
AFINet: Attentive Feature Integration Networks for Image
Classification

Xinglin Pana, Jing Xub, Yu Panb, liangjian Wena, WenXiang Linc, Kun Baid, Zenglin
Xue,b,∗

aUniversity of Electronic Science and Technology of China, Chengdu, China
bSchool of Science and Technology, Harbin Institute of Technology, Shenzhen, China

cBeijing Institute of Technology, Beijing, China
dCloud and Smart Industries Group, Tencent, China

eArtificial Intelligence Center, Peng Cheng Lab, Shenzhen, China

Abstract

Convolutional Neural Networks (CNNs) have achieved tremendous success in a num-

ber of learning tasks including image classification. Recent advanced models in CNNs,

such as ResNets, mainly focus on the skip connection to avoid gradient vanishing.

DenseNet designs suggest creating additional bypasses to transfer features as an alter-

native strategy in network design. In this paper, we design Attentive Feature Integration

(AFI) modules, which are widely applicable to most recent network architectures, lead-

ing to new architectures named AFI-Nets. AFI-Nets explicitly model the correlations

among different levels of features and selectively transfer features with a little over-

head. AFI-ResNet-152 obtains a 1.24% relative improvement on the ImageNet dataset

while decreases the FLOPs by about 10% and the number of parameters by about 9.2%

compared to ResNet-152.

Keywords: CNN, Attention, Image Classification, Feature Integration

2010 MSC: 68T45

1. Introduction

Convolutional Neural Networks(CNNs) have achieved remarkable successes in var-

ious computer vision tasks, e.g., image classification, semantic segmentation, object

∗Corresponding author
Email address: xuzenglin@hit.edu.cn (Zenglin Xu)

Preprint submitted to Pattern Recognition May 11, 2021

ar
X

iv
:2

10
5.

04
35

4v
1

 [
cs

.C
V

]
 1

0
M

ay
 2

02
1

detection [1, 2, 3, 4], etc. A major drive to such successes is from the evolutionary de-

sign of network architectures, and such representative examples include AlexNet [5],5

VGG-Net [6], GoogleNet [7], ResNet [8], and DenseNet [9]. Notably, the skip con-

nection introduced in ResNet has become a fundamental design strategy as an effective

solution to the gradient vanishing problem, especially for very deep networks. And

this strategy has been widely adopted in a variety of architectures, including Shuf-

fleNet [10], ResNeXt [11], and Inception-ResNet [12], etc. Besides, as an alternative10

design strategy, DenseNet [9] suggests constructing extra bypasses to transfer previous

layers of features for future reuse.

Constructing extra bypasses leads to many advantages in architecture designs, e.g.,

implicit deep supervision and diversified depths [9, 13]. Furthermore, preserved fea-

tures, especially low-level features, are beneficial to overcome overfitting (which often15

leads to small training errors but large testing errors). As evidenced by a study of the

class selectivity indices [14], the generalization gap (i.e., the difference between the

training error and the testing error) of features is prone to increase with depths. Hence,

high-level features are more useful to reduce the training error while low-level ones are

in favor of closing the generalization gap. These observations suggest that aggregation20

of features at multiple levels is vital to the designs of architectures.

Despite the advantages of the current bypass design for classification, there are

several issues to be addressed: (1) Some low-level features (e.g., edges of the back-

ground) may be irrelevant to classification and thus impair the learning performance;

(2) The concatenation of all previous features involves a quadratic scale of memory us-25

age which is inhibited in scenarios with limited computational and storage resources;

(3) The correlation between features crossing layers is hard to model for the convolu-

tion operators.

To address these issues, we propose a lightweight and selective feature integra-

tion scheme for most residual-like networks, leading to the Attentive Feature Integra-30

tion (AFI) module, as illustrated in Figure 1. Firstly, each of the input feature maps

(i.e., raw features as shown in Figure 2) with C channels, is squeezed into a vector by

a squeeze operation that captures information from a large spatial extent. Thus, the

global context is embedded in the vectors. Secondly, the vectors are scored and nor-

2

Squeeze Operation

Scoring(Shared Parameters)

+

⋯

⋯

⋯

+ ⋯ + =

Softmax

Attention
Mechanism

Low-level High-level

H W

C

Figure 1: The AFI module can automatically extract important low-level features for the high-level features.

Through two light-weight operations, i.e., the squeeze operation and the shared attention mechanism, every

feature is re-calibrated along each channel dimension. Finally, the resulting feature is supplied to later layers.

(a) Input (b) Conv1-1 (c) Conv1-2 (d) Conv1-3 (e) AFI Output

Figure 2: The subfigure (a) shows an image from the Imagenet dataset. The subfigure (b), (c) and (d) show

features from conv1 stage in AFI-ResNet-50. All of these extract edge information. The subfigure (e) depicts

the output of an AFI module whose inputs are the subfigure (b), (c), and (d). The subfigure (e) extracts the

main edge information of the three subfigures.

malized sequentially via the attention mechanism (which consists of the shared scoring35

function and the channel-by-channel softmax function) in order to re-calibrate features.

At last, we obtain the resulting feature via a summation of re-calibrated features, where

each channel can be viewed as a convex combination over the raw features. In short,

AFI modules rate the importance of features adaptively and have access to model cor-

relations between distant layers.40

AFI modules are not limited to a special backbone network. Instead, they can be

3

Figure 3: Illustration of the impact of the AFI module. All original images come from the ImageNet dataset.

