
Preprint

FEATURE FLOW REGULARIZATION: IMPROVING
STRUCTURED SPARSITY IN DEEP NEURAL NETWORKS

Yue Wu
Department of Mathematics
HKUST
ywudb@connect.ust.hk

Yuan Lan
Department of Mathematics
HKUST
ylanaa@connect.ust.hk

Luchan Zhang
Department of Mathematics
HKUST
malczhang@ust.hk

Yang Xiang
Department of Mathematics
HKUST
maxiang@ust.hk

ABSTRACT

Pruning is a model compression method that removes redundant parameters and
accelerates the inference speed of deep neural networks (DNNs) while maintain-
ing accuracy. Most available pruning methods impose various conditions on pa-
rameters or features directly. In this paper, we propose a simple and effective
regularization strategy to improve the structured sparsity and structured pruning
in DNNs from a new perspective of evolution of features. In particular, we con-
sider the trajectories connecting features of adjacent hidden layers, namely fea-
ture flow. We propose feature flow regularization (FFR) to penalize the length
and the total absolute curvature of the trajectories, which implicitly increases the
structured sparsity of the parameters. The principle behind FFR is that short and
straight trajectories will lead to an efficient network that avoids redundant param-
eters. Experiments on CIFAR-10 and ImageNet datasets show that FFR improves
structured sparsity and achieves pruning results comparable to or even better than
those state-of-the-art methods.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved huge success in a wide range of applications. Mean-
while, DNNs require considerably more computational cost and storage space as they become deeper
in order to achieve higher accuracy. Denil et al. (2013) demonstrated that there is significant redun-
dancy in the parameterization of DNNs. The Lottery Ticket Hypothesis (Frankle & Carbin, 2019)
conjectures that there exist sparse sub-networks that can obtain a comparable accuracy with the
original network when trained in isolation.

Model compression methods have been proposed to balance accuracy and model complexity, e.g.
weight pruning (LeCun et al., 1990; Hassibi & Stork, 1993; Han et al., 2015; Guo et al., 2016; Hu
et al., 2016; Li et al., 2016) and quantization (Gong et al., 2014), low-rank approximation (Denton
et al., 2014; Jaderberg et al., 2014; Liu et al., 2015), and sparsity structure learning (Wen et al.,
2016; Alvarez & Salzmann, 2016; Zhou et al., 2016; Liu et al., 2017; Louizos et al., 2018; Gao
et al., 2019; Yuan et al., 2020). Weight pruning removes less important parameters in the network.
In particular, filter pruning (Li et al., 2016) removes entire filters in the network together with their
related channels, which can compress and accelerate DNNs efficiently.

Existing structured pruning methods can be divided into two categories: parameter-based methods
(Li et al., 2016; Molchanov et al., 2016; Liu et al., 2017; He et al., 2018; Lin et al., 2019; He et al.,
2019; Zhuang et al., 2020; Liebenwein et al., 2020) that use some criteria to identify unimportant
filters and remove them, and feature-based methods (Luo et al., 2017; He et al., 2017; Zhuang et al.,
2018; Ye et al., 2018; Li et al., 2020; Lin et al., 2020) that select unimportant feature maps and
then remove related filters and channels. For example, Li et al. (2020) incorporated two feature map

1

ar
X

iv
:2

10
6.

02
91

4v
2

 [
cs

.C
V

]
 7

 O
ct

 2
02

1

Preprint

selections: discovering features with low diversity and removing features that have high similarities
with others.

In this paper, we propose a new regularization method on the trajectory connecting features of adja-
cent hidden layers, namely feature flow regularization (FFR). FFR smooths the trajectory of features,
which implicitly improves the structured sparsity in DNN. Our motivation is that the trajectory of
data along the network reflects the DNN structure. Shorter and straighter trajectory corresponds to
an efficient and sparse structure of DNN. An illustration is given in Figure 1b.

Our main contributions are: (1) We propose a new regularization (FFR) on the trajectory connect-
ing the features of hidden layers, to improve the structured sparsity in DNN from a perspective of
the trajectory of data along the network. This method is different from the existing sparsity struc-
ture learning methods, which directly impose regularization or constraints on the parameters. Our
method is also different from those pruning methods based on feature maps, which use the infor-
mation of the feature map individually or in pairs (for similarity) without global relationship. (2)
We analyze the effect of FFR applied to convolutional layer and residual layer, and show that FFR
encourages DNN to learn a sparse structure during training by penalizing the sparsity of both pa-
rameters and features. (3) Experimental results show that FFR achieves a comparable or even better
pruning ratio in terms of parameters and FLOPs than recent state-of-the-art pruning methods.

2 RELATED WORK

Filter pruning. Various criteria for filter selection in pruning have been proposed. Li et al. (2016)
used L1 norm to select unimportant filters and removed the filters whose norm is lower than the
given threshold together with their connecting feature maps. Molchanov et al. (2016) measured
the importance of filters based on the change in the cost function induced by pruning. Luo et al.
(2017); He et al. (2017) formulated pruning as a constraint optimization problem and selected most
representative neurons based on minimizing the reconstitution error. Lin et al. (2019) pruned filters
as well as other structures by generative adversarial learning. He et al. (2019) pruned redundant
filters utilizing geometric correlation among filters in the same layer. Hu et al. (2016); Zhuang et al.
(2018); Li et al. (2020); Lin et al. (2020) removed filters based on the information, e.g. sparsity, rank
or diversity, of feature maps that are generated by the filters. Our method learns sparse DNN during
training and adopts magnitude-based pruning scheme after training.

