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ABSTRACT
With the advancement of sensing technology, multivariate time series classification (MTSC)
has recently received considerable attention. Existing deep learning-based MTSC techniques,
which mostly rely on convolutional or recurrent neural networks, are primarily concerned with
the temporal dependency of single time series. As a result, they struggle to express pairwise de-
pendencies among multivariate variables directly. Furthermore, current spatial-temporal mod-
eling (e.g., graph classification) methodologies based on Graph Neural Networks (GNNs) are
inherently flat and cannot aggregate hub data in a hierarchical manner. To address these lim-
itations, we propose a novel graph pooling-based framework MTPool to obtain the expressive
global representation of MTS. We first convert MTS slices to graphs by utilizing interactions
of variables via graph structure learning module and attain the spatial-temporal graph node fea-
tures via temporal convolutional module. To get global graph-level representation, we design an
"encoder-decoder" based variational graph pooling module for creating adaptive centroids for
cluster assignments. Then we combine GNNs and our proposed variational graph pooling layers
for joint graph representation learning and graph coarsening, after which the graph is progres-
sively coarsened to one node. At last, a differentiable classifier takes this coarsened represen-
tation to get the final predicted class. Experiments on ten benchmark datasets exhibit MTPool
outperforms state-of-the-art strategies in the MTSC task.

1. Introduction
Multivariate time series (MTS), which are gathered from numerous variables or sensors in our day-by-day life, are

utilized in different investigations [17, 27, 8, 42]. Attributable to cutting edge sensing techniques, the Multivariate
Time Series Classification (MTSC) issue, recognizing the labels for MTS records, has pulled in a ton of consideration
in late numerous years [40, 4, 19]. MTSC models have been applied in a broad range of real-world applications
[41, 11], such as sleep stage identification [28], healthcare [12] and action recognition [39]. Specifically, MTS has
the accompanying two significant attributes: (1) Each univariate time series has an inner temporal reliance mode; (2)
There always exist hidden dependency relationships among different MTS variables. Capturing these two attributes is
a significant contribution to getting better classification performance but also a challenging task.

A lot of MTS classification methods have been proposed throughout the long term. Distance-based methods, like
Dynamic Time Warping (DTW) with k-NN [26], and feature-based methods such as Hidden Unit Logistic Model
(HULM) [21] have proven to be successful in classification tasks on many benchmark MTS datasets. In any case,
these methodologies need hefty crafting on data preprocessing and feature engineering and they cannot fully explore
the inner temporal reliance mode in each univariate time series. Recently, many deep learning-based methods have
been exploited for end-to-end MTS classification. Fully convolutional networks (FCN) and the residual networks
(ResNet) can achieve comparable or better performance than traditional methods [32]. MLSTM-FCN [13] utilizes an
LSTM layer and a stacked CNN layer alongside squeeze-and-excitation blocks to obtain representations. These deep
learning-based methods have achieved promising performance in MTSC tasks. Notwithstanding, the current deep
learning-based strategies don’t show the hidden dependency relationships among different MTS variables. Their input
of these models should be grid data, also limiting the representational ability.
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MTS Classification with Graph Pooling

To address the above problem, we first construct graphs from MTS instead of directly utilizing the sequences of
MTS. Thus, variables from MTS are constructed as nodes in the converted graph, and they are interlinked through
their hidden relations. As we know, graphs are a particular type of information that portrays the relationships between
various entities or nodes. Existing mining graph methods, like Graph Neural Networks (GNNs) [24], aggregating
feature information of adjoining nodes to learn node or graph representation, have been demonstrated successfully
capturing the hidden relations of nodes. Consequently, mining MTS information by utilizing graph neural networks
can be a promising method to save their temporal patterns while exploiting the interdependency among time series
variables [36, 30, 33]. Therefore, this paper proposes convertingMTS slices to graphs through graph structure learning
and viewing the MTS classification task as a graph classification task.

