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Abstract

Self-supervised learning (SSL) has achieved remarkable performance in pre-

training the models that can be further used in downstream tasks via fine-tuning.

However, these self-supervised models may not capture meaningful semantic

information since the images belonging to the same class are always regarded

as negative pairs in the contrastive loss. Consequently, the images of the same

class are often located far away from each other in learned feature space, which

would inevitably hamper the fine-tuning process. To address this issue, we seek

to provide a better initialization for the self-supervised models by enhancing

the semantic information. To this end, we propose a Contrastive Initialization

(COIN) method that breaks the standard fine-tuning pipeline by introducing

an extra initialization stage before fine-tuning. Extensive experiments show

that, with the enriched semantics, our COIN significantly outperforms existing

methods without introducing extra training cost and sets new state-of-the-arts

on multiple downstream tasks.
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1. Introduction

Recently, self-supervised learning (SSL) has achieved great success in the pre-

training of deep models based on a large-scale unlabelled dataset [1, 2, 3, 4, 5].

Specifically, one can train the models by maximizing the feature similarity

between two augmented views of the same instance while minimizing the similarity

between two distinct instances. In practice, these self-supervised models have

shown remarkable generalization ability across diverse downstream tasks when

fine-tuning their parameters on the target datasets [6, 7, 8, 9, 10]. To be specific,

existing methods often exploit the cross-entropy loss, optionally combined with

a contrastive loss [11, 12, 13, 14], to fine-tune the pre-trained models.

Nevertheless, the fine-tuning performance is still very limited since the pre-

trained model does not necessarily provide a strong/meaningful semantic relation

among instances, which, however, is essential for learning a good classifier [15,

16, 17, 18]. As shown in Figure 1 (A), even on the pre-training dataset, e.g.,

ImageNet, SSL may learn a feature space where the instances belonging to the

same class are far from each other [19, 20]. The main reason is that SSL only

takes different augmented views of the same image as the positive pairs and

simply treats all the other images as the negative ones. As a result, the images

belonging to the same category are not necessarily located close to each other in

the learned feature space, i.e., with very weak semantic relation. More critically,

this phenomenon would be much more severe when we consider a target dataset

that has a different distribution from the pre-training dataset. In practice, such a

weak semantic relation among instances would inevitably hamper the fine-tuning

process from learning a good classifier on the downstream tasks.

To address this issue, when fine-tuning, we seek to provide a better initializa-

tion for the self-supervised models by enhancing the semantic relation among

instances. Intuitively, if we can encourage the model to capture better semantic

information on the target dataset, it would be easier to learn a promising classifier

during fine-tuning. To be specific, as shown by the example in Figure 1 (B),

based on the meaningful semantic relation where the instances belonging to the
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Figure 1: The feature spaces obtained by self-supervised models. Each mark represents an

instance in the feature space, and the shape of the mark indicates the class of instances. Since

the similarities of all positive pairs are large enough, and those of all negative pairs are small

enough (i.e., uniformly distributed in the feature space), the values of contrastive loss for

both (A) and (B) are small enough to be considered a good feature space. But obviously, the

semantic relation among instances in (B) is more meaningful than in (A) due to the separable

features. The figure indicates that the goal of self-supervised methods has little positive effect

on enriching the semantic information on the downstream tasks. Therefore, it is difficult for

the self-supervised models to provide a good initialization for subsequent fine-tuning process.

same category are close to each other, we can simply use a linear classifier to

discriminate the instances of different categories in the feature space.

Inspired by this, we propose to break the pipeline of fine-tuning self-supervised

models by introducing an extra class-aware initialization stage before fine-tuning

the classifier. In this paper, we develop a Contrastive Initialization (COIN)

method that exploits a supervised contrastive loss to enrich the semantic infor-

mation on the target dataset, by pulling together the instances of the same class

and pushing away those from different classes. In this way, we are able to obtain

easily separable features with better semantic information and then help learn a

good classifier during fine-tuning. To verify this, we visualize the feature space

learned by different methods in Figure 2. Compared with two popular fine-tuning

methods, i.e., CE-Tuning [5] and SCL [21], our COIN effectively pushes away the

instances of different classes and yields a narrow ellipse area for each class. In

fact, such narrow ellipse areas often come with better discriminative power, which
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Figure 2: Visualization of the feature space on CIFAR-10, with each color representing a

specific class. We compare the initial state and two popular fine-tuning methods, i.e., CE-