Sparsity regularization. Some studies introduced sparsity regularization to find sparse structure
of DNN. A commonly used strategy is to impose group Lasso and relaxed L0 regularization (Zhou
et al., 2016; Wen et al., 2016; Alvarez & Salzmann, 2016; Louizos et al., 2018). Liu et al. (2017);
Huang & Wang (2018) associated a scaling factor with feature maps and imposed regularization on
these scaling factors during training to automatically identify unimportant channels. The feature
maps with small scaling factor values will be pruned. Gao et al. (2019) imposed a Cross-Layer
grouping and a Variance Aware regularization on the parameters to improve the structured sparsity
for residual models. Zhuang et al. (2020) used polarization regularizer on scaling factors. Yuan et al.
(2020) proposed a method to dynamically grow deep networks by continuously sparsifying struc-
tured parameter sets. Different from these available methods that directly introduce regularization
on the parameters or scaling factors, our FFR imposes regularization on the trajectory connecting
features of hidden layers to control the parameters and enforce structured sparsity implicitly.

3 METHOD

3.1 FEATURE FLOW REGULARIZATION

We define feature flow as the trajectory formed by connecting the output features of adjacent hidden
layers. For a DNN, the collection of trajectories with different input data from the training dataset
reflect the network structure. We control these trajectories to obtain a sparse network.

Consider the forward propagation of a DNN with L layers {xl}l=0,1,...,L:

xl+1 = hl(xl, wl), (1)

2

Preprint

where xl+1 is the output feature of the l-th layer, hl is the mapping in the l-th layer, and wl is the
collection of trainable parameters. Introducing a temporal partition: {tl = l/L}Ll=0 with time inter-
val ∆t = 1/L, and regarding xl as the value of a function x(t) at time step tl, without considering
dimensional consistency, Eq. (1) can be rewritten as (He et al., 2016; E, 2017; Lu et al., 2017; Chen
et al., 2018)

x(tl+1) = x(tl) + ∆t · ĥl(x(tl), wl), (2)

where ĥl = (hl − xl)/∆t. This can be interpreted as a discretization of evolution along a trajectory
of the network described by an ordinary differential equation (E, 2017; Lu et al., 2017; Chen et al.,
2018)

dx(t)

dt
= ĥ(x(t), w(t), t). (3)

The feature flow is the trajectory formed by connecting features of {xl}, and is denoted by Γ{xl}.
See Figure 1a for an illustration of the feature flow.

We regard the trajectory x(t) as well as the feature flow trajectory Γ{xl} as a ”curve”. Recall that for
a curve γ(t) : [0, 1]→ RD with arc length parameter s, its length C(γ) and total absolute curvature
K(γ) are

C(γ) :=

∫ 1

0

‖γ′(t)‖dt, K(γ) :=

∫ C(γ)

0

|κ(s)|ds, (4)

where κ(s) = ‖γ′′(s)‖ is the curvature of the curve.

We introduce feature flow regularization (FFR) to improve the structured sparsity of DNN, bor-
rowing the definitions of length and total absolute curvature of a curve to the feature flow, i.e., the
trajectory formed by connecting features of hidden layers. For a feature flow associated with hidden
layer features {xl}l=0,1,...,L, the FFR is

R(x) := k1C(x) + k2K(x), (5)
where

C(x) =

L−1∑
l=0

‖xl+1 − xl‖, K(x) =

L−1∑
l=1

‖xl+1 − 2xl + xl−1‖, (6)

with ‖ · ‖ being the L1 norm, and k1, k2 > 0 the hyperparameters. Here up to some constant
factors, C(x) ∼

∑L−1
l=0 ‖x′(tl)‖ is an approximation of the total length of the trajectory x(t), and

K(x) ∼
∑L−1
l=1 |κ(tl)| is an approximation of its total absolute curvature, where {xl = x(tl)} is a

discretization of trajectory x(t) with time partition {tl = l/L}Ll=0.

FFR smooths the feature flow by controlling the length and curvature. Intuitively, the length term
in Eq. (6) makes the feature flow short, and the curvature term in Eq. (6) keeps the feature flow
from bending too much. As a result, DNN trained under FFR has a more sparse structure; See
demonstration in Figure 1b. More quantitative analysis is given in Sec. 4. We further give an
illustration example in Figure 1c, which is a two-dimensional visualization showing the smooth
effect of FFR on the feature flow of a ResNet. In this example, the input, features and output are
all points in two dimensions, and the feature flows are actual curves in two dimensions. We can see
that the feature flow under FFR is shorter and straighter. More detail of this illustration example is
given in Appendix Sec. A.1.

