
Representation Learning for Continuous Action Spaces

is Beneficial for Efficient Policy Learning?

Tingting Zhaoa, Ying Wanga, Wei Suna, Yarui Chena,∗, Gang Niub, Masashi
Sugiyamab,c

aCollege of Artificial Intelligence, Tianjin University of Science and Technology, Tianjin
300457, P.R.china

bRIKEN Center for Advanced Intelligence Project (AIP), Tokyo, Japan
cGraduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan

Abstract

Deep reinforcement learning (DRL) breaks through the bottlenecks of tradi-
tional reinforcement learning (RL) with the help of the perception capability
of deep learning and has been widely applied in real-world problems. While
model-free RL, as a class of efficient DRL methods, performs the learning
of state representations simultaneously with policy learning in an end-to-end
manner when facing large-scale continuous state and action spaces. How-
ever, training such a large policy model requires a large number of trajectory
samples and training time. On the other hand, the learned policy often fails
to generalize to large-scale action spaces, especially for the continuous action
spaces. To address this issue, in this paper we propose an efficient policy
learning method in latent state and action spaces. More specifically, we ex-
tend the idea of state representations to action representations for better pol-
icy generalization capability. Meanwhile, we divide the whole learning task
into learning with the large-scale representation models in an unsupervised
manner and learning with the small-scale policy model in the RL manner.
The small policy model facilitates policy learning, while not sacrificing gen-
eralization and expressiveness via the large representation model. Finally,
the effectiveness of the proposed method is demonstrated by MountainCar,
CarRacing and Cheetah experiments.

?This manuscript has not been published, was not, and is not being submitted to any
other journal and conference.

∗Corresponding author

Preprint submitted to Elsevier November 28, 2022

ar
X

iv
:2

21
1.

13
25

7v
1

 [
cs

.L
G

]
 2

3
N

ov
 2

02
2

Keywords: Policy model, Model-free reinforcement learning, Continuous
action spaces, State representations, Action representations

1. Introduction

Deep reinforcement learning (DRL) controls an agent’s behavior directly
through the learning of high-dimensional perceptual inputs by combining
the perceptual capabilities of deep learning (DL) with the decision making
capabilities of reinforcement learning (RL). In DRL, the goal of the agent is
to learn a policy to maximize its cumulative rewards through interacting with
the environment. So far, DRL has been successfully applied to many real-
world tasks: e.g., robotics (Peters and Schaal, 2006; Gu et al., 2017), games
(Mnih et al., 2013; Silver et al., 2016; Justesen et al., 2019), video prediction
(Oh et al., 2015), autonomous driving (Lee et al., 2011; Chen et al., 2019),
intelligent transportation (Yin et al., 2014; Abdoos and Bazzan, 2021), etc.

Benefitting from the large-scale policy model and excellent state percep-
tion capability, DRL breaks through the bottlenecks of traditional RL and
could be applied to the real-world problems. Generally, policy learning in
DRL could be categorized into two types. One is a value-function-based pol-
icy learning approach, which first learns the value function of the state-action
pairs, and the action is chosen based on the estimated value function. The
classical methods among this category include Deep Q-network (DQN) (Mnih
et al., 2015), Double DQN (Hasselt et al., 2016), Prioritized Experience Re-
play (Schaul et al., 2015), and Dueling Architecture (Wang et al., 2016).
However, it is difficult to select actions by maximizing the value function at
each time step due to extreme non-convexity of value function. Therefore,
the value-function-based approach is more suitable for decision making tasks
in discrete action spaces. The other type of policy learning approach is the
policy-based algorithm, which directly models the policy and is suitable for
solving complex decision tasks with continuous action spaces, such as pol-
icy gradient algorithm (Williams, 1992). Furthermore, the Actor-Critic (AC)
architecture (Sutton and Barto, 2018) combines the value-function-based ap-
proach and the policy-based approach, in which the actor plays the role of
policy-based approach and is used to control how the agent behaves, while
the critic evaluates the current actor in terms of the value function approx-
imation and guides the actor in policy improvement. The representative
algorithms among AC framework include Deep Deterministic Policy Gradi-
ent (DDPG) (Lillicrap et al., 2015), Asynchronous Advantage Actor-Critic

2

(A3C) (Mnih et al., 2016), Soft Actor-Critic (SAC) (Haarnoja et al., 2018)
and Proximal Policy Optimization (PPO) (Schulman et al., 2017).

The key to the success of the aforementioned DRL methods is the abil-
ity to perceive high-dimensional states and the ability to represent complex
tasks in deep decision-making models, as concluded in Lanctot et al. (2017).
Extensive researches demonstrated that utilizing a range of deep neural net-
work (DNN) architectures allows the agent to successfully learn control poli-
cies directly from high-dimensional sensory input using RL methods in the
end-to-end manner (Hessel et al., 2018; Chopra and Roy, 2020; Mayo et al.,
2021). However, a huge number of samples and training time are absolutely
required to learn millions of weights of a large model in DRL algorithms.
For example, the Rainbow model usesd 180 million frames, or 83 hours of
game data to achieve 40 games over human performance on 57 Atari games
(Hessel et al., 2018); the model of AlphaStar AI underwent 44 days of train-
ing and beat 99.8% of European players in the StarCraft 2 game (Vinyals
et al., 2019); OpenAI Five went through 10 months of real-world training to
beat the Dota 2 human player’s world champion (Team OG) (Berner et al.,
2019). In addition, training DNNs by the end-to-end manner suffers from
the problem of overfitting, and the learned model often fails to generalize
to seemingly small changes in the environment (Lanctot et al., 2017), which
also increases the burden and difficulty of policy learning in RL.

In order to perform policy learning efficiently while satisfying the require-
ment for generalization ability, DRL algorithms usually leverage state rep-
resentations for generalization (Schulman et al., 2017; Lillicrap et al., 2015;
Watter et al., 2015). Recent work has shown the benefits associated with
state representations for large-scale and continuous state spaces (Ha and
Schmidhuber, 2018; Hafner et al., 2019a), but relatively little research has
been done on action representations for large-scale and continuous action
spaces. In order to further improve the generalization capability over ac-
tions, we would like to extend the idea of learning latent representations of
high-dimensional states to explore latent action representations in continuous
action spaces, and investigate whether action representations also preserve
the advantages as state representations. Therefore, the policy in the proposed
latent action space will learn action representation rather than the raw ac-
tion. Ideally, the proposed policy model can be generalized to other actions
with similar representations, where similar values of action representations
are regarded as similar representations. Thus, the generalizaition capability
over the action space is improved.

3

On the other hand, state representations with the proposed action rep-
resentations may enable the agent to better understand the semantic of the
state and action, and allow the agent to reason and learn over the learned
latent spaces. However, the representations of high-dimensional states in
the traditional DRL algorithms are usually combined with policy learning
together using an end-to-end learning manner, which makes the models for
policy learning very large and the efficiency is not satisfied. Therefore, we
propose an efficient policy learning method in latent state and action spaces
to reduce the burden of policy learning and improve the learning efficiency
by constructing a small-scale and compact policy model with the help of the
state and action representations in latent space, which is referred to as policy
learning in latent spaces (PL-LS). More specifically, we abandon the end-to-
end learning manner used in the traditional DRL algorithms and divide the
whole learning task into the large representation models and the small policy
model. We first learn the state and action representation models in latent
spaces in an unsupervised learning manner, and then learn the small-scale
policy model in the latent spaces for the RL problem. We believe this sepa-
ration is desirable because unsupervised learning methods tend to be better
performed and more reliable than RL methods (Ha and Schmidhuber, 2018).

To evaluate the effectiveness of our proposed framework, we conducted
experiments on the MoutainCar, CarRacing and Cheetah tasks, showing that
it is feasible to introduce action representations in latent space that not only
generalize the actions to action choices with similar representations, but also
further explore the action and state spaces. In addition, the policy learned
based on our proposed framework is significantly improved with the help of
state and action representations in latent space in terms of computational
efficiency and performance.

The rest of this paper starts with a review of related work, and then intro-
duces the formalization of RL and the generative model will be used to learn
the state representations and action representations, i.e., the variational au-
toencoder (VAE) (Doersch, 2016). Afterwards we explain the structure of our
proposed model and the algorithmic procedure in detail. The experimental
results are then presented and analyzed. Finally, we give the conclusion.

