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Abstract

Networks of nanowires are currently being explored for a range of applications in brain-like (or neuromorphic) computing, and
especially in reservoir computing (RC). Fabrication of real-world computing devices requires that the nanowires are deposited
sequentially, leading to stacking of the wires on top of each other. However, most simulations of computational tasks using
these systems treat the nanowires as 1D objects lying in a perfectly 2D plane – the effect of stacking on RC performance has
not yet been established. Here we use detailed simulations to compare the performance of perfectly 2D and quasi-3D (stacked)
networks of nanowires in two tasks: memory capacity and nonlinear transformation. We also show that our model of the junctions
between nanowires is general enough to describe a wide range of memristive networks, and consider the impact of physically
realistic electrode configurations on performance. We show that the various networks and configurations have a strikingly similar
performance in RC tasks, which is surprising given their radically different topologies. Our results show that networks with an
experimentally achievable number of electrodes perform close to the upper bounds acheivable when using the information from
every wire. However, we also show important differences, in particular that the quasi-3D networks are more resilient to changes in
the input parameters, generalizing better to noisy training data. Since previous literature suggests that topology plays an important
role in computing performance, these results may have important implications for future applications of nanowire networks in
neuromorphic computing.
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1. Introduction

Artificial neural networks (ANNs) underpin machine learn-
ing, both in research and in industry applications (Goodfellow
et al., 2016). However all software implementations of ANNs
on conventional machines are subject to the limitations inherent
in the underlying von Neumann architecture of the hardware.
While CPUs and GPUs allow parallel processing, an inevitable
departure from Moore’s Law (Moore et al., 1965; Khan et al.,
2018) has motivated an increased interest in ways to circumvent
limitations in fabrication technology, and brain-inspired hard-
ware systems show considerable promise (Merolla et al., 2014;
Marković et al., 2020; Christensen et al., 2021).

Reservoir computing (RC) is a neuromorphic approach that
was originally conceived as a specialized adaptation of recur-
rent neural networks (RNN). It was proposed that the input
weights and the internal weights in the network should be fixed,
leaving only the output weights to be trained with an efficient
algorithm such as linear regression (Lukoševičius and Jaeger,
2009), greatly reducing the computational cost of training.

∗Corresponding author at: The MacDiarmid Institute for Advanced Materi-
als and Nanotechnology, School of Physical and Chemical Sciences, Te Kura
Matū, University of Canterbury, Private Bag 4800, Christchurch 8140, New
Zealand
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However, this prototypical form of RC, called an Echo State
Network (ESN) (Jaeger, 2002b), must still be implemented in
software on conventional computer architectures. Hardware
implementations of RC have the potential to provide significant
performance advantages by circumventing the von Neumann
bottleneck and decreasing power consumption. Over the last
few years, a significant effort has been invested in novel hard-
ware systems for RC (Tanaka et al., 2019; Nakajima, 2020).

To be successful as a reservoir, a system must be able to non-
linearly map the inputs so that they become linearly separable in
a higher dimensional feature space. An additional requirement
is short-term memory such that the current state of the reser-
voir is influenced by recent past states and not more distant past
states. The final requirement is the separation property - the
reservoir must be able to distinguish between distinct signals
and yet be insensitive to noise such that those signals which are
sufficiently similar can still be classified as the same (Tanaka
et al., 2019).

Here we investigate the potential of nanowire networks
(NWNs – Figure 1a) to act as reservoirs using detailed simu-
lations. Nanowires are typically comprised of either a metal-
oxide or metal core and are coated in an insulating material
such as a metal-oxide, a chalcogenide electrolyte, or a poly-
mer (for example TiO2 (Li et al., 2020), Ag2S (Sillin et al.,
2013), or PVP (Milano et al., 2020; Diaz-Alvarez et al., 2019)
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Figure 1: (a) Example schematic of a 500NWN with a 1 input (green) and 24 output (red) electrode configuration. (b) Illustration of a possible growth mechanism
that drives the dynamics within the junction between two silver nanowires - as an electrical potential difference occurs between two contacting wires, silver ions
migrate into the junction, forming a filament or hillock. (c) The idenitification of three regimes of junction behaviour - when the voltage is below a critical value
Vc, the filament grows towards an equilibrium state; when Vc is exceeded, the filament growth undergoes a change in stability, growing rapidly. When the filament
grows across the entire width of the gap, a conductive bridge is formed and the junction switches into a low resistance state.

respectively). When the wires make contact, they form a
metal-insulator-metal (MIM) memristive junction (Kuncic and
Nakayama, 2021), as illustrated in Figure 1b. A memristor is a
two terminal electronic device whose resistance responds non-
linearly to changes in input and whose state exhibits memory
of previous inputs (Strukov et al., 2008). A voltage bias can
be applied across the MIM junction, causing the migration of
ions. Depending on the system, an atomic or nanoscale fila-
ment begins to form across the junction (Krishnan et al., 2016;
Yang et al., 2020; Wang et al., 2019). When this filament forms
a complete bridge, the junction experiences a sharp transition
from a nonlinear low conductance state to a high conductance
Ohmic state. In the low conductance state, which is the focus
of the present work, current flow across a junction is via quan-
tum tunnelling. As the filament grows (shrinks), the width of
the tunnelling barrier decreases (increases), causing a nonlinear
change in conductance for each junction. The coupling of non-
linear junction dynamics to the complex network topology via
Kirchhoff’s Laws results in rich recurrent dynamics that can
be exploited for reservoir computing applications (Zhu et al.,
2020a).