Tuning with a cross-entropy (CE) loss and SCL [21], which combines CE loss with a supervised

contrastive loss. Clearly, our COIN effectively pushes away the instances of different classes

and yields narrow ellipse areas with fewer overlapping (i.e., lower S Dbw score), coming with

better discriminative power. As a result, COIN greatly improves the fine-tuning performance.

can be evaluated by the S Dbw score (lower is better) with the consideration of

both the inter-class discrepancy and the intra-class compactness [22]. As shown

in Figure 2, our COIN greatly reduces the S Dbw score from 0.48 to 0.28 and

yields a large accuracy improvement of >0.5% on CIFAR-10. More critically, we

highlight that our initialization stage does not increase the total training cost,

since we reduce the number of iterations for the following fine-tuning process to

keep the total training iterations unchanged.

Our main contributions can be summarized as follows:

• We break the standard fine-tuning pipeline for self-supervised models by

introducing an additional initialization stage before fine-tuning. To be spe-

cific, we first encourage the model to capture better semantic information

on the target dataset. Then, we take the model with the enriched semantic

information as a better initialization for the subsequent fine-tuning process.

• To enrich the semantic information, we propose a Contrastive Initialization

(COIN) method that exploits a supervised contrastive loss to perform class-

aware clustering. Specifically, we pull together the instances of the same

class and push away those instances from different classes. In this way, we

can obtain easily separable features with better semantic information on

the target dataset, which significantly boost the fine-tuning performance.
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• To avoid introducing extra training cost, we reduce the number of training

iterations for the final fine-tuning process to keep the total training itera-

tions unchanged. Extensive experiments show that the proposed method,

COIN, significantly improves the fine-tuning process of self-supervised

models and yields new state-of-the-arts on various benchmark datasets.

2. Related Work

2.1. Contrastive Learning

In the past few years, Many works applying contrastive learning to pre-

train self-supervised models have attracted attention due to their impressive

performances [23, 6, 24, 5, 25, 10]. The self-supervised contrastive learning models

learn an instance-distinct-based feature representation to achieve state-of-the-art

performance on the ImageNet [26] classification task. However, the superior

performance of a self-supervised model in one scenario does not necessarily reflect

its performance in others. Because the learned feature spaces closely match the

distribution of ImageNet, which easily overfit some similar downstream tasks

but hamper others [27, 28, 29]. Therefore, in this paper, we focus on better

fine-tuning the self-supervised models on various downstream tasks.

2.2. Model Fine-tuning

In deep learning, fine-tuning a pre-trained model on a target dataset has

become a standard training paradigm in various applications. Fine-tuning is one

of the main pipelines for improving the transferability of self-supervised models.

To be precise, fine-tuning can be regarded as a model transfer method, but it

usually does not need to know the data distribution of the source domain. Most

fine-tuning methods are designed for supervised pre-trained models instead of self-

supervised models [30, 31]. Besides fine-tuning parameters, one can also fine-tune

architectures to improve performance [32, 33]. In recent studies, how to achieve

a better fine-tuning performance of self-supervised models has attracted more

attention [34, 35], in which contrastive learning plays an important role [21, 13,
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14]. Recently, Noisy-Tune [36] proposed to improve the fine-tuning performance

by introducing noises into the parameters. Unlike the above methods, we seek

to boost the fine-tuning process from a new perspective, i.e., providing a better

initialization with strong semantic information.

2.3. Domain Adaption

The Purpose of domain adaption is to transfer a trained model from the

source domain to the target domain across the distribution shift. Many domain

adaptation studies focus on minimizing the discrepancy between the data distri-

butions of the two domains [37, 10, 38, 39, 40, 41]. In addition, some studies

focus on improving model transferability using source domain data so that the

model can be more easily adapted to the target domain [42, 43, 44]. Some of

them show that self-supervised models often benefit from semantic information

and feature uniformity [19, 20, 45, 46]. Besides model adaptation, improving the

generalization ability or out-of-distribution robustness [47, 48] can also handle

the data from another domain to some extent. Unlike the above methods that

train models on the data of the source domain, we focus on obtaining a better

initialization on the target domain/dataset.