Heatmaps generated by Grad-CAM [19] illustrates which areas the network pays more attention to. Com-

pared to the vanilla ResNet-50, the area that AFI-ResNet-50 paid most attention to is much smaller.

easily plugged to various backbones, leading to various architectures, namely AFI-

Nets. To interpret the reason for no limit to a special backbone network, different

backbone networks are uniformly viewed as instances of ordinary differential equa-

tions(ODEs) [15, 16, 17]. The application of AFI modules is very similar to the linear45

multistep method [18] apply to solve ODEs. (see Section 3.3 for more about this.)

In addition to the easy plug-and-go property, AFI modules also enjoy many ad-

vantages such as efficient utilizing of low-level features, and having lower overheads

and higher accuracy. To illustrate the efficiency, we perform a series of indirect ex-

periments. We firstly visual class activation mapping(CAM) as depicted in Figure 3.50

The activation area of AFI-ResNet-50 is much precise than ResNet-50. Then, the av-

erage of the class selectivity index [14] of features at different layers is lower than

backbones networks, which argues that features AFI-Nets learnt are more common.

At last, we obtain a 10.8% average relative improvement on various extremely easy to

overfit datasets. The great performance of these experiments is usually attributed to the55

efficient utilization of low-level features.

AFI-Nets are trained on ImageNet with SGDM optimizers and regular data aug-

mentations. As shown in Figure 4, AFI-ResNets are applicable with different depths.

With the same number of layers, AFI-ResNet has fewer parameters, fewer FLOPs, and

4

more accuracy. Among AFI-ResNets, AFI-ResNet-152 increases the Top-1 accuracy60

rate in ImageNet by 1.24% compared to ResNet-152 while decreases the FLOPs by

about 10% and the number of parameters by about 9.2%.

Figure 4: Illustration of the experiment results of AFI-ResNets. With the same number of layers, AFI-

ResNets have fewer parameters, fewer FLOPs, and more accuracy. The FLOPs are calculated by assuming

the batch size of 32.

Our major contributions can be summarized as follows:

• We propose lightweight AFI modules to selectively transfer features. From the

perspective and inspiration of ODEs, AFI-Nets can be derived by applying AFI65

modules into residual-like networks.

• To avoid the difficulty of directly evaluating the efficiency in processing low-

level features, we perform three indirect analytical experiments to verify AFI

modules take more advantage of preserved low-level features.

• Experimental results show that our AFI-Nets significantly improve the represen-70

tational power of the network.

5

2. Related Work

Modern CNN Architectures. Deep convolutional neural networks(CNNs) have

dominated image classification since the AlexNet [5] and VGG-Net [6] are proposed.

After that, substantial efforts have been made to improve the efficiency of CNNs. The75

modular design strategy in GoogleNet [7] simplifies the network architecture and the

multi-path structure in each module shows a great success. ResNet introduces the short-

cut connection alleviating the difficulty in deep network training [8]. DenseNet [9]

densely connects all preceding layers to take full advantage of preceding feature maps.

Based on those fundamental architectures, some advanced variants(e.g., ResNeSt [20])80

have been proposed and have achieved impressive performance in many computer vi-

sion tasks.

Exploitation of Low-Level Features. The motivation to preserve low-level fea-

tures is ample. As shown in Yosinski et al. [21], some shallow layer filters obtain

similar effects as Gabor filters and color blobs. Such low-level features appear to be un-85

specific to particular datasets or tasks, and generalize well to other datasets or tasks. To

maximize feature utilization, DenseNet [9] demonstrates that dense concatenating all

the features in frontier layers can effectively alleviate the difficulty of training and im-

proves the network performance with an increased calculation overhead. VoVNet [13],

VoVNetV2 [22] overcome the inefficiency of dense connection by concatenating all90

features only once in the last feature map and achieve the state-of-the-art performance

in instance segmentation. Dual Path Network [23] and Mixed link Network [24] try to

transfer lowel-level feature based on ResNet [8]. However, few works focus on con-

structing bypass to transfer low-level features based on other residual-like networks.

Attention Mechanisms. The benefits of attention mechanism have been demon-95

strated across a range of tasks. Squeeze-and-Excitation block [25] highly appreciates

attention mechanism and thus well improves the accuracy of varied CNNs. They use

global average-pooled features to exploit the inter-channel relationship and to com-

pute the channel-wise attention. Besides, there are several other researches to uti-

lize the attention mechanism and improve the results of CNNs in various vision tasks.100

CBAM [26] further adds the spatial attention to the SE module and results in better

6

plug-and-play modules. Soft mask branches to refine the feature maps by adding atten-

tion knowledge proposed by [3]. Non-local Neural Networks [27] proposes non-local

module to integrate the global attention information. Libra R-CNN [28] designs the

balanced feature pyramid which refines the semantic feature from multi-level features.105

BASNet [29] pays more attention to the boundary of the mask by the boundary-aware

loss function. However, few literature focuses on the mix of attention mechanism and

transferring low-level features. The proposed AFI module thus aims to improve trans-

ferring based on attention mechanisms.

3. Our Model110

In this section, we first introduce Attentive Feature Integration (AFI) modules and

compare them with previous works. Next, we describe the ways of implementing AFI

modules for residual-like networks with two examples. Specifically, we integrate AFI

modules with backbone architectures, such as ResNet [8] and MobileNetV2 [30], to

build new network architectures, i.e., AFI-ResNet and AFI-MobileNetV2, respectively.115

At last, inspired by the view of residual-like networks as instances of ordinary differ-

ential equations (ODEs), we point out that our modules is similar to Linear Multistep

Method (LMM) in both motivation and formal.

3.1. Attentive Feature Integration Modules

AFI module aims to model the correlation among features at different levels and120

then produce a compact but comprehensive feature as an output. AFI module is com-

posed of two operations: a squeeze operation and an attention mechanism. For con-

venient description, we denote N different-level features as X(i) ∈ RH×W×C , i ∈

{1, 2, ..., N}.