3.2 FFR APPLIED TO DNN AND PRUNING

For a DNN and training dataset
{

(x(j), y(j)
}N
j=1

, using Eq. (5), the FFR is:

R(X(j)) = k1

L−1∑
i=0

‖x(j)l+1 − x
(j)
l ‖+ k2

L−1∑
i=1

‖x(j)l+1 − 2x
(j)
l + x

(j)
l−1‖, (7)

where X(j) = {xl, l = 0, . . . , L}(j) denotes the set of output features of hidden layers for the j-th
input data. The loss function with FFR in training is:

1

N

N∑
j=1

[
J (x(j), y(j),W) +R(X(j))

]
, (8)

3

Preprint

(a)

(c)

(b)

Figure 1: (a) Feature flow demonstration: Each curve represents a feature flow, i.e., the trajectory
connecting the features of hidden layers, where nodes are input, features and output. (b) Feature flow
regularization demonstration: Feature flow under FFR is shorter and straighter due to the length
and curvature penalty. As a result, FFR improves the structured sparsity and leads to effective
filter pruning. (c) An illustration example in two dimensional space showing the smooth effect of
FFR, which is a five-block ResNet trained with FFR and without FFR (the baseline). The input
data, features and targets are all points in two dimensions, and the feature flows are curves in two
dimensions. The green cluster and red cluster contain input data points and the targets, respectively.

where J (x, y,W) is the loss function before applying FFR.

Note that two hidden states xl, xl+1 may have different dimensions. To fix the dimension mismatch
problem, we adopt the same strategy as He et al. (2016), i.e, using a linear projection Pl by the
shortcut connections to match the dimensions. We replace xl in Eq. (7) by Plxl, where Pl is the
learnt projection matrix and will be treated as learnable parameters in training. In implementation,
we first group the features according to the stage (features dimensions):

X(j) =

G⋃
g=1

{xg,1, xg,2, . . . , xg,lg}(j), L =

G∑
g=1

lg. (9)

Here G is the number of stages in X(j) and lg is the number of hidden layers in stage g. Secondly,
we use the projection matrix to link different groups since the dimensional mismatch only occurs at
the first feature of each stage. Using this method, the FFR of X(j) becomes:

R(X(j)) = k1

G∑
g=1

‖x(j)g,1 − Pgx
(j)
g−1,l(g−1)

‖+

lg−1∑
i=1

‖x(j)g,i+1 − x
(j)
g,i‖


+ k2

G∑
g=1

‖x(j)g,2 − 2x
(j)
g,1 + Pgx

(j)
g−1,l(g−1)

‖+

lg−1∑
i=2

‖x(j)g,i+1 − 2x
(j)
g,i + x

(j)
g,i−1‖

 .
(10)

In the meantime, the hyperparameters k1, k2 may vary with the feature dimensions so that FFR
can uniformly control the features at different stages. In our experiments, we adjust k1, k2 to be
inversely proportional to the scale of feature maps. Moreover, the FFR process can be generalized
to the case where we choose features every several layers. We can denote the selected hidden layers

4

Preprint

as L = {li, i = 0, 1, . . . ,m,m = #L}. Then we apply FFR to the feature flow that connects the
features in the set X(j) = {xl, l ∈ L}.
After training, we conduct one-shot filter pruning: removing filters with small magnitude and re-
moving channels in the next layer that convolve with the feature maps generated by the pruned
filters. Finally, we fine tune the pruned network for a few epochs.

Our FFR training and pruning method is summarized in Algorithm 1.

Algorithm 1 FFR Training and One-shot Pruning

Require: training dataset
{

(x(j), y(j)
}N
j=1

, a neural network and hyperparameters k1, k2.
Pre-step 1: group the features in X = {xl, l ∈ L} according to the stage as in Eq. (9),
Pre-step 2: write down FFRR(X(j)) in Eq. (10) for each paired data (x(j), y(j)).
Training step: train the network under loss function with FFR given in Eq. (8).
Pruning step: remove filters and the corresponding channels in the trained model,
fine tune the pruned model for a few epochs.
return a compact neural network.

3.3 FEATURE FLOW OF VGGNET AND RESNET

In this subsection, we demonstrate how to construct feature flows of VGGNet (Simonyan & Zis-
serman, 2015) and ResNet (He et al., 2016), which are two commonly used network architectures.
Similar construction can apply to other neural networks.

(a) (b)

Figure 2: (a) A convolutional block in VGGNet. (b) Residual blocks in ResNet.

VGGNet. VGGNet is a convolutional neural network with a plain structure. Each convolutional
layer is followed by some activation functions: batch normalization, rectified linear activation func-
tion (ReLU), and sometimes a maxpooling layer. We regard the convolutional layer with all its
activations as a block; see Figure 2a. We collect the output of every convolutional block in VGGNet
to form the feature flow Γ{xl}. Let xl be the output feature of the l-th block, then the feature of the
l + 1-th convolutional block is

xl+1 = (Max pooling) · σ(BN � (Wl ⊗ xl)), (11)
where Wl is the convolutional weights, BN is batch normalization, and σ(·) is ReLU. Max pool-
ing only appears once every several layers. ⊗ denotes convolution operation and � denotes batch
normalization operation.

ResNet. ResNet takes residual blocks as building blocks, each of which contains two or three
convolutional layers; see Figure 2b. We collect the output of every residual block to form the feature
flow Γ{xl}. The feature of l + 1-th residual block is

xl+1 = σ(F(xl,Wl) +Wslxl), (12)
where F(xl,Wl) is the residual function, Wl = {Wl,k|k = 1, . . . ,K} is the set of convolutional
weights, K = 2 or 3 is the number of convolutional layers in each residual unit. Wsl is the identity
matrix if xl and F(xl,Wl) are in the same dimension, and the learnt projection matrix otherwise.

5

Preprint

4 SPARSITY ANALYSIS

In this section, we demonstrate how FFR improves structured sparsity. As explained in the previous
section, the idea of FFR is to shorten and straighten the trajectory of the input along the network. We
will show that such effect of FFR encourages feature sparsity in addition to penalizing the sparsity of
the parameters. Sparse features contribute to structured sparsity: for zero-value feature map, we can
remove the filter which produces the feature map and the channel which convolves with the feature
map. Therefore, FFR improves the structured sparsity in the network.