2. Related Work

In this section, we review the most related work, and discuss how they
relate to our proposed method.

4

State Representations. In DRL tasks, the powerful description and abstract
representation of high-dimensional data by deep learning are usually applied
to assist the automatic representation of states in DRL, which plays a strong
supporting role in policy learning. We discuss and study the work related
to state representations from two aspects. From the perspective of model-
free DRL, state perceptions are combined with policy learning together to
successfully learn the control policies from the raw observed states in an end-
to-end learning manner, such as Deep Q-network (Mnih et al., 2015), TRPO
(Schulman et al., 2015), and PPO (Schulman et al., 2017). Therefore, a large-
scale DNN needs to be built to well realize the perception and abstraction of
states, but this will increase the demand for sample size and the difficulty of
policy learning.

On the other hand, from the perspective of model-based DRL, in or-
der to solve the problem of high-dimensional observed states, E2C (Watter
et al., 2015) and RCE (Banijamali et al., 2018) convert the optimal control
problem of high-dimensional nonlinear systems into a local linear problem
in low-dimensional latent space. World Models (Ha and Schmidhuber, 2018)
use a visual sensory component to learn the transition from observed input
frames to state representations, and abandon the end-to-end learning man-
ner. Our approach is similar to it, but we introduce the non-end-to-end
learning manner to model-free RL. We also use VAE (Kingma and Welling,
2013; Doersch, 2016) combined with a convolutional neural network (CNN)
(Ketkar and Moolayil, 2021), but we design a set of network models that
match the data properties of RL itself to learn state representations in la-
tent space. PlaNet (Hafner et al., 2019b) is a fully model-based agent that
learns environmental dynamics from images and selects actions by perform-
ing fast online planning in latent space. Dreamer (Hafner et al., 2019a) and
DreamerV2 (Hafner et al., 2020) learn behavior purely from predictions in
the compact latent space of the world model. Our approach has similarities
to the Dreamer methods in that we also learn policies and predictions of
value functions in latent space of learned states. However, we are not fully
immersed in the imaginary space, since we focus on the model-free RL setup,
where the agent is still required to interact with the real environment to
ensure the accuracy of policy learning.

The employment of the reconstruction in the above methods for learning
the latent state representations can greatly improve the data efficiency of RL.
However, when encoding the high-dimensional observed states, the informa-
tion that are not relevant to the task is also taken into account, resulting

5

in redundant information being encoded and useless latent state representa-
tions being generated, thus affecting the attention of the agent. DeepMDP
(Gelada et al., 2019) introduces the idea of mutual simulation and reward
prediction as well as latent state transition distribution prediction as auxil-
iary tasks to ensure that two states that are not relevant will not be encoded
into the same state representation. However, DeepMDP relies on a strong
assumption that the learned MDP representations are Lipschitz (Hinderer,
2005; Asadi et al., 2018). In contrast, Deep Bisimulation for Control (DBC)
(Zhang et al., 2021a) is guaranteed to generate the representation of the
Lipschitz MDP by directly learning a state representation based on mutual
simulation equivalence. Zhang et al. (2021a) argue that if one wants to learn a
state representation that encodes only task-relevant information in the state
and keeps task-irrelevant information constant, it is intuitively possible to
determine task relevance through reward signals. Our approach provides a
learning framework in which we can employ not only the traditional recon-
struction based approach but also the mutual simulation equivalence based
approach for the state representation.

Action Representations. The existing DRL methods allow agents to use state
representations for reasoning and learning. This idea was introduced into
action representations, that is, learning a policy in latent space of action
representations, and then mapping the action representations to the real ac-
tion space, with less research related to them. Dulac-Arnold et al. proposed
to embed discrete actions into a continuous space and then use the nearest
neighbor method to find the optimal action (Dulac-Arnold et al., 2015). How-
ever, they assumed that the representation of the action is given as a priori,
and do not provide a method for learning the action representations. Most
relevant work would be the method of policy gradients with representations
for actions (PG-RA)(Chandak et al., 2019), which proposed to learn action
representations as part of a policy structure and use a supervised way for
its learning. However, their proposed method is restricted to tasks with dis-
crete action spaces, and cannot be applied to deal with the continuous action
problems naturally. It is the first attempt to learn action representations in
latent space to deal with large-scale continuous action space problems, where
the action representation is seperately learned from the policy learning. The
correlations and similarities between actions are captured by action repre-
sentations to enhance the generalization of action selections.

6

3. Background

In this section, we start by introducing the notation and formalization of
standard RL framework. Then, we describe the data representation model
of variational autoencoder (VAE) that will be employed in the our proposed
framework.

3.1. Formulation of Reinforcement Learning

In DRL, an agent interacts with an unknown environment to obtain an
optimal policy so as to maximize the return, i.e., the cumulative discounted
rewards (Sutton and Barto, 2018). Generally, we model interactions with
the environment in a RL task as a Markov decision process (MDP), which is
described by the tuple of (S,A, PT , P (s1), r), where

• S is the state space, which could be continuous or discrete, but we
focus on continuous state space in this paper. st ∈ S denotes the state
of the agent at the time step t;

• A is the action space, which could be continuous or discrete, but we
focus on continuous action space in this paper. at ∈ A denotes the
action taken by the agent at the time step t;

• PT : S × A × S → [0, 1] is the transition probability density function.
p(st+1|st, at) is the conditional probability density that the agent in
state st performs an action at and transfers to the next state st+1;

• P (s1) denotes the probability density function of the initial state s1;

• r(st, at, st+1) denotes the immediate reward for transfering to the next
state st+1 after performing the action at at the current state st;

The agent starts from the initial state s1 drawn according to P (s1). At
each time step t, the agent senses its current state st and selects an action at
following a policy π(at|st), which yields the agent’s behavior, i.e., a mapping
from state st to action at, then transfers to the next state st+1 according to
the state transition probability density p(st+1|st, at), and receives a reward
r(st, at, st+1) for this state transition. The agent repeats the above process
until it reaches a terminal state or the maximum time step T , which is

7

referred to as a trajectory. The probability density of the occurred trajectory
is

p(h) := p(s1)
T∏
t=1

p(st+1|st, at)π(at|st).

Once a trajectory is obtained, the return of this trajectory can be calculated:

R(h) :=
T∑
t=1

γt−1r(st, at, st+1),

where γ ∈ (0, 1] is the reward discounting parameter that is used to weight
the impact of future rewards. We measure the quality of a policy by the
expectation of the return, which can be expressed as

Jπ :=

∫
p(h)R(h)dh.

The goal of RL is to find an optimal policy π∗ that maximizes the expected
return Jπ:

π∗ := arg max
π

Jπ.

3.2. Variational Autoencoder

Representation learning learns the implicit features of data automati-
cally (Bengio et al., 2013), and is typically used to extract useful information
when building classifiers or other predictors. Representation learning has
been widely applied in tasks such as speech recognition (Dahl et al., 2011),
target recognition (Krizhevsky et al., 2017), and natural language processing
(Bordes et al., 2012). The autoencoder is one of the classic representation
learning methods, which processes complex high-dimensional data in an un-
supervised way (Rumelhart et al., 1986) and realizes the data representation
and reconstruction by its encoder and decoder. The encoder learns the la-
tent characteristics of input data and decoder reconstructs the abstracted
data. The autoencoder is often used as a method of feature extraction, and
has been widely used in image classification (Gutoski et al., 2017), video
anomaly detection (Sabokrou et al., 2016; Chang et al., 2020), and pattern
recognition (Liu and Taniguchi, 2014).

The variational autoencoder (VAE) combines deep learning with Bayesian
inference while maintaining the basic functionalities of the autoencoder (Kingma
and Welling, 2013; Doersch, 2016). The traditional autoencoder captures the

8

latent features of the data in a numerical form by the encoder, while VAE
obtains the probability distribution of the latent features of the data, which
greatly improves the generalization ability of generated data.