Self-assembled NWNs have previously been investigated
and have been shown to exhibit complex brain-like behaviour
such as neural avalanching (Hochstetter et al., 2021; Dunham
et al., 2021), short- and long-term memory (Diaz-Alvarez et al.,
2020; Li et al., 2020), and multi-tasking (Loeffler et al., 2021).
Demonstrations of neuromorphic behaviour include: winner-
takes-all behaviour (Manning et al., 2018), higher harmonic
generation (HGG) (Cohen et al., 2012; Sillin et al., 2013), and
sine wave generation and temporal signal processing (Zhu et al.,
2020b; Kuncic et al., 2020; Fu et al., 2020). Simulations show
the promise of NWNs for neuromorphic applications, but ex-
perimental demonstrations are thus far very limited (Kuncic and
Nakayama, 2021; Milano et al., 2021; Hochstetter et al., 2021).

Simulations of NWNs generally assume the wires to be 1-
dimensional objects that interpenetrate each other and hence

can lie on a perfectly 2-dimensional plane. However, real
nanowires are 3-dimensional objects, and will inevitably be-
come stacked on top of one another during deposition (im-
ages of stacking effects in experimental nanowire devices can
be seen in Milano et al. (2020) and Lee et al. (2017)). It has
been shown previously that there are significant differences in
the topological structure of 2D and quasi-3D (Q3D) NWNs
(Daniels and Brown, 2021). This manifests as important differ-
ences in network characteristics such as the degree of clustering
and average path length between wires. Recent work has also
shown that 2D NWNs have a much higher small-world propen-
sity than quasi-3D networks of nanowires (Pantone et al., 2018;
Loeffler et al., 2020; Daniels and Brown, 2021). It has been
suggested that in general, information processing and signal
propagation are enhanced in small-world ESN (Kawai et al.,
2019) and coupled oscillator systems (Nishikawa et al., 2003).
However, it is currently not known how these different network
characteristics will affect RC performance.

Most previous simulations of NWN assume that the signals
from every wire (node) in the network can be used as outputs
for RC. However these signals are in fact inaccessible in real-
world experiments, and therefore the performance of realistic
networks could be significantly different. In the present work,
we present results obtained using a physically realistic elec-
trode configuration (Figure 1a) that reflects the true potential
of NWNs for RC applications. We compare the performance
of realistic Q3D NWNs with their purely 2D counterparts and
find some striking similarities. Specifically, we investigate the
performance of the NWNs as physical reservoirs in two tasks:
the memory capacity (MC), and the nonlinear transformation
(NLT). In addition, we test the separation property by investi-
gating the performance of the NWNs in response to noisy input
data. Importantly, we also consider the impact of the number
and type of output electrodes that are connected to the NWNs.
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2. Nanowire Networks

Here we describe the model of the junction dynamics and the
details of the construction of the NWN.

2.1. Junction model

The most basic dynamical element within a NWN is the junc-
tion that results from two wires making contact. We model the
internal dynamics of the memristive junction as a conductive
‘hillock’ (Figure 1b) that grows through the insulating layer be-
tween wires under the influence of an electric field, creating a
non-equilibrium structure. Surface energy effects will attempt
to reduce the size of this protrusion (Wang et al., 2019). The
dynamical equation governing the growth of the hillock is then

dz
dt

= µ
V

D − z
− κz, (1)

where z is the height of the hillock and D is the distance be-
tween wire cores as in Figure 1b. V is the voltage across
the junction, and µ and κ are the parameters which govern
growth and relaxation respectively (µ = 0.346nm2V−1 and κ =

0.038s−1 – see discussion below). Eq (1) can then be numeri-
cally integrated using the Euler method to obtain a discretized
change in hillock height at each computational timestep. The
conductance of each junction is governed by quantum mechan-
ical tunneling, and so is a function of the instantaneous size of
each tunnel gap, D − z:

G = αe−β(D−z). (2)

Hence each junction has a nonlinear response to a voltage input.
Note that the response of the network results from the interac-
tion of all the junctions.

Using Eq (1), we can identify a critical voltage Vc. For V <
Vc, the hillock grows towards a stable equilibrium value. For
V > Vc, the hillock will grow until z = D, forming a conductive
bridge between the two wires (Figure 1c). We focus here on
the low voltage regime where no hillock completely bridges a
tunnel gap.