The graph classification task aims to predict the type of the whole graph, where the graph structure and all the
initial node-level representations are inputs. For instance, given a molecule, the task could be to anticipate whether
it is poisonous [22]. Although current GNNs based spatial-temporal modeling strategies could aggregate the graph
structure and node-level representations, they are still inherently flat and do not have the capacity of aggregate hub data
in a hierarchical way [38]. Recently, some hierarchical pooling methods have been proposed and achieved promising
results in many graph classification tasks, such as gPool [7], DiffPool [34], MemGNN [12]. These methods design
specific hierarchical graph pooling layers, where nodes are recursively aggregated to frame a cluster addressing a hub in
the pooled graph. gPool downsamples by selecting the most important nodes. DiffPool downsamples by clustering the
nodes using GNNs. Like DiffPool, MemGNN utilizes a multi-head exhibit of memory keys and a convolution operator
to sum the soft cluster assignments from various heads and calculate the attention scores among nodes and clusters.
However, we notice that the key process of most hierarchical pooling mechanisms, generating centroids for soft cluster
assignments, is not related to input graphs. This does not make sense because the centroid for different graphs should
be different. Although MemGNN randomly initializes centroids (keys) before training and makes centroids learnable
during training. The centroids cannot change when testing so that the testing graphs can only use the same centroids
as train graphs for cluster assignments. Intuitively, each input graph should have its specific centroids based on its
topology structure and node features. In general, the pooling mechanism should keep three significant properties
of graphs: (1) Permutation invariance: The centroids of the same graph should be invariant when the permutation
of nodes changes. (2) Input correlation: The centroids should change if the input graph changes. (3) Dimensional
adjustability. The dimension of the centroids matrix should be adjustable by the dimension of the input graph and
coarsened graph.

Towards this end, we propose a novel MTS classification framework called MTPool (Multivariate Time Series
Classification with Variational Graph Pooling). The goal of MTPool is to model temporal patterns and hidden de-
pendency relationships among MTS variables and obtain the MTS’s global representation. Specifically, MTPool first
constructs a graph based onMTS data through the graph structure learning module and learns spatial-temporal features
of MTS through the temporal convolution module. Then, to keep the three properties mentioned above, we design a
novel pooling layer, Variational Pooling, for graph coarsening. This pooling layer contains an "encoder-decoder" archi-
tecture, enabling the generation process of centroids to be input-related and making the model more inductive. Next,
MTPool adapts GNNs for jointly learning graph representation, after which the graph is progressively coarsened to
one node. Finally, these final coarsened graph-level representations can be used as features input to a differentiable
classifier for MTSC tasks. To summarize, our fundamental contributions can be finished up as follows:
(1) As far as we could possibly know, we first propose a hierarchical graph pooling-based framework to model MTS

and hierarchically generate its global representation for MTS classification.
(2) We design MTPool as an end-to-end joint framework for graph structure learning, temporal convolution, graph

representation learning, and graph coarsening.
(3) We propose a novel pooling method, Variational Pooling. The centroids for cluster assignments are input-related

to the input graphs, making the model more inductive and leading to better performance.
(4) We conduct extensive experiments on MTS benchmark datasets. Experiments on ten benchmark datasets exhibit

MTPool outperforms cutting edge strategies in the MTSC task.

2. Related Work
2.1. Multivariate Time Series Classification

Most MTSCmethods can be grouped into three categories: distance-based, feature-based, and deep learning-based
approaches. Here we only discuss deep learning-based strategies.
Ziheng Duan and Haoyan Xu et al.: Preprint submitted to Elsevier Page 2 of 14
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Currently, two popular deep learning models, CNN and RNN, are widely used inMTS classification. These models
often use an LSTM layer and stacked CNN layer to extract time-series features, and a softmax layer is then applied to
predict the label [40]. For example, MLSTM-FCN [13] utilizes an LSTM layer and a stacked CNN layer alongside
squeeze-and-excitation blocks to obtain representations. TapNet [40] also constructs an LSTM layer and a stacked
CNN layer, followed by an attentional prototype network.

Deep learning-basedmethods require less domain knowledge in time series data than traditionalmethods. However,
the limitation of the above models is obvious: they assume that the time series variables have the same effect among
each other. Consequently, they cannot explicitly model the pairwise dependencies among variables. In this case,
graphs are the most appropriate data structure for modeling MTS.
2.2. Graph Neural Networks

[24] first proposed the idea and the concept of graph neural network (GNN), which broadened existing neural net-
works for handling the information addressed in graph areas. GNNs follow a local aggregation mechanism, where
the embedding vector of a node is processed by recursively aggregating and transforming embedding vectors of its
neighbor nodes [35, 7]. Numerous GNN variations have been proposed and have accomplished cutting-edge results
on both node and graph classification assignments [31]. For example, the Graph Convolutional Networks (GCN) [15]
could be viewed as an approximation of spectral-domain convolution of the graph data. GraphSAGE [10], and Fast-
GCN [5] sample and aggregate of the neighborhood information while enabling training in batches yet forfeiting some
time-proficiency. Graph Attention Networks (GAT) [29] designs a new way to gather neighbors through self-attention.
After this, Graph Isomorphism Network (GIN) [37] and k-GNNs [20] are developed, presenting more perplexing and
different types of aggregation.
2.3. Graph Pooling

