(ε)}+ 4d and depth 14s̃2s + Lϕ(ε) such that for any x ∈ Q(j, δ, d),

|cmj(x)+kϕ(rj(x)− k)− φ(k)(x)| ≤ 3ε.

Assume that Proposition 6.1 is true. We can construct the desired function φ by

φ(x) =
∑
k∈Zdϕ

φ(k)(x),
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which can be computed by Cϕ parallel sub-networks φ(k). Since φ(x) is a linear combi-
nation of φ(k)(x), the required depth is 14s̃2s + Lϕ(ε) and the required width is at most
Cϕ(max{7dr̃2r, Nϕ(ε)}+ 4d). The approximation error is∣∣∣∣∣∣

∑
n∈Zd

cnϕ(2jx− n)− φ(x)

∣∣∣∣∣∣ ≤
∑
k∈Zdϕ

|cmj(x)+kϕ(rj(x)− k)− φ(k)(x)| ≤ 3Cϕε.

It remains to prove Proposition 6.1. The key idea is as follows. Since |cm| < 1, we let
bi(m) ∈ {0, 1} be the i-bit of cm/2 + 1/2 ∈ [0, 1). Thus, we have the binary representation

cm =
∞∑
i=1

21−ibi(m)− 1. (6.1)

As a consequence, we have

cmj(x)+kϕ(rj(x)− k) =
∞∑
i=1

21−ibi(mj(x) + k)ϕ(rj(x)− k)− ϕ(rj(x)− k).

We will construct a neural network that approximates the truncation

dlog2(1/ε)e+1∑
i=1

21−ibi(mj(x) + k)ϕ(rj(x)− k)− ϕ(rj(x)− k), x ∈ Q(j, δ, d).

The construction can be divided into two parts:

1. For each j ∈ N, construct a neural network to compute x 7→ (mj(x), rj(x)). This can
be done by the bit extraction technique.

2. For each i, j ∈ N, construct a neural network to compute m ∈ Zdj 7→ bi(m), which is

equivalent to interpolate 2dj samples (m, bi(m)).

We gather the necessary results in the following two subsections and give a proof of Proposition
6.1 in subsection 6.3.

6.1 Bit extraction

In order to compute Bin 0.x1x2 · · · 7→ (x1, . . . , xr), we need to use the bit extraction technique
in Bartlett et al. [1999, 2019]. Let us first introduce the basic lemma that extract r bits using
a shallow network.

Lemma 6.2. Given j ∈ N and 0 < δ < 2−j. For any positive integer r ≤ j, there exists a
network φr with width 2r+1 + 1 and depth 3 such that

φr(x) = (x1, . . . , xr, Bin 0.xr+1xr+2 · · · ), ∀x = Bin 0.x1x2 · · · ∈ Q(j, δ, 1).

Proof. We follow the construction in Bartlett et al. [2019]. For any a ≤ b, observe that the
function

f[a,b](x) := σ(1− σ(a/δ − x/δ)) + σ(1− σ(x/δ − b/δ))− 1
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satisfies f[a,b](x) = 1 for x ∈ [a, b], and f[a,b](x) = 0 for x /∈ (a− δ, b+ δ), and f[a,b](x) ∈ [0, 1]
for all x. So, we can use f[a,b] to approximate the indicator function of [a, b], to precision δ.
Note that f[a,b] can be implemented by a ReLU network with width 2 and depth 3.

Since x1, . . . , xr can be computed by adding the corresponding indicator functions of
[k2−r, (k + 1)2−r], 0 ≤ k ≤ 2r − 1, we can compute x1, . . . , xr using 2r parallel networks

f[1−2−r,1], f[k2−r,(k+1)2−r−δ], k = 0, . . . , 2r − 2.

Observe that

Bin 0.xr+1xr+2 · · · = 2rx−
r∑
i=1

2r−ixi,

which is a linear combination of x, x1, . . . , xr. There exists a network φr with width 2r+1 + 1
and depth 3 such that φr(x) = (x1, . . . , xr, Bin 0.xr+1xr+2 · · · ) for x ∈ Q(j, δ, 1). (We can
use one neuron in each hidden layer to ’remember’ the input x. Since φr(x) is a linear
transform of x and outputs of the parallel sub-networks, we do not need extra layer to compute
summation.)