4.1 FEATURE AND PARAMETER SPARSITY

We analyze the effect of FFR when it is applied to the output features of the convolutional block and
the residual block, which are commonly used in DNNs. We focus on the length term in Eq. (6) in
FFR.

Convolutional block. Ignoring the activation functions in Eq. (11), the length term in FFR is
reduced to

‖xl+1 − xl‖ = ‖Wl ⊗ xl − xl‖ = ‖(Wl − I)⊗ xl‖, (13)
where I denotes the ’identity’ convolution kernels: for the i-th filter, only the i-th channel is a
nonzero matrix and all other channels are zero-matrices. This length term pushes the parameter Wl

to be close to the identity kernel I, which is highly structured sparse. In the meantime, the length
term also pushes the feature xl to be sparse. Figure 3a shows the L1 norm of 512 feature maps
generated by the last convolutional layer in VGG16 trained with and without FFR on CIFAR-10. As
shown in the figure, the baseline network (VGG16 trained without FFR) has few zero-valued feature
maps. In contrast, the network trained under FFR learns much more sparse features: most feature
maps have zero-valued norm that can be removed. Such significant improvement of feature sparsity
under FFR is also observed in the comparison for other layers of VGG16; see Appendix section A.2
for more plots.

Residual block. The length term in FFR enhances sparsity of the residual block by pushing the
residual function F(xl,Wl) and features xl to zeros. We ignore the projection matrix Ws in the
shortcut connection since it only appears when the stage changes. From Eq. (12), the length term in
FFR is reduced to

‖xl+1 − xl‖ = ‖σ(F(xl,Wl) + xl)− xl‖
element-wise

=

{
‖F(xl,Wl)‖, F(xl,Wl) + xl ≥ 0,

‖xl‖, F(xl,Wl) + xl < 0.
(14)

Under the hypothesis that the optimal function is closer to an identity mapping than to a zero map-
ping (He et al., 2016), the first case F(xl,Wl) + xl ≥ 0 holds most of the time, and in this case,
FFR penalizes the norm of the residual function. For a residual block with two or three convolutional
layers, and ignoring the activations, the residual function can be reduced to

F(xl,Wl) = σ(BN 2 �Wl,2 ⊗ σ(BN 1 �Wl,1 ⊗ xl)) ∼Wl,2 ⊗Wl,1 ⊗ xl, or (15)

F(xl,Wl) = σ(BN 3�Wl,3⊗σ(BN 2�Wl,2⊗σ(BN 1�Wl,1⊗xl))) ∼Wl,3⊗Wl,2⊗Wl,1⊗xl.
(16)

Hence imposing penalty on the residual function can make both parameters and features sparse. In
the second case, where F(xl,Wl) < −xl, FFR encourages the feature xl to be sparse.

Figure 3b shows the L1 norm of 64 feature maps of the first residual block in ResNet56 trained with
and without FFR on CIFAR-10. As shown in the figure, the network trained under FFR outputs
more zero value feature maps than the baseline (trained without FFR). In Figure 3c, we visualize the
parameters of shape 16× 16× 3× 3 from the first convolutional layer in the first residual block of
ResNet56 trained with FFR on CIFAR-10. We display the filter in row according to the magnitude:
from top to bottom, the norm of the filter is increasing. It can be seen from the figure that the
parameters of the network trained with FFR are of high structured sparsity. In the figure, small value
filters are circled with a red horizontal square, and small value channels convolved with the same
feature map are respectively circled with orange vertical squares.

6

Preprint

(a) VGG16

(b) ResNet56 (c) Filter visualization: 16× 16× 3× 3.

Figure 3: (a) VGG16 feature maps trained with and without FFR: L1 norm plot, with 512 feature
maps in the feature of the last convolutional layer. (b) ResNet56 feature maps trained with and
without FFR: L1 norm plot, with 64 feature maps in the feature of the nineteenth residual bock.
(c) Visualization of the filters in the first residual block in ResNet56 trained with FFR. From top
to bottom, the filters are displayed according to their norm from small to large. Square denotes
the filters (red, horizontal) and channels (orange, vertical) that have small magnitude and can be
removed. Both VGG16 and ResNet56 are trained on CIFAR-10.

4.2 STRUCTURED SPARSITY IMPROVEMENT

To further show the ability of FFR in improving structured sparsity, we examine the relation between
accuracy and structured sparsity. We compare VGG16 and ResNet56 with and without FFR trained
on CIFAR-10. After training, we use an increasing threshold to zero the filters whose magnitude is
under the threshold and the corresponding channels. Then we calculate the accuracy and structured
sparsity that is defined as the percent of the parameters zeroed. Figure 4a and 4b show the accuracy-
sparsity trade-off curves of VGG16 and ResNet56 on CIFAR-10, respectively. It can be seen that
the network trained with FFR will not suffer accuracy degradation until it has a significantly large
structured sparsity compared with the baseline case.

(a) VGG16 (b) ResNet56

Figure 4: Accuracy-sparsity trade off curve of (a) VGG16 and (b) ResNet56 trained with FFR (blue)
and without FFR (orange, Baseline) on CIFAR-10.