Graph pooling strategies can be characterized into three classes: topology based, global, and hierarchical pooling.
Here we only discuss hierarchical pooling methods. DiffPool [38] trains two parallel GNNs to obtain node-level
representations and cluster assignments. gPool [9], and SAGPool [16] drop nodes from the input graph as opposed
to bunch various nodes to frame a cluster in the pooled graph. They devise a top-K node choice method to make an
initiated sub-graph for the following layers. Although they are more efficient than DiffPool, they do not gather nodes
nor calculate soft edge weights. This makes them unable to preserve node and edge information effectively. MemGNN
[14] likewise soft cluster assignments, and they utilize a clustering-friendly distribution to figure the attention scores
among nodes and clusters. However, they generate centroids (which are used to calculate soft assignments) without
involving the input graphs, which does not make sense intuitively because the centroids for different input graphs should
be different. We propose Variational Pooling, using an “encoder-decoder” architecture to get centroids to address this
limitation. It can keep the property of permutation invariance while making centroids input-related to graphs [34].

3. Framework
In this part, we present the proposed MTPool in detail. MTPool can be divided into four parts: Graph Struc-

ture Learning, Temporal Convolution, Spatial-temporal Modeling, and Variational Graph Pooling. The schematic of
MTPool is shown in Figure 1.
3.1. Problem Formulation

A multivariate time series (MTS) can be represented as a matrix X = {x1,x2, ...,xn} ∈ ℝn×T , in which T is the
length of the time series and n is the number of MTS variables. Each MTS is associated with a class label y from a
predefined label set. Given a group of MTS  = {X1,X2, ...,XN} ∈ ℝN×n×T , where N is number of MTS slices
in the group, and the corresponding labels  = {y1, y2, ..., yN} ∈ ℝN , the research goal is to learn the mapping
relationship between  and  based on the proposed model.
3.2. Graph Structure Learning

We propose a dynamic relation embedding strategy, which learns the adjacency matrix A ∈ ℝn×n adaptively to
model latent relations in MTS sample X. The learned graph structure (dynamic adjacency matrix) A is defined as:

A = Embed1(X), (1)

Ziheng Duan and Haoyan Xu et al.: Preprint submitted to Elsevier Page 3 of 14
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Figure 1: The general architecture of MTPool. Adjacency matrix and feature matrix are constructed through graph structure
learning and temporal convolution respectively. Then GNNs aggregate and fuse spatial-temporal features. After several pooling
layers, the input graphs are hierachically coarsened to one node to attain their graph-level representations. Finally, these final output
graph-level embeddings can be used as features input to a differentiable classifier for MTSC tasks. MTPool is an end-to-end joint
framework for graph structure learning, temporal convolution, graph representation learning and graph coarsening.

where Embed1() represents the graph structure learning function. For the input MTSX = {x1,x2, ...,xn} ∈ ℝn×T we
first calculate the similarity matrix C between sampled MTS variables:

Cij =
exp

(

− �(distance(xi,xj))
)

∑n
p=1 exp

(

− �(distance(xi,xp)
) , (2)

where xi and xj denote the itℎ and jtℎ MTS variables (i, j = 1, 2, ..., n) and distance denotes the distance metric such
as Euclidean Distance, Absolute Value Distance, Dynamic Time Warping, etc. Then the dynamic adjacency matrix A
can be calculated as:

A = �(CW adj), (3)
where � is an activation function andW adj ∈ ℝn×n is learnable model parameters to dynamically generate adjacency
matrix based on input features. What’s more, to improve training efficiency, reduce noise impact and make the model
more robust, threshold c1 is set to make the adjacency matrix sparse:

Aij =

{

Aij , Aij >= c1.

0, Aij < c1.
(4)

Finally, row normalization is applied to A.
3.3. Temporal Convolution

This stage aims to extract temporal features, which is associated with or change over time, and construct feature
matrix XTC ∈ ℝn×d , where d is the obtained feature dimension. With temporal convolution, we can get each MTS’s
feature matrix as follows:

XTC = Embed2(X), (5)
where Embed2() is the temporal convolution function. When investigating time series, it is essential to consider its
numerical value as well as its pattern over the long haul. Time series in the real world typically have numerous
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concurrent periodicities. For instance, the number of inhabitants in a specific city shows a particular pattern each day.
Yet, a significant example can be seen by noticing it on the size of multi-week or one month. In this manner, it is
sensible and vital to separate the highlights of the time arrangement in units of numerous particular periods. To mimic
the present circumstance, we utilize numerous CNN channels with various responsive fields, namely kernel sizes, to
extract features at multiple time scales.