Squeeze Operation. Fsq(·) represents the squeeze function(e.g., global average125

pooling), which gathers contextual long-range feature interactions, embedding global

context into a vector descriptor. By shrinking X(i) on its spatial dimensions H ×W ,

the channel-wise statistic z(i) ∈ RC is generated, where C is the number of channels.

Attention Mechanism. The attention mechanism is a selective aggregation of in-

formation so that the resulting features are easily exploited for specific tasks. There are

7

two steps in the attention mechanism: score and normalization. The score step is based

on a shared scoring function Fsc(·), which is applied into vector descriptors to produce

an embedding of importance s(i) ∈ RC . Fsc(·) is formulated by two transformation

matrices around the activation function

s(i) = Fsc

(
z(i),W

)
=W 2ReLU

(
W 1z

(i)
)
, (1)

where the vector s(i) is parameterized by forming a bottleneck layer with a weight

W 1 ∈ RC
r ×C , a dimensionality-increasing layer with a weight W 2 ∈ RC×C

r and the130

reduction ratio r. Next, a matrix S =
[
s(1), s(2), · · · , s(N)

]
∈ RN×C , is obtained by

concatenating {s(i)}Ni=1. Then, a matrix S̃ ∈ RN×C is formed by normalizing S along

the N dimension using a Softmax function.

In summary, AFI :
{
X(i)

}N

i=1
→ R is formulated by

z(i) = Fsq

(
X(i)

)
, s(i) = Fsc

(
z(i),W

)
, S =

[
s(1), s(2), · · · , s(N)

]
,

S̃i,j =
exp (Si,j)∑N

k=1 exp (Sk,j)
, Ri,j,k =

N∑
l=1

S̃l,kX
(l)
i,j,k. (2)

where the resulting featureR ∈ RH×W×C .135

Remark on the connection to previous works. Recently, a series of literature

attempts to incorporate the attention mechanism to improve the performance of CNNs.

One of the most popular computational units is the Squeeze-and-Excitation(SE) mod-

ule [25]. Compared to SE module, our AFI module focus on explicitly modeling the

feature integration instead of channel-wise selection. Moreover, compared to DenseNet140

with self-attention modules like CAPR-DenseNet [31], our module can be applied to

deeper and larger networks, while avoiding quadratic complexity of memory usage and

running time by substituting the shared attention mechanism for the independent ex-

citer. Compared to the SKNet [32] that selects the efficient kernel size, our AFI module

can utilize different level(e.g., positional and semantic) information. Compare to the145

Mixed Link Network [24], our module can be applied to not only ResNet but also other

residual-like networks.

8

3.2. AFI Modules for Residual-Like Networks

This subsection clarifies how to apply AFI module to residual-like networks and

derive our AFI-Nets. In order to describe our method more clearly, we follow the defi-150

nition of stage and building blocks in Hu et al. [33]. More specifically, a stage consists

of several building blocks with features of the same shape stacking sequentially.

ReducingConv
BN+ReLU

Conv
BN

AFI(i)

Concat

X(i)(H,W,C/2)

R(i)(H,W,C/2)

{X(j),j<i}

{X(j),j≤i}

ReLU

I(i)(H,W,C)

(a) AFI-ResNet building block

ReducingConv
BN+ReLU

DWConv
BN+ReLU

AFI(i)

Concat

X(i)

R(i)

{X(j),j<i}

{X(j),j≤i}

ReLU

Conv
BN

(b) AFI-MobileNet building block

Figure 5: The architecture of AFI-MobileNet building block is shown in Figure 5(b). The architecture of

AFI-ResNet building block is shown in Figure 5(a). The blue and yellow parts indicate the original backbone

while the red parts indicate our revisions. The position denoted by I(i) is the input of the i-th building block

of an original ResNet.

As shown in Figure 5, we half the output of the first convolution in i-th building

blocks and denote it as X(i). For the i-th building block of each stage, AFI(i) denotes

the AFI module corresponding to that building block. {X(1),X(2), · · · ,X(i−1)} in155

previous building blocks are the inputs of AFI(i). We concatenate the output R(i) of

AFI(i) withX(i) and then throw the concatenated result to the subsequent convolution

layer. We name our networks as AFI-Nets.

Here, we would like to describe applications of our module in residual-like net-

works with an instance AFI-ResNet. AFI-ResNet building block is shown in Figure

5(a). We first review the architecture of ResNet building block [8]. For the i-th build-

ing block of ResNet

I(i+1) = ReLU
(
I(i) + BN

(
ReLU

(
BN
(
I(i) ∗K(i)

1

))
∗K(i)

2

))
, (3)

9

where ∗ denotes convolution operator, BN (·) denotes batch normalization, ReLU(·) is

a rectified linear activation function. The input feature I(i) is shown in Figure 5(a) and160

the kernels K(i)
1 ,K

(i)
2 ∈ Rk×k×C×C are learnable filters where the kernel size k = 3

and the input channel and the output channel C ∈ {16, 32, 64}.

In AFI-ResNet, we replace K(i)
1 with a shrinking kernel K̃

(i)

1 ∈ Rk×k×C×C
2 to

reduce parameters. For the i-th building block of AFI-ResNet

X(i) = ReLU
(

BN
(
I(i) ∗ K̃

(i)

1

))
, R(i) = AFI(i)

(
X(1),X(2), ...,X(i−1)

)
I(i+1) = ReLU

(
I(i) + BN

(
[X(i),R(i)] ∗K(i)

2

))
. (4)

Besides, we also provide an instance AFI-MobileNetV2 as shown in 5(b). We

concatenate the output of the AFI module with the output feature of the first convolu-

tional layer. As many building blocks (e.g., bottleneck building blocks [8]) use an 1×1165

convolution at the front of building blocks to reduce channels, our AFI modules can

neutralize the impairment of bottleneck convolution. It is elaborated in Section 4.1 that

the parameters and FLOPs of AFI-Nets are usually smaller than the vanilla.