Note that the function Bin 0.x1x2 · · · 7→ (x1, . . . , xr) is not continuous, while every ReLU
network function is continuous. So, we cannot implement the bit extraction on the whole set
[0, 1]. This is why we restrict ourselves to Q(j, δ, 1).

The next lemma is an extension of Lemma 6.2. It will be used to extract the location
information (mj(x), rj(x)).

Lemma 6.3. Given r, j ∈ N and 0 < δ < 2−j. For any integer k ≤ j, there exists a ReLU
network φ with width 2r+1 + 3 and depth 2dj/re+ 1 such that

φ(x) =

(
k∑
i=1

2j−ixi,

j∑
i=k+1

2j−ixi, Bin 0.xj+1xj+2 · · ·

)
, ∀x = Bin 0.x1x2 · · · ∈ Q(j, δ, 1).

Proof. Without loss of generality, we can assume r ≤ j. By Lemma 6.2, there exists a network
φr with width 2r+1+1 and depth 3 such that φr(x) = (x1, . . . , xr, Bin 0.xr+1xr+2 · · · ). Observe
that any summation

∑k
i=1 2j−ixi and

∑r
i=k+1 2j−ixi with k ≤ r are linear combinations of

outputs of φr. We can compute them by a network having the same size as φr. If k > r, we com-
pute

∑r
i=1 2j−ixi as intermediate result. Then, by applying another φr to Bin 0.xr+1xr+2 · · · ,

we can extract the next r bits xr+1, . . . , x2r, and compute Bin 0.x2r+1x2r+2 · · · . Again, any
summation

∑k
i=1 2j−ixi and

∑2r
i=k+1 2j−ixi with k ≤ 2r are linear combinations of the outputs.

If k > 2r, we compute
∑2r

i=1 2j−ixi as intermediate result. Continuing this strategy, after we
extract bj/rcr bits, we can use φj−bj/rcr to extract the rest bits. Using this construction, we
can compute the required function φ by a network with width at most 2r+1 + 3 and depth at
most 2dj/re+ 1. (Two neurons in each hidden layer are used to ’remember’ the intermediate
computation.)

The following lemma shows how to extract a specific bit.

Lemma 6.4. For any r,K ∈ N with r ≤ K, there exists a ReLU network φ with width 2r+1+3
and depth 4dK/re+ 1 such that for any x = Bin 0.x1x2 · · ·xK and positive integer k ≤ K, we
have φ(x, k) = xk.
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Proof. Let δki = 0 if k 6= i and δki = 1 if k = i. Observe that

δki = σ(k − i+ 1) + σ(k − i− 1)− 2σ(k − i),

and t1t2 = σ(t1 + t2 − 1) for any t1, t2 ∈ {0, 1}. We have the expression

xk =
K∑
i=1

δkixi =
K∑
i=1

σ (σ(k − i+ 1) + σ(k − i− 1)− 2σ(k − i) + xi − 1) .

By Lemma 6.2, there exists a ReLU network φr with width 2r+1 + 1 and depth 3 such
that φr(x) = (x1, . . . , xr, Bin 0.xr+1xr+2 · · ·xK). Hence, the function

φ̃r(x, k) =

Bin 0.xr+1xr+2 · · ·xK , k,
r∑
j=1

δkjxj


is a network with width at most max{2r+1, 4r}+ 3 = 2r+1 + 3 and depth 5. Applying Lemma
6.2 to the first output Bin 0.xr+1xr+2 · · ·xK and preserving the last output (k,

∑r
j=1 δkjxj),

we can implement

φ̃2r(x, k) =

Bin 0.x2r+1x2r+2 · · ·xK , k,
2r∑
j=1

δkjxj


by a network with width 2r+1 + 3 and depth 9. Using this construction iteratively, we can
implement the required function φ(x, k) = xk =

∑K
j=1 δkjxj by a network with width at most

2r+1 + 3 and depth 4dK/re+ 1.

6.2 Interpolation

Given an arbitrary sample set (xi, yi), i = 1, . . . ,M , we want to find a network φ with certain
architecture to interpolate the data: φ(xi) = yi. This problem has been studied in many
papers [Yun et al., 2019, Shen et al., 2019, Vershynin, 2020]. Roughly speaking, the number
of samples that a network can interpolate is in the order of the number of parameters.