The structure of VAE is shown in Fig.1, where X is the input data,
hinf is the inference network used to obtain the data distribution in latent
space, µ and σ respectively represent the mean and standard deviation of
the data distribution in latent space, z is the latent representation of the
original data in latent space, namely the latent variable; hgen is the generation

neural network used to generate new data, X̂ is the new data generated by
the generation network; q(z|X) and p(X|z) refer to the learned conditional
densities of the latent variable and the original data during the encoding and
decoding process, respectively. In order to make VAE with data generation
capability rather than deterministic mapping relationship, the latent variable
z is required to be a random variable, which is usually assumed to follow the
multivariate normal distribution, i.e., p(z) ∼ N(0, I), where I is the identity
matrix.

Figure 1: The overall structure of VAE. VAE consists of an inference network hinf and a
generation network hgen, which completes the process of encoding and decoding the input

data X to obtain the reconstructed data X̂.

The objective of VAE is to maximize the likelihood of the generated data
while simultaneously minimizing the distance between the prior distribution

9

of the latent variable and the inference model, which is formulated as follows:

LVAE = KL(q(z|X)||p(z))− Ez∼q(z|X)[log p(X|z)], (1)

where KL refers to the Kullback-Leibler divergence of p from q; the second
term in Eq. (1) measures the reconstruction error, and the first term in Eq. (1)
is the additional constraint on the latent representations. VAE optimizes the
loss function so that the estimated density q(z|X) is close to p(z), and the
reconstruction error is expected to be small.

In order to avoid the no-gradient problem caused by random sampling of
the latent variable z, VAE uses the reparameterization technique to introduce
the parameter ε ∼ N(0, I), which transforms the direct sampling of the latent
variable z into a linear operation of z = µ+σ∗ε, and enables it to be optimized
using the gradient descent algorithm.

During the training procedure, the inference model q(z|X) firstly extracts
the mean and standard deviation of the distribution of the latent variable z
corresponding to the sample X. Then, the reparameterization technique is
used to obtain the latent variable z. Finally, the generation model p(X|z)

outputs the reconstructed sample X̂ corresponding the given latent variable
z.

4. Efficient Policy Learning in Latent State and Action Spaces

Facing a complex environment, in order to solve a large-scale decision-
making problem in continuous state and action spaces more efficiently, we try
to alleviate the problems of low learning efficiency and weak generalization
ability in the field of DRL from three aspects: state representation, action
representation and compact policy learning. The overall structure of the
proposed framework is shown in Fig.2, where we divide the learning process
into the offline learning and online learning. More specifically, we first leave
the large-scale network training to the offline procedure in an unsupervised
learning way, where we learn the state representation and action representa-
tion in their latent spaces; then, we learn a small-scale and compact policy
model online by the RL algorithm.

10

Figure 2: The overall framework of the proposed efficient policy learning model. The
state and action representations in latent spaces and the policy learning make up the
whole model, where the state and action representations are trained in the offline manner
and the policy is learned in the online manner.

4.1. State Representation in Latent Space

In order to effectively handle the high-dimensional state problems in large-
scale environment and relieve the burden of subsequent policy learning, we
intend to use the representation learning to abstract the high-dimensional
observed state and make the agent to reason and learn using the represented
state rather than the raw state. In this paper, we establish a large-scale net-
work in line with the characteristics of state data to compress each observed
state into a small latent vector z as shown in Fig.3, where we employ the well
researched model of VAE. More specifically, the original observed state st is
input to the encoder, and then the latent vector zt is obtained, and finally
zt is passed through the decoder to obtain the reconstructed frame ŝt. This
VAE-based state representation model is denoted by VAE(st), and we refer
to Vs for brevity. The loss function of the state representation based on VAE
is formulated as

L(st) = KL(q(zt|st)||p(zt))− Ezt∼q(zt|st)[log p(st|zt)], (2)

where st is the state variable and zt is the latent variable with respect to the
observed state; q(zt|st) and p(st|zt) correspond to the conditional probability
distributions in the encoding and decoding processes, respectively. Through

11

the off-line learning, we get the learned encoder of Vs, and thus obtain the
low-dimensional state representation in latent space.

Figure 3: The framework of VAE-based state representation VAE(st), abbreviated as Vs.
At each time step, the original observed state st is input into the encoder of Vs, and the
low-dimensional state representation, i.e., latent vector zt, is obtained. With the decoder
of Vs, the state representation zt could be reconstructed to ŝt.

4.2. Action Representation in Latent Space

In order to efficiently carry out policy learning and meet the requirements
of generalization ability, RL usually places its hopes on state representations.
Learning the underlying state representation is a well researched and widely
employed idea in the field of DRL, where the state representation improves
the generalization ability across the state space. We extend the idea of state
representation to action representation with expectation that there exists
the underlying latent representation of action space, which could further
accelerate policy learning and improve the generalization across the action
space.

Following this line, we propose to learn a policy in the latent space of
action representation, and then map the action representation to the orig-
inal action space. Specifically, we introduce an action representation space
ξ ⊆ Rd. The agent learns the policy in this latent space, that is, the policy
defines the probability density function of the action representation given the
current state representation: π (et| zt), where zt and et represent state st and
action at in latent space respectively. Along with this policy model in the
latent space, we also learn a mapping function from action representation
to real action. Then, the generated action will be used to interact with the
environment. Action representations are expected to be generalized to other
actions with similar representations, which greatly improves the generaliza-
tion performance of action selections.

12

Similar to VAE-based state representation VAE(st), we construct a VAE-
based action representation model VAE(at) shown in Fig.4, abbreviated as
Va, where the decoder transforms action representations to real actions. The
loss function of the action representation is described as follows:

L(at) = KL(q(et|at)||p(et))− Eet∼q(et|at)[log p(at|et)], (3)

where at is the action variable and et is the latent variable with respect to
the action; q(et|at) and p(at|et) correspond to the conditional probability dis-
tributions of action representation and reconstructed action in the encoding
and decoding processes, respectively. We train the model VAE(at) in the
offline manner. Finally, action representation in the latent space is obtained
by the encoder of Va, which will be used in the policy learning, and the trans-
formation of the action representation to the actual action can be obtained
by the decoder of Va.

Figure 4: The framework of VAE-based action representation VAE(at), abbreviated as
Va. At each time step, the original action at is input into the encoder of Va, and ob-
tains the action representation, i.e., latent vector et. With the decoder of Va, the action
representation et could be reconstructed to ât.

For the DRL tasks, the dimensionality of the state st is usually high, while
the dimensionality of the action at is relatively low. For example, in the car-
racing task, the observed state is the raw image with thousands of pixels,
which is high-dimensional and information redundant; while the action is a
3-dimensional vector, consists of turning the steering wheel, stepping on the
accelerator, and braking, where each dimension is linearly indistinguishable
and informationally thin. Thus, we usually abstract the state and use a
lower-dimensional latent state as its representation. On the other hand, we
could also lift the action to a higher dimension in latent space to find its
instructive representation (Zhang et al., 2021b).

13

Figure 5: Flow chart of the proposed model of policy learning in latent spaces. At each
time step, the raw observation st is first processed by Vs to obtain its state representation
zt, which is input to the new proposed policy model π(et|zt). Policy outputs an action
representation et in latent space, which will generate a corresponding action ât through
the decoder of Va, and then affect the environment. Finally, the environment will produce
an immediate reward rt and transit to the next state st+1.

4.3. Algorithm of Policy Learning in Latent Spaces

With the state representations and action representations, we could con-
struct a small-scale policy model and learn it efficiently. We illustrate how
state representations and action representations in latent spaces interact with
the environment in the flow chart of Fig.5. At each time step, the agent re-
ceives the state representation zt from the encoder of VAE(st), which is input
to the policy π and gets the action representation et. The action represen-
tation et goes through the decoder of VAE(at), the reconstructed action ât
is obtained and used to interact with the environment. Subsequently, the
agent transits to the next state st+1 and receives a reward r(st, ât, st+1). The
above process is repeated for T times, and a trajectory is obtained.

We implement the proposed latent space based policy model in the frame-
work of policy-based algorithms to deal with the large-scale and continuous
state and action problems. The algorithm is called the Policy Learning algo-
rithm in Latent Spaces (PL-LS), which is explicitly described in Algorithm
1. PL-LS first collects transition samples {(st, at)}Tt=1 using a random pol-
icy, and then learns Vs and Va by Eq. (2) and Eq. (3) using the collected
samples in order to get the state and action representations in latent spaces,
respectively. Once the state and action representations in latent spaces are

14

learned, we can construct a compact and small-scale policy model and learn
it efficiently.