3.3. The Versatility of AFI modules

In this section, we will explain the versatility of AFI modules from the view of

numerical analysis. Residual-like networks can be identified as instances of ordinary

differential equations (ODEs), behaving like the forward Euler method with an initial

value y(1) [15, 16, 17]. We firstly review the forward Euler method as background.

Formally,

y(i) − y(i−1) =
(
x(i) − x(i−1)

) dy
dx

+
(
x(i) − x(i−1)

)2 d2y
dx2

2!
+ · · ·

y(i) − y(i−1) ≈
(
x(i) − x(i−1)

)
· f
(
x(i), y(i)

)
, (5)

where i ∈ {2, 3, ..., N} and f(x, y) denotes dy
dx . When satisfying x(i) − x(i−1) = 1,

Equation (5) can be simplified as

y(i) = y(i−1) + f
(
x(i), y(i)

)
. (6)

Euler method is a traditional first-order solution to the ODE. Therefore, this method can

cause huge error in predicting the next value when ignoring higher order
{

diy
dxi

}∞
i=2

.

10

Linear Multi-step Method (LMM) [18] reuses the information in the previous steps by

linear combination to fit them:

y(i) = y(i−1) +

i∑
j=1

α
(i)
j f

(
x(j), y(j)

)
, (7)

where {α(i)
j }ij=1 are coefficients of merging previous steps.170

In residual-like networks, lower-level features play similar roles to the previous

steps, thus it is also necessary to take these features into consideration. Thus, based on

the consideration, we design AFI-Nets, which is the generalization of LMM. Specifi-

cally, we first replace the scalars in Equation (7) with the features in neural networks,

namely

I(i+1) = I(i) + g(i)

 i∑
j=1

α
(i)
j f

(
I(j)

) , (8)

where f
(
I(j)

)
is a learnable function that acts similar to estimating dy

dx

∣∣∣
x=x(j)

, and

g(i) is a function to match the shape of I(i) and the estimated residual. For instance, in

AFI-ResNet, f
(
I(j)

)
is taken to be ReLU

(
BN
(
I(j) ∗ K̃

(j)

1

))
with a kernel K̃

(j)

1 ,

g(i) (·) is taken to be BN
(
· ∗ K̂

(i)

2

)
with a kernel K̂

(i)

2 ,
{
α

(i)
j , j < i

}
is selected by

AFI(i), and α(i)
i = 1. Equation (8) can be simplified as:

g(i)

 i∑
j=1

α
(i)
j f

(
I(j)

)
g(i)

i−1∑
j=1

α
(i)
j X

(j) +X(i)


=BN

((
R(i) +X(i)

)
∗ K̂

(i)

2

)
=BN

(
X(i) ∗ K̂

(i)

2 +R(i) ∗ K̂
(i)

2

)
. (9)

Compared with K(i)
2 in Equation (4), K̂

(i)

2 in Equation (9) is a special case of K(i)
2

when X(i) and R(i) is applied to convolution with the same kernel. Other AFI-Nets

can be expressed by adopting different f and g.

11

4. Experiment

We firstly analyse overheads of our modules. Then, before presenting results on175

real-world datasets, we first illustrate the role of our AFI module by several experi-

ments. If not otherwise specified, the reduction ratio r is 4. We show the ablation study

to better understand the settings of the AFI modules in last.

4.1. Overheads of AFI modules

Table 1: The architecture details of AFI-ResNet-(6N+2) for CIFAR dataset. The operations and feature

shapes are listed inside the brackets and the number of stacked blocks is shown outside. num class depends

on the categories.

Name Output Size AFI-ResNet-(6N+2)

Conv0 32×32 3×3, 16

Conv1 32×32

 AFI +
3× 3, 8

3× 3, 16

×N
Conv2 16×16

 AFI +
3× 3, 16

3× 3, 32

×N
Conv3 8×8

 AFI +
3× 3, 32

3× 3, 64

×N
Output num class AP, FC, Softmax

Additional AFI modules may raise a problem whether parameters and FLOPs are

increased. To clarify it, we compare AFI-Nets with the vanilla about parameters and

FLOPs. Table 1 shows AFI-ResNet architecture for instance. By setting N = 5 and

N = 18 separately, AFI-ResNet-32 and AFI-ResNet-110 are acquired. In a (N +

1)-block stage, the number of additional parameters is 2× (N − 1)× C × C
r and the

times of extra multiplication in the scoring function is given by:
N+1∑
i=3

2× (i− 1)× C

r
× C =

C2

r
× (N + 2)(N − 1) . (10)

The reason for enumerating i starting from 3 is that, there is no input to AFI(1) and180

there is only one input to AFI(2). The input feature can skip AFI(2) and is transferred

immediately.

12

Table 2: Comparison between our AFI module and convolution to highlight the smartness of our block.

No matter in which blocks, with AFI module, the number of parameters and FLOPs are always smaller

compared with original ResNet. The bold shows the least parameters and FLOPs. The FLOPs are calculated

by assuming the batch size of 32.

