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Abstract

Neocortical pyramidal neurons have many dendrites, and such dendrites are capable of, in isolation of one-

another, generating a neuronal spike. It is also now understood that there is a large amount of dendritic

growth during the first years of a humans life, arguably a period of prodigious learning. These observations

inspire the construction of a local, stochastic algorithm based on an earlier stochastic, Hebbian developmental

theory. Here we investigate the neuro-computational advantages and limits on this novel algorithm that

combines dendritogenesis with supervised adaptive synaptogenesis. Neurons created with this algorithm

have enhanced memory capacity, can avoid catastrophic interference (forgetting), and have the ability to

unmix mixture distributions. In particular, individual dendrites develop within each class, in an unsupervised

manner, to become feature-clusters that correspond to the mixing elements of class-conditional mixture

distribution. Although discriminative problems are used to understand the capabilities of the stochastic

algorithm and the neuronal connectivity it produces, the algorithm is in the generative class, it thus seems

ideal for decisions that require generalization, i.e., extrapolation beyond previous learning.
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1. Introduction

The energy efficiency of brain function must heed both the costs of computation and

long-distance communication. In fact, axon-based communication costs far outweigh com-

putational costs (Levy and Calvert, 2021). Then, when increasing computational power

by increasing the number of neurons in a network, the energy operating costs will increase

largely due to the additional long distance communication accrued by axonal and presynap-

tic functions. Indeed, there will not only be the additional costs for these new axons and

synapses, but as neurons and their synapses, dendrites and axons proliferate, at a certain

point the average distance between communicating neurons will increase adding further to

long-distance communication costs. That is, the operating costs of enhancing computation

via more neurons leads to super-additive cost increases of communication (see PNAS sup-

plement in Levy and Calvert, 2021). Perhaps Nature has found a more energy-efficient way

to increase computational power.

Inspired by (i) recent evidence that perisomatic dendrites can produce distinct individual

spikes on a single neuron (Schiller et al., 2000; Jadi et al., 2012), (ii) the long ago discovered

(White et al., 1990) and more generally argued idea that local dendritic regions (Levy et al.,

1990; Colbert and Levy, 1993), and as well individual dendrites (Mel, 1994, 1999; Poirazi

et al., 2003; Polsky et al., 2004; Behabadi and Mel, 2014) should be considered computa-

tional units, and (iii) the large amount of dendritogenesis and growth that occurs in early

postnatal human development (Petanjek et al., 2008, 2011), the present paper develops a

stochastic algorithm based on dendrite creation and growth (dendritogenesis). Compared

to the neurogenic approach to enhance computation, one can expect a much reduced in-

crease of long-distance communications costs incurred by this alternative enhancement of

computational abilities.

Across the life-span, and especially at younger stages, there is a need, and in a certain

sense opportunity for greater computational power and memory. That is, as an organism

develops, it experiences progressively more complexity. Co-occurring with this increasing

complexity, the neocortex develops its connectivity. Here our concern begins after pyramidal

neuron neurogenesis halts. From 7.5 months of gestation up to two years post-natal, there

is tremendous dendritic growth accompanied by synapse formation (Petanjek et al., 2011,

2019).
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Further influencing the work here are issues arising in bio-, and not so bio-inspired ma-

chine learning. Grossberg (Grossberg, 1976; Carpenter and Grossberg, 1987; Carpenter

et al., 1991) and others (McCloskey and Cohen, 1989; French, 1991, 1999; McClelland et al.,

1995) have long recognized the issue of catastrophic interference, and recently several groups

have successfully addressed the catastrophic interference problem. Delange et al. (2021) has

categorized the existing approaches into three distinguishable methods: (i) replay methods

(i.e., replay previous tasks while learning a new task), (ii) regularization-based methods (i.e.,

modifying the loss function), and (iii) parameter isolation methods (e.g., using task-specific

synaptic weights). Kirkpatrick et al. (2017) demonstrated an approach based on task-specific

elastic weight consolidation (EWC) in which the plasticity of synaptic weights deemed to

be important to previously learned tasks is reduced. The synaptic intelligence approach of

Zenke et al. (2017) estimates the importance of each synapse in solving previous tasks and

penalizes changes to the important synapses when learning new tasks. Masse et al. (2018)

found that synaptic intelligence along with context-dependent inhibition provides the best

performance when used together. Their context-dependent inhibition mechanism consisted

of zeroing the activity of ca. 83% of the hidden units selected randomly while leaving the

remaining hidden units unchanged.