5 EXPERIMENTS

5.1 IMPLEMENTATION

Models and datasets. To demonstrate the effectiveness of FFR in pruning, we perform exper-
iments with VGGNet and ResNet on the CIFAR-10 (Krizhevsky & Hinton, 2009) and ImageNet
(Deng et al., 2009) datasets. The VGG16 is a modified VGGNet in Simonyan & Zisserman (2015):
we remove two fully-connected layers and only use one fully-connected layer for classification. We
compare the network trained with FFR and without FFR as a baseline. We adopt weights initializa-
tion as in He et al. (2015).

7

Preprint

Training setting. FFR and baseline have the same training setting. For CIFAR-10, the mini-batch
size is 128. We train VGG16 and ResNet56 200 epochs and set initial learning rate as 0.1 and
divide it by 10 at the 80th, 120th, and 160th epoch. For ImageNet, the mini-batch size is 256. We
train ResNet50 90 epochs and divide initial learning rate 0.1 by 10 at the 30th and 60th epoch. We
use SGD optimizer with weight decay 5e−4 for CIFAR-10, 1e−4 for ImageNet, and momentum
0.9. Note that L2 regularization is implemented by applying weight decay in SGD. We ran our
experiments with pytorch.

Pruning setting. We perform one-shot structured pruning: remove filters based on the magnitude
and their corresponding channels in the next layer. For all experiments on CIFAR-10 and ImageNet,
we only fine tune the pruned model 30 epochs with learning rate 1e−4 on CIFAR-10 and 1e−3 on
ImageNet. For VGGNet, we prune the network directly, and for ResNet, we use zeros padding in the
pruned dimension. The outputs of the shortcut and the last convolutional layer in the residual block
in ResNet must have the same dimension because of the addition operation between them. Using
zero padding, we can remove the filters flexibly. Moreover, if all filters of the first convolutional
layer are pruned, then the residual block can be pruned.

5.2 STRUCTURED PRUNING

We compare pruning results of FFR with recent state-of-the-art pruning methods in Figure 5 and
Tables 1 and 2. We present ablation study on the hypermeters k1, k2 in Appendix A.4.

Results on CIFAR-10. Table 1 shows the pruning results comparisons of VGG16 and ResNet56
on CIFAR-10. For better comparison, in Figure 5, we plot error-parameter reduction and error-
FLOPs reduction trade-off curves of VGG16 trained with FFR together with the results of other
methods shown in Table 1. We can see that FFR is able to achieve larger pruning ratio in terms of
parameters and FLOPs. Specifically, we prune VGG16 with 90.2% parameters reduction and 61.2%
FLOPs reduction with a slight drop (0.66%) in accuracy, and ResNet56 at a large FLOPs reduction
60.6% with accuracy drop 1.05%. From the comparisons of VGG16 results in Figure 5, the FFR
method has lower error reductions in parameter and FLOPs than most of the available methods,
and achieves larger pruning ratio. Note that the DCP method (Zhuang et al., 2018) conducts channel
pruning and fine tunes the network stage by stage to achieve lower error, whereas in FFR, we perform
only one-shot structured pruning with a few epochs of fine tune. We also visualize the feature maps
of the reserved and pruned filters of the first convolution layer in VGG16 using FFR in Appendix
A.3, Figure 7.

Figure 5: Error-parameter reduction and error-FLOPs reduction trade-off curves of VGG16 trained
with FFR on CIFAR-10, and comparison with the results of SSS (Huang & Wang, 2018),
DCP (Zhuang et al., 2018), FPGM (He et al., 2019), Hrank (Lin et al., 2020), PR (Zhuang et al.,
2020).

Results on ImageNet. Table 2 shows the pruning results comparisons of ResNet50 on ImageNet,
which is a large-sacle dataset. Although there is only one-shot pruning and a few epochs fine-tuning
in FFR, our FFR pruned ResNet50 achieves comparable parameters and FLOPs reductions with the
recently proposed pruning methods.

Methodology comparison. Methodologically, our FFR method manipulates the trajectory con-
necting features of hidden layers, which is different from pruning methods based on feature maps

8

Preprint

information, e.g. Hu et al. (2016); Li et al. (2020); Lin et al. (2020) and is different from meth-
ods that impose regularization the parameters, e.g. Huang & Wang (2018); Zhuang et al. (2020).
In terms of implementation simplicity, we use SGD during training and adopt a one-shot pruning
strategy instead of additional optimization steps (e.g., He et al. (2019)) or iterative pruning (Zhuang
et al., 2018).

Table 1: Pruning results on CIFAR-10. ’-’ represents result not reported. ’M’ represents 1e6.

Model Method Baseline Pruned Param. FLOPs
Error (%) Error (%) Reduction Reduction

VGG16 Baseline (Ours) 6.10 6.10 0% (14.72M) 0% (313M)

SSS (Huang & Wang, 2018) 6.10 6.98 73.8% 41.6%
DCP (Zhuang et al., 2018) 6.01 5.84 47.9% 50.0%
FPGM (He et al., 2019) 6.42 6.46 - 34.2%
Hrank (Lin et al., 2020) 6.04 7.66 82.1% 65.3%
PR (Zhuang et al., 2020) 6.12 6.08 - 54.0%
FFR (k1, k2 = 2e−7) 6.10 6.76 90.2% 61.2%

ResNet56 Baseline (Ours) 6.60 6.60 0% (0.86M) 0% (126M)

CP (He et al., 2017) 7.20 8.20 - 50.0%
DCP (Zhuang et al., 2018) 6.20 6.51 49.2% 49.7%
SFP (He et al., 2018) 6.41 6.65 - 52.6%
FPGM (He et al., 2019) 6.41 6.51 - 52.6%
Hrank (Lin et al., 2020) 6.74 6.83 42.4% 50.0%
PR (Zhuang et al., 2020) 6.20 6.17 - 47.0%
FFR (k1, k2 = 1e−7) 6.60 7.65 49.7% 60.6%

Table 2: Pruning results on ImageNet. ’-’represents result not reported. ’M’ represents 1e6.