3. Fine-tuning with Contrastive Initialization

3.1. Motivation and Method Overview

Since self-supervised learning (SSL) takes different augmented views of an

instance as positive pairs and simply treats all other instances as negative pairs,

self-supervised models are often hard to capture meaningful semantic information.

As shown in Figure 1 (A), in the feature space learned by SSL, the instances

belonging to the same class may be far away from each other, i.e., with weak

semantic relation among instances. In practice, such weak semantic information

often hampers the fine-tuning process from learning a good classifier and results

in suboptimal fine-tuning performance.

To address this issue, we seek to provide a better initialization for fine-tuning

by enhancing the semantic relation among instances. Intuitively, as shown in
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Figure 3: The overall fine-tuning pipeline with COIN. We introduce an additional Contrastive

Initialization (COIN) stage that exploits a supervised contrastive loss to enrich the semantic

information on the target dataset. Then, we can perform any existing fine-tuning method, e.g.,

SCL [21] with an additional contrastive loss, to learn the classifier. Besides, we introduce a

stage split ratio α to allocate different computational budgets for each stage, while keeping

the training epochs N unchanged.

Figure 1 (B), if we capture better semantic information, one can obtain an easily

separable feature space that makes it easier to learn a good classifier during

fine-tuning. Inspired by this, we break the standard fine-tuning pipeline of

self-supervised models by introducing an extra class-aware initialization stage,

resulting in a new fine-tuning pipeline that contains two stages. As shown in

Figure 3 and Algorithm 1, we first adopt a Contrastive Initialization (COIN) stage

that exploits a supervised contrastive loss to enrich the semantic information.

Then, we fine-tune the model that contains richer semantic information with

any existing fine-tuning approaches. Following [21], besides the cross-entropy

loss, we additionally incorporate a contrastive loss since it often benefits the

fine-tuning process. For fair comparisons with existing fine-tuning methods, we

consider COIN as a part of the overall fine-tuning pipeline and keep the total

training iterations unchanged. Given a budget of N training epochs in total, we

introduce a hyperparameter, the stage split ratio α, to allocate αN epochs for

COIN and (1− α)N epochs for the subsequent fine-tuning process.
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Algorithm 1 Fine-tuning with Contrastive Initialization (COIN).

Require: Pre-trained model f , projector g, classifier h, step size η, model

parameters w, stage split ratio α, epochs N , weight of contrastive loss λ.

1: Initialize the classifier h and projector g;

2: // Contrastive Initialization

3: for i = 1 to αN do

4: Sample a batch of training data x and extract features z = f(x);

5: Compute projected features g(z) to obtain Lsup
con;

6: Update {wf , wg} by descending the gradient:

Update model f : wf ← wf − η∇wf
Lsup
con;

Update projector g: wg ← wg − η∇wg
Lsup
con;

7: end for

8: // Any Existing Fine-tuning Method, e.g., SCL [21]

9: for i = αN + 1 to N do

10: Sample a batch of training data x and extract features z = f(x);

11: Compute the projected features g(z) to obtain Lsup
con;

12: Compute logits h(z) to obtain Lce;

13: Update {wf , wg, wh} by descending the gradient:

Update model f : wf ← wf − η
(
∇wf
Lce + λ∇wf

Lsup
con

)
;

Update projector g: wg ← wg − η
(
∇wgLce + λ∇wgLsup

con

)
;

Update classifier h: wh ← wh − η (∇wh
Lce + λ∇wh

Lsup
con);

14: end for

3.2. Contrastive Initialization (COIN)

To provide a better initialization for the subsequent fine-tuning process, we

propose a Contrastive Initialization (COIN) stage that exploits a supervised

contrastive loss to enrich the semantic information. Specifically, on the target

dataset, we seek to pull together the instances of the same classes and push away

those from different classes. With the help of resultant meaningful semantic

relation among instances, our COIN often obtains easily separable features with

strong discriminative power. Based on this, we directly take the enriched model
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as a better initialization to boost the subsequent fine-tuning process.