Our goal here is to describe, in detail, and to document the characteristics of a novel bio-

logically plausible algorithm that uses dendritogenesis to enhance the computational power

of single neurons and to enhance a simple feedforward network of such neurons. The basic

idea is to produce dendrites, and thus dendritic targets for synaptogenesis, as the number of

novel experiences, and the underlying latent variables, increase.

Critical to a useful dendritogenesis algorithm is the supporting synaptogenesis algo-

rithm, and critical to a synaptogenesis algorithm is its compatibility with a Hebbian/anti-

Hebbian synaptic modification rule. The stochastic algorithm here uses the supervised ex-

tension (Baxter and Levy, 2019, 2020) of adaptive synaptogenesis (Levy and Colbert, 1991;

Adelsberger-Mangan and Levy, 1993, 1994b,a; Colbert et al., 1994; Thomas et al., 2015;

Levy et al., 2016), which is an algorithm based on its compatibility with Hebbian/anti-

Hebbian physiology (Levy and Desmond, 1985; Földiak, 1990; Tazerart et al., 2020). As in

the case of all of the earlier work using adaptive synaptogenesis (AS) and supervised adap-

tive synaptogenesis (SAS), information for the algorithm is local, as is required for biological
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reality.

We are highly motivated by Mel’s ideas (Mel 1991; Poirazi and Mel 2001; Behabadi and

Mel 2014; Mel et al. 2017; Cazé et al. 2013), and there are two commonalities with the model

proposed here: the neuron’s output is determined by multiple dendrites each having a set

of synaptic weights, and these dendritic weights can grow or shrink or shed. However, the

adaptive flavor of Mel’s model is different from the model proposed here primarily because (a)

it uses gradient descent with annealing to determine the dendritic weights, (b) the dendrites

do not compete to determine the neuron’s output, (c) the synaptic modification rule is driven

by derivatives and error signals, (d) synaptogenesis is not driven by missed detection errors,

and (e) the number of dendritic branches is fixed; i.e., there is no explicit dendritogenesis

rule driven by missed detection errors.

In what follows, Methods presents (i) the computationally local equations that define the

algorithm, (ii) the parameters that control the algorithm, and (iii) three different environ-

ments used to challenge the algorithm. These three differ in how a network encounters novel

inputs.

The Results demonstrate that the algorithm resists catastrophic interference, has a sig-

nificantly enhanced memory capacity for explicit as well as latent prototypes, and quantifies

the distinctions between learnable and unlearnable situations. Also the Results reveal that

the algorithm can unmix certain mixture distributions as it performs locally conditional but

unsupervised clustering of more than 50% overlapped feature vectors. Finally, the Results

produce empirical asymptotic stability results for the algorithm while also performing a par-

tial dissection of the algorithm’s two novel feature, dendritogenesis per se and cross dendritic

suppression (CDS). The point of this dissection is to show the critical role played by CDS

in creating stable connectivity.

The Discussion is rather interdisciplinary since it interprets the algorithm and the stable

connectivity of the developed dendrites and synapses from perspectives that include biology,

behavioral psychology, statistical inference, signal processing and machine learning.
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2. Methods

2.1. The network and updating equations

This section describes the dynamical equations for a layer of neurons that receive class

information (a class present signal vs no signal) and some form of a feature vector nominally

arriving just a little before the class-signal. The equations that modify the connections are (i)

modification of an existing synaptic strength, (ii) discarding a synapse here called shedding,

(iii) synaptogenesis, and (iv) formation of new perisomatic dendrites, i.e, dendritogenesis.