We now show that the junction model given in Eq (1) is
equivalent to that of an ideal voltage-driven memristor (Strukov
et al., 2008) parameterized using an internal variable w and gov-
erned by the dynamical equation

dw
dt

= µ
RON

D
V
R
− κw, (3)

with the resistance across the gap of size D, given by

R = RON
w
D

+ ROFF

(
1 −

w
D

)
, (4)

where RON and ROFF are the resistance across the memris-
tor in the high conductive state and the low conductive state
respectively. If we assume (Caravelli, 2019) a fixed ratio of
r = ROFF/RON , we can combine Eq (3) and (4) to get

dw
dt

= rµ
V

D − χw
− κw, (5)

where χ = (ROFF − RON)/ROFF . The ratio r is typically on the
order of 103 − 105 (Kuncic and Nakayama, 2021), so when r is
large, χ→ 1. The resulting equation is then

dw
dt

= rµ
V

D − w
− κw. (6)

When compared with Eq (1), we can see that they are equiva-
lent up to a factor of r in the first term, which has the effect of
renormalizing the relevant range of µ (note that r is a parame-
ter of the memristor model, but not our simulations). Hence the
hillock growth model is equivalent to models of diffusive unipo-
lar memristive junctions operating in a low voltage regime, and
the results presented in this paper are applicable to the more
general case of nanowire networks with memristive junctions.

We note that other authors have considered alternate regimes
and junction models, including bipolar switching models. For
example Hochstetter et al. (2021) and Loeffler et al. (2021) con-
sider a regime where each hillock can extend close to the oppo-
site side of the junction gap, leading to a dramatic increase in
conductance which then redistributes the voltage across other
junctions. In this regime, conductive bridges can continuously
evolve throughout the network, leading to more complex dy-
namical behaviour. We emphasize that we consider the low
voltage regime where the hillocks never completely bridge the
junction gaps.

2.2. Network simulation
We constructed two different types of NWNs, 2D and Q3D.

The x− and y−coordinates of the centres of the wires were cho-
sen randomly from a uniform distribution in the range [0,Λ],
where Λ is the width of the square deposition area. The orienta-
tion of the wires with respect to the x-axis were drawn randomly
from a uniform distribution in the range [−π/2, π/2]. Every
point where two wires intercept is considered to be a junction
in the network. The connectivity is then stored in an adjacency
matrix.

In the 2D networks, the wires are rigid 1D lines, and hence
all lie within the same plane. However, in the Q3D networks,
the wires are rigid 3D volumes in space. The positioning of a
new wire therefore depends upon those that have been previ-
ously deposited. For a new wire, the algorithm determines all
potential intercept points, and in the general case, the point of
intercept with the highest z value acts as the first contact point
and as a pivot around which the new wire must rotate. The
center of mass of the new wire then determines the direction of
rotation and hence the second contact point. This results in a
stacking of the wires in the vertical direction, leading to very
different topological properties of the 2D and Q3D networks
(for more details, see Daniels and Brown (2021)).

The input and output electrodes are defined by placing addi-
tional nanowires in the deposition area to act as contacts (they
are placed before the deposition of the NWN). The input elec-
trode is deposited on the left edge of the deposition area, and
the output electrodes are evenly distributed along the top, bot-
tom, and right edges (as in Figure 1a). The ‘contact’ wires are
then treated in the same way as all other wires, with additional
rows and columns added to the adjacency matrix representation
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Figure 2: Schematic of some example networks with different output electrode configurations. Note that the outputs and reconstructed waveforms are examples only,
and not meant to be indicative of the real network outputs. (a) The memory capacity calculation shown here with a Q3D 400NWN with 1 input electrode (green
square) and 3 output electrodes (red squares). The colored lines within the network represent the current flow across the network (light to dark blue corresponds to
a high to low current). The input signal U (green) is fed into the input electrode and the current Xn is recorded from each of the n output electrodes (red). The output
values at time t are then used to find the predicted output y (shown by the blue line on the far right) at time t − k. (b) The nonlinear transformation process shown
here with a Q3D 500NWN with 24 output electrodes. The input waveform U (green) is fed into the input electrode, and the current is recorded from the outputs
(red). Linear regression is then used on the electrode outputs to find the total output ŷ to match the target function y. This general procedure is the same regardless
of the selected number of output signals and regardless of whether the output signal is the current at each electrode or the voltage at each node/wire.

of the network. The input signal is a voltage that is applied
to the input electrode, and the output electrodes are grounded.
We then solve Kirchhoff’s circuit laws for the network, and the
current is recorded from each of the output electrodes. All sim-
ulations were implemented in Python v3.8.5.