Algorithm 1: Policy Learning Algorithm in Latent Spaces (PL-LS)

1 Collect transition samples {(st, at)}Tt=1 using a random policy;
2 Learn Vs by Eq. (2) using the collected data {(st, at)}Tt=1 to get the

state representations in latent space;
3 Learn Va by Eq. (3) using the collected data {(st, at)}Tt=1 to get the

action representations in latent space;
4 Initialize learning parameters;
5 for episode = 0,1,2,. . . do
6 Sample initial state s1 from P (s1);
7 for t=1,2,. . . do
8 zt=Vs.encoder(st);
9 Sample action representation in latent space, et, from π(·|zt);

10 at=Va.decoder(et);
11 Execute at and observe st+1, rt;
12 Update π using any policy search algorithm;

13 end

14 end

In Algorithm 1, Lines 5-14 illustrate the online update procedure for all
of the parameters RL involves. Each time step in the episode is represented
by t. For each episode, we need to sample initial state s1 from P (s1). For
each step, a state is first encoded to a state representation by the encoder
of Vs. An action representation is sampled and is then mapped to an action
by the decoder of Va. Having executed this action in the environment, the
immediate reward is then used to update the policy, π, using any policy-
based algorithm. Note that, the proposed method is a general framework of
policy learning in latent spaces. The policy update algorithm could be chosen
accordingly in Line 12 in Algorithm 1, where the value-function-based policy
learning approach could also be applied according to the specific task.

5. Experimental Results

The essential motivation of this work is to provide a policy model based on
the state and action representations, which can be combined with the existing
DRL algorithms to improve the efficiency of policy learning and the ability
of generalization. In this section, we conduct experiments on three tasks to

15

verify the effectiveness of our proposed method: MountainCar to explore the
underlying structure of action representation in the learned latent space and
verify the feasibility of introducing action representation; Car Racing task
to investigate the effectiveness and applicability of efficient policy learning
based on state representation and action representation; Cheetah task to
validate the extensibility of our proposed framework.

5.1. MountainCar

The MountainCar task consists of two hills and a car. The goal is to get
the power to reach the target position on top of the right hill through policy
learning (note that the car’s engine is not strong enough to scale the hill in
a single pass). The state space S is two-dimensional and continuous, which
is consist of the position x ∈ [−1.2, 0.5] and the velocity

.
x ∈ [−0.07, 0.07],

i.e., s = (x,
.
x). The target position is set at 0.45. The action space A is

one-dimensional and continuous, a ∈ [−1, 1], which corresponds to the force
applied to the car. When a > 0, it means that the right force is applied to
the car; When a < 0, it means that the left force is applied to the car. The
reward function is defined as

r (st, at, st+1) =

{
− (at)

2 ∗ 0.1 + 100, if xt+1 > 0.45

− (at)
2 ∗ 0.1, otherwise

(4)

The defined reward function increases the difficulty of policy learning, be-
cause if the car fails to reach the target as soon as possible, it will find that
it is best not to move, then it will no longer reach the target position.

In this task, we mainly verify the validity of introduced action representa-
tion in latent space and explore the underlying relationships between action
representations. We do not carry out the state representations in latent space
mainly because the state space in this task is only two-dimensional and the
dimension is very low. On the other hand, the validity of state representa-
tions has been well investigated Ha and Schmidhuber (2018); Watter et al.
(2015).

Action Representation Learning. In the MountainCar task, we apply the pro-
posed VAE-based action representation VAE(at), abbreviated as Va, to cap-
ture the structure of the underlying action space. We use a random policy to
make the car interact with the environment to collect data for 12 trajectories
with the length of 999, of which 8400 action data are used as the training

16

set and 3588 action data are used as the test set. Based on our preliminary
experiments, we stretch one-dimensional action to three dimensional latent
vector by the encoder of Va, where the structure of encoder is designed as
three-layer fully connected neural network, and the units in each layer are 32,
16 and 8 respectively. The latent vectors are then decoded and reconstructed
through three-layer fully connected neural network with the units of 8, 16
and 32 in each layer respectively. We use mini-batch gradient descent to
train the Va model with the Adam optimizer and the learning rate of 0.001.
The learning process is shown in Fig.6, where the model of Va gets converged
round 10 epochs. We evaluate the performance of the learned Va model on
the test data by the mean square error (MSE), which is 0.01553± 0.00051.

Figure 6: Learning process of the VAE-based action representation model Va. The horizon-
tal coordinate indicates the number of epochs during training, and the vertical coordinate
indicates the reconstruction loss. The blue line indicates the reconstruction loss during
training and the red line indicates the reconstruction loss during validation.

Explore Action Representations in Latent Space. In this section, we use the
learned Va to explore the underlying structure of action representations. We
set the initial state of the car as s = (−1.2, 0), and sample 1000 actions
uniformly in the action space a = [a1, a2, ..., a1000].

Firstly, we investigate the underlying structure and the effect of action
representations in the scenario of multi-step and continuous decision making.
To achieve so, we exert those sampled actions to the car continuously, and
obtains a trajectory h with a length of 1000. Then, the sampled actions are

17

encoded into the latent vectors e = [e1, e2, ..., e1000] through the encoder of
the learned Va. The latent vectors e are decoded into the reconstructed action
ât through the decoder of the learned Va. Finally, the reconstructed actions
could be used to interact with the environment. The action representations of
the sampled actions are illustrated in Fig.7(a) and Fig.7(b). In Fig.7(a), we
color the action representations [e501, e502, ..., e1000] corresponding to actions
[a501, a502, ..., a1000] with red, the other points of action representations are
colored according to the value of each dimension of the action representations
[l,m, n], i.e., the color is given by [R = l, G = m,B = n], where l, m and
n are the values of the elements in action representation and normalized to
[0, 1]. In Fig.7(b), we take out the action representations [e401, e402, ..., e600]
corresponding to these actions [a401, a402, . . . , a600], and color these action
representations in red. Through the results in Fig.7(a) and Fig.7(b), the red
points demonstrate that neighbouring points in the original action space also
have similar structures in the latent space, that is, the corresponding action
representations are also neighbouring. On the other hand, the other colored
points show that color transition of the learned action representations in
the latent space is smooth, which well demonstrates that the latent space
preserves the relative underlying structure.

We further illustrate a comparison between the effect of the reconstructed
actions on the state and the effect of the original actions on the state, in
Fig.7(c) and Fig.7(d). It can be seen that the effect of the reconstructed
actions on the state is similar to the effect of the original actions on the state.
The results show that the association relationship and underlying structure
between the raw actions can be captured by using action representations,
which shows that it is feasible to introduce the action represented latent
space.

18

(a) Learned action representations with
the partition of 500:500

(b) Learned action representations with
the partition of 400:200:400

(c) The effect of raw actions on the state (d) The effect of reconstructed actions on
the state

Figure 7: Multi-step exploration of action representations in latent space. In Fig.7(a) and
(b), the l,m, n axes correspond to the three dimensions of action representations in the
latent space, respectively. We take out the action representations in a specific area to mark
it in red. Action representations in the other areas is colored based on the value [l,m, n]
of each dimension of the action representation, i.e., with the color [R = l, G = m,B = n],
where l, m and n are normalized to [0, 1]. In Fig.7(c) and (d), the axes of x and ẋ
correspond to the two dimensions of the state space, i.e., position and velocity, respectively.
The effect of the reconstructed action and the effect of the original action on the state are
illustrated, which demonstrate that the effect of the reconstructed actions on the state is
similar to the original actions.

Then, we investigate the underlying structure and the effect of action rep-
resentations based on Va in the scenario of one-step decision making. Here,
we set the initial state of the car as s = (−0.5233, 0). Compared with the
multi-step task above, the difference lies in the setting of the initial position
x of the car. Setting the car at the bottom of the hill is also more challenging.