The network is single layer, feedforward with one inhibitory feedback interneuron medi-

ating a winner-take-all competition between primary neurons. There are as many neurons

as classes. Each neuron receives a class-specifying, binary {0, 1} signal. With training expe-

rience, these neurons acquire synaptic connections associated with the feature vector; these

synapses are restricted to excitatory. SAS (Baxter and Levy, 2019, 2020) controls the acqui-

sition of feature-input lines. CDS is a weakened version of spike-timing synaptic modification

(Levy and Steward, 1979, 1983). The full algorithm consists of (i) synaptogenesis (ii) asso-

ciative modification of existing synapses (iii) synaptic shedding (iv) dendritogenesis, and (iv)

cross-dendritic suppression (CDS) of synaptic modification In developing the full algorithm,

the minimum error-rate constraint is supplemented by adaptively implemented, stabilization

requirements.

In the spirit of making the catastrophic interference as hard to overcome as possible,

the number of decision-making neurons is minimized. That is, the number of supervised,

decision-making neurons exactly equals the number of classes that must be discriminated in

the problem set. In fact arising from the data sets used here, this number is either two or

three neurons (although the algorithm can always accept more than the minimum number).

The feature space input dimensions are either four dimensional (4-D), eight dimensional

(8-D), or 256 dimensional (256-D). The geometric structure of the feature vectors and the

structure of the learning problems that are themselves constructed from the prototypes of

the feature vectors are described as they are introduced in Results.

In what follows the phrase ’the algorithm’, and as well CD&SAS, refers to the full set of

dynamical equations and functions just outlined. This fundamental set is dendrite localized

modification of existing synapses with CDS (Eq 3), synaptogenesis (Eq 4 and 5), synaptic

shedding (Eq 6), and dendritogenesis (Eq 7 or its variant Eq 8).
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The accompanying table summarizes the parameter and variable notations.

To simplify notation, time is denominated in training trials but several computational

and communication events occur within one such timestep. Specifically, the input feature

vector x(t) generates a non-negative value within every dendrite, generically ydj(t). For

each neuron j, the largest one of these dendritic excitations is transmitted to a competition-

judging neuron. This interneuron determines which of the primary neurons j has the most

excited excited dendrite. The neuron with this largest ydj wins the competition and nominally

fires. That is, the interneuron sends an inhibitory signal tailored to inhibit all but the

winning primary neurons, and this winning neuron j produces a second positive output,

zj(t) = 1 while for all the losers zj(t) = 0 (see Discussion that presents a mechanism making

this dendritic competition local and thus neurally plausible). About the same time that

the feature-based competition ends, the class input signal, z∗k(t) = 1, is received by one

neuron; i.e, when k = j, z∗j (t) = 1 while for the other neuron(s) k 6= j, i.e., no class-signal

is received, i.e., z∗j (t) = 0. At this point, the various neural modification equations are

executed where permitted. The order of execution is (i) modification of existing synaptic

weights, (ii) shedding where dictated, (iii) dendritogenesis, and (iv) synaptogenesis. The

details are found in the dynamical equations that follow.
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Indices
i index for input lines, i = 1, 2, . . . , N
N number of feature vector input lines
j index for supervised neurons
k index for input pattern classes
Dj(t) the set of dendrites on neuron j at time t
d = dj index for dendrites on neuron j, d ∈ {1, 2, . . . , |Dj(t)|}
Inputs
x(t) input (exemplar) vector at time t
X random input vector, X = [X1, X2, . . . , Xi . . . XN ]T

E[Xi] expectation value of Xi, it theoretical average firing rate
z∗j (t) binary supervision signal for neuron j, z∗j (t) = 1 if k = j and 0 otherwise

Dendrite
Excitation
ydj(t) when positive, excitation value of dendrite d on neuron j at t
yj(t) excitation value of j equals its most excited dendrite ydj(t)1dmax

· (dj(t))
1dmax

(dj(t)) indicator function valuing to one when dj is the most excited dendrite of j
1(x) generic indicator (no subscript), 1(x) = 1 only if x > 0 otherwise 1(x) = 0