Let x be the input images. We extract the features of x through a self-

supervised pre-trained model f followed by a projector g via v = g(f(x)). To

enhance the semantic information on the target dataset, for the i-th sample xi,

we take instances of the same class as the positive pairs and those from different

classes as the negative pairs. The training loss of COIN becomes:

Lsup
con = − 1

n

n∑
i=1

1

|Pi|
∑
vj∈Pi

log
e(v

T
i vj/τ)∑

vk∈Ai
e(v

T
i vk/τ)

, (1)

where n denotes the number of instances in a mini-batch, vi denotes the features

of the i-th instance. Pi and Ai denote the set of positive pairs and all possible

pairs w.r.t. xi, respectively. To construct data pairs regarding vi for contrastive

learning, we build Ai = {vk|k≤n, k 6=i} which includes the features of the other

instances in this batch excluding vi itself. τ is a temperature coefficient which is

important for contrastive loss.

Combining COIN with the subsequent fine-tuning process. As an

initialization method, our COIN can be easily combined with any existing fine-

tuning method. In this paper, we combine COIN with a popular fine-tuning

method, SCL [21], which jointly optimizes a CE loss and a supervised contrastive

loss. The training loss of SCL [21] can be formulated as L = Lce + λLsup
con. When

fine-tuning, we simply introduce a classifier h to compute the CE loss and set

λ = 0.1, thus constructing SCL [21].

Advantages over existing methods. Compared to the existing advanced

methods, our COIN significantly boosts the subsequent fine-tuning performance

on various benchmark datasets. In fact, with the help of the introduced class-

aware initialization stage, COIN greatly enriches the semantic information,

which comes with stronger discriminative power on downstream tasks and then

provides a better initialization of self-supervised models for the subsequent

fine-tuning. Furthermore, COIN avoids introducing extra training cost to the

standard fine-tuning pipeline. Specifically, COIN keeps the total computational

budgets unchanged and allocates the budgets to the initialization stage and the

fine-tuning stage by a simple hyperparameter α.
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4. Experiments

In this section, we evaluate the effectiveness of COIN on various benchmark

datasets, and compare it with other advanced methods. We will elaborate on

the settings and show the experimental results in the following.

4.1. Datasets and Metrics

We test on nine datasets including ImageNet-20 [13], CIFAR-10 [49], CIFAR-

100 [49], Caltech-101 [50], Stanford Cars [51], FGVC Aircraft [52], Oxford 102

Flowers [53], Oxford-IIIT Pets [54], DTD [55], covering common image classi-

fication tasks including coarse-grained object classification, fine-grained image

classification and texture classification. We do not directly test on ImageNet

but on ImageNet-20 because the model we used is pre-trained on ImageNet.

ImageNet-20 is a subset of ImageNet with 20 classes, including ImageNette and

ImageWoof [56]. Oxford 102 Flowers is obtained from Kaggle. Caltech-101 is

obtained from TensorFlow. Others are downloaded from their official websites.

We report the metrics including top-1 accuracy, S Dbw score, and training

time cost. [19] uses the aggregation degree of similar instances to evaluate

the semantic relation among instances, while COIN considers learning higher

intra-class compactness and larger inter-class discrepancy by pulling together

the instances of the same class and pushing those apart from different classes.

In this way, COIN can effectively enrich the semantic information on the target

dataset. To quantify the quality of the semantic information, we use S Dbw

score [22] to measure the intra-class discrepancy by average scattering (denoted

by Scat), and measure the inter-class compactness by inter-class density (denoted

by Dens bw). Formally, it can be computed by: S Dbw = Scat + Dens bw.

A lower S Dbw score means richer semantic information, which comes with

stronger discriminative power and boosts the fine-tuning performance.

4.2. Experimental Settings

Our experiments follow the nearly same settings as Core-Tuning [13] to

fine-tune self-supervised models. We use ResNet-50 pre-trained by MoCo-v2 [24]
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Figure 4: Comparisons of the curves of training accuracy among different fine-tuning methods

on CIFAR-10. COIN only uses a supervised contrastive loss during the early 70 epochs, thus

showing a lower accuracy, but effectively enriching the semantic information (S Dbw score

decreases from 0.88 to 0.36) in this period.

on ImageNet with 800 training epochs as the pre-trained model, which can be

downloaded from the moco GitHub repository. We implement COIN in PyTorch1.