The following lemma is a combination of Proposition 2.1 and 2,2 in Shen et al. [2019].

Lemma 6.5. For any N,L ∈ N, given N2L samples (xi, yi), i = 1, . . . , N2L, with distinct
xi ∈ Rd and yi ≥ 0. There exists a ReLU network φ with width 4N + 4 and depth L+ 2 such
that φ(xi) = yi for i = 1, . . . , N2L.

We can also give an upper bound of the interpolation capacity of a given network architec-
ture.

Proposition 6.6. Let H = {φθ : Rdin → Rdout} be the class of functions that can be represented
by a ReLU network with architecture of W parameters θ. If for any M samples (xi, yi) with
distinct xi ∈ Rdin and yi ∈ Rdout, there exists θ such that φθ(xi) = yi for i = 1, . . . ,M , then
W ≥Mdout.
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Proof. Choose any M distinct points {xi}Ni=1 ⊆ Rdin . We consider the function F : RW →
RMdout defined by

F (θ) = (φθ(x1), . . . , φθ(xM )).

By assumption, F is surjective. Since F is a continuous piecewise multivariate polynomial, it
is Lipschitz on any closed ball. Therefore, the Hausdorff dimension of the image under F of
any closed ball is at most W [Evans and Gariepy, 2015, Theorem 2.8]. Since RMdout = F (RW )
is a countable union of images of closed balls, its Hausdorff dimension is at most W . Hence,
Mdout ≤W .

This proposition shows that a ReLU network with width N and depth L can interpolate
at most O(N2L) samples, which implies the construction in Lemma 6.5 is asymptotically
optimal. However, if we only consider Boolean output, we can construct a network with width
O(N) and depth O(L) to interpolate N2L2 well-spacing samples. The construction is based
on the bit extraction Lemma 6.4.

Lemma 6.7. Let N,L ∈ N. Given any N2L2 samples {(xi, k, yi,k) : i = 1, . . . , N2L, k =
1, . . . , L}, where xi ∈ Rd are distinct and yi,k ∈ {0, 1}. There exists a ReLU network φ with
width 4N + 5 and depth 5L+ 2 such that φ(xi, k) = yi,k for i = 1, . . . , N2L and k = 1, . . . , L.

Proof. For any i = 1, . . . , N2L, denote yi = Bin 0.yi,1yi,2 · · · yi,L ∈ [0, 1]. Considering the N2L
samples (xi, yi), by Lemma 6.5, there exists a network φ1 with width 4N + 4 and depth L+ 2
such that φ1(xi) = yi for i = 1, . . . , N2L.

By Lemma 6.4, there exists a network φ2 with width 7 and depth 4L + 1 such that
φ2(yi, k) = yi,k for any i = 1, . . . , N2L and k = 1, . . . , L. Hence, the function φ(x, k) =
φ2(φ1(x), k) can be implemented by a network with width 4N + 5 and depth 5L+ 2.

The pseudo-dimension of a network with width N and depth L is O(N2L2 log2(NL)),
which means NN (N,L) can interpolates at most O(N2L2 log2(NL)) samples with Boolean
outputs. Hence, the construction in Lemma 6.7 is optimal up to a logarithm factor. But we
require that the samples are well-spacing in the lemma.

6.3 Proof of Proposition 6.1

Now, we are ready to prove Proposition 6.1. For simplicity, we only consider the case
k = (0, . . . , 0), the following construction can be easily applied to general k ∈ Zd.

Recall that

cmj(x)ϕ(rj(x)) =
∞∑
i=1

21−ibi(mj(x))ϕ(rj(x))− ϕ(rj(x)),

where bi(m) ∈ {0, 1} is the i-bit of cm/2 + 1/2 ∈ [0, 1). For any fixed i, j ∈ N, we first
construct a network to approximate

21−ibi(mj(x))ϕ(rj(x)).

For any r, s ∈ N with 2(r + s) ≥ jd, by Lemma 6.3, there exist ReLU networks hm :
R → R3, 1 ≤ m ≤ d, with width 2r+1 + 3 and depth 2dj/re + 1 such that for any xm =
Bin 0.xm,1xm,2 · · · ∈ Q(j, δ, 1),

hm(xm) =

 km∑
`=1

2j−`xm,`,

j∑
`=km+1

2j−`xm,`, Bin 0.xm,j+1xm,j+2 · · ·

 ,
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where we choose {km}dm=1 ⊆ N such that
∑d

m=1(j − km) = s. By stacking hm in parallel,
there exists a network φ1 : Rd → R3d with width d2r+1 + 3d and depth 2dj/re+ 1 such that

φ1(x) = (h1(x1), . . . , hd(xd)), ∀x = (x1, . . . , xd) ∈ Q(j, δ, d).