Neuron
Outputs
zj(t) ∈ {0, 1} output of neuron j after the competition or via simple thresholding

Connectivity
cidj(t) binary connectivity indicator between input line i and dendrite d on neuron j
widj(t) synaptic strength between input line i and dendrite d on neuron j
pidj(t) probability of forming a synapse between input line i and dendrite d on neuron j
γdj(t) pidj(t), but only if other conditions are true; see Eq (4)

Parameters
W0 initial (de novo) synaptic weight (0.1)
θw synaptic shedding threshold (0.005)
εw synaptic modification scaling factor (0.025 or 0.002)
θγ synaptogenesis and dendritogenesis threshold (0.05)
εγ synaptogenesis decrementing factor (0.05 or less; see Methods)
α missed detection rate constant (1.0 with one exception)

Table 1: Notation for variables and parameters

2.2. Dendritic excitation and neuron firing

To keep close to neocortical neurons, only excitatory input connections are permitted for

the inputs to the class supervised neurons. The excitation of dendrite d on neuron j at time

t, ydj(t), is the inner product of the input pattern (the exemplar x(t)) and the dendrite’s

synaptic weights divided by the sum of the dendrite’s weights, i.e.

ydj(t) =

 xT (t)wdj(t)/
∑

iwidj(t) if
∑

iwidj(t) > 0

0 otherwise
(1)
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2.3. Neuron and dendrite spike generation

In all cases, a feature based class prediction takes the form zj(t) = 1 when neuron j at

time t predicts the generator of its input is in class j. When zj(t) = 0, this is an implicit

prediction by j at t that the feature vector generator is out of class.

For the four dimensional XOR, deterministic problem sets, labeled 4-D, there is a shared

spike-threshold applicable to all dendrites. The threshold is selected so that only one dendrite

on each neuron can produce an output pulse (spike). As is true for the more general problem

sets, a dendritic spike in neuron j at time t implies neuron j produces an output spike,

zj(t) = 1.

More generally in what follows, a competitive mechanism is used to determine the most

excited dendrite. This neuron-specific dendritic competition precedes the neuron vs neuron

competition mediated by the interneuron. A local and biological interpretation of both

competitions is found in the Discussion. Here just the appropriate notation is introduced.

The most excited dendrite on neuron j is identified via 1dmax(dj(t)) valued one for that

dendrite and zero for the other dendrites of j. The excitation of this dendrite becomes j’s

excitation, yj(t). Of all the neurons, the neuron j with the largest yj produces an output

pulse, zj(t) = 1 while the other neurons have their output valued zero.

2.3.1. A comment on the notation used below.

When the indicator (characteristic) is used without a subscript, it means that any positive

value it operates on is valued one and any other value, zero or negative, is valued zero; in

notation, 1(u) = 1 only if u > 0, otherwise 1(u) = 0.

2.4. A missed detection is local information

All the problems here include a supervising class signal. Thus each neuron receives the

local information z∗j (t) = 1 when its class is present at time t and no signal, i.e., z∗j (t) = 0,

when its class is not present at time t. As a result this local supervising signal, there are

two local calculations that it is useful for each neuron to make: (i) 1(z∗j (t) − zj(t)), which

is a missed detection (MD) when evaluates as one and (ii) z∗j (t) · zj(t), which is a successful

prediction when evaluates to one.
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2.5. Cross dendritic suppression (CDS) alters the synaptic modification rules

The next few subsections describe the synaptic modification rules. Because the Results

examines the algorithm with and without CDS, some equations have two forms, one being

implemented when CDS is present and the other holding when CDS is absent.

2.6. Updating synaptic weights of existing connections

When there is no CDS, the class supervised synaptic weight modification rule for existing

connections is the previously implemented one from Baxter and Levy (2020),

wdj(t+ 1) = wdj(t) + εw(x(t)− E[X]−wdj(t))ydj(t)z
∗
j (t) (2)

and when CDS is operating, there is an additional multiplier,

wdj(t+ 1) = wdj(t) + εw(x(t)− E[X]−wdj(t))ydj(t)z
∗
j (t)1dmax(dj) (3)

where z∗j (t) and 1dmax(dj) are defined above. The addition of the 1dmax(dj) multiplier

limits weight modification to a single dendrite. Thus, this multiplier implements dendrite

selective modification at neuron j.