Stage H&W C Network #Params #FLOPs

Stage 1 32 16
ResNet-32 23.36K 765.46M

AFI-ResNet-32 18.82K 612.38M

Stage 2 16 32
ResNet-32 88.77K 727.19M

AFI-ResNet-32 70.72K 575.20M

Stage 3 8 64
ResNet-32 353.66K 724.30M

AFI-ResNet-32 281.73K 573.02M

It is difficult to compare building blocks with AFI modules to the original because

the FLOPs of the AFI module are related to the building block number N while the

FLOPs of convolution operation is related to the size of images. For easier comparison,185

Table 2 shows the differences in parameters and FLOPs between ResNet and AFI-

ResNet. All results is calculated by the tool1. In each stage, the number of parameters

and FLOPs in the AFI module are always smaller than the vanilla ones. Moreover,

in most cases, our module assists the original block with decreasing parameters. For

example, when the batch size is 32, the ResNet-110 costs 8.17G FLOPs while the AFI-190

ResNet-110 requires only 6.23G FLOPs, which corresponds to about 24% decrease.

4.2. Explore the Role of AFI Module

Class Activation Visualization. To illustrate whether the low-level features are

collected by our AFI module, we generate the heatmap by Grad-CAM [19]. As we

can see in the Figure 3, our network has extracted more details of detected objects, and195

meanwhile, the heatmap generated by ResNet-50 is too smooth to draw the specific

borderline of detected objects. With the help of preserving low-level features, the tiny

borderlines are more clearer shown in the figure. Besides, compared to ResNet-50, the

1https://github.com/Lyken17/pytorch-OpCounter

13

area that AFI-ResNet-50 paid most attention to decreases obviously.

0.0 0.5 1.0
Selectivity Index

0

20

40

60

80

Fr
eq

ue
nc

y

Conv3-0

ResNet-50: 0.37
ASE-ResNet-50: 0.36

0.0 0.5 1.0
Selectivity Index

Conv3-1

ResNet-50: 0.46
ASE-ResNet-50: 0.34

0.0 0.5 1.0
Selectivity Index

Conv3-2

ResNet-50: 0.39
ASE-ResNet-50: 0.36

0.0 0.5 1.0
Selectivity Index

Conv3-3

ResNet-50: 0.42
ASE-ResNet-50: 0.35

0.0 0.5 1.0
Selectivity Index

Conv3-4

ResNet-50: 0.46
ASE-ResNet-50: 0.34

0.0 0.5 1.0
Selectivity Index

Conv3-5

ResNet-50: 0.48
ASE-ResNet-50: 0.35

Figure 6: Each figure depicts the class selectivity index distribution for features in both the baseline ResNet-

50 and AFI-ResNet-50 various building blocks in the Conv3 stage of their architectures. The distributions

come from the output of the AFI module and corresponding position of the vanilla in each building block.

The mean value is reported after the label.

Class Selectivity Index. Besides, we adopt the class selectivity index metric [14]200

to analyze the semantic meaning of features. This metric computes, for each feature

map, the difference between the highest class-conditional mean activity and the mean

of all remaining class-conditional activities over the testing dataset. The measurement

is normalized between zero and one where one indicates that a filter only fires for a

single class and zero indicates that the filter produces the class-agnostic value. The205

less class selectivity index contend to the more generalization of channels in a degree.

As shown in Figure 6, the AFI-ResNet-50 is able to learn tinier and more generalized

features instead of features of a specific class than the vanilla in Conv3 stage. With

the help of generalized features, the generalization gap between the training and the

testing dataset will be closed.210

Table 3: The table shows the accuracy rates (%) of networks on the Office-Home dataset. A:B denotes the

task that a model fine-tunes on domain A and tests on domain B.
Model Ar:Cl Ar:Pr Ar:Rw Cl:Ar Cl:Pr Cl:Rw Pr:Al Pr:Cl Pr:Rw Rw:Ar Rw:Cl Rw:Pr Avg.

ResNet-50 [8] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

AFI-ResNet-50 42.0 64.0 71.6 48.2 56.8 61.5 48.5 36.4 69.5 63.7 45.3 75.5 56.9

Performances on a Dataset with the Wide Generalization Gap. We consider

the situation where the training dataset is quite different from the testing dataset to

verify whether our module is able to bridge the generalization gap. We use another

experiment to test whether our module is able to capture the task-agnostic feature which

14

can bridge the generalization gap. We consider the situation where the training dataset215

is quite different from the test dataset. The better performance indicates that the model

has greater generalization ability.

To satisfy it, we choose the Office-Home dataset [34] which consists of four distinct

domains (Artistic images (Ar), Clip Art (Cl), Product images (Pr), and Real-World

images (Rw)). We train the model on ImageNet on the pre-training process, fine-tune220

on the source domain (A) and then test on the target domain (B). This task is denoted as

A:B as shown in Table 3. The pre-training details are similar to the training details in

Section (4.3). The epoch of fine-tuning is 20. The learning rate of new full connection

layer is 0.01 ×
(
1 + 10× iteration

total iteration

)−0.75
. The learning rate of the other layers is

one-tenth of that of the new full connection layer.225

Table 3 shows the comparison of various domain adaptation task accuracy between

ResNet-50 and AFI-ResNet-50. When the generalization gap between the training

dataset and the test dataset larger, the advantage of our network that adapts to learn

more generalized features is remarked.

The experiment results show that our module can transfer low-level features more230

efficiently. In fact, our module provides prior knowledge that a convex combination of

features can extract the main information. There are some previous methods that as-

suming additional prior knowledge regularizes the network. For instance, Mixup [35]

extends the training distribution by incorporating the prior knowledge that linear inter-

polations of features should lead to linear interpolations of classified space.235

4.3. Experiments on Real-World Datasets

CIFAR. The CIFAR [36] dataset consists of 60,000 RGB pictures, each with a

size of 32×32. 50,000 of them are used as the training set and 10,000 are used for

testing. The CIFAR-10 task requires the network to correctly classify the pictures into

10 categories, such as airplanes and automobiles. CIFAR-100 requires the network to240

classify pictures into 100 categories. We train our network on the training dataset and

evaluate it on the test dataset.