Note that the outputs of φ1(x) is one-to-one correspondence with (mj(x), rj(x)) by

mj(x) =

 k1∑
`=1

2j−`x1,` +

j∑
`=k1+1

2j−`x1,`, . . . ,

kd∑
`=1

2j−`xd,` +

j∑
`=kd+1

2j−`xd,`

 ,

rj(x) = ( Bin 0.x1,j+1x1,j+2 · · · , . . . , Bin 0.xd,j+1xd,j+2 · · · ) .

Using this correspondence, by Lemma 6.7, there exists a network φ2,i : Rd+1 → R with width
at most 4 · 2(jd−2s)/2 + 5 ≤ 2r+2 + 5 and depth 5 · 2s + 2 such that φ2,i interpolate 2jd samples:

φ2,i

((
k1∑
`=1

2j−`x1,`, . . . ,

kd∑
`=1

2j−`xd,`

)
, q(x)

)
= bi(mj(x)),

where

q(x) = 1 +

j∑
`=k1+1

2j−`x1,` +
d∑

m=2

2
∑m−1
n=1 (j−kn)

j∑
`=km+1

2j−`xm,` ∈ {1, . . . , 2s}.

Abusing of notation, we denote these facts by

φ1(x) = (φ1,1(x), φ1,2(x)),

bi(mj(x)) = φ2,i(φ1,1(x)),

rj(x) = φ1,2(x).

By assumption, there exists a network φ0 with width Nϕ(ε) and depth Lϕ(ε) such that
‖ϕ − φ0‖∞ ≤ ε‖ϕ‖∞. Thus, |φ0(rj(x))| ≤ (1 + ε)‖ϕ‖∞ ≤ 2. Since bi(mj(x)) ∈ {0, 1}, the
product

21−ibi(mj(x))ϕ(rj(x)) ≈ 21−iφ2,i(φ1,1(x))φ0(φ1,2(x))

can be computed using the observation that, for a ∈ {0, 1} and b ∈ [−2, 2],

4σ

(
b

4
+ a− 1

2

)
− 2a =

{
0 a = 0

b a = 1
= ab, (6.2)

which is a network with width 2 and depth 2.
Finally, our network function φ(x) is defined as

φ(x) =

dlog2(1/ε)e+1∑
i=1

21−iφ2,i(φ1,1(x))φ0(φ1,2(x))− φ0(φ1,2(x)). (6.3)

To implement the summation (6.3), we can first compute (φ1,1(x), φ1,2(x)) by the network φ1,
and then compute (φ1,1(x), φ0(φ1,2(x))) by the network φ0, then by applying r̃ sub-network
φ2,i and using (6.2), we can compute(

φ1,1(x), φ0(φ1,2(x)),
r̃∑
i=1

21−iφ2,i(φ1,1(x))φ0(φ1,2(x))

)
.
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Since dlog2(1/ε)e+ 1 ≤ r̃s̃, we need at most s̃ such blocks to compute the total summation.
The network architecture can be visualized as follows:

x 7−→
φ1,1(x)

φ1,2(x)
7−→

φ1,1(x)

φ0(φ1,2(x))
7−→

φ1,1(x)

φ0(φ1,2(x))

r̃∑
i=1

Φi(x)

7−→ · · · 7−→

φ1,1(x)

φ0(φ1,2(x))

(s̃−1)r̃∑
i=1

Φi(x)

7−→ φ(x),

where
∑k

i=1 Φi(x) represents the summation
∑k

i=1 21−iφ2,i(φ1,1(x))φ0(φ1,2(x)). According to
this construction, in order to compute φ, the required width is at most

max{d2r+1 + 3d, d+ 1 +Nϕ(ε), r̃(2r+2 + 5) + d+ 3} ≤ max{7dr̃2r, Nϕ(ε)}+ 4d,

and the required depth is at most

2dj/re+ Lϕ(ε) + s̃(5 · 2s + 2) ≤ 4 + 4ds/de+ 6s̃2s + Lϕ(ε) ≤ 14s̃2s + Lϕ(ε).