19

At this given initial position, the car will move to left when the left force is
applied; the car will move to right when the right force is applied. Of course,
in policy learning, the initial position x of the car is randomly selected from
[−0.6,−0.4]. In this experiment, we sample 1000 actions uniformly from the

action space, [a1, a2, . . . , a1000], where

{
ai ∈ [−1, 0), i = 1, . . . , 500
ai ∈ (0, 1], i = 501, . . . , 1000

. For

each sampled action, we exert it to the car at the bottom of the hill, and
thus get the corresponded 1000 state transitions. Then we use the learned Va
to encode and decode the sampled actions to get the action representations
and the reconstructed actions. Finally, the reconstructed actions are used to
interact with the environment. In Fig.8(a), there are 1000 action representa-
tions [e1, e2, ..., e1000] corresponding to the sampled actions [a1, a2, ..., a1000],
which are colored based on the values of each dimension [l,m, n]. It can
be seen that the learned action representations are smooth. In Fig.8(b),
we take out the action representations [e1, e2, ..., e500] corresponding to these
actions [a1, a2, ..., a500] and mark them as purple, and take out the action rep-
resentations [e501, e502, ..., e1000] corresponding to actions [a501, a501, ..., a1000]
and mark them as blue. It can be seen that the action representations in
the latent space are clearly divided into two categories, where one category
is the leftward action representations and the other is the rightward action
representations. Therefore, the learned action represented latent space well
preserves the relative information among all the actions.

In Fig.8(c) and Fig.8(d), we compare of the effects of raw actions and
reconstructed actions on state transitions. It can be seen that the recon-
structed actions obtained from the decoder of Va have roughly the same
effect of the original actions on the state transitions. However, the influence
of reconstructed actions on the state transitions are slightly different due to
the diversity of samples generated by Va, which can also better explore the
state space. This shows that introducing the latent space of action represen-
tation can not only learn the relative structures between actions, but also
further promote exploration over the state space.

20

(a) Learned action representations (b) Learned action representations with
the partition of 500:500

(c) The effect of raw actions on the state
transition

(d) The effect of reconstructed actions on
the state transition

Figure 8: One-step exploration of action representations in latent space. In Fig.8(a) and
(b), the l,m, n axes correspond to the three dimensions of the latent space, respectively.
In Fig.8(a), 1000 action representations [e1, e2, ..., e1000] are colored based on the values of
each dimension [l,m, n]. It can be seen that the color tansitions of the learned action repre-
sentations are smooth. In Fig.8(b), we take out the action representations [e1, e2, ..., e500]
and mark them as purple, and the action representations [e501, e502, ..., e1000] are marked
as blue. It can be seen that the action representations in latent space are clearly divided
into two categories. In Fig.8(c) and (d), the x, ẋ correspond to the two dimensions in
the state space, i.e., position and velocity, respectively. The comparison of the effects
of the raw actions and reconstructed actions on state transitions demonstrates that the
reconstructed actions have the similar effect on the state transitions.

Generalization over Actions and Exploration over States. The characteristics
of sample diversity of VAE has been well demonstrated, we will investigate
whether our proposed action representation model also keep this fine prop-
erty in DRL tasks. In this experiment, the initial state of the car is set at
s = (−0.5233, 0). We sample 5 actions uniformly in intervals [−1, 0) and

21

(0, 1] in the action space A, respectively. Each sampled action is encoded
by the learned Va to obtain its mean µ and standard deviation σ in latent
space, and its action representation e = µ + σ ∗ ε is obtained based on the
reparameterization technique with the random variable ε ∼ N(0, 1). To in-
vestigate the generalization ability, we sample 10 more ε, and generate 10
action representations with mean µ and standard deviation σ. With these
10 generated action representations, we get their corresponded reconstructed
actions through the decoder of Va. Thus, we generate 10 actions for each
raw sampled action in the action space. We plot the raw actions and the
reconstructed actions in Fig.9(a), where the dark purple points represent the
original actions in in [−1, 0), the dark blue points represent the original ac-
tions in (0, 1], and the light purple points and light blue points represent
the reconstructed actions obtained by decoding the additional sampling of
the action representations. In Fig.9(b), we plot the action representations in
latent space, which are divided into two categories obviously, the purple ones
correspond to forces to the left direction and the blue points correspond to
forces to the right direction. Fig.9(c) shows the effect of interactions with
environment using the reconstructed actions, which demonstrates that the
reconstructed actions enable the agent to explore more unknown states.

Through results shown in Fig.9, we can see that the latent space of ac-
tion representations learned by VAE can capture the overall structure of
actions in the latent space while also generalizing the action representations
in the latent space to other un-executed actions with similar representations,
where similar representations refer to similar values of action representations.
Therefore, the proposed VAE-based action representation model significantly
improves the generalization performance of action selection, and also encour-
ages explorations over the action and state space.

Performance Evaluation. The proposed latent space based policy model is
expected to improve the learning efficiency and generalization ability. In
this part, we evaluate the performance of the learned policy by our proposed
method. To implement the proposed algorithm of policy learning in latent
spaces, we employ the state-of-the-art policy-based algorithm, PPO, as the
policy update method. However, we believe that the reported results can be
further improved by using our proposed model implemented in other policy
learning methods, which is straightforward extention of this work and will
leave for our future work.

For the implementation of PPO, we use a neural network framework with

22

(a) Raw actions and recon-
structed actions

(b) Learned action represen-
tations in latent space

(c) The effect of recon-
structed actions on state

Figure 9: Generalization over actions and exploration over states. In Fig.9(a), the purple
points and blue points represent the original actions, and the light purple points and light
blue points represent the reconstructed actions obtained by decoding additional sampling
of the action representations e. Fig.9(b) shows the action representations in latent space.
Fig.9(c) shows the effect of interactions with the environment using the reconstructed
actions.

shared parameters for the policy and value functions, consisting of a fully con-
nected neural network with two hidden layers, where the number of neurons
in the hidden layers is 128 and 64, respectively. The action representation is
then mapped to the actual action through the decoder of Va.

To investigate the performance improvement, we compare the following
two methods:

• PPO: A state-of-the-art policy search method in the field of model-free
DRL (Schulman et al., 2017).

• PL-LS with PPO: Implementation our proposed framework of policy
learning in latent spaces with PPO, where the state representation is
learned by Vs, the action representation is learned by Va.

For fair comparison, both compared methods share the same hyperpa-
rameters, except for different learning rates. The learning rate of the original
PPO method is set to 3e− 4. Since the modules of state representation and
action representation in latent spaces are included in the framework of PL-
LS with PPO, the overall structure of the compared methods are different.
Thus, it is not necessary for the learning rates to be exactly the same. The
detailed parameter settings are concluded in Table 1.

We investigate the average expected return over 7 trials for the Moun-
tainCar task, and each trial is with a different random seed. In each trial, the

23

Table 1: Hyperparameters of PL-LS with PPO in MountainCar task.

Hyperparameter Value

Horizon 512

Learning rate (Adam) 4e-4

Num. epochs 10

Minibatch size 128

Num. parallel environments 32

Discount (γ) 0.99

GAE parameter (λ) 0.95

Clipping parameter ε 0.2

VF coeff. c1 0.5

Entropy coeff. c2 0.01

expected return is calculated over 10 completely new testing episodes with
the same random seed. The experimental results are plotted in Fig.10, which
show that our proposed method PL-LS with PPO obtains performs better
than the original PPO method, especially when the Epoch reaches 750. The
method of PL-LS with PPO converges faster, and with a small standard
deviation after Epoch = 1000, while the original PPO method starts to con-
verge after Epoch = 1200, but it still with a large standard deviation. This
shows that the proposed PL-LS with PPO learns the policy more stable and
is with better robustness; While the original PPO method is slightly inferior.
Note that the large standard deviation in the initial stage of learning (e.g.,
Epoch < 1000) is due to its sparse reward in this task, because the reward is
always negative at the beginning and the car is rarely guided by a positive
reward before the car reaches the hilltop goal.

24

Figure 10: Average expected return over 7 trials for MountainCar. The horizontal coor-
dinate indicates the number of epochs, and the vertical coordinate indicates the obtained
expected return. The shaded areas are the standard deviations.

（a） （b） （c） （d） （e） （f）

（g） （h） （i） （j） （k） （l）

（m） （n） （o） （p） （q） （r）

Figure 11: The demonstration of learned policy by PL-LS, where the sampling interval is
4 time steps.