Additionally, note that this ∆w modification rule implies each widj(t) is bounded from

above since when Xi = 1, its largest value, ∆widj(t) < 1−widj(t). The shedding rule bounds

each synaptic weight from below.

2.7. Creation of a new synapse, synaptogenesis

With or without CDS, the probability that input line i makes a connection onto dendrite

d of neuron j is

pidj(t) = γdj(t)xi1(z∗j (t)− zj(t))(1− cidj(t)) (4)

In words: At time t, given that there is no connection from input line i to dendrite d of neuron

j, c(i, dj) = 0, then for there to be a positive probability, 0 < γdj ≤ 1, for the formation

of a new synapse from i to j, requires that the a presynaptic input, i, must be co-active,

with a missed detection by j; that is, there is the requirement for the joint event xi(t) = 1,

z∗j (t) = 1, and zj(t) = 0. Note that all dendrites of j are eligible for synaptogenesis.
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The factor γdj(t), for the particular dendrite d on neuron j, adapts as a function of a

dendrite’s successful detections. With each such success, it is decremented as

γdj(t+ 1) = γdj(t)(1− εγ · 1dmax(dj) · z∗j (t)zj(t)) (5)

Thus, whenever 1dmax(dj) · z∗j (t)zj(t) = 0, there is no change, i.e., γdj(t+ 1) = γdj(t).

In the event that 1dmax(dj) · z∗j (t)zj(t) = 1, i.e., a correct in-class prediction by d on j,

γdj(t) decreases,

γdj(t+ 1) = γdj(t) · (1− εγ).
We have investigated the effect of the rate of decrement, 1 − εγ, on performance with

values of 1− εγ ranging from 0.001 to 0.999; unless otherwise stated, εγ = 0.05.

The value of a de novo synapse is the same for all simulations presented here, W0 = 0.1

2.8. Shedding synaptic weights

Because of historical usage, arising from the decision to remove a synapse originates

postsynaptically, the term shedding — rather than pruning — is used (Levy and Desmond,

1985); viz, a tree sheds its leaves in the fall while the gardener, a force external to the

tree, prunes a tree’s limbs). After the synaptic weights are modified, the synaptic shedding

rule ensures that there are only positive weights since neocortical computation is dominated

by positive synapses that never convert to inhibitory synapses. The shedding threshold is

θw > 0. In notation and given that cidj(t− 1) = 1, the dynamic expression is

{cidj(t), widj(t)} =

 {0, 0} if widj(t) < θw

{1, widj(t)} otherwise
(6)

where cidj indicates whether or not there is a connection from input i to the dth dendrite of

neuron j. Note that, when present, CDS limits shedding to the maximally excited dendrite.

For all the simulations presented here θw = 0.005 is a constant.

2.9. Creation of a new dendrite, dendritogenesis

Dendritogenesis is the process of creating a new dendrite. The process is local to each

neuron and requires two conditions for its occurrence. Formally, define the dendritogenesis

event {0, 1} at time t as either

10
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ξj(t) = 1 (θγ − γδj(t))1
(
z∗j (t)− zj(t))

)
) (7)

which is predominant, but occasionally the variant

ξj(t) = 1 (θγ − γδj(t))1
(
ēMD
j (t)− θMD

)
(8)

with

ēMD
j (t+ 1) = ēMD

j (t) + α(1(z∗j (t)− zj(t))− ēMD
j (t)) (9)

Then dendritogenesis occurs when ēMD
j (t) > θMD where θMD is the preset error-threshold.