3. Tasks

The aim of this paper is to evaluate the potential of the net-
works for reservoir computing applications and to compare per-
formance for different network topologies. We therefore imple-
ment two tasks to test two different capabilities: the memory
capacity (MC) which tests the fading memory property of the
reservoir, and the nonlinear transformation task (NLT), which
tests the ability of the network to map the input onto a higher-
dimensional feature space. We perform the tasks using two dif-
ferent methods of reading the network output. In the first, the
currents flowing from the output electrodes are used as the read-
out (the red electrodes/wires in Figure 1a). In the second, the
voltages at every wire (node) provide the output signals (the
blue wires in Figure 1a). This second method allows us to ex-
ploit information within the network that is normally inaccessi-
ble in real experiments due to technological limitations. We ex-
pect that these results therefore will provide a theoretical upper

bound on the performance. The first approach provides an in-
dication of the practical reliability of real world devices (which
necessarily have a limited number of electrodes). For brevity
we refer to two different readout methods as E-mode (outputs
are electrode currents) and N-mode (outputs are wire voltages).

We now provide general details of the tasks that are not spe-
cific to any particular electrode configuration.

3.1. Memory Capacity

The memory capacity task aims to reconstruct a delayed ver-
sion of the input signal from the measured outputs (Jaeger,
2002a). In other words, the task determines how precisely the
reservoir can reconstruct the input of previous time-steps. Fig-
ure 2a shows a schematic of the MC task. The input to the
network, U, is a random sequence of voltage values drawn uni-
formly from the range [0,Vmax]. The input is applied at the
single input electrode and the output signal is collected from
the readouts (which can be either the electrodes, as illustrated
in Figure 2a, or every wire). The measured readout sequences
are then combined into a predictor matrix, X. MCk quantifies
the performance of the network in reconstructing a version of
the input that is delayed by a time k. In other words the target y
at time t is the same as the input at time t−k. The reconstructed
signal ŷ (i.e. the prediction of the reservoir) is obtained from

4
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Figure 3: The memory capacities of the 2D and Q3D networks. (a) An input voltage with Vmax = 1V is fed into a 500NWN. The electrodes are then varied from 3 to
24. The red (2D) and blue (Q3D) lines show the memory capacity when using the readout from output electrodes only. The yellow (2D) and green (Q3D) lines show
the memory capacity when every node in the network is used to perform the calculation. (b) With the same input voltage, the electrodes are now fixed at 24, and the
number of wires in the networks are varied. We see a constant MC score with low variance when using the electrodes. When the using the readout from every wire,
the 2D network MC drops rapidly for increasing wires, while the Q3D remains high. (c) The effect of Vmax on a 500NWN with 24 electrodes. Although MC remains
high for both networks, there is a slight decrease with increasing Vmax. Note that the x-scale is the min-max normalized Vmax value, where the largest voltage is
the final voltage the network experiences before one or more junctions move into a high conductance state. Results are averaged across 3 network realizations, and
error bars in (a) and shading in (b, c) represent the standard deviation. The inset in (c) shows the results from individual realizations with absolute voltage for the
case where the electrode currents are used as predictors.

a linear combination of the readouts at time t. For the delay k
the required weight vectors, wk = X†y, are obtained from the
Moore-Penrose Pseudo inverse X†, which minimizes the root
mean square error (RMSE)

RMS E =

√∑
(y − ŷ)2

L
. (7)

Here ŷ = wkX and L is the length of the input sequence. After
training, the memory capacity for each k is obtained from the
predicted output for a different test input sequence, and is de-
fined as the squared correlation coefficient between the target
and predicted signals,

MCk =
cov2(y, ŷ)
σ2(y)σ2(ŷ)

. (8)

The total memory capacity is then a sum over all possible delays

MC =

kmax∑
k=1

MCk. (9)

3.2. Nonlinear transformation

The NLT task demonstrates the ability of the network to per-
form a non-linear mapping using the higher harmonics gener-
ated by the internal dynamics of the network (Sillin et al., 2013;
Jaeger, 2002c). As illustrated schematically in Figure 2, an in-
put sine wave U with signal level between Vmin and Vmax is fed
into the network at the input electrode. The process of train-
ing and testing the network is essentially identical to that of the
MC task, except the target function y is a square wave in the

range [−1, 1] (Figure 2b). The normalized root mean square er-
ror (NRMSE) between the target function and the transformed
function ŷ,

NRMS E =
RMS E

ymax − ymin
(10)

is used as the performance metric.

3.3. Noisy input

In many machine learning models, adding noise to the in-
put signals acts as a type of regularization (Bishop, 1995) - i.e.
it prevents the weights from taking extreme values (overtrain-
ing). The result is a model that generalizes better and is more
resilient to noisy test data (Bishop, 2006; Goodfellow et al.,
2016). Therefore, in order to investigate the generalizability
of NWN to performing the nonlinear transformation, a degree
of random noise is added to the input training signals. The
networks are then tested using the regression weights obtained
from training.