For the i-th CNN filters (the number of CNN filters is q and i = 1, 2, ..., q), given the input time series X, the
feature vector f i are expressed as follows: f i = �(W i ∗ X + b), where ∗ denotes the convolution operation, � is
a nonlinear activation function, such as RELU (x) = max(0, x), W i ∈ ℝ1×ks represents the i-th CNN kernel, ks is
the kernel size and b is the bias. And the final feature vector can be expressed as XTC =

(

|q|
‖

i=1
f i

)

, where
|q|
‖

i=1
means

concatenate operation from the feature f 1 to the feature f q . In this way, temporal features under various periods are
extracted, providing powerful reference for time series classification.
3.4. Spatial-temporal Modeling

In this stage, m GNN layers (G1, G2, ...Gm) are employed on the input graphs (denoted as XTC ,A) for spatial-
temporal modeling. GNN layers can fuse spatial dependencies and temporal patterns for embedding feature of nodes
and transform the feature dimension of nodes to dencode, just as shown in equation (6):

Z = Gm(Gm−1(...G1(XTC ,A)...)), (6)
whereZ ∈ ℝn×dencode , represents the learned node embedding from the spatial-temporal modeling. Gj (j = 1, 2, ..., m)consists of a graph neural network layer (GNN) and a batch normalization layer. GNN can be such as GCN [6], GAT
[29], GIN [37], etc. Inspired by k-GNNs [20] model, we use the following propagation mechanism in this paper to
calculate the forward-pass update of a node denoted by vi:

z(j+1)i = �
(

z(j)i W (j)
1 +

∑

r∈N(i)
z(j)r W (j)

2

)

, (7)

whereW (j)
1 andW (j)

2 are parameter matrices of the j-th GNN layer, z(j)i is the hidden state of node vi in the jtℎ layerand N(i) denotes the neighbors of node i. K-GNNs only perform information fusion between a specific node and
its neighbors, ignoring the information of other non-neighbor nodes. This design highlights the relationship among
variables, effectively avoiding the information redundancy brought by high dimensions.
3.5. Variational Graph Pooling
3.5.1. Overall Transformation

In this stage, the encoded graph is hierarchically pool to a single node for generating its graph-level representation.
This successive process can be expressed as:

xfinal = Pl(Pl−1(...P1(Z,A)...)), (8)
where Pj (j = 1, 2, ..., l) represents one pooling layer, and after stacking l pooling layers, we get its graph-level
representation vector xfinal. For the j-th pooling layer, Pj() can pool each encoded graph, to a specific coarsened
graph. The overall transformation of Pj() is shown in equation 9:

X(j)
pool = �

(

S(j)X(j)
encodeW

(j)
pool

)

,

A(j)
pool = �

(

S(j)A(j)
encode(S

(j))T
)

,
(9)

where � is a non-linear activation function,W (j)
pool ∈ ℝd(j)encode×d

(j)
pool is a trainable parameter matrix standing for a linear

transformation and S(j) ∈ ℝn(j)pool×n
(j)
encode is the assignment matrix representing a projection from the original nodes to

pooled nodes (clusters). The details of how to calculate S(j) are in the next subsection 3.5.2. X(j)
encode ∈ ℝn(j)encode×d

(j)
encode

andA(j)
encode ∈ ℝn(j)encode×n

(j)
encode represent the encoded feature and adjacency matrix of the input graph in the j-th pooling
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layer respectively; X(j)
pool ∈ ℝn(j)pool×d

(j)
pool and A(j)

pool ∈ ℝn(j)pool×n
(j)
pool represent the pooled feature and adjacency matrix of

the pooled graph in the j-th pooling layer respectively. In most cases, the pooled graph has less nodes than the input
graph (n(j)pool < n(j)encode). For the first pooling layer, we have: X(0)

encode = Z and A(0)
encode = A.

3.5.2. How to Compute Assignment Matrix
In this part, we propose a new pooling method: Variational Pooling, to address the limitation of existing methods

as we discussed in section 2.3 and to calculate S(j) in a more effective way. Although there are many advanced
graph pooling methods proposed in recent years, they all have some limitations. For example, MemGNN [14] utilizes
a multi-head exhibit of memory keys and a convolution operator to sum the soft cluster assignments from various
heads. MemGNN utilizes a clustering-friendly distribution to figure the attention scores among nodes and clusters
and performs better than DiffPool in many tasks. Still, we notice that it generates memory heads, which stand for
the new centroids in the space of pooled graphs, without the involvement of the input graphs. However, centroids
for different graphs should be different, and each input graph should have its corresponding centroids based on its
topology structure and node features. To address the limitations mentioned above, we first generate ℎ batches of
centroids K (j) = [K (j)

1 ,K
(j)
2 , ...,K

(j)
h ]

T ∈ ℝℎ×n(j)pool×d
(j)
encode based on the input graph in Pj() and then compute and

aggregate the relationship between every batch of centroids and the encoded graph for assignment matrix S(j).
3.5.3. How to Generate Centroids