Recall from the above the γdj is a monotonically decreasing function so that when its

value drops below θγ, the first indicator function shifts from zero to one. Also, the term

1 (θγ − γδj(t)) refers to the most recently formed dendrite of j. Indeed, this dendritogenesis

equation guarantees that dendritic development is sequential; only one dendrite is added at

a time and the previously added dendrite is reasonably mature. The second term of the

equation tracks j’s missed detections. In it simplest form, a single missed detection at t is

enough for the indicator function to value one for just this one trial. The alternate form

investigated uses a moving average of errors.

Note when α = 1 the second version of synaptogenesis reverts to the first version. Most

simulations use α = 1 with the exception of

In two places α = 0.01, specifically sections 3.3.3 and 3.5.2.

A variety of values of θγ were investigated. In all the simulations here, the value is the

same θγ = 0.05.

2.9.1. Miscellaneous

In general empirical convergence is defined as 500 epochs with no change in the number of

connections. Under conditions that appear to prevent convergence, simulations are continued

for 3000 or sometimes 5000 epochs and then ended.

2.10. Inputs and Training methods

In addition to the class supervising signal, the inputs to the network are feature vectors,

each one defined by a class associated prototype.

11
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The are a variety of learning problems. They are referred to as problem sets. Different

problem sets consist of different groupings of prototypes and classes. These different prob-

lem sets are explained in the Results as they are introduced. To point out the significant

contribution this algorithm adds to a single neuron’s computational prowess, the learning

problems emphasize exclusive-or (XOR) input worlds as well as more complicated problems.

Except for the initial portion of Results, where the feature vectors are pure prototypes, the

prototypes are never seen by the network and are thus latent variables. The actual feature

vectors used as inputs, both for training and testing, are called exemplars. When proto-

types are latent, the exemplars are randomly perturbed versions of these prototypes. All

prototypes and exemplars are binary, {0, 1} vectors. Perturbations are of two types: (i)

occlusion, in which a specified fraction of a prototype’s positively valued dimensions are

complemented to zeros, and (ii) on-noise, in which a specified fraction of a prototype’s zeros

are complemented to ones.

There are three different training paradigms: concurrent, progressive, and segregated.

The number of exemplars presented during training is expressed as blocks of exemplars

called ’epochs’. An epoch consists of a pseudo-randomly mixture of exemplars generated

from a prescribed set of prototypes.

For concurrent training, all prototypes are present in each successive epoch of training.

Segregated training has multiple phases. In each phase, exemplars are based on a single,

novel prototype.

(a) 2|3|3

2|3|3 Prototypes Present
Phase Class 1 Class 2 Class 3

1 1 3 6
2 1,2 3,4 6,7
3 1,2 3,4,5 6,7,8

(b) 4|4

4|4 Prototypes Present
Phase Class 1 Class 2

1 1 5
2 1,2 5,6
3 1,2,3 5,6,7
4 1,2,3,4 5,6,7,8

(c) 2|6

2|6 Prototypes Present
Phase Class 1 Class 2

1 1 3
2 1,2 3,4
3 1,2 3,4,5
4 1,2 3,4,5,6
5 1,2 3,4,5,6,7
6 1,2 3,4,5,6,7,8

Table 2: Prototypes present in each phase for progressive training.

Progressive training is a little more complicated and is described here for the 8-D and

265-D inputs, each with their own eight prototypes. At each successive training phase, one

new prototype from each class is combined with the prototypes introduced previously. If a

12
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class is exhausted of its novel prototypes its prototypes continue into the next phase until all

prototypes of all classes are part of the, necessarily, final training phase. Table 2 visualizes

the progressive training scheme for three different problem sets: the three class 2|3|3 problem

set has three training phases; the two class 4|4 problem set has four phases; and the two

class 2|6 problem set has six training phases. In the table the successive training phases

begin at the top, with phase 1, and end at the bottom with the last training phase, which is

different for each problem set listed but is always characterized by introduction of prototype

eight. Note that each prototype is associated with one and only one class as indicated by

the visualization; nevertheless, as will be quantified in Results, the eight prototype severely

overlap.

The total number of training epochs is treated as a research variable in the convergence

section of Results, but minimally training continues until there are at least 500 or more

epochs with no connectivity changes.