As shown in Algorithm 1, we first update the parameters of pre-trained model f

and projector g in our COIN. In the subsequent fine-tuning process, besides f

and g, we also update the parameters of classifier h. For a fair comparison, all

methods use consistent data preprocessing schemes on the same dataset.

The hyperparameters of our experiments are nearly the same as Core-Tuning

[13] except for the newly introduced stage split ratio α. Specifically, we set the

training epochs N = 100, the temperature coefficient τ = 0.3, and the weight of

supervised contrastive loss λ = 0.1. Besides, we set α = 0.7 on CIFAR-10. Note

that the value of α is specific to the dataset due to the different convergence rates

when fine-tuning models on different datasets. Under the premise of ensuring the

self-supervised models in all experiments can converge during the fine-tuning, we

slightly adjust the value of α for each dataset to allocate as many computational

budgets as possible to the initialization stage. We finally report the value of α

at which the model finally achieves the best accuracy.

1The code of the proposed COIN is available at https://github.com/PorientHaolin/COIN.
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Table 1: Comparisons of accuracy on different classification downstream tasks among various

fine-tuning methods with the self-supervised ResNet-50 model pre-trained by MoCo-v2. COIN

significantly boosts the fine-tuning performance and sets new state-of-the-arts on multiple

datasets. * denotes our reproduced results. The last row shows the accuracy improvement of

our COIN over SCL [21].

Method ImageNet-20 CIFAR-10 CIFAR-100 DTD Cars Pets Flowers Caltech-101 Aircraft Avg.

CE-Tuning 88.27 97.26 82.22 69.04 89.91 91.01 99.14 92.32 88.30 88.61

SL-CE-Tuning [13] 91.01 94.23 83.40 74.40 89.77 92.17 98.78 93.39 87.03 89.35

L2SP [57] 88.49 95.14 81.43 72.18 89.00 89.43 98.66 91.98 86.55 88.10

M&M [58] 88.53 95.02 80.58 72.43 88.90 89.60 98.57 92.91 87.45 88.22

DELTA [59] 88.35 94.76 80.39 72.23 88.73 89.54 98.65 92.19 87.05 87.99

BSS [60] 88.34 94.84 80.40 72.22 88.50 89.50 98.57 91.95 87.18 87.94

RIFLE [34] 89.06 94.71 80.36 72.45 89.72 90.05 98.70 91.94 87.60 88.29

Bi-Tuning [14] 89.06 95.12 81.42 73.53 89.41 89.90 98.57 92.83 87.39 88.58

SCL [21] 89.29 95.33 81.49 72.73 89.37 89.71 98.65 92.84 87.44 88.54

SCL* [21] 89.60 97.31 82.82 73.51 90.32 90.91 98.90 92.74 88.33 89.38

Core-Tuning [13] 92.73 97.31 84.13 75.37 90.17 92.36 99.18 93.46 89.48 90.47

Core-Tuning* [13] 93.84 97.40 83.25 74.04 90.16 92.04 98.78 92.62 88.86 90.11

Noisy-Tune [36] 94.39 97.59 83.50 71.97 90.16 91.99 99.14 70.58 88.83 87.57

COIN (ours)
94.60 97.88 85.39 75.74 90.32 93.59 99.27 93.00 89.77 91.06

(+5.00) (+0.57) (+2.57) (+2.23) (+0.00) (+2.68) (+0.37) (+0.26) (+1.44) (+1.68)

4.3. Comparison with State-of-the-arts

In this section, we compare COIN with various advanced fine-tuning methods

including CE-Tuning, SL-CE-Tuning [13], L2SP [57], M&M [58], DELTA [59],

BSS [60], RIFLE [34], Bi-Tuning [14], Noisy-Tune [36], SCL [21], and Core-

Tuning [13]. Among them, Noisy-Tune is an initialization method that perturbs

parameters before fine-tuning. In like manner of COIN, we also combine Noisy-

Tune with SCL [21] to achieve a fair comparison with our COIN.