Model Method Top-1 Acc. Top-5 Acc. Param. FLOPs
Drop (%) Drop (%) Reduction Reduction

ResNet50 Baseline (Ours) 0 (71.56) 0 (90.28) 0% (25.56M) 0% (4089M)

SSS (Huang & Wang, 2018) 4.30 2.07 38.8% 43.0%
DCP (Zhuang et al., 2018) 1.06 0.61 51.5% 55.6%
SFP (He et al., 2018) 14.01 8.27 - 41.8%
FPGM (He et al., 2019) 1.32 0.55 - 53.5%
Hrank (Lin et al., 2020) 4.17 1.86 62.1% 46.0%
PR (Zhuang et al., 2020) 0.52 - - 54.0%
FFR (k1, k2 = 5e−8) 2.68 1.40 52.3% 47.2%

6 CONCLUSIONS AND DISCUSSION

In this paper, we propose a simple and effective regularization method (FFR) from a new perspective
of the data trajectory along the network. FFR smoothes the trajectory by imposing controls on the
length and total absolute curvature of the feature flow, leading to significant increase of structured
sparsity in DNNs. We perform a sparsity analysis of FFR for VGGNet and ResNet to validate this
method. Experimental results show that FFR can significantly enhance structured sparsity, which
enables us to prune filters efficiently in one pass. Future work may include: (1) perform rigorous
sparsity analysis for FFR, and (2) integrate FFR with other pruning methods to further improve
pruning results. Since in FFR, the regularization is imposed on features, it is not easy to predetermine
the sparsity, although experimental results using FFR have shown significant sparsity improvement.
In order to balance sparsity and accuracy, we need to tune the hyperparameters k1, k2, which vary
with networks and datasets. Further improvements in these aspects will also be explored in the future
work.

9

Preprint

REFERENCES

Jose M Alvarez and Mathieu Salzmann. Learning the number of neurons in deep
networks. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 29. Curran Asso-
ciates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/file/
6e7d2da6d3953058db75714ac400b584-Paper.pdf.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary dif-
ferential equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran As-
sociates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
69386f6bb1dfed68692a24c8686939b9-Paper.pdf.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Misha Denil, Babak Shakibi, Laurent Dinh, Marc Aurelio Ranzato, and Nando de Freitas. Predict-
ing parameters in deep learning. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems, volume 26. Cur-
ran Associates, Inc., 2013. URL https://proceedings.neurips.cc/paper/2013/
file/7fec306d1e665bc9c748b5d2b99a6e97-Paper.pdf.

Emily Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting linear
structure within convolutional networks for efficient evaluation. CoRR, abs/1404.0736, 2014.
URL http://arxiv.org/abs/1404.0736.

Weinan E. A proposal on machine learning via dynamical systems. Communications in Mathematics
and Statistics, 5(1), 2017. ISSN 2194-6701. doi: 10.1007/s40304-017-0103-z.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neu-
ral networks. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.
net/forum?id=rJl-b3RcF7.

Susan Gao, Xin Liu, Lung-Sheng Chien, William Zhang, and Jose M. Alvarez. VACL: variance-
aware cross-layer regularization for pruning deep residual networks. In 2019 IEEE/CVF Interna-
tional Conference on Computer Vision Workshops, ICCV Workshops 2019, Seoul, Korea (South),
October 27-28, 2019, pp. 2980–2988. IEEE, 2019. doi: 10.1109/ICCVW.2019.00360. URL
https://doi.org/10.1109/ICCVW.2019.00360.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir D. Bourdev. Compressing deep convolutional
networks using vector quantization. CoRR, abs/1412.6115, 2014. URL http://arxiv.org/
abs/1412.6115.

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for effi-
cient dnns. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 29. Curran Asso-
ciates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/file/
2823f4797102ce1a1aec05359cc16dd9-Paper.pdf.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections
for efficient neural network. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 28. Curran Asso-
ciates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/
ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf.

Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain
surgeon. In S. Hanson, J. Cowan, and C. Giles (eds.), Advances in Neural Information Processing
Systems, volume 5. Morgan-Kaufmann, 1993. URL https://proceedings.neurips.
cc/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf.

10

https://proceedings.neurips.cc/paper/2016/file/6e7d2da6d3953058db75714ac400b584-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/6e7d2da6d3953058db75714ac400b584-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/7fec306d1e665bc9c748b5d2b99a6e97-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/7fec306d1e665bc9c748b5d2b99a6e97-Paper.pdf
http://arxiv.org/abs/1404.0736
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://doi.org/10.1109/ICCVW.2019.00360
http://arxiv.org/abs/1412.6115
http://arxiv.org/abs/1412.6115
https://proceedings.neurips.cc/paper/2016/file/2823f4797102ce1a1aec05359cc16dd9-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/2823f4797102ce1a1aec05359cc16dd9-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf
https://proceedings.neurips.cc/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf

Preprint

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In 2015 IEEE International Conference on
Computer Vision (ICCV), pp. 1026–1034, 2015. doi: 10.1109/ICCV.2015.123.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016. doi: 10.1109/CVPR.2016.90.