4. Results

The simulations are performed for an experimentally rele-
vant range of parameters, as described in detail in Daniels and
Brown (2021). For all simulations, the dimensions of the depo-
sition area are kept fixed at 30×30µm2, and the wire lengths are
chosen to be 6µm. All input voltage values are positive, which
means that the network junctions are operating in a strictly
unipolar regime. The values of µ and κ were chosen to pro-
duce equal time constants for the growth and decay of the con-
ductive hillock in the low voltage regime. When analyzing the
dependence of performance in the MC and NLT tasks upon
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Figure 4: (a) The effect of increasing the number of electrodes in the NWNs on the non-linear transformation task. Red and blue correspond to the values obtained
using the readout from the electrodes for testing in the 2D and Q3D networks respectively; the yellow and green (2D and Q3D respectively) are the results using
the readout from every wire in the networks. As the number of electrodes is increased, performance quickly approaches that of the network when the potential
from every wire is used. (b) With the same input voltage amplitude (1V), the electrodes are now fixed at 24, and the number of wires in the networks are varied.
The NRMSEE of both networks decrease slightly and plateau after approximately 1000 wires. When using all wires for the task readout, the 2D and Q3D network
performance is similar. (c) The effect of increasing the input signal voltage. Note that the x-scale is the min-max normalized Vmax value, where the largest voltage
is the final voltage before the network experiences one or more junctions move into a high conductance state. Again, the performance of 2D and Q3D networks are
similar. Results are averaged across network realizations, and errorbars in (a) and shading in (b, c) represent the standard deviation. The inset in (c) shows the
results from individual realizations with absolute voltage.

electrode numbers and Vmax, we used a fixed wire density of
∼0.55 NW/µm2 (500 wires). This allows a direct comparison
with recent work in experimental nanowire devices (Avizie-
nis et al., 2012; Diaz-Alvarez et al., 2019; Milano et al., 2020;
O’Callaghan et al., 2018).

Since a non-singular conductance matrix is required to solve
Kirchhoff’s laws the number of wires and number of electrodes
comprising the network is constrained. As the number of wires
is decreased towards the percolation threshold (i.e. the mini-
mum number of wires NC for which the two sides of the sys-
tem are fully connected in 50% of simulations (Stauffer and
Aharony, 2018)), the probability of producing a fully connected
network that is connected to all electrodes decreases. We find
that for 24 electrodes, arranged as in Figure 2, a minimum of
400 wires is required to ensure all electrodes are connected.
This is consistent with experimental studies where densities of
wires are typically well above the percolation threshold (Kuncic
and Nakayama, 2021).

For each task we considered the impact of the number of
output electrodes E ranging from 3 to 24 electrodes, the number
of wires N in the network ranging from 400 to 1500 wires, and
the value of Vmax ranging up to to 12V. (Input values higher than
12V consistently result in hillocks forming complete bridges
across multiple junctions within any given network.)

4.1. Memory capacity

Figure 3a shows the impact of the number of electrodes on
the memory capacity in E-mode MCE and in N-mode MCN .
Perhaps surprisingly, given the significant differences in net-
work structure (Daniels and Brown, 2021), MCE for the 2D
(red) and Q3D (blue) networks are strikingly similar. The same
is also true of MCN (yellow for 2D, green for Q3D). In both

types of network, as E is increased, MCE increases gradually
but gains in performance for E > 12 become small. MCN is
not affected by the number of electrodes, and is higher than
MCE , consistent with the expectation that readout from all
nodes should provide an upper limit on performance.

In order to determine the impact of N on the memory ca-
pacity, we set E = 24 and varied the number of wires. Fig-
ure 3b shows that MCE is always similar for the 2D and Q3D
networks (compare red and blue curves) and the difference be-
comes smaller as N increases. This is surprising, since as N is
increased the stacking in the Q3D network becomes more pro-
nounced. MCN for the 2D NWNs begins to drop off gradually
and becomes comparable with that of MCE , whereas MCN for
the Q3D NWNs remains relatively constant. Hence, for large N
the upper limit on performance of the Q3D networks is signif-
icantly higher than for the 2D networks. As N increases, more
wires become shorted together in the 2D networks (decreas-
ing the average degree), and this effectively reduces the number
of wires with unique outputs and the results become similar
to those obtained from using a small sample of the wires (and
the performance using electrode currents). Recent work by Han
et al. (2021) has also shown that the MC of directed acyclic net-
works decreases rapidly as the density of nodes in the network
increases. These results are also consistent with the findings of
Loeffler et al. (2021) and Zhu et al. (2020b), which show MC
declining with an increase in the mean degree of the networks.

Figure 3c shows the impact of the input voltage on the mem-
ory capacity for a fixed E = 24. The 2D and Q3D networks
were subjected to the same voltage input sequence, but for each
realization of the networks, the range of Vmax was constrained
by the requirement that all junctions remain in the low voltage
regime (i.e. that no hillock formed a complete bridge across any
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Figure 5: The nonlinear current response of the output electrodes and the higher harmonics produced from 24-electrode 2D (red) and Q3D (blue) NWNs with a 3V
sinusoidal input, showing a highly nonlinear current response and a wide range of higher harmonics.

junction). Figure 3c shows the change in MC with Vmax (the val-
ues of Vmax on the x-axis are min-max normalized which allows
us to compare performance relative to the critical voltage, VC).
Initially, an increase in input voltage causes a rapid increase
in both MCN and MCE , as a greater degree of nonlinearity in
the junctions can be exploited. However, as Vmax increases fur-
ther there is a saturation and then a slight decline. This effect
is also seen in directed acyclic networks: as the input signal is
increased, MC decreases (Han et al., 2021).