Finally, we illustrate an example of the policy learned through PL-LS
with PPO. The trajectory is drawn in Fig.11, where the sampling interval
is 4 time steps. In this illustration, the initial state of the car is set to
s = (−0.5309, 0.), as shown in Fig.11(a), and the goal is to move the car
to the location of the flag, as shown in Fig.11(r). Fig.11(a)-Fig.11(g) shows

25

that the car is moving to the left to gain power. Fig.11(h)-Fig.11(r) shows
that the car is moving to the right, climbing up the hill to reach the target
position. With the learned policy, the car takes 68 time steps to reach the
target location from the initial position. It can be seen that the proposed
method can accomplish the task of MountainCar very well.

5.2. CarRacing

In this section, we evaluate the performance of our proposed model on a
more challenging task, CarRacing. In this task, the car drives on a randomly
generated track in each trial, and its goal is to visit as many tiles as possible
within the least amount of time so as to obtain higher rewards. The state is
composed of classic RGB images with 96*96 pixels, which is viewed from a
top-down angle. Each pixel is stored with three floating point values between
0 and 1. The action space is three-dimensional and continuous, corresponding
to the steering angle o ∈ [−1, 1], the acceleration p ∈ [0, 1] and the brake
q ∈ [0, 1] respectively, i.e., a = (o, p, q). The reward is equal to -0.1 every
frame and +1000/N for every track tile visited, where N is represented by
the total number of tiles in track.

In the CarRacing task, we verify the effectiveness and applicability of
introducing both state and action representations, and investigate the impact
of policy learning in latent spaces.

The State Representations in Latent Space. In order to obtain the represen-
tation of states in latent space, we use the model of VAE for training. We
collect data of 57 trajectories with a random policy, which includes 57000
state data. We use 54,000 data as the training set and 3,000 data as the test
set.

The structure of the state representation model VAE(st), abbreviated as
Vs, is shown in Fig.12. The input of Vs is a 96*96*3 tensor, and is passed
through 4 convolutional layers and encoded into 32-dimensional latent mean
vector µ and deviation vector σ, each of size is Nz=32. The dimensionality
of the latent vector, Nz = 32, is choosen with reference to the one used in
World Model Ha and Schmidhuber (2018). The latent vector z is sampled
from the Gaussian distribution N(µ, σI). The latent vector z is then passed
through the deconvolution layer to decode and reconstruct the image. Each
convolution and deconvolution layer has a stride of 2. These layers are colored
by yellow in the diagram, which contain the activation function and the size
of the filter. All convolution and deconvolution layers use the Relu activation

26

function, except for the output layer, as we need the output to be between 0
and 1. We use mini-batch stochastic gradient descent with Adam optimizer
to train Vs. The learning rate is set as 0.0001. The training process of Vs is
shown in Fig.13.

Figure 12: Structure of Vs used to train the state representations in latent space. The
encoder contains four convolutional layers and the decoder contains four deconvolutional
layers. The activation functions are marked in Italics.

Figure 13: Training process of Vs. The horizontal coordinate indicates the number of
epochs during training, and the vertical coordinate indicates the loss during training.

When the Vs model converges, we test its performance with the test set
and observe the reconstructed images as shown in Fig.14. Fig.14(a) and (c)
show the original images with different car position, and Fig.14(b) and (d)

27

show the reconstructed images. It can be seen that Vs is able to reconstruct
the state images very well, whether the car is on the driveway or the car is
on the grass.

(a) Original observed
state (Car is on the
driveway)

(b) Reconstructed
state (Car is on the
driveway)

(c) Original observed
state (Car is on the
grass)

(d) Reconstructed
state (Car is on the
grass)

Figure 14: Examples of reconstructed states, which are obtained by the decoder of the
final converged state representation model Vs.

The Action Representations in Latent Space. Similarly, we use VAE(at), ab-
breviated as Va, to learn the action representations in latent space. The
training is performed using the action data in the trajectories collected above.
The 3-dimensional action data is taken as the input of Va and encoded into
latent mean vector µ′ and latent deviation vector σ′ by a layer of full connec-
tions with 10 units, and then we sample the latent vector e from the Gaussian
distribution N(µ′, σ′I). Based on our preliminary experiments, the dimen-
sionality of the action representation e is set as Ne=32, which performs the
best. The action representation e is passed through a layer of full connections
with 10 units and finally reach the output layer to get the reconstructed ac-
tion. We use the same traning strategy as Vs to train Va, but with a learning
rate of 0.0001. The learning process of Va is shown in Fig.15.

We evaluate the performance of the reconstructed action by MSE, which
is 0.00092± (7.39×10−6). We also draw the first 200 of the test data and the
corresponding reconstructed actions, as shown in Fig.16. The original actions
are colored in dark purple and the reconstructed actions are colored in light
purple. The results show that the action representations in latent space can
generalize the action to more unseen actions with similar representations,
and thus the action and state spaces are better explored.

28

Figure 15: Learning process of Va. The horizontal coordinate indicates the number of
epochs during training, and the vertical coordinate indicates the reconstruction loss. The
blue line indicates the reconstruction loss during training and the red line indicates the
reconstruction loss during validation.

Figure 16: Original actions and corresponding reconstructed actions by Va. The original
actions are colored in dark purple and the reconstructed actions are colored in light purple.

Policy Learning. To learn the policy of this CarRacing task, we also imple-
ment our proposed latent spaces based policy learning method with PPO
algorithm. In this part, we compare the following two methods:

• PPO: The plain PPO method (Schulman et al., 2017).

• PL-LS with PPO: Implementation our proposed framework of policy
learning in latent spaces with PPO, where the state representation is
learned by Vs, the action representation is learned by Va.

29

The network structures of the two methods are shown in Fig.17. In the
implementation of our proposed PL-LS, we input the observed image into the
encoder of Vs to obtain the state representation in latent space. The policy
model is implemented by a neural network with shared parameters for the
policy and value functions, which is composed of a fully connected neural
network, including one hidden layer with 32 units. The state representation
is inputed to the policy model, and the action representation is obtained. The
action representation in latent space is then decoded to the actual action by
the decoder of Va, as shown in Fig.17(a). The network structure of plain
PPO contains four convolutional layers and two fully connected layers, and
all the network parameters need to be updated in each iteration, as shown
in Fig.17(b). To be fair, we try to make the network structure at each
component correspondingly to be the same for the compared methods.

(a) The overall structure of PL-LS with PPO

(b) The structure of policy model in plain PPO

Figure 17: The comparison of network structure between the two methods. In the proposed
PL-LS with PPO method, only the parameters of the policy model are constantly being
trained and updated in the online manner. In plain PPO method, all parameters of the
large-scale network are constantly being trained and updated.

Both these two compared methods use the same parameters, but the
learning rate of PPO is fixed. The detailed parameter settings are shown in
Table 2.

30

Table 2: Hyperparameters of PL-LS with PPO used in CarRacing.

Hyperparameter Value

Horizon 1000

Learning rate (Adam) 1e-4

Num. epochs 10

Minibatch size 1000

Num. parallel environments 16

Discount (γ) 0.99

GAE parameter (λ) 0.95

Clipping parameter ε 0.2

VF coeff. c1 0.5

Entropy coeff. c2 0.01

We investigate the average return for CarRacing over 10 trials. In each
trial, the expected return is calculated over 10 test episodic samples (which
are not used for policy learning). The experimental results are plotted
in Fig.18, which show that PL-LS with PPO outperforms the plain PPO
method. The expected reward of the proposed PL-LS with PPO method is
increasing stably and eventually converged. The return of the plain PPO
method, on the other hand, is more curvilinear and the variance seems to be
severer.

Figure 18: Average expected return over 10 trials for CarRacing. The horizontal coor-
dinate indicates the number of model iterations and the vertical coordinate indicates the
expected return. The shaded areas are the standard deviations.

31

On the other hand, we investigate the learning efficiency by summarizing
the total number of parameters, the number of trainable parameters involved
in the models during training process, and the frequency of samples collected
by the agent from the 16 parallel environments before the policies get con-
verged as shown in Table 3, where the policy is converged at 60,000 iterations
for the method of PL-LS with PPO, while the plain PPO method still does
not show significant convergence at 120,000 iterations according to the re-
sults in Fig.18. It can be seen that our proposed latent spaces based policy
model is more compact, the network scale is more lightweight, and required
sample size for policy learning is less. Therefore, the learning efficiency of
the proposed method is promising.