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating
deep convolutional neural networks, 2018.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for
deep convolutional neural networks acceleration. In 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4335–4344, 2019. doi: 10.1109/CVPR.2019.00447.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Oct
2017.

Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network trimming: A data-driven
neuron pruning approach towards efficient deep architectures. CoRR, abs/1607.03250, 2016.
URL http://arxiv.org/abs/1607.03250.

Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for deep neural networks. In
Proceedings of the European Conference on Computer Vision (ECCV), September 2018.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural networks
with low rank expansions. In British Machine Vision Conference, 2014.

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Master’s
thesis, Department of Computer Science, University of Toronto, 2009.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In D. Touret-
zky (ed.), Advances in Neural Information Processing Systems, volume 2. Morgan-
Kaufmann, 1990. URL https://proceedings.neurips.cc/paper/1989/file/
6c9882bbac1c7093bd25041881277658-Paper.pdf.

Hang Li, Chen Ma, Wei Xu, and Xue Liu. Feature statistics guided efficient filter pruning. CoRR,
abs/2005.12193, 2020. URL https://arxiv.org/abs/2005.12193.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. CoRR, abs/1608.08710, 2016. URL http://arxiv.org/abs/1608.
08710.

Lucas Liebenwein, Cenk Baykal, Harry Lang, Dan Feldman, and Daniela Rus. Provable filter
pruning for efficient neural networks. In 8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL
https://openreview.net/forum?id=BJxkOlSYDH.

Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian, and Ling
Shao. Hrank: Filter pruning using high-rank feature map, 2020.

Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang, Liujuan Cao, Qixiang Ye, Feiyue
Huang, and David S. Doermann. Towards optimal structured CNN pruning via generative
adversarial learning. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2019, Long Beach, CA, USA, June 16-20, 2019, pp. 2790–2799. Computer Vision Foundation
/ IEEE, 2019. doi: 10.1109/CVPR.2019.00290. URL http://openaccess.thecvf.
com/content_CVPR_2019/html/Lin_Towards_Optimal_Structured_CNN_
Pruning_via_Generative_Adversarial_Learning_CVPR_2019_paper.html.

Baoyuan Liu, Min Wang, H. Foroosh, M. Tappen, and M. Penksy. Sparse convolutional neural
networks. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
806–814, 2015. doi: 10.1109/CVPR.2015.7298681.

11

http://arxiv.org/abs/1607.03250
https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://arxiv.org/abs/2005.12193
http://arxiv.org/abs/1608.08710
http://arxiv.org/abs/1608.08710
https://openreview.net/forum?id=BJxkOlSYDH
http://openaccess.thecvf.com/content_CVPR_2019/html/Lin_Towards_Optimal_Structured_CNN_Pruning_via_Generative_Adversarial_Learning_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Lin_Towards_Optimal_Structured_CNN_Pruning_via_Generative_Adversarial_Learning_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Lin_Towards_Optimal_Structured_CNN_Pruning_via_Generative_Adversarial_Learning_CVPR_2019_paper.html

Preprint

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In ICCV, 2017.

Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural networks through
l0 regularization, 2018.

Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural networks:
Bridging deep architectures and numerical differential equations. CoRR, abs/1710.10121, 2017.
URL http://arxiv.org/abs/1710.10121.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In IEEE International Conference on Computer Vision, ICCV 2017, Venice,
Italy, October 22-29, 2017, pp. 5068–5076. IEEE Computer Society, 2017. doi: 10.1109/ICCV.
2017.541. URL https://doi.org/10.1109/ICCV.2017.541.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient transfer learning. CoRR, abs/1611.06440, 2016. URL
http://arxiv.org/abs/1611.06440.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In Yoshua Bengio and Yann LeCun (eds.), 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceed-
ings, 2015. URL http://arxiv.org/abs/1409.1556.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured spar-
sity in deep neural networks. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 29. Curran Asso-
ciates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/file/
41bfd20a38bb1b0bec75acf0845530a7-Paper.pdf.

Jianbo Ye, Xin Lu, Zhe L. Lin, and James Z. Wang. Rethinking the smaller-norm-less-informative
assumption in channel pruning of convolution layers. CoRR, abs/1802.00124, 2018. URL http:
//arxiv.org/abs/1802.00124.

Xin Yuan, Pedro Savarese, and Michael Maire. Growing efficient deep networks by structured
continuous sparsification. CoRR, abs/2007.15353, 2020. URL https://arxiv.org/abs/
2007.15353.

Hao Zhou, Jose M. Alvarez, and Fatih Porikli. Less is more: Towards compact cnns. In Bastian
Leibe, Jiri Matas, Nicu Sebe, and Max Welling (eds.), Computer Vision - ECCV 2016 - 14th
European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part IV,
volume 9908 of Lecture Notes in Computer Science, pp. 662–677. Springer, 2016. doi: 10.1007/
978-3-319-46493-0\ 40. URL https://doi.org/10.1007/978-3-319-46493-0_
40.