It remains to estimate the approximation error. For any x ∈ Q(j, δ, d), by the definition of
bi(m) (see (6.1)), we have

φ(x) =

dlog2(1/ε)e+1∑
i=1

21−iφ2,i(φ1,1(x))φ0(φ1,2(x))− φ0(φ1,2(x))

=

dlog2(1/ε)e+1∑
i=1

21−ibi(mj(x))φ0(rj(x))− φ0(rj(x))

=c̃mj(x)φ0(rj(x)),

where c̃mj(x)/2 + 1/2 is equal to the first dlog2(1/ε)e+ 1-bits in the binary representation of
cmj(x)/2 + 1/2 ∈ [0, 1). Since |cmj(x) − c̃mj(x)| ≤ ε and ‖ϕ− φ0‖∞ ≤ ε‖ϕ‖∞, we have

|cmj(x)ϕ(rj(x))− φ(x)|

=
∣∣∣cmj(x)ϕ(rj(x))− c̃mj(x)φ0(rj(x))

∣∣∣
≤
∣∣∣cmj(x)ϕ(rj(x))− cmj(x)φ0(rj(x))

∣∣∣+ ε |φ0(rj(x))|

≤ε‖ϕ‖∞|cmj(x)|+ ε(1 + ε)‖ϕ‖∞
≤3ε,

where in the last inequality, we use the assumption |cm| ≤ 1 and ‖ϕ‖∞ = 1. So we finish the
proof.

7 Proof of Theorem 3.3

Recall that the middle function mid (·, ·, ·) is a function that returns the middle value of the
three inputs. The following two lemma are from Lu et al. [2020].

Lemma 7.1. For any ε > 0, if at least two of {x1, x2, x3} are in [y − ε, y + ε], then
mid (x1, x2, x3) ∈ [y − ε, y + ε].
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Proof. Without loss of generality, we assume x1, x2 ∈ [y − ε, y + ε]. If mid (x1, x2, x3) is x1 or
x2, then the assertion is true. If mid (x1, x2, x3) = x3, then x3 is between x1 and x2, hence
mid (x1, x2, x3) = x3 ∈ [y − ε, y + ε].

Lemma 7.2. There exists a ReLU network φ with width 14 and depth 3 such that

φ(x1, x2, x3) = mid (x1, x2, x3), x1, x2, x3 ∈ R.

Proof. Observe that

max(x1, x2) = 1
2σ(x1 + x2)− 1

2σ(−x1 − x2) + 1
2σ(x1 − x2) + 1

2σ(x2 − x1).

The function max(x1, x2, x3) = max(max(x1, x2), σ(x3) − σ(−x3)) can be implemented by
a network φ1 with width 6 and depth 3. Similarly, the function min(x1, x2, x3) can be
implemented by a network φ2 with width 6 and depth 3. Therefore,

mid (x1, x2, x3) = σ(x1 + x2 + x3)− σ(−x1 − x2 − x3)−max(x1, x2, x3)−min(x1, x2, x3)

can be implemented by a network with width 14 and depth 3.

Combining these two lemmas with the construction in Proposition 6.1, we are now ready
to extend the approximation on Q(j, δ, d) to the uniform approximation on [0, 1]d.

Proof of Theorem 3.3. Without loss of generality, we assume that M = 1 and ‖ϕ‖∞ = 1.
To simplify the notation, we let {e1, . . . , ed} be the standard basis of Rd and denote that
L := 14s̃2s+Lϕ(ε) and N := max{7dr̃2r, Nϕ(ε)}+4d, which are the required depth and width
in Proposition 6.1, respectively.

For k = 0, 1, . . . , d, let

Ek := {x = (x1, . . . , xd) ∈ [0, 1]d : xi ∈ Q(j, δ, 1), i > k}.

Notice that E0 = Q(j, δ, d) and Ed = [0, 1]d.
Fixing any δ < 2−j/3, we will inductively construct networks Φk, k = 0, 1, . . . , d, with

width at most 3k · 2CϕN and depth at most L+ 2k such that

‖g − Φk‖L∞(Ek) ≤ 6Cϕε.

where g is the target function

g(x) :=
∑
n∈Zd

cnϕ(2jx− n) =
∑
k∈Zdϕ

cmj(x)+kϕ(2jx−mj(x)− k).