Table 3: Comparisons in terms of learning efficiency
Model Total Parameters Trainable Parameters Sampled Frequency

PL-LS with PPO 8710 4354 3750

PPO 3289768 1644878 7500

At last, we illustrate how the learned policy by the proposed method
PL-LS with PPO performs. The trajectory is drawn in Fig.19, where the
sampling interval is 48 frames. In this illustration, we can see that the car
can drive smoothly on the track, and eventually complete the entire track
quickly. With the policy learned by PL-LS with PPO, the car can return to
the track even if the car drives to the grass. However, when the car drives to
the grass, it always spins on the grass and is difficult to go back to the track
with the policy learned by the plain PPO method. It can be seen that the
PL-LS method can efficiently complete the task of CarRacing.

Ablation Study. Finally, we conduct ablation experiment to understand the
impact of each component in the PL-LS framework. We first analyze three
components in terms of the model framework, including Vs, which learns the
state representations in latent space; Va, which learns the action representa-
tions in latent space; The policy learning method. In Fig.20, we show the
performance of the ablation study, where the green curve indicates a policy
learning method with state representation Vs only (i.e., PPO with Vs only),
the blue curve indicates a policy learning method with action representation
Va only (i.e., PPO with Va only), and the red curve indicates a policy learning
method with both state representation Vs and action representation Va (i.e.,
PPO with PL-LS). We can see that the performance of the policy works

32

best when both Vs and Va are included, indicating that learning the state
and action representations in latent space can further improve the learning
performance of the policy.

（a） （b） （c） （d） （e） （f）

（g） （h） （i） （j） （k） （l）

（m） （n） （o） （p） （q） （r）

Figure 19: The demonstration of learned policy by PL-LS. The sampling interval is 48
frames.

0 20000 40000 60000 80000 100000 120000
Iteration

0

200

400

600

800

Ex
pe

ct
ed

 R
et

ur
n

PPO with PL-LS
PPO with Vs only
PPO with Va only

Figure 20: Ablation study in terms of policy performance over 10 trials for CarRacing.
The horizontal coordinate indicates the number of learning iterations and the vertical
coordinate indicates the expected return. The shaded areas are the standard deviations.

33

5.3. Cheetah

In this section, we implement the proposed framework PL-LS with the
algorithm of DBC (Zhang et al., 2021a), and evaluate the advantages of
learning action representations on the task of Cheetah. The objective is to
train the robot to be able to run in a straight line in a stable running stance,
with the reward obtained being proportional to the forward speed. The state
space is continuous and consists of classical RGB images with 84*84 pixels,
and the action space is 6-dimensional and continuous. The reward function
is defined as r(v) = max

(
0,min

(
v
10
, 1
))

, where v is represented by velocity
of the robot. In this task, we mainly validate the advantages of introducing
action representation learning.

First, we use the constructed V (at) to represent the action representation
in latent space, where the dimensionality of action representation e is set
as Ne = 12. Then, we learn the policy for the Cheetah task, which uses
the state-of-the-art DBC method (Zhang et al., 2021a) as the policy update
method. Therefore, we compare the following two methods:

• DBC: A task-relevant state representation method based on SAC pol-
icy learning algorithm (Zhang et al., 2021a).

• PL-LS with DBC: Implementation our proposed framework of pol-
icy learning in latent spaces with DBC, where state representation is
learned by DBC and action representation is learned by Va.

We investigate the average return for Cheetah over 5 trials. The ex-
perimental results are plotted in Fig.21, which show that PL-LS with DBC
outperforms the standard DBC, which obtain higher expected rewards and
learn policy faster. Finally, we illustrate an example of policy obtained by
PL-LS with DBC and the trajectory is plotted in Fig.22, where the sampling
interval is 40 frames. Through this illustration, we can see that the robot
can run in a straight line with a stable stance. Therefore, the learning of
the action representation proposed in PL-LS can improve the performance
of policy learning.

34

Figure 21: Average expected return over 5 trials for Cheetah. The horizontal coordinate
indicates the number of model iterations and the vertical coordinate indicates the expected
return. The shaded areas are the standard deviations.

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

(q) (r) (s) (t) (u) (v) (w) (x)

Figure 22: The demonstration of learned policy by PL-LS. The sampling interval is 40
frames.

35

6. Conclusion and Future Work

In this paper, we proposed an efficient policy learning framework in latent
spaces (PL-LS), which included the state representation and action represen-
tation in the policy learning framework to improve the learning efficiency and
generalization capability. More specifically, we built a simple and compact
policy model to reduce the burden of policy learning by fusing the state repre-
sentation space with the action representation space. Furthermore, the pro-
posed PL-LS method was shown to improve the generalization performance
of action selection by generalizing actions to other actions with similar repre-
sentations through action representations. The effectiveness of the proposed
idea was demonstrated through extensive experiments, which showed that
the proposed PL-LS was promising.

To implement the proposed PL-LS method, the algorithm of PPO was
employed, but it was not limited to the chosen one here; this model framework
can be easily extended by using other policy learning methods, e.g. DDPG
(Lillicrap et al., 2015), TRPO (Schulman et al., 2015), A3C (Mnih et al.,
2016) and SAC (Haarnoja et al., 2018) et al. Specifically, we implement a
state-of-the-art method DBC in our proposed framework PL-LS and evaluate
its performance in the Cheetah task, and the results show that it significantly
improves the performance of the policy and learning efficiency. We trained
the state and action representations in the offline manner for efficient policy
learning, learning representation models in a different way, such as online
and offline interlaced manner, may further improve the performance, which
is an interesting direction. Our approach was experimentally demonstrated
to be feasible, but it was not yet proven from a theoretical perspective, which
is something we need to explore further in our future work.

7. Acknowledgments

This work was supported by the National Natural Science Foundation of
China [grant number 61976156]; Tianjin Science and Technology Commis-
sioner project [grant number 20YDTPJC00560]; and Natural Science Foun-
dation of Tianjin [grant number 18JCQNJC69800].

36

References

Abdoos, M., Bazzan, A.L., 2021. Hierarchical traffic signal optimization
using reinforcement learning and traffic prediction with long-short term
memory. Expert systems with applications 171, 114580.

Asadi, K., Misra, D., Littman, M., 2018. Lipschitz continuity in model-based
reinforcement learning, in: International Conference on Machine Learning,
PMLR. pp. 264–273.

Banijamali, E., Shu, R., Bui, H., Ghodsi, A., et al., 2018. Robust locally-
linear controllable embedding, in: International Conference on Artificial
Intelligence and Statistics, PMLR. pp. 1751–1759.

Bengio, Y., Courville, A., Vincent, P., 2013. Representation learning: A
review and new perspectives. IEEE transactions on pattern analysis and
machine intelligence 35, 1798–1828.

Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P., Dennison, C.,
Farhi, D., Fischer, Q., Hashme, S., Hesse, C., et al., 2019. Dota 2 with
large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680 .

Bordes, A., Glorot, X., Weston, J., Bengio, Y., 2012. Joint learning of words
and meaning representations for open-text semantic parsing, in: Artificial
intelligence and statistics, PMLR. pp. 127–135.

Chandak, Y., Theocharous, G., Kostas, J., Jordan, S., Thomas, P., 2019.
Learning action representations for reinforcement learning, in: Interna-
tional conference on machine learning, PMLR. pp. 941–950.

Chang, Y., Tu, Z., Xie, W., Yuan, J., 2020. Clustering driven deep autoen-
coder for video anomaly detection, in: European Conference on Computer
Vision, Springer. pp. 329–345.

Chen, J., Yuan, B., Tomizuka, M., 2019. Model-free deep reinforcement
learning for urban autonomous driving, in: 2019 IEEE intelligent trans-
portation systems conference (ITSC), IEEE. pp. 2765–2771.

Chopra, R., Roy, S.S., 2020. End-to-end reinforcement learning for self-
driving car, in: Advanced computing and intelligent engineering. Springer,
pp. 53–61.