By integrating the AFI module with ResNet, ShuffleNetV2, MobileNetV2 and

ResNext, we get their AFI counterparts. All the backbone networks have a residual

15

mapping. So we apply the AFI module to the first convolution layer in building blocks245

to avoid affecting residual mapping and meanwhile neutralize the waste of the bottle-

neck convolution.

In this experiment, we set SGD with a momentum of 0.9 and a weight decay of

1e-4. We train the networks with the batch size to 64 for 300 epochs. The learning rate

is initialized to 0.1 and divided by 10 at 50%, 75% of training process, respectively.250

Proportion is adopted in [9]. Data augmentation(mirroring/shifting) is used in training.

Because MobileNetV2 [30], ShuffleNetV2 [10], and other networks are not designed

for the CIFAR dataset, we adopt their variants from Github2. All results are reproduced

and the same experiment settings are adopted for a fair comparison.

Table 4: Accuracy rates (%) on CIFAR-100 dataset. All results are reproduced by ourselves for a fair

comparison. Our network results are bold in the table. The FLOPs are calculated by setting the batch size to

32.

Model C100 #Params #FLOPs

ResNet-32 [8] 71.16 472.76K 2.23G

AFI-ResNet-32 71.09 378.23K 1.78G

ResNet-110 [8] 73.73 1.74M 8.17G

AFI-ResNet-110 74.03 1.35M 6.23G

ShuffleNetV2 [10] 70.71 0.94M 1.32G

AFI-ShuffleNetV2 72.06 0.95M 1.32G

MobileNetV2 [30] 75.20 2.41M 3.03G

AFI-MobileNetV2 75.94 2.25M 2.67G

DenseNet-40 [9] 75.58 1.06M 34.48G

ResNext-29(32×4d) [11] 78.44 4.87M 24.95G

AFI-ResNext-29(32×4d) 79.37 4.26M 21.74G

DenseNet-100 [9] 79.80 7.09M 230.119G

Table 4 shows the comparison of classification error between the original net-255

2https://github.com/kuangliu/pytorch-cifar

16

works and their corresponding AFI counterparts. As we can see, most of networks

work better in classification with assistance of our AFI module. For example, AFI-

ResNext29(32×4d) increases the accuracy rate by 0.93% compared with ResNext29(32×4d) [11]

on the CIFAR-100 dataset. Besides, as shown in the results, other AFI-Nets also in-

crease the accuracy rates while decrease or remain at least the number of parameters260

and FLOPs. We additional compare DenseNets [9] with AFI-Nets. When the accuracy

of both is comparable, DenseNets [9] require much more FLOPs than AFI-Nets.

ImageNet. The effect of the AFI module is also evaluated on the ImageNet 2012

dataset [6] which composes about 1.3 million training images and 50k validation im-

ages. Both top-1 and top-5 classification accuracy rates are reported on the validation265

dataset.

In this experiment, we use SGD with a momentum of 0.9 and a weight decay of 1e-

4. We train the networks with batch size 64 for 90 epoch. The initial learning rate is 0.1

* batch size / 256 and divided by 10 at 30, 60, and 80 epochs, respectively. 224×224

images serving as the inputs of the network are cropped from the resized raw images270

or their horizontal flips. Data augmentation in [37] is used in training. We evaluate our

model by applying a center-crop with 224×224.

The accuracy rates of baseline models and our network on the ImageNet validation

set are shown in Table 5. With the same backbone architecture, our model always

obtains a higher accuracy rate compared with ResNet. For instance, The AFI-ResNet-275

152 increases the accuracy rate by 1.24%, decreases the number of parameters by 9.2%,

and meanwhile decreases FLOPs by 10% compared with ResNet-152.

Additionally, the memory usage of our model is smaller than the base model(ResNet-

50) in both training and testing process as shown in Table 6. In contrast with DenseNet-

121 [9] which requires an enormous running space for keeping features of the total 24-280

layer in DenseNet block (3), our AFI-ResNet-50 maintains features at most 6 layers,

therefore the memory usage of our model is much smaller. Besides, reduction of the

output of convolution also helps to optimize memory costs during running time. Fur-

thermore, our AFI-Module could release more running space via reducing intermediate

gradients in memory with the method proposed by [38].285

17

Table 5: The table shows the accuracy rates (%) of networks on the ImageNet validation set. Our results are

marked in bold. All results are reproduced for a fair comparison. The FLOPs are calculated by assuming the

batch size of 32.

Model Top-1 Prec. Top-5 Prec. #Params(M) #FLOPs(G)

ResNet-50 [8] 75.3 92.2 25.56 131.57

AFI-ResNet-50 76.19(+0.89) 92.88(+0.68) 23.85(−1.71) 121.72(−9.85)

ResNet-101 [8] 76.4 92.9 44.55 250.69

AFI-ResNet-101 77.72(+1.32) 93.76(+0.86) 40.75(−3.80) 226.91(−23.78)

ResNet-152 [8] 77.0 93.3 60.19 369.88

AFI-ResNet-152 78.24(+1.24) 93.98(+0.68) 54.67(−5.52) 332.24(−37.64)

MobileNetV2 [30] 66.09 87.14 3.51 10.46

AFI-MobileNetV2 68.24(+2.15) 88.54(+1.40) 3.63(+0.12) 9.36(−1.10)

ResNeXt-50(32×4d) [11] 76.08 92.92 25.03 136.30

AFI-ResNeXt-50 77.16(+1.08) 93.40(+0.48) 21.84(−3.19) 116.61(−19.69)

Table 6: The comparison of the memory usage of AFI-ResNet-50 and ResNet-50 in the training and testing

process. The batch size is 64.