The inset of Figure 3c shows MCE of each realization of the
system as a function of the absolute voltage. Nearly twice the
input voltage can be applied to the Q3D networks compared
to the 2D networks. This is consistent with previous work
(Daniels and Brown, 2021) showing that the Q3D networks
have longer path lengths – as voltage is distributed across many
junctions in series, the longer path between electrodes ensures
a lower voltage across each junction.

4.2. Nonlinear transformation
Figure 4 compares the performance in the NLT for different

network types. The input sequence used was a 1V sinusoidal
signal of 1Hz frequency for 21 periods. The network contains
N = 500 nanowires. In Figure 4a the red and blue curves show
the performance in E-mode (NRMSEE) for the 2D and Q3D
networks respectively. As E is increased, NRMSEE drops (i.e.
performance improves), with the 2D networks slightly outper-
forming the Q3D networks. Figure 4 also shows the theoret-
ical maximum performance, NRMSEN , of the networks in N-
mode for the 2D and Q3D networks (yellow and green respec-
tively). NRMSEE approaches NRMSEN as E is increased, and
for E > 12 there is very little performance gain, as was also
observed for the MC task. When using N-mode to perform
the NLT, the testing and training NRMSEN are similar to one
another for the Q3D networks, yet the testing NRMSEN is sig-
nificantly higher than the training NRMSEN , suggesting that
the 2D network weights are overfitting the training data (not
shown).

Figure 4b shows the impact of N on the nonlinear tranfor-
mation performance. As with the MC task, E is fixed at 24,
and N ranges from 400 to 1500. In E-mode, performance im-
proves slightly with increasing N, until N ∼1000. When us-
ing N-mode, performance remains constant for N > 500 wires,
with very little variance across different realizations in both net-
works.

Figure 4c shows that as Vmax increases, there is a gradual
improvement in performance, which then plateaus at 3-4V for
both networks. There is very little difference in performance
between the 2D and Q3D networks. This is once again sur-
prising given the different topological structure of the 2D and
Q3D networks. However, as shown in the inset of Figure 4c,
the Q3D network can be subjected to nearly twice the input
amplitude compared to the 2D networks, achieving consistent
NRMSE scores over a wider range of voltage inputs.

In order to successfully transform the input signal into the
target, the network must be capable of higher harmonic genera-
tion (HHG). We therefore also examined the higher harmonics
produced by each network.

Figure 5 shows the HHG for an example 2D and an exam-
ple Q3D network both in a 24 electrode configuration, show-
ing a highly nonlinear network response to a sinusoidal input,
and the generation of a wide range of higher harmomics. The
generation of the higher harmonics can be largely attributed to
the nonlinear response of the network. Hence the network is
able to perform a nonlinear mapping of the input features to a
higher-dimensional space. Note that in Figure 5, we can see
that the Q3D network has a smaller degree of hysteresis. This
is likely due to the lower voltage across each junction caused
by the shorter mean path lengths within the Q3D network.

4.3. Noisy input
In order to test the resilience of the network performance,

we trained the output weights for each of the networks in the
same manner as for the NLT task, but added input noise ranging
from 0 to 5% of the input signal amplitude. We then exposed
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Figure 6: Comparison of performance in the presence of noise. (a) When the networks are trained on low levels of noise, the 2D networks show a high sensitivity to
subsequent noisy test inputs. Despite initially performing worse than the 2D networke much more resilient and the 2D network consistently outperforms the Q3D.
Note the 2D network trained on 0%, marked by the arrow. The bold dotted lines are the mean NRMSE scores for the two different networks. (b) The weights of the
2D and Q3D networks (red and blue) trained on a range of noise. Shown here is a sample of the networks trained on integer amounts of noise. (c-f) An example of
the Q3D network (blue) resilience to low amounts of training noise compared with the 2D networks (red). The example networks were trained on 0.25% noise and
then tested on 5%. Shown in (c) and (e) are the weighted outputs from the networks. The corresponding noise curves are marked in (a) by the two arrows.

the trained networks to testing inputs with different amounts of
noise.

When the networks receive training input with small amounts
of noise (< 1%), the Q3D networks achieve a lower NRMSE on
the testing signal than the 2D networks. In fact, when the net-
works are trained in the absence of noise, the test performance
for the 2D network is poor when even the slightest amount of
noise is added to the test input (see the nearly vertical red line
close to the vertical axis of Figure 6a). When the 2D networks
are trained on input signals with greater amounts of noise, the
testing performance significantly improves.

In general, the 2D networks have a slightly better perfor-
mance (lower NRMSE) than the Q3D networks. However, the
Q3D networks show a significant jump in performance when
trained on input with noise above ∼2%. The average perfor-
mance (bold dashed lines) of the two networks begins to con-
verge for higer levels of noise. Figure 6b shows the evolution
of the weights as more input noise is added. When trained with
low noise, the distribution of weights in both networks is nar-
row. As the noise on the training input is increased, the weight
distribution for the 2D networks remains stable, but the weights
for the Q3D network undergo a sharp transition and become
much more widely distributed.