For k = 0, by Proposition 6.1, there exists a network Φ0 with width CϕN and depth L
satisfies the requirement.

To construct Φ1, we observe that for any x ∈ Q(j, δ, d)± δe1,

g(x) =
∑
n∈Zd

cnϕ(2jx− n) =
∑
n∈Zd

cnϕ(2jy − n± 2jδe1),
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where y = x∓ δe1 ∈ Q(j, δ, d). We consider the approximation of the functions

g±δe1(y) := g(y ± δe1) = g(x) =
∑
n∈Zd

cnϕ(2jy − n± 2jδe1)

=
∑
m∈Zdj

∑
k∈Zd

cm+kϕj,±δe1(2jy −m− k) · 1{y∈[0,2−j)d+2−jm}

=
∑

k∈Zdϕj,±δe1

cmj(y)+kϕj,±δe1(2jy −mj(y)− k),

where ϕj,±δe1(x) := ϕ(x± 2jδe1) and we use the fact that ϕj,±δe1(2jy −m− k) is nonzero
on [0, 2−j)d + 2−jm if and only if ϕj,±δe1(2jy − k) is nonzero on [0, 2−j)d if and only if
k ∈ Zdϕj,±δe1 .

For any fixed j and k ∈ Zdϕj,±δe1 , replacing φ0(·) by φ0(· − k ± 2jδe1) in the construction

in section 6.3, we can construct a network φ(j,k) (similar to the representation (6.3)) with
width at most N and depth at most L such that it can approximate the function

y 7→ cmj(y)+kϕj,±δe1(2jy −mj(x)− k)

with error at most 3ε on Q(j, δ, d).
Observe that |Zdϕj,±δe1 | ≤ 2Cϕ, the function

Φ0,±δe1(y) :=
∑

k∈Zdϕj,±δe1

φ(j,k)(y)

can be computed by 2Cϕ parallel sub-networks with width N and depth L. For any y ∈
Q(j, δ, d), the approximation error is

|g±δe1(y)− Φ0,±δe1(y)| ≤ |Zdϕj,±δe1 | · 3ε ≤ 6Cϕε.

We let
Φ1(x) = mid (Φ0(x),Φ0,δe1(x− δe1),Φ0,−δe1(x+ δe1)).

By Lemma 7.2 and the construction of Φ0 and Φ0,±δe1 , the function Φ1 can be implemented
by a network with width 3 · 2CϕN and depth L+ 2. Notice that for any x ∈ E1, at least two
of x,x− δe1,x+ δe1 are in Q(j, δ, d). Hence, at least two of the inequalities

|g(x)− Φ0(x)| ≤ 6Cϕε,

|g(x)− Φ0,δe1(x− δe1)| = |gδe1(x− δe1)− Φ0,δe1(x− δe1)| ≤ 6Cϕε,

|g(x)− Φ0,−δe1(x+ δe1)| = |g−δe1(x+ δe1)− Φ0,−δe1(x+ δe1)| ≤ 6Cϕε.

are satisfied. By Lemma 7.1, we have

|g(x)− Φ1(x)| ≤ 6Cϕε, x ∈ E1.

Suppose that, for some k < d, we have constructed a network Φk with width 3k · 2CϕN
and depth L+ 2k. By considering the function

g±δek+1
(y) := g(y ± δek+1) =

∑
n∈Zd

cnϕ(2jy − n± 2jδek+1)

=
∑

k∈Zdϕj,±δek+1

cmj(y)+kϕj,±δek+1
(2jy −mj(y)− k),

23



which has the same structure as g(x) on Ek, we can construct networks Φk,±δek+1
of the same

size as Φk such that

|g±δek+1
(y)− Φk,±δek+1

(y)| ≤ 6Cϕε, y ∈ Ek.

And by Lemma 7.2, we can implement the function

Φk+1(x) = mid (Φk(x),Φk,δek+1
(x− δek+1),Φk,−δek+1

(x+ δek+1)).

by a network with width 3k+1 · 2CϕN and depth L+ 2k + 2.
Since for any x ∈ Ek+1, at least two of x,x− δek+1,x+ δek+1 are in Ek, by Lemma 7.1,

we have
|g(x)− Φk+1(x)| ≤ 6Cϕε, x ∈ Ek+1.