As shown in Figure 4, we simply compare COIN with several representative

fine-tuning methods on CIFAR-10. The plotted training curves show how the

class-aware initialization stage beneficially affects the subsequent fine-tuning

process. We do not consider CE loss, but only use a supervised contrastive

loss during the early 70 epochs. Therefore, the accuracy of COIN is lower than

other methods in this period. However, COIN significantly enriches the semantic

information on the target dataset (i.e., decreasing the S Dbw score from 0.88 to

0.36) before fine-tuning. With the help of enriched semantic information, it is

easy to learn a more accurate classifier in the following fine-tuning process.
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Table 2: Comparisons of S Dbw score and Time Cost of different fine-tuning methods on

multiple classification downstream tasks. S Dbw score evaluates the quality of the semantic

information captured by models on the target datasets. A lower S Dbw score indicates richer

semantic information. Time Cost represents the training time for 100 epochs. These results

suggest that COIN can always obtain the richest semantic information among these methods

without introducing additional training cost.

Method
ImageNet-20 CIFAR-10 CIFAR-100 Caltech-101 DTD

S Dbw Time Cost (h) S Dbw Time Cost (h) S Dbw Time Cost (h) S Dbw Time Cost (h) S Dbw Time Cost (h)

CE-Tuning 0.75 2.23 0.48 6.75 0.73 7.26 0.32 0.54 0.70 0.55

SCL [21] 0.68 2.19 0.47 7.31 0.65 7.80 0.33 0.55 0.61 0.51

Core-Tuning [13] 0.55 3.72 0.38 14.93 0.64 15.64 0.32 0.61 0.62 0.76

COIN (ours) 0.47 2.10 0.28 7.79 0.46 7.79 0.31 0.54 0.56 0.53

Method
Aircraft Cars Pets Flowers Avg.

S Dbw Time Cost (h) S Dbw Time Cost (h) S Dbw Time Cost (h) S Dbw Time Cost (h) S Dbw Time Cost (h)

CE-Tuning 0.43 1.54 0.49 0.99 0.50 0.40 0.35 0.89 0.53 2.35

SCL [21] 0.47 1.55 0.49 1.15 0.50 0.45 0.33 0.84 0.50 2.48

Core-Tuning [13] 0.45 1.76 0.51 2.05 0.50 0.81 0.34 1.58 0.48 4.65

COIN (ours) 0.40 1.39 0.45 1.15 0.34 0.38 0.30 0.88 0.40 2.50

We report more results on the accuracy of all considered methods on multiple

benchmark datasets in Table 1. Under the same settings, COIN outperforms

other methods on nearly all considered datasets except Caltech-101 and Cars,

but shows comparable performance compared with the best method on these

two datasets. To better illustrate this, we focus on comparing COIN with

several representative methods. Among them, CE-Tuning is a standard fine-

tuning method, while SCL [21] combines CE loss with supervised contrastive

loss, which often benefits the fine-tuning process. Core-Tuning and Noisy-Tune

are one of the most advanced fine-tuning methods and initialization methods,

respectively. For the results in Table 1 and Table 2, COIN significantly improves

SCL [21] by simply introducing an extra class-aware initialization stage, and

always comes with the most enriched semantic information (lowest S Dbw score).

Unlike Core-Tuning, COIN always yields state-of-the-art performance without

introducing large training cost. Besides, COIN will not increase the difficulties

in fine-tuning like Noisy-Tune which shows limited fine-tuning performance on

DTD and Caltech-101 datasets. Extensive results strongly demonstrate the

effectiveness of COIN for fine-tuning self-supervised models.
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Table 3: Comparisons of the accuracy of COIN with the different temperature coefficient τ on

CIFAR-10. For these considered candidate values of τ , as the τ changes, the resultant accuracy

does not change with apparent regularity.

τ 0.07 0.1 0.3 0.5 0.7 Avg.

Acc. (%) 97.60 97.55 97.85 97.80 96.69 97.70

Table 4: Comparisons of the accuracy of COIN with the different values of stage split ratio α

on CIFAR-10. For a specific dataset, a moderate value of α (e.g., α = 0.7 on CIFAR-10) brings

a significant improvement in resultant performance. A too-large value causes the fine-tuning

process to lack sufficient time to make the model fully converge and consequently leads to

limited fine-tuning performance.

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Avg.