In all cases, testing is performed with all modification equations inactivated.

13
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Term Description

model The collection of the all the equations governing the activities

of the dendrites, neurons, and their connections

network Input lines, dendrites, neurons, and their connections

SAS Supervised Adaptive Synaptogenesis including ∆w equation, synaptogenesis, and shedding

dendritogenesis the creation of a new dendrite

CDS Cross Dendritic Suppression of plasticity

DC&SAS Dendritogenesis, CDS and SAS; the full synaptic modification algorithm

non-functional dendrite a dendrite that never wins a max competition during testing

redundant dendrites two functional dendrites strongly excited by exemplars from one prototype

Training and Testing

Concurrent training procedure

Progressive training procedure

Segregated training procedure

trial a single input vector and ensuing update of all equations and network states

epoch one trial for each available prototype (varies by training procedure)

phase distinctive training epochs that define progressive and segregated training

XOR Exclusive OR problem

·|· or ·| · |· prototypes per class, 4|4, 2|6, 2|2|4 or 2|3|3
problem set XOR or, for 256-D, either 4|4, 2|6, 2|2|4 or 2|3|3
convergence criterion trials with no connection changes

Input Vectors

4-D, 8-D, 256-D feature set dimensions

prototype a {0, 1} feature vector that is associated with a single class, often a latent variable

exemplar a single input vector presented to the network during training or testing

prototype perturbation exemplar generation by randomly complementing a prototype

occlusion randomly complements a fraction of a prototype’s 1’s to 0’s

on-noise randomly complements a fraction of a prototype’s 0’s to a 1’s

10/20, 50/30, etc. occlusion fraction/on-noise fraction, e.g., 20/30 means

complementing 20% of 1’s and 30% of a prototype’s 0’s

Table 3: Glossary

The accompanying Table 3 presents idiosyncratic jargon and abbreviations used in de-

scribing the methods A
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3. Results

3.1. Fixed feature vectors: The prototypes are the exemplars

3.1.1. The network requires dendritogenesis to learn the 4-D XOR problem

The Results begins with our simplest XOR learning problem. The problem set to be

learned is four-dimensional instead of the classic two-dimensional (see Table 4), and of ne-

cessity, these are class supervised neurons that receive the appropriate class information,

z∗j ∈ {0, 1}, whenever an exemplar is selected during training as input to this two neuron

feedforward network. Although simple because of the required decision-boundaries, it still

challenging enough to prevent learning when there are a limited number of single dendrite

supervised neurons. Given these highly overlapped feature vectors (the prototypes of table

4 ), overwriting, i.e., catastrophic interference is inevitable under the current circumstances,

the current circumstances being no dendritogenesis and no extra reserve neurons. Thus we

start two neurons that suffer catastrophic interference. Thus, adaptive synaptogenesis alone

cannot solve the XOR problem under these circumstances

Pattern 4-D 2D Class

Number Vector Equivalent Label

1 0011 00 1

2 1100 11 1

3 0110 01 2

4 1001 10 2

Table 4: 4-D XOR codes and corresponding class

The different training methods succumb to the XOR problem in slightly different ways.

But in any event, the error-rates are about 50%; i.e., just the guessing rate. Moreover, with

concurrent training, synaptogenesis never stabilizes. With segregated training, the synapses

(connectivity and weights) stabilize but can only get the right answer for the last prototype

presented, the one prototype (per neuron) experienced at the end of training.

On the other hand instead of just supervised AS, enhancing the same two supervised

neurons with dendritogenesis and CDS, is enough to banish catastrophic interference. With

the full DC&SAS algorithm, each neuron develops a second dendrite, and because an appro-

priate connectivity also develops, one neuron for each class is sufficient to solve the learning
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problem. In particular each dendrite of each neuron’s pair develops the connectivity and

weights that exactly match just one of the four input vectors. Notably, such a within-class

dendritic pair is an orthogonal pairing in connectivity space. The functional weights (i.e.,

normalized in the calculation of y) go to 0.5. As a result, any threshold greater than 0.5 and

less than one allows the appropriate selective responding after training: Neuron one fires to

its two orthogonal inputs and does not fire to the other two inputs (feature vectors). Exactly

the same result is true for the other neuron and its class.