Model ResNet-50 AFI-ResNet-50

Training Memory (MiB) 7447 7001

Inference Memory (MiB) 3827 2671

4.4. Ablation Study

The Position of AFI Module. In this ablation study, we study whether low-level

Table 7: The accuracy rate (%) comparison of applying our AFI module to different residual stages of

ResNet-32 and ResNet-110. Best results are marked in bold.

AFI Stage ResNet-32 Stage 1 Stage 2 Stage 3

C100 71.16 71.38(+0.22) 70.63(−0.53) 70.75(−0.41)

AFI Stage ResNet-110 Stage 1 Stage 2 Stage 3

C100 73.73 75.03(+1.30) 74.13(+0.40) 74.02(+0.29)

feature maps or high-level feature maps are more hospitable for exploitation by the

18

AFI module. Previous study [21] shows that the feature maps learned by the earlier

convolutional layers are more general. According to Table 7, by only applying our290

AFI module to the stage 1 of ResNet-32 or ResNet-110, the accuracy rate increases

obviously, which means low-level features have more practical impacts.

Table 8: The table shows the accuracy rates (%) of AFI-ResNet-50 with different r on the ImageNet valida-

tion set.

r 1 2 4 8

Top-1 Prec. 76.21 76.21 76.19 76.11

The Setting of Hyperparameter r. Tables 8 shows our AFI module with different

reduction ratio r.The results show that our AFI module offers a trade-off between im-

proved accuracy and increased model complexity for the real situations. For instance,295

for a mobile user, the company can adopt AFI-Nets with larger reduction ratio (i.e.

r = 4) while a computer user can adopt AFI-Nets with smaller reduction ratio (i.e.

r = 2) to get higher accuracy.

Table 9: The accuracy rate(%) of AFI-MobileNetV2 with various of the self-attention model in CIFAR-100.

MobileNetV2 Baseline AFI AFI-SE AFI-GE AFI-CBAM AFI-ECA

C100 75.20 75.94 76.15 76.22 76.51 76.76

Compatibility with Other Self-attention Models. Intuitively, the AFI-module

is a feature-wise attention mechanism; alternatively, the self-attention module aims to300

model interdependence between channels explicitly. We further conducted experiments

on CIFAR-100 to demonstrate compatibility. In the experiments, we utilize the self-

attention modules(SE [25], GE [33], CBAM [26], ECA [39]) to the resulting features.

As shown in Table 9, all the AFI-SE, AFI-GE, AFI-CBAM, and AFI-ECA(+0.82%)

models get better results, which indicates that our model is compatible with other self-305

attention modules.

19

5. Conclusion

In this paper, we proposed AFI modules that can adaptively select features for

transferring and improve the representational power of networks. The output feature of

AFI modules is aggregated by the channel-wise soft attention over a series of features.310

The structure of AFI modules is simple and can be used directly in existing state-of-the-

art residual-like networks easily. Experimental results show the effectiveness of AFI-

Networks, which achieves competitive performance on multiple datasets. Compared

with baseline models, AFI counterparts can achieve better performance with lower

computational complexity. We believe that the AFI modules are broadly applicable315

across various computer vision tasks, e.g., object detection, instance segmentation and

semantic segmentation.

References

[1] Y. LeCun, Y. Bengio, et al., Convolutional networks for images, speech, and time

series, The handbook of brain theory and neural networks 3361 (10).320

[2] L. A. Gatys, A. S. Ecker, M. Bethge, Image style transfer using convolutional

neural networks, in: Proceedings of the IEEE conference on computer vision and

pattern recognition, 2016, pp. 2414–2423.

[3] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, X. Tang, Residual

attention network for image classification, in: Proceedings of the IEEE Confer-325

ence on Computer Vision and Pattern Recognition, 2017, pp. 3156–3164.

[4] H. Jiang, J. Wang, Z. Yuan, Y. Wu, N. Zheng, S. Li, Salient object detection: A

discriminative regional feature integration approach, in: Proceedings of the IEEE

conference on computer vision and pattern recognition, 2013, pp. 2083–2090.

[5] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep con-330

volutional neural networks, in: Advances in neural information processing sys-

tems, 2012, pp. 1097–1105.

20

[6] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale

image recognition, arXiv preprint arXiv:1409.1556.

[7] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-335

houcke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of the

IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.

[8] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:

Proceedings of the IEEE conference on computer vision and pattern recognition,

2016, pp. 770–778.340

[9] G. Huang, Z. Liu, L. Van Der Maaten, K. Q. Weinberger, Densely connected

convolutional networks, in: Proceedings of the IEEE conference on computer

vision and pattern recognition, 2017, pp. 4700–4708.

[10] N. Ma, X. Zhang, H.-T. Zheng, J. Sun, Shufflenet v2: Practical guidelines for

efficient cnn architecture design, in: Proceedings of the European Conference on345

Computer Vision (ECCV), 2018, pp. 116–131.

[11] S. Xie, R. Girshick, P. Dollár, Z. Tu, K. He, Aggregated residual transformations

for deep neural networks, in: Proceedings of the IEEE conference on computer

vision and pattern recognition, 2017, pp. 1492–1500.

[12] C. Szegedy, S. Ioffe, V. Vanhoucke, A. A. Alemi, Inception-v4, inception-resnet350

and the impact of residual connections on learning, in: Thirty-first AAAI confer-

ence on artificial intelligence, 2017.