Figure 6(c-f) show examples of NLT performance for a 2D
and Q3D network exposed to a low amount of input noise
(0.25%). The 2D network achieves a better training perfor-
mance, but the Q3D network achieves a significantly better test

NRMSE. The high values of the weights when trained on low
noise and the comparatively poor performance of the networks
on the testing data suggest that the regression of the output from
the 2D network is overfitting. Adding noise acts to regularize
the output weights, allowing it to generalize better on the more
noisy test data, as seen by the flatter curves in Figure 6a for
the Q3D networks. The slightly narrower range of weights for
the Q3D network trained on low noise avoids over fitting and
therefore makes them more resilient.

5. Conclusion

We have compared the performance of 2D and Q3D
nanowire networks in reservoir computing tasks using realis-
tic simulations of the physical systems. The networks have a
strikingly similar performance, which is surprising given that
the networks have very different topologies. The memory ca-
pacities of both networks when using the physically realistic
output electrodes are largely unaffected by the key parameters:
electrode number, wire number, and voltage input. The upper
bounds on the memory capacity, obtained using the (physically
inaccessible) potentials of every wire, are higher for the Q3D
networks, especially at large N. Our results show that networks
with an experimentally achievable number of electrodes are –
perhaps surprisingly – close to the upper bounds.

For the nonlinear transformation task, there are again a num-
ber of similarities in the performance of the 2D and Q3D net-
works. The two types of network achieve similar NRMSE
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scores, supported by the fact that both networks produce a sim-
ilar range of higher harmonics. The performance when using
the electrode outputs is again close to the maximum achievable
performance (using the voltage from every wire). For both RC
tasks, there is almost no gain in performance for E > 12 (for
systems of fixed size and wire density) and so 12 output elec-
trodes appear to be sufficient for practical devices.

There are, however, also some important differences between
the network types. The most striking performance difference is
the rapid MC performance dropoff for the 2D network when us-
ing every wire as a readout. This could be due to a combination
of factors, including a shorting together of an increasing num-
ber of wires, and a change in the mean degree and mean path
lengths across the network. This leads to a decrease in the num-
ber of independent nodes and hence an effective decrease in the
richness of network outputs. The Q3D network overall is much
more robust to changes in the input parameters. When trained
with no noise, the 2D networks do a poor job of generalizing
to noisy data compared with the Q3D networks. As the 2D
networks are trained on signals with more noise, performance
decreases slightly but the generalizability improves.

We emphasize that the focus of this work has been to com-
pare performance of the 2D and Q3D networks for identical pa-
rameters. However, the question naturally arises as to whether
it might be possible to vary the parameters in order to achieve
the same network characteristics for the two different dimen-
sionalities. In fact it has already been shown that 3D networks
with N > 150 have distinctly different network characteristics
to all 2D networks (see Fig. 6 in Daniels and Brown (2021)),
and so this is not possible.

Given previous literature which emphasizes the importance
of network topology on RC performance, it is very surprising
that there are not more radical differences in performance be-
tween the 2D and Q3D networks. This could in part be due to
the level of complexity of the tasks - it is possible that there
could be larger differences in performance for more complex
computing tasks, and these should be explored in future work.
Finally, it is interesting to note that recent investigations of RC
performance using networks based on the human connectome
reflect the complex interplay between the topology and dynam-
ics of the network (Suárez et al., 2021); detailed comparisons
of performance for different systems are still required to under-
stand the optimal network characteristics for different tasks.

Declaration of competing interest

The authors declare that they have no known competing fi-
nancial interests or personal relationships that could have ap-
peared to influence the work reported in this paper.

Acknowledgements

We would like to thank Kourosh Neshatian and James Atlas
for useful discussions and input. This project was financially
supported by The MacDiarmid Institute for Advanced Materials
and Nanotechnology, the Ministry of Business Innovation and
Employment, and the Marsden Fund.

References

Avizienis, A.V., Sillin, H.O., Martin-Olmos, C., Shieh, H.H., Aono, M., Stieg,
A.Z., Gimzewski, J.K., 2012. Neuromorphic atomic switch networks. PLOS
ONE 7, 1–8.

Bishop, C.M., 1995. Training with noise is equivalent to tikhonov regulariza-
tion. Neural computation 7, 108–116.

Bishop, C.M., 2006. Pattern recognition. Machine learning 128.
Caravelli, F., 2019. Asymptotic behavior of memristive circuits. Entropy 21,

789.
Christensen, D.V., Dittmann, R., Linares-Barranco, B., Sebastian, A., Gallo,

M.L., Redaelli, A., Slesazeck, S., Mikolajick, T., Spiga, S., Menzel, S., et al.,
2021. 2021 roadmap on neuromorphic computing and engineering. arXiv
preprint arXiv:2105.05956 .