The generation of centroids K (j) should satisfy the following properties:
(1) Permutation invariance. The same graph can be addressed by various adjacency matrices by permuting the

sequence for nodes. The centroids of the same graph should be invariant to such changes.
(2) Input correlation. The generation of centroids should be based on the input graph. If the input graph changes,

the centroids should change accordingly to capture global features effectively.
(3) Dimensional adjustability. The dimension of centroidsmatrixK (j) should be adjusted according to the dimension

of the input graph and the dimension of the output coarsened graph we need.
Therefore, we propose an “encoder-decoder” architecture for computing centroids matrix K (j). In general, the

encoder ensures the property of permutation invariance and makes the centroids adaptive to input graphs while the
decoder controls the dimension of the output coarsened graph:

K (j) = Decoder
(

Encoder
(

X(j)
encode

))

. (10)

As shown in equation 10, an encoder is deployed over the input graph, transforming X(j)
encode ∈ ℝn(j)encode×d

(j)
encode to

X(j)
g ∈ ℝ1×d

(j)
encode . Here X(j)

g is the feature that incorporates the input information. Then a decoder is applied to map
X(j)

g toK (j) ∈ ℝ(ℎ×n
(j)
pool)×d

(j)
encode , after whichK (j) is reshaped toℝℎ×n(j)pool×d

(j)
encode . Refer to [3], the expression of encoder

and decoder we use in this paper is as follows:

Encoder ∶ X(j)
g =

n
∑

i=1
�
(

(u(j)i )T x(j)avgu
(j)
i
)

=
n
∑

i=1
�1
(

(u(j)i )T �2
(

(1
n

n
∑

j=1
u(j)j )W

(j)
avg

)

u(j)i

)

,

Decoder ∶MLP ,

(11)

where u(j)i is the embedding of node i of the input graph in the j-th pooling layer, �1 is the sigmoid function, �2 is
the tanℎ activation function and W (j)

avg ∈ ℝd(j)encode×d
(j)
encode is a learnable weight matrix. For the encoder, we use the

attention mechanism to guide the model to learn weights under specific tasks to generate graph-level representation
X(j)

g for centroids. For decoder, here we use Multiple Layer Perceptron (MLP) to reshape matrix K (j) to the size we
need.
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3.5.4. Computing Assignment Matrix
With centroids matrixK (j), we can compute the relationshipS(j)

p ∈ ℝn(j)pool×n
(j)
encode (p = 1, 2, ..., ℎ) between centroids

K (j)
p ∈ ℝn(j)pool×d

(j)
encode (p = 1, 2, ..., ℎ) and X(j)

encode ∈ ℝn(j)encode×d
(j)
encode in j-th pooling layer. We use cosine similarity to

evaluate the relationship between input node embeddings and centroids, as described in equation 12, followed by a
row normalization deployed in the resulting assignment matrix:

(S(j)
p )′ = cosine

(

K (j)
p ,X

(j)
encode

)

,

S(j)
p = normalizerow

(

(S(j)
p )′

)

,
(12)

where (S(j)
p )′ ∈ ℝnpool(j)×n

(j)
encode (p = 1, 2, ..., ℎ) is the assignment matrix before normalization. We finally aggregate

the information of ℎ relationship S(j)
p :

S(j) = Γ�

(

|ℎ|
‖

p=1
S(j)
p

)

. (13)

In equation 13, we concatenate S(j)
p (p = 1, 2, ..., ℎ) and perform a trainable weighted sum Γ� to the concatenated

matrix, leading to the final assignment matrix S(j).
3.6. Differentiable Classifer

What this stage do is to map the graph-level embedding vector xfinal to a specific predicted class number ŷ. A
standardMLP is used to transform the dimension of the graph-level embedding to the number of classes. Then we
compare the predicted class number against the ground-truth label. The loss function is as follows:

 = − 1
N

N
∑

i=1

M
∑

j=1
yi,jlogŷi,j , (14)

whereN is the set of training samples,M denotes the number of classes, y is the true label, and ŷ is the value predicted
by the model. The whole algorithm framework is shown in algorithm 1.

4. Experiments
In this section, we lead comprehensive analyses on ten benchmark datasets for MTS classification and look at the

evaluation results of our model (MTPool) with other baselines.
4.1. Experiment Settings
4.1.1. Datasets

We use ten publicly available benchmark datasets from the UEA MTS classification archive.1 The main charac-
teristics of each dataset are summarized in Table 1. The train and test sizes represent the number of MTS slices in the
train and test datasets, respectively. Num series refers to the number of variables in each MTS slice; the series length
refers to the length or the feature dimension of each variable in each MTS slice; class refers to the number of types of
MTS slices.
4.1.2. Metrics

Like other MTS classification methods [40], we use classification accuracy as an evaluation metric:

Accuracy = TP + TN
TP + TN + FP + FN

, (15)
where TP , TN , FP and FN respectively stands for true positive, true negative, false positive and false negative.