Acc. (%) 97.38 97.54 97.47 97.57 97.73 97.85 97.88 97.69 96.39 97.50

5. More Discussions

5.1. Imapct of Hyperparameters

In this section, we explore the impact of several important hyperparameters

on the resultant fine-tuning performance of COIN.

Temperature coefficient τ . τ is an important hyperparameter of con-

trastive loss. To determine the value of τ , we consider a candidate set

τ ∈ {0.07, 0.1, 0.3, 0.5, 0.7} like a previous work [19]. Table 3 shows that τ = 0.3

works best under the setting of α = 0.6. We empirically set τ = 0.3 in other

experiments because no apparent regularity is shown in these results.

Stage split ratio α. To fairly compare with advanced fine-tuning methods,

we use α to allocate different training budgets to the initialization stage and

the fine-tuning stage, keeping the number of total training iterations unchanged.

Specifically, if the entire fine-tuning pipeline lasts N epochs, the initialization

stage will last the first αN epochs. As shown in Table 4, COIN achieves the best

fine-tuning performance on CIFAR-10 when α = 0.7. When we set a large value

of α, fine-tuning stage lacks sufficient time to fully converge the self-supervised

models, resulting in a limited fine-tuning performance. Since the model requires

14



Table 5: Comparisons of the accuracy of several representative fine-tuning methods with

different total training epochs on ImageNet-20. Since the models have almost converged within

100 training epochs, the best accuracy of each method does not improve significantly after

increasing the training epochs.

Epochs CE-Tuning SCL [21] Core-Tuning [13] COIN (ours)

100 epochs 88.27 89.60 93.84 94.60

150 epochs 88.30 89.60 93.93 94.80

Table 6: Comparisons of the accuracy of COIN with different pre-trained models and fine-tuning

settings on several benchmark datasets. COIN achieves higher accuracy when implemented on

ViT pre-trained by MAE [61].

Method ImageNet-20 CIFAR-10 CIFAR-100 DTD Cars Pets Flowers Avg.

MoCo-v2-based COIN [24] 94.60 97.88 85.39 75.74 90.32 93.59 99.27 90.97

MAE-based COIN [61] 95.90 98.27 85.62 76.12 90.80 94.61 99.63 91.56

different training iterations to be fully converged when fine-tuning on different

datasets, we empirically choose a suitable value of α for each dataset.

Training epochs N . We follow [13] to fine-tune the self-supervised models

with 100 training epochs. In terms of the results shown in Table 5, after increasing

the epochs to 150, all models do not significantly improve because they almost

converge within 100 epochs. COIN still maintains the performance gap over the

considered fine-tuning methods.

5.2. Applying COIN to Vision Transformer

The previous experimental results fully demonstrate the effectiveness of our

COIN on ResNet-50. In this section, we simply apply our COIN to a more

advanced architecture and then fine-tune on those datasets whose input size

is 224 × 224, using different fine-tuning settings. Specifically, we use Vision

Transformer (ViT) pre-trained by AutoEncoder (MAE) [61] as the pre-trained

model , and follow the fine-tuning settings obtained from the Github repository

of MAE which is implemented on PyTorch. As shown in Table 6, with a stronger

pre-trained model, our COIN obtains better results and sets new state-of-the-arts

across different datasets.
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6. Conclusion

This paper studies how to better fine-tune self-supervised models on various

downstream tasks. We observe that the contrastive loss of SSL treats the

instances belonging to the same class strictly as negative pairs, resulting in the

limited capability of the self-supervised models to capture meaningful semantic

information. We argue that the resultant weak semantic relation among instances

indeed hampers the subsequent fine-tuning process. In response to this challenge,

we thus propose a Contrastive Initialization (COIN) method to provide a better

initialization of self-supervised models by simply introducing an extra class-

aware stage before fine-tuning. As a result, COIN breaks the standard fine-

tuning pipeline, leading to a new one. Specifically, COIN exploits a supervised

contrastive loss to enrich the semantic information, which comes with stronger

discriminative power and significantly improves the fine-tuning performance. We

compare COIN with the advanced fine-tuning methods and initialization methods

according to multiple evaluation metrics. The promising experimental results on

various benchmark datasets show that COIN significantly benefits the subsequent

fine-tuning process and consequently yields state-of-the-art performance without

introducing additional training cost.
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