In the case k = d, the function Φd is a network of depth L+ 2d = 14s̃2s + Lϕ(ε) + 2d and
width 3d · 2CϕN = 3d · 2Cϕ(max{7dr̃2r, Nϕ(ε)}+ 4d). So we finish the proof.

8 Proof of Lemma 4.2

The following lemma, which is from Lu et al. [2020, Lemma 5.3], gives approximation bound
for the product function.

Lemma 8.1. For any N,L ∈ N, there exists a ReLU network Φk with width 9N + k + 7 and
depth 7k(k − 1)L such that

|Φk(x)− x1x2 · · ·xk| ≤ 9(k − 1)(N + 1)−7kL, ∀x = (x1, x2, . . . , xk) ∈ [0, 1]k, k ≥ 2.

Further more, Φk(x) = 0 if xi = 0 for some 1 ≤ i ≤ k.

Proof. We only sketch the network construction, more details can be found in Lu et al. [2020],
Yarotsky [2017]. Firstly, we can use the teeth functions to approximate the square function
x2, where teeth functions Ti : [0, 1]→ [0, 1] are defined inductively:

T1(x) =

{
2x x ≤ 1

2 ,

2(1− x) x > 1
2 ,

and Ti+1 = Ti ◦ T1 for i = 1, 2, · · · . Yarotsky [2017] made the following insightful observation:∣∣∣∣∣x2 − x+
s∑
i=1

Ti(x)
22i

∣∣∣∣∣ ≤ 2−2s−2, x ∈ [0, 1].

By choosing suitable s, one can construct a network with width 3N and depth L to approximate
x2 with error N−L. Using the fact

xy = 2
((x+y

2

)2 − (x2)2 − (y2)2) ,
we can easily construct a new network Φ2(·, ·) to approximate (x, y) 7→ xy on [0, 1]2. Finally,
to approximate the product function (x1, x2, · · · , xk) 7→ x1x2 · · ·xk, we can construct the
network Φk inductively: Φk(x1, · · · , xk) := Φ2(Φk−1(x1, · · · , xk−1), xk).
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If the input domain is [0, a]k for some a > 0, we can define Φk,a(x) := akΦk(x/a), then

|Φk,a(x)− x1x2 · · ·xk| = ak
∣∣Φk

(
x
a

)
− x1

a
x2
a · · ·

xk
a

∣∣ .
Hence, the approximation error is scaled by ak. We can approximate the B-spline N d

k using
Lemma 8.1.

Proof of Lemma 4.2. We firstly consider the approximation of Nk. By Lemma 8.1, there exists
a network φ̃1 with width (k + 1)(9N + k + 6) and depth 7(k − 1)(k − 2)L+ 1 such that

φ̃1(x) =
1

(k − 1)!

k∑
l=0

(−1)l
(
k

l

)
Φk−1,k+1(σ(x− l), · · · , σ(x− l)).

And we have the estimate, for x ∈ [0, k + 1],

∣∣∣Nk(x)− φ̃1(x)
∣∣∣ ≤ 1

(k − 1)!

k∑
l=0

(
k

l

) ∣∣∣σ(x− l)k−1 − Φk−1,k+1(σ(x− l), · · · , σ(x− l))
∣∣∣

≤ 2k

(k − 1)!
(k + 1)k−19(k − 2)(N + 1)−7(k−1)L

≤ 9
(2k + 2)k

(k − 1)!
(N + 1)−7(k−1)L =: ε.

Notice that, for x < 0, φ̃1(x) = 0 = Nk(x), the estimate is actually true for all x ∈ (−∞, k+ 1].
To make this approximation global, we observe that Nk(x) ∈ [0, 1] with support [0, k].

Thus, we can approximate Nk by

φ1(x) := min(σ(φ̃1(x)), χ(x)),

where χ is the indicator function

χ(x) := σ(1− σ(−x)) + σ(1− σ(x− k))− 1.

Note that χ is a piece-wise linear function with χ(x) = 1 for x ∈ [0, k] and χ(x) = 0 for
x /∈ [−1, k + 1]. We conclude that φ1(x) = 0 for x /∈ [0, k + 1] and

‖Nk − φ1‖∞ = sup
x∈[0,k+1]

|Nk(x)− φ1(x)| ≤ sup
x∈[0,k+1]

|Nk(x)− φ̃1(x)| ≤ ε.