[13] Y. Lee, J.-w. Hwang, S. Lee, Y. Bae, J. Park, An energy and gpu-computation

efficient backbone network for real-time object detection, in: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2019,355

pp. 0–0.

[14] A. S. Morcos, D. G. Barrett, N. C. Rabinowitz, M. Botvinick, On the importance

of single directions for generalization, arXiv preprint arXiv:1803.06959.

21

[15] B. Chang, L. Meng, E. Haber, F. Tung, D. Begert, Multi-level residual networks

from dynamical systems view, arXiv preprint arXiv:1710.10348.360

[16] R. T. Chen, Y. Rubanova, J. Bettencourt, D. K. Duvenaud, Neural ordinary differ-

ential equations, in: Advances in neural information processing systems, 2018,

pp. 6571–6583.

[17] Q. Wang, B. Li, T. Xiao, J. Zhu, C. Li, D. F. Wong, L. S. Chao, Learning deep

transformer models for machine translation, arXiv preprint arXiv:1906.01787.365

[18] U. M. Ascher, L. R. Petzold, Computer methods for ordinary differential equa-

tions and differential-algebraic equations, Vol. 61, Siam, 1998.

[19] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-

cam: Visual explanations from deep networks via gradient-based localization, in:

Proceedings of the IEEE international conference on computer vision, 2017, pp.370

618–626.

[20] H. Zhang, C. Wu, Z. Zhang, Y. Zhu, Z. Zhang, H. Lin, Y. Sun, T. He,

J. Mueller, R. Manmatha, et al., Resnest: Split-attention networks, arXiv preprint

arXiv:2004.08955.

[21] J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How transferable are features in deep375

neural networks?, in: Advances in neural information processing systems, 2014,

pp. 3320–3328.

[22] Y. Lee, J. Park, Centermask: Real-time anchor-free instance segmentation, arXiv

preprint arXiv:1911.06667.

[23] Y. Chen, J. Li, H. Xiao, X. Jin, S. Yan, J. Feng, Dual path networks, in: Advances380

in neural information processing systems, 2017, pp. 4467–4475.

[24] W. Wang, X. Li, J. Yang, T. Lu, Mixed link networks, arXiv preprint

arXiv:1802.01808.

22

[25] J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the

IEEE conference on computer vision and pattern recognition, 2018, pp. 7132–385

7141.

[26] S. Woo, J. Park, J.-Y. Lee, I. So Kweon, Cbam: Convolutional block atten-

tion module, in: Proceedings of the European Conference on Computer Vision

(ECCV), 2018, pp. 3–19.

[27] X. Wang, R. Girshick, A. Gupta, K. He, Non-local neural networks, in: Proceed-390

ings of the IEEE conference on computer vision and pattern recognition, 2018,

pp. 7794–7803.

[28] J. Pang, K. Chen, J. Shi, H. Feng, W. Ouyang, D. Lin, Libra r-cnn: Towards

balanced learning for object detection, in: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2019, pp. 821–830.395

[29] X. Qin, Z. Zhang, C. Huang, C. Gao, M. Dehghan, M. Jagersand, Basnet:

Boundary-aware salient object detection, in: Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2019, pp. 7479–7489.

[30] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, Mobilenetv2: In-

verted residuals and linear bottlenecks, in: Proceedings of the IEEE conference400

on computer vision and pattern recognition, 2018, pp. 4510–4520.

[31] K. Zhang, Y. Guo, X. Wang, J. Yuan, Z. Ma, Z. Zhao, Channel-wise and feature-

points reweights densenet for image classification, in: 2019 IEEE International

Conference on Image Processing (ICIP), IEEE, 2019, pp. 410–414.

[32] X. Li, W. Wang, X. Hu, J. Yang, Selective kernel networks, in: Proceedings of the405

IEEE conference on computer vision and pattern recognition, 2019, pp. 510–519.

[33] J. Hu, L. Shen, S. Albanie, G. Sun, A. Vedaldi, Gather-excite: Exploiting feature

context in convolutional neural networks, 2018.

[34] H. Venkateswara, J. Eusebio, S. Chakraborty, S. Panchanathan, Deep hashing

network for unsupervised domain adaptation, in: Proceedings of the IEEE con-410

ference on computer vision and pattern recognition, 2017, pp. 5018–5027.

23

[35] H. Zhang, M. Cisse, Y. N. Dauphin, D. Lopez-Paz, mixup: Beyond empirical risk

minimization, arXiv preprint arXiv:1710.09412.

[36] A. Krizhevsky, G. Hinton, et al., Learning multiple layers of features from tiny

images.415

[37] X. Li, J. Wu, Z. Lin, H. Liu, H. Zha, Recurrent squeeze-and-excitation context

aggregation net for single image deraining, in: Proceedings of the European Con-

ference on Computer Vision (ECCV), 2018, pp. 254–269.

[38] G. Pleiss, D. Chen, G. Huang, T. Li, L. van der Maaten, K. Q.

Weinberger, Memory-efficient implementation of densenets, arXiv preprint420

arXiv:1707.06990.

[39] Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, Q. Hu, Eca-net: Efficient channel attention

for deep convolutional neural networks, in: Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, 2020, pp. 11534–11542.

24

	1 Introduction
	2 Related Work
	3 Our Model
	3.1 Attentive Feature Integration Modules
	3.2 AFI Modules for Residual-Like Networks
	3.3 The Versatility of AFI modules

	4 Experiment
	4.1 Overheads of AFI modules
	4.2 Explore the Role of AFI Module
	4.3 Experiments on Real-World Datasets
	4.4 Ablation Study

	5 Conclusion