Cohen, G.Z., Pershin, Y.V., Di Ventra, M., 2012. Second and higher harmonics
generation with memristive systems. Applied Physics Letters 100, 133109.

Daniels, R.K., Brown, S.A., 2021. Nanowire networks: how does small-world
character evolve with dimensionality? Nanoscale Horiz. 6, 482–488.

Diaz-Alvarez, A., Higuchi, R., Li, Q., Shingaya, Y., Nakayama, T., 2020. As-
sociative routing through neuromorphic nanowire networks. AIP Advances
10, 025134.

Diaz-Alvarez, A., Higuchi, R., Sanz-Leon, P., Marcus, I., Shingaya, Y., Stieg,
A.Z., Gimzewski, J.K., Kuncic, Z., Nakayama, T., 2019. Emergent dynam-
ics of neuromorphic nanowire networks. Scientific reports 9, 1–13.

Dunham, C.S., Lilak, S., Hochstetter, J., Loeffler, A., Zhu, R., Chase, C., Stieg,
A.Z., Kuncic, Z., Gimzewski, J.K., 2021. Nanoscale neuromorphic net-
works and criticality: a perspective. Journal of Physics: Complexity 2,
042001.

Fu, K., Zhu, R., Loeffler, A., Hochstetter, J., Diaz-Alvarez, A., Stieg, A.,
Gimzewski, J., Nakayama, T., Kuncic, Z., 2020. Reservoir computing with
neuromemristive nanowire networks, in: 2020 International Joint Confer-
ence on Neural Networks (IJCNN), IEEE. pp. 1–8.

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep learning. MIT press.
Han, X., Zhao, Y., Small, M., 2021. Revisiting the memory capacity in reservoir

computing of directed acyclic network. Chaos: An Interdisciplinary Journal
of Nonlinear Science 31, 033106.

Hochstetter, J., Zhu, R., Loeffler, A., Diaz-Alvarez, A., Nakayama, T., Kuncic,
Z., 2021. Avalanches and edge-of-chaos learning in neuromorphic nanowire
networks. Nature Communications 12, 1–13.

Jaeger, H., 2002a. Short term memory in echo state networks. gmd-report 152,
in: GMD - German National Research Institute for Computer Science.

Jaeger, H., 2002b. Tutorial on training recurrent neural networks, covering
BPPT, RTRL, EKF and the” echo state network” approach. volume 5. GMD-
Forschungszentrum Informationstechnik Bonn.

Jaeger, H., 2002c. Tutorial on training recurrent neural networks, covering
BPPT, RTRL, EKF and the” echo state network” approach. volume 5. GMD-
Forschungszentrum Informationstechnik Bonn.

Kawai, Y., Park, J., Asada, M., 2019. A small-world topology enhances the
echo state property and signal propagation in reservoir computing. Neural
Networks 112, 15–23.

Khan, H.N., Hounshell, D.A., Fuchs, E.R., 2018. Science and research policy
at the end of moore’s law. Nature Electronics 1, 14–21.

Krishnan, K., Tsuruoka, T., Mannequin, C., Aono, M., 2016. Mechanism for
conducting filament growth in self-assembled polymer thin films for redox-
based atomic switches. Advanced Materials 28, 640–648.

Kuncic, Z., Kavehei, O., Zhu, R., Loeffler, A., Fu, K., Hochstetter, J., Li, M.,
Shine, J.M., Diaz-Alvarez, A., Stieg, A., et al., 2020. Neuromorphic in-
formation processing with nanowire networks, in: 2020 IEEE International
Symposium on Circuits and Systems (ISCAS), IEEE. pp. 1–5.

Kuncic, Z., Nakayama, T., 2021. Neuromorphic nanowire networks: princi-
ples, progress and future prospects for neuro-inspired information process-
ing. Advances in Physics: X 6, 1894234.

Lee, J., An, K., Won, P., Ka, Y., Hwang, H., Moon, H., Kwon, Y., Hong, S.,
Kim, C., Lee, C., Ko, S.H., 2017. A dual-scale metal nanowire network
transparent conductor for highly efficient and flexible organic light emitting
diodes. Nanoscale 9, 1978–1985.

Li, Q., Diaz-Alvarez, A., Tang, D., Higuchi, R., Shingaya, Y., Nakayama, T.,
2020. Sleep-dependent memory consolidation in a neuromorphic nanowire
network. ACS Applied Materials & Interfaces 12, 50573–50580.

Loeffler, A., Zhu, R., Hochstetter, J., Diaz-Alvarez, A., Nakayama, T., Shine,
J.M., Kuncic, Z., 2021. Modularity and multitasking in neuro-memristive
reservoir networks. Neuromorphic Computing and Engineering 1, 014003.

9



Loeffler, A., Zhu, R., Hochstetter, J., Li, M., Fu, K., Diaz-Alvarez, A.,
Nakayama, T., Shine, J.M., Kuncic, Z., 2020. Topological properties of
neuromorphic nanowire networks. Frontiers in Neuroscience 14, 184.
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