1Datasets are available at http://timeseriesclassification.com. We exclude data with extremely long length, unequal length, high dimension size,
and in-balance split.
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Algorithm 1: MTPool algorithm framework
Input : The multivariate time series dataset ofN MTS slices,  = {X1,X2, ...,XN} ∈ ℝN×n×T ;
Output: The corresponding predict labels, ̂ = {ŷ1, ŷ2, ..., ŷN} ∈ ℝN

1 ̂ = {}; // Record predict labels of MTS slices
2 for Xk in {X1,X2, ...,XN},Xk ∈ ℝn×T do
3 for xi in Xk = {x1,x2, ...,xn},xi ∈ ℝT do
4 for xj in Xk = {x1,x2, ...,xn},xj ∈ ℝT do
5 Cij =

exp(−�(distance(xi,xj)))
∑n
p=0 exp(−�(distance(xi,xp))

// Calculating the similarity matrix

6 end
7 end
8 A = �(CW adj); // Calculating the dynamic adjacency matrix
9 A =Normalizerow(Tℎresℎold(A)); // Graph Stucture Learning

10 XTC = T emporal_Convolution(Xk) ∈ ℝn×d ; // Temporal Convolution
11 Z = Gm(Gm−1(...G1(XTC ,A)...)); // Spatial-temporal Modeling
12 X(0)

encode = Z, A(0)
encode = A; // The input of the first pooling layer

13 for Pj in Pooling_Layers = {P1, P2, ..., Pl} do
14 K (j) = [K (j)

1 ,K
(j)
2 , ...,K

(j)
h ]

T = Decoder
(

Encoder
(

X(j)
encode

))

;
15 Encoder ∶ X(j)

g =
∑n
i=1 �1

(

(u(j)i )T �2
(

( 1n
∑n
j=1 u

(j)
j )W

(j)
avg

)

u(j)i

)

, Decoder ∶MLP ;
// Generating Centroids

16 S(j) = Γ�

(

|ℎ|
‖

p=1
S(j)
p

)

, S(j)
p = Normalizerow

(

Cosine
(

K (j)
p ,X

(j)
encode

))

, p = 1, 2, ..., ℎ;
// Computing Assignment Matrix

17 X(j)
pool = �

(

S(j)X(j)
encodeW

(j)
pool

)

;
18 A(j)

pool = �
(

S(j)A(j)
encode(S

(j))T
)

;
// Variational Graph Pooling

19 X(j+1)
encode = X(j)

pool,A
(j+1)
encode = A(j)

pool; // Get the input of the next pooling layer

20 end
21 xfinal = X(j)

pool;
22 ŷk =MLP (xfinal);
23 ̂ ← ŷk;

// Add ŷk to ̂
24 end
25 return ̂

4.1.3. Methods for Comparison
We use the following implementations of the MTS classifiers, including the common distance-based classifiers,

the latest bag-of-patterns model and the deep learning models:
(1) ED, DTWI , DTWD, - with and without normalization (norm) [1] are the common distance-based models. 1-

Nearest Neighbour with distance functions include Euclidean (ED); dimension-independent dynamic timewarping
(DTWI ); and dimension-dependent dynamic time warping (DTWD).

(2) WEASEL+MUSE [25] stands for the Word ExtrAction for time SEries cLassification (WEASEL) with a Mul-
tivariate Unsupervised Symbols and dErivatives (MUSE). It is the most effective bag-of-patterns algorithm for
MTSC.

(3) HIVE-COTE [2] is a heterogeneous meta ensemble for time series classification. This approach is a good baseline
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Table 1
Summary of the 10 UEA datasets used in experiments.

Name Train Size Test Size Num Series Series Length Classes
AF AtrialFibrillation 15 15 2 640 3
FM FingerMovements 316 100 28 50 2
HMD HandMovementDirection 160 74 10 400 4
HB Heartbeat 204 205 61 405 2
LIB Libras 180 180 2 45 15
MI MotorImagery 278 100 64 3000 2

NATO NATOPS 180 180 24 51 6
PD PenDigits 7494 3498 2 8 10
SRS2 SelfRegulationSCP2 200 180 7 1152 2
SWJ StandWalkJump 12 15 4 2500 3

for assessing bespoke Multivariate Time Series Classification.
(4) MLSTM-FCN [13] is a famous deep-learning framework for MTSC. It utilizes an LSTM layer and a stacked CNN

layer alongside squeeze-and-excitation blocks to obtain representations.
(5) TapNet [40] draws on the strengths of both traditional and deep learning approaches. It also constructs a LSTM

layer and a stacked CNN layer, followed by an attentional prototype network.
(6) MTPool is the MTPool framework with our proposed Variational Pooling and dynamic adjacency matrix.
4.1.4. Training Details