Tao Zhuang, Zhixuan Zhang, Yuheng Huang, Xiaoyi Zeng, Kai Shuang, and Xiang Li. Neuron-level
structured pruning using polarization regularizer. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.
9865–9877. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/
paper/2020/file/703957b6dd9e3a7980e040bee50ded65-Paper.pdf.

Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao Wu, Junzhou
Huang, and Jin-Hui Zhu. Discrimination-aware channel pruning for deep neural networks. CoRR,
abs/1810.11809, 2018. URL http://arxiv.org/abs/1810.11809.

12

http://arxiv.org/abs/1710.10121
https://doi.org/10.1109/ICCV.2017.541
http://arxiv.org/abs/1611.06440
http://arxiv.org/abs/1409.1556
https://proceedings.neurips.cc/paper/2016/file/41bfd20a38bb1b0bec75acf0845530a7-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/41bfd20a38bb1b0bec75acf0845530a7-Paper.pdf
http://arxiv.org/abs/1802.00124
http://arxiv.org/abs/1802.00124
https://arxiv.org/abs/2007.15353
https://arxiv.org/abs/2007.15353
https://doi.org/10.1007/978-3-319-46493-0_40
https://doi.org/10.1007/978-3-319-46493-0_40
https://proceedings.neurips.cc/paper/2020/file/703957b6dd9e3a7980e040bee50ded65-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/703957b6dd9e3a7980e040bee50ded65-Paper.pdf
http://arxiv.org/abs/1810.11809

Preprint

A APPENDIX

A.1 SETTING OF THE ILLUSTRATION EXAMPLE IN SECTION 3.1

To visualize the smoothing effect of FFR, we use a two-dimensional example. In Figure 1c, the
green and red clusters contain 50 paired data points in two dimensional space. The green cluster is
evenly distributed in a circle with center (2, 6) and radius 0.5. The red cluster is obtained by exactly
shifting the green cluster four units to the right and four units down, that is in a circle with center
(6, 2). we use a ResNet to learn a translation mapping from the green cluster to the red cluster. The
ResNet has five fully-connected residual blocks. Here each residual block contains two linear layers
and outputs a two-dimensional feature. We train ResNet without and with FFR to learn the mapping
under the same setting for comparison. A trajectory is obtained by starting from an input data point,
connecting five output features and ending with the output. From Figure 1c, the trajectories of the
network trained with FFR, represented by the orange curves, are shorter and more straight than those
of the network trained without FFR, represented by the blue curves. We plot the feature flows of
three test data for comparison. It shows that FFR indeed effectively smooths the feature flow.

A.2 FEATURE MAPS NORM PLOT IN SECTION 4.1

We show the L1 norm plot of 256 feature maps generated by the fifth convolutional layer and 512
feature maps generated by the eighth convolutional layer in VGG16 trained with and without FFR
on CIFAR-10 in Figure 6a and 6b respectively. Consistent with the claim in the main text, the net-
work trained under FFR learns much more sparse features with zero-valued norm than the baseline
network (VGG16 trained without FFR). FFR improves the feature sparsity which contributes to the
structures sparsity in DNN.

(a) 256 feature maps of the fifth convolutional layer.

(b) 512 feature maps of the eighth convolutional layer.

Figure 6: VGG16 feature maps trained with and without FFR on CIFAR-10: L1 norm plot.

13

Preprint

A.3 FEATURE MAPS VISUALIZATION

(a) Input image (b) Feature maps of preserved filters (c) Feature maps of pruned filters

Figure 7: Feature maps visualization of the first convolutional layers in VGG16 using FFR.

A.4 ABLATION STUDY

We tune the hyperparameters k1, k2 with experiments. The choice of hyperparameters depends on
the architecture of the DNN and the scale of the input: for the DNN with more layers and higher
resolution input. we use smaller k1, k2. We train VGG16 under FFR with different hyperparameters
on CIFAR-10 and conduct pruning experiments.

We list the pruning results of VGG16 on CIFAR-10. The parameter reduction, FLOPs reduction and
accuracy data are obtained by using the same threshold to prune VGG16 trained under FFR with
different hyperparameters k1, k2 and fine tuning the pruned model 30 epochs.

As shown in Table 3, the baseline (VGG16 trained without FFR) cannot preserve the accuracy under
the same pruning and fine-tuning setting. Moreover, network trained under FFR with appropriate
k1, k2 achieves large pruning ratio while maintaining the acurracy.

Table 3: Alation study on k1, k2. Pruning results of VGG16 on CIFAR10. ’M’ represents 1e6.

Hyperparamerer Error(%) Param. Reduction FLOPs Reduction

Baseline 6.10 0%(14.72M) 0%(313M)
k1, k2 = 0 34.57 74.1% 35.0%
k1, k2 = 5e−8 6.36 76.5% 36.4%
k1, k2 = 1e−7 6.45 77.5% 38.6%
k1, k2 = 2e−7 6.32 85.0% 47.5%

14

	1 Introduction
	2 Related work
	3 Method
	3.1 Feature flow regularization
	3.2 FFR applied to DNN and pruning
	3.3 Feature flow of VGGNet and ResNet

	4 Sparsity analysis
	4.1 Feature and parameter sparsity
	4.2 Structured sparsity improvement

	5 Experiments
	5.1 Implementation
	5.2 Structured pruning

	6 Conclusions and discussion
	A Appendix
	A.1 Setting of the illustration example in section 3.1
	A.2 Feature maps norm plot in section 4.1
	A.3 Feature maps visualization
	A.4 Ablation study