Since the minimum of two number x, y ∈ R can be computed by

min(x, y) = 1
2 (σ(x+ y)− σ(−x− y) + σ(x− y) + σ(y − x)) ,

φ1 can be implemented by a network with width (k+1)(9N +k+6)+2 ≤ (k+1)(9(N +1)+k)
and depth 7(k − 1)(k − 2)L+ 3 ≤ 7k2L.

Recall that

N d
k (x) :=

d∏
i=1

Nk(xi), x = (x1, . . . , xd) ∈ Rd.

Using Lemma 8.1, we can approximate N d
k by

φd(x) := Φd(φ1(x1), · · · , φ1(xd)),
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which is a network with width d(k+ 1)(9(N + 1) + k) and depth ≤ 7(k2 + d2)L. Noticing that
φ1(x) ∈ [0, 1], the approximation error is

|N d
k (x)− φd(x)| ≤

∣∣∣∣∣
d∏
i=1

Nk(xi)−
d∏
i=1

φ1(xi)

∣∣∣∣∣+

∣∣∣∣∣
d∏
i=1

φ1(xi)− Φd(φ1(x1), · · · , φ1(xd))

∣∣∣∣∣
≤

∣∣∣∣∣
d∏
i=1

Nk(xi)−
d∏
i=1

φ1(xi)

∣∣∣∣∣+ 9(d− 1)(N + 1)−7dL.

By repeated applications of the triangle inequality, we have∣∣∣∣∣
d∏
i=1

Nk(xi)−
d∏
i=1

φ1(xi)

∣∣∣∣∣ ≤
d∑
j=1

∣∣∣∣∣∣
j−1∏
i=1

φ1(xi)
d∏
i=j

Nk(xi)−
j∏
i=1

φ1(xi)
d∏
i=j

Nk(xi)

∣∣∣∣∣∣ ≤ dε,
where we have use the fact that Nk(x), φ1(x) ∈ [0, 1] and ‖Nk − φ1‖∞ ≤ ε.
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Karlheinz Gröchenig. Foundations of time-frequency analysis. Springer Science & Business
Media, 2001.

Boris Hanin. Universal function approximation by deep neural nets with bounded width and
relu activations. Mathematics, 7(10):992, 2019.

Boris Hanin and Mark Sellke. Approximating continuous functions by relu nets of minimal
width. arXiv preprint arXiv:1710.11278, 2017.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks,
4(2):251–257, 1991.

Rong-Qing Jia. Approximation with scaled shift-invariant spaces by means of quasi-projection
operators. Journal of Approximation Theory, 131(1):30–46, 2004.

Rong-Qing Jia. Approximation by quasi-projection operators in besov spaces. Journal of
Approximation Theory, 162(1):186–200, 2010.

Rong-Qing Jia and JJ Lei. Approximation by multiinteger translates of functions having
global support. Journal of approximation theory, 72(1):2–23, 1993.

Justin Ker, Lipo Wang, Jai Rao, and Tchoyoson Lim. Deep learning applications in medical
image analysis. Ieee Access, 6:9375–9389, 2017.

Serkan Kiranyaz, Turker Ince, Osama Abdeljaber, Onur Avci, and Moncef Gabbouj. 1-d
convolutional neural networks for signal processing applications. In ICASSP 2019-2019
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
8360–8364. IEEE, 2019.

27



George C Kyriazis. Approximation of distribution spaces by means of kernel operators. Journal
of Fourier Analysis and Applications, 2(3):261–286, 1995.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Junjiang Lei, Rong-Qing Jia, and EW Cheney. Approximation from shift-invariant spaces by
integral operators. SIAM Journal on Mathematical Analysis, 28(2):481–498, 1997.

Jianfeng Lu, Zuowei Shen, Haizhao Yang, and Shijun Zhang. Deep network approximation for
smooth functions. arXiv preprint arXiv:2001.03040, 2020.

V Maiorov and J Ratsaby. On the degree of approximation by manifolds of finite pseudo-
dimension. Constructive approximation, 15(2):291–300, 1999.

Vitaly Maiorov and Allan Pinkus. Lower bounds for approximation by mlp neural networks.
Neurocomputing, 25(1-3):81–91, 1999.
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