All the networks are implemented with Pytorch 1.4.0 in python 3.6.2 and trained with 10000 epochs (computing
infrastructure: Ubuntu 18.04 operating system, GPU NVIDIA GeForce RTX 2080 Ti with 8 Gb GRAM and 32 Gb
of RAM). We use {3, 5, 7} as the convolutional kernel size and ten as the channel number. The threshold to make
the adjacency matrix sparse is chosen from {0.05, 0.1, 0.2} and the output dimension of the GNNs layer is 128. For
pooling layers, heads of centroids are chosen from {1,2,4}, the reduction factor is chosen from {2, 3, 6} and the number
of nodes in the final pooling layer is 1. The initial learning rate is 10−4, and the categorical cross-entropy loss and the
Adam optimization are used to optimize the parameters of our models.
4.2. Main Results

Tabel 2 shows the accuracy results on the selected 10 UEA datasets of MTPool and other MTS classifiers. "Avg.
Rank" in the table means the average ranking of different models under all datasets, and "Wins/Ties" indicates the
number of datasets for which this model achieves the best performance. For some approaches that ran out of memory,
we refer to [23] for the corresponding results. The best performance in each dataset is bolded.

First of all, we can observe that MTPool wins on eight datasets, better than several other advanced MTS classifi-
cation methods (such as TapNet or MLSTM-FCN wins on one dataset). The "Avg. Rank" indicates the superiority
of MTPool over the existing state-of-the-art models (the second-highest ranked model, MLSTM-FCN, has an average
ranking of 4.40). We can also find that methods based on deep learning proposed in recent years, such as TapNet and
MLSTM-FCN, have better performance than methods based on nearest neighbors, proving the effectiveness of deep
learning in extracting MTS features.

More importantly, with the different datasets, the number of variables and lengths span an extensive range. For
instance, the variables number ranges from 2 to 64, and the minimum length of MTS is eight, and the maximum is 300.
In the case of variable dataset parameters, our framework maintains considerable competitiveness, proving our model’s
robustness. More specifically, for a large number of variables, MTPool can handle this by increasing the pooling layers
andmaking the graph pooling process more hierarchical, thus performing well. For instance, MTPool achieved the best
and second-best accuracy on the MotorImagery (64 variables) and Heartbeat (61 variables). This means that when the
number of variables is relatively large, the hierarchical pooling framework we provide can better capture the graph’s
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Table 2
Accuracy of the 11 algorithms on the default training/test datasets of 10 selected UEA MTSC
archives. The best performance is bolded.

Methods / Datasets AF FM HMD HB LIB MI NATO PD SRS2 SWJ Avg. Rank Wins/Ties
ED 0.267 0.519 0.279 0.620 0.833 0.510 0.850 0.973 0.483 0.333 7.50 0

DTWI 0.267 0.513 0.297 0.659 0.894 0.390 0.850 0.939 0.533 0.200 7.70 0
DTWD 0.267 0.529 0.231 0.717 0.872 0.500 0.883 0.977 0.539 0.200 6.50 0

ED (norm) 0.200 0.510 0.278 0.619 0.833 0.510 0.850 0.973 0.483 0.333 8.25 0
DTWI (norm) 0.267 0.520 0.297 0.658 0.894 0.390 0.850 0.939 0.533 0.200 7.60 0
DTWD (norm) 0.267 0.530 0.231 0.717 0.870 0.500 0.883 0.977 0.539 0.200 6.50 0

WEASEL+MUSE 0.400 0.550 0.365 0.727 0.894 0.500 0.870 0.948 0.460 0.267 5.65 0
HIVE-COTE 0.133 0.550 0.446 0.722 0.900 0.610 0.889 0.934 0.461 0.333 5.40 1
MLSTM-FCN 0.333 0.580 0.527 0.663 0.850 0.510 0.900 0.978 0.472 0.400 4.40 1

TapNet 0.200 0.470 0.338 0.751 0.878 0.590 0.939 0.980 0.550 0.133 5.25 1
MTPool 0.533 0.620 0.486 0.742 0.900 0.630 0.944 0.983 0.600 0.667 1.25 8

(a) Ablation study of pooling methods (b) Ablation study of adjacency matrix

Figure 2: Ablation study of pooling methods and adjacency matrix. AF, MI and SRS2 datasets are used and different colors
represent different methods.

structure and generate time series embeddings with more robust characterization capabilities. It is worth noting that
when the number of variables is relatively small, by reducing the number of pooling layers, MTPool can also achieve
good accuracy: MTPool obtains the best accuracy on PenDigits (2 variables), SelfRegulationSCP2 (7 variables), and
StandWalkJump (4 variables) datasets. A more detailed analysis of MTPool is in the following subsection.
4.3. Ablation Study

We conducted an ablation study to validate the effectiveness of key components that contribute to the improved
outcomes of MTPool. First, we substitute our Variational Pooling layers with some other advanced pooling methods
in the MTPool framework. Then we use a static adjacency matrix for the initial graph structure instead of a dynamic
adjacency matrix. The detailed setting of each variant model is as follows.