37

Dahl, G.E., Yu, D., Deng, L., Acero, A., 2011. Context-dependent pre-
trained deep neural networks for large-vocabulary speech recognition.
IEEE Transactions on Audio Speech and Language Processing 20, 30–42.

Doersch, C., 2016. Tutorial on variational autoencoders. arXiv preprint
arXiv:1606.05908 .

Dulac-Arnold, G., Evans, R., van Hasselt, H., Sunehag, P., Lillicrap, T.,
Hunt, J., Mann, T., Weber, T., Degris, T., Coppin, B., 2015. Deep
reinforcement learning in large discrete action spaces. arXiv preprint
arXiv:1512.07679 .

Gelada, C., Kumar, S., Buckman, J., Nachum, O., Bellemare, M.G., 2019.
Deepmdp: Learning continuous latent space models for representation
learning, in: International Conference on Machine Learning, PMLR. pp.
2170–2179.

Gu, S., Holly, E., Lillicrap, T., Levine, S., 2017. Deep reinforcement learning
for robotic manipulation with asynchronous off-policy updates, in: 2017
IEEE international conference on robotics and automation (ICRA), IEEE.
pp. 3389–3396.

Gutoski, M., Ribeiro, M., Aquino, N.M.R., Lazzaretti, A.E., Lopes, H.S.,
2017. A clustering-based deep autoencoder for one-class image classifica-
tion, in: 2017 IEEE Latin American conference on computational intelli-
gence (LA-CCI), IEEE. pp. 1–6.

Ha, D., Schmidhuber, J., 2018. World models. arXiv preprint
arXiv:1803.10122 .

Haarnoja, T., Zhou, A., Abbeel, P., Levine, S., 2018. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor, in: International conference on machine learning, PMLR. pp. 1861–
1870.

Hafner, D., Lillicrap, T., Ba, J., Norouzi, M., 2019a. Dream to control:
Learning behaviors by latent imagination. arXiv preprint arXiv:1912.01603
.

38

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D., Lee, H., Davidson,
J., 2019b. Learning latent dynamics for planning from pixels, in: Interna-
tional conference on machine learning, PMLR. pp. 2555–2565.

Hafner, D., Lillicrap, T., Norouzi, M., Ba, J., 2020. Mastering atari with
discrete world models. arXiv preprint arXiv:2010.02193 .

Hasselt, H.v., Guez, A., Silver, D., 2016. Deep reinforcement learning with
double q-learning, in: Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, pp. 2094–2100.

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski, G., Dabney,
W., Horgan, D., Piot, B., Azar, M., Silver, D., 2018. Rainbow: Combining
improvements in deep reinforcement learning, in: Proceedings of the AAAI
Conference on Artificial Intelligence, pp. 3215–3222.

Hinderer, K., 2005. Lipschitz continuity of value functions in markovian
decision processes. Mathematical Methods of Operations Research 62, 3–
22.

Justesen, N., Bontrager, P., Togelius, J., Risi, S., 2019. Deep learning for
video game playing. IEEE Transactions on Games 12, 1–20.

Ketkar, N., Moolayil, J., 2021. Convolutional neural networks, in: Deep
Learning with Python. Springer, pp. 197–242.

Kingma, D.P., Welling, M., 2013. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114 .

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2017. Imagenet classification
with deep convolutional neural networks. Communications of the ACM
60, 84–90.

Lanctot, M., Zambaldi, V., Gruslys, A., Lazaridou, A., Tuyls, K., Perolat,
J., Silver, D., Graepel, T., 2017. A unified game-theoretic approach to
multiagent reinforcement learning, in: Advances in Neural Information
Processing Systems, pp. 4190–4203.

Lee, D., Choi, M., Bang, H., 2011. Model-free linear quadratic tracking
control for unmanned helicopters using reinforcement learning, in: The
5th International Conference on Automation, Robotics and Applications,
IEEE. pp. 19–22.

39

Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Sil-
ver, D., Wierstra, D., 2015. Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971 .

Liu, H., Taniguchi, T., 2014. Feature extraction and pattern recognition
for human motion by a deep sparse autoencoder, in: IEEE International
Conference on Computer and Information Technology, pp. 173–181.

Mayo, B., Hazan, T., Tal, A., 2021. Visual navigation with spatial attention,
in: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16898–16907.

Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver,
D., Kavukcuoglu, K., 2016. Asynchronous methods for deep reinforcement
learning, in: International conference on machine learning, PMLR. pp.
1928–1937.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,
D., Riedmiller, M., 2013. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602 .

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare,
M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen,
S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wier-
stra, D., Legg, S., Hassabis, D., 2015. Human-level control through deep
reinforcement learning. Nature 518, 529–533.

Oh, J., Guo, X., Lee, H., Lewis, R., Singh, S., 2015. Action-conditional
video prediction using deep networks in atari games, in: Proceedings of the
28th International Conference on Neural Information Processing Systems-
Volume 2, pp. 2863–2871.

Peters, J., Schaal, S., 2006. Policy gradient methods for robotics, in: 2006
IEEE/RSJ International Conference on Intelligent Robots and Systems,
IEEE. pp. 2219–2225.

Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. Learning representa-
tions by back propagating errors. Nature 323, 533–536.

40

Sabokrou, M., Fathy, M., Hoseini, M., 2016. Video anomaly detection and
localisation based on the sparsity and reconstruction error of auto-encoder.
Electronics Letters 52, 1122–1124.

Schaul, T., Quan, J., Antonoglou, I., Silver, D., 2015. Prioritized experience
replay. arXiv preprint arXiv:1511.05952 .

Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P., 2015. Trust re-
gion policy optimization, in: International conference on machine learning,
PMLR. pp. 1889–1897.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O., 2017. Prox-
imal policy optimization algorithms. arXiv preprint arXiv:1707.06347 .

Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., 2016.
Mastering the game of go with deep neural networks and tree search. Na-
ture 529, 484–489.

Sutton, R.S., Barto, G.A., 2018. Reinforcement learning: An introduction.
MIT press.

Vinyals, O., Babuschkin, I., Czarnecki, W.M., Mathieu, M., Dudzik, A.,
Chung, J., Choi, D.H., Powell, R., Ewalds, T., Georgiev, P., Oh, J., Hor-
gan, D., Kroiss, M., Danihelka, I., Huang, A., Sifre, L., Cai, T., Agapiou,
J.P., Jaderberg, M., Vezhnevets, A.S., Silver, D., 2019. Grandmaster level
in starcraft ii using multi-agent reinforcement learning. Nature 575, 350–
354.

Wang, Z., Schaul, T., Hessel, M., Hasselt, H.V., Lanctot, M., Freitas, N.D.,
2016. Dueling network architectures for deep reinforcement learning, in:
Proceedings of the 33rd International Conference on International Confer-
ence on Machine Learning, p. 1995–2003.

Watter, M., Springenberg, J.T., Boedecker, J., Riedmiller, M., 2015. Embed
to control: A locally linear latent dynamics model for control from raw
images. Advances in Neural Information Processing Systems , 2746–2754.

Williams, R.J., 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning 8, 229–256.

41

Yin, J., Chen, D., Li, L., 2014. Intelligent train operation algorithms for
subway by expert system and reinforcement learning. IEEE Transactions
on Intelligent Transportation Systems 15, 2561–2571.

Zhang, A., McAllister, R., Calandra, R., Gal, Y., Levine, S., 2021a. Learning
invariant representations for reinforcement learning without reconstruc-
tion. International Conference on Learning Representations .

Zhang, W., Schmeckpeper, K., Chaudhari, P., Daniilidis, K., 2021b. De-
formable linear object prediction using locally linear latent dynamics, in:
2021 IEEE International Conference on Robotics and Automation (ICRA),
IEEE. pp. 13503–13509.

42

	1 Introduction
	2 Related Work
	3 Background
	3.1 Formulation of Reinforcement Learning
	3.2 Variational Autoencoder

	4 Efficient Policy Learning in Latent State and Action Spaces
	4.1 State Representation in Latent Space
	4.2 Action Representation in Latent Space
	4.3 Algorithm of Policy Learning in Latent Spaces

	5 Experimental Results
	5.1 MountainCar
	5.2 CarRacing
	5.3 Cheetah

	6 Conclusion and Future Work
	7 Acknowledgments