• MTPool-M is the MTPool framework with MemPool [14], which generate clustering centroids without involv-
ing the input graphs.

• MTPool-D is the MTPool framework with DiffPool [38], which trains two parallel GNNs to get node-level
embeddings and cluster assignments.

• MTPool-S is the MTPool framework with SAGPool [16], which drops nodes from the input to pool the graph.
Ziheng Duan and Haoyan Xu et al.: Preprint submitted to Elsevier Page 10 of 14
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Figure 3: Class Prototype Inspection: visualize the 128-dimension multivariate time series embeddings learned for the PenDigits
dataset in a two-dimensional image by t-SNE.

• MTPool-One is the MTPool framework with Variational Pooling and all-one adjacency matrix.
• MTPool-Corr is the MTPool framework with Variational Pooling and correlation coefficient adjacency matrix.
• MTPool is the MTPool framework with our proposed Variational Pooling and dynamic adjacency matrix.
Figure 2 shows the comparison results. The important conclusions of these results are as follows:

(1) Different hierarchical graph pooling methods can be incorporated in our MTPool framework and can achieve
comparable or better performance than state-of-the-art MTSC methods.

(2) Different adjacency matrices can be used in our MTPool framework. However, the all-one matrix’s performance
is slightly worse than the correlation coefficient matrix, and our dynamic matrix achieves the best.

(3) Even if the three cutting-edge pooling methods (MemPool, DiffPool, and SAGPool) and two adjacency matrices
(all-one and corr) have their ownmerits in the three selected datasets, our proposed Variational Pooling can achieve
the best performance in all cases. This proves the effectiveness of our well-designed pooling method and the
dynamic adjacency matrix.

4.4. Inspection of Class Prototype
This section visualizes the class prototype and its corresponding time series embedding to prove our well-trained

time series embedding effectiveness. We use the t-SNE algorithm [18] to visualize the 128-dimensional time series
embedded in the form of two-dimensional images. We use different colors to distinguish different categories. Figure
3 shows the embeddings learned for the PenDigits dataset, containing 3498 test samples in 10 different types. The
following conclusions can be drawn from the results:
(1) The distance between data samples from different categories is much greater than the distance between data sam-

ples from the same type. Therefore, we can easily use the learned multivariate time series to embed the time
sequence classification.

(2) Low-dimensional time series embedding provides us with a more interpretable perspective to understand classi-
fiers’ problems. For example, we see that categories two, six, and ten are not divided into complete pieces. Instead,
these three categories are all divided into several sub-parts. Thus, it helps identify problems with the classifier and
take further measures, such as adding more training samples in these three classes.
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Pooling at Layer 1 Pooling at Layer 2

Figure 4: Visualization of the graph pooling process in MTPool, using example graphs from Heartbeat dataset, which has 61 MTS
variables, so the original graph has 61 nodes. Nodes in the second layer correspond to clusters in the first layer. We use the same
color to represent nodes of the same cluster and use dotted lines to indicate different clusters.

4.5. Case Study: Visualizations
In this section, we visualize the graph pooling process by using theHeartbeat dataset. Figure 4 shows a visualization

of node assignments in the first and second layers on a graph constructed from the Heartbeat dataset. We use the same
color to represent nodes of the same cluster. The cluster membership of each node is determined by the argmax of
its cluster assignment probabilities. We also observed that even if the final goal is to get the graph-level embedding
and get the class to which MTS belongs, MTPool can still capture the hierarchical graph structure, which helps us
further reveal the dependencies among different variables in MTS. It is worth mentioning that the assignment matrix
may not assign nodes to specific clusters. The column corresponding to the unused cluster has a lower value for all
nodes. For example, in this case, the expected number of clusters we set in the first layer is 15 (greater than 8), but
in fact, we get 8 clusters. This reminds us that even if we define the expected cluster number in advance, MTPool
will automatically perform clustering to get the best coarser results suitable for this graph. Such characteristics can be
adjusted for different inputs, thus having a strong generalization ability.

5. Conclusion
In this paper, we propose the first graph pooling-based framework, MTPool, forMTS classification. It can explicitly

model the pairwise dependencies among MTS variables and attain global embedding with strong interpretability and
expressiveness. Experimental results demonstrate our model achieves state-of-the-art performance in the existing
models.

Future research is promising to explore and design more powerful hierarchical graph pooling approaches that can
be incorporated into our MTPool framework to attain a more expressive and interpretable global representation for
MTS.
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