This learned, perfect performance applies to all three training paradigms, even segregated

learning, which, a priori, should be the most predisposed to catastrophic interference.

The immediate results to follow further illustrate this resistance to catastrophic inter-

ference but with more complex problem sets. Moreover, as a function of an exemplar’s

randomizations away from its parent prototype, the simulations (i) demonstrate the degree

to which these neurons can generalize while (ii) bounding the limits of learnability when

using the DCf&SAS supervised neuron. Following these results is a dissection of the algo-

rithm yielding a more detailed explication of why and how DC&SAS works. Finally, various

dynamical aspects of development are illustrated, including empirical convergences.

3.1.2. Harder problems: 8-D multiple XORS with two or three classes and with equal or unequal class prob-

abilities

A more interesting version of the XOR problem begins with a set of eight prototypes in

an eight dimensional binary space. The first column of Table 5 displays the eight {0, 1}8

prototypes, labeled p1 through p8. Here each prototype overlaps 50% with six of the seven

other prototypes.

For comparison purposes, Fig 1 illustrates the angles between every prototype pair. Each

60 degree angle is a fifty-percent overlap and the possibility of contradiction between such

a prototype pair. Note the much larger fraction of overlapping 8-D prototypes there are

compared to the previous 4-D XOR world. Of course, the closer the prototypes to each

other, the harder it is to separate them to different dendrites and still harder to separate

their perturbed exemplars.

Building problem-sets from eight prototypes allows greater complexity of the classes com-

pared to the previous four-prototype XOR version. These eight prototypes are configured
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Notation 4|4 2|6 2|3|3 2|2|4
Two Classes Two Classes Three Classes Three Classes

Prototype balanced unbalanced unbalanced unbalanced

Vector probability probability probability probability

p1 01010110 C1p1 C1p1 C1p1 C1p1

p2 10101001 C1p2 C1p2 C1p2 C1p2

p3 01100101 C1p3 C2p3 C2p3 C2p3

p4 10011010 C1p4 C2p4 C2p4 C2p4

p5 01011001 C2p5 C2p5 C2p5 C3p5

p6 10100110 C2p6 C2p6 C3p6 C3p6

p7 10010101 C2p7 C2p7 C3p7 C3p7

p8 01101010 C2p8 C2p8 C3p8 C3p8

Table 5: Prototypes and problem sets

into four learning problems via the number of prototypes per class. As Table 5 delineates,

the problem sets are (i) the well-balanced, two class, 4|4 problem; (ii) the rather imbalanced,

two class, 2|6 problem (one neuron has to learn six different prototypes); (iii) the three class

2|3|3 problem; and (iv) the three class 2|2|4 problem. Note how these problem sets extend

the XOR problem. For example, the 4|4 problem requires each neuron to learn not two but

four distinct XOR vectors. In the 2|6 problem the class-1 supervised neuron only needs to

learn a single XOR (2 prototypes); however, the class-2 supervised neuron must learn six

prototypes and do so in spite of the strong overlap across these six. which is in addition to

the overlap with the prototypes in the other class. The three class 2|3|3 and the 2|2|4 prob-

lem sets illustrate how one must, minimally, expand the network as the number of classes

increase. However, here to increase the chance opportunities for catastrophic interference, we

always require just the minimal number of neurons per class, i.e., one. Naturally, there can

be no less than one postsynaptic supervised neuron per class, so these three class problems

require three such neurons.
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(a) Angles between the 4-D Prototypes.

(b) Angles between 8-D Prototypes.

Figure 1: The 4-XOR problem vs the 8-D extended XOR has many more overlapping prototypes surrounding
each prototype. Thus the 8-D problem can fail in many more ways. In either problem set prototypes are
either 60 or 90 degrees apart, but in the 8-D case 86% of the prototypes are 60 degrees apart and only 14%
are 90 degrees apart. Each square indicates the angle between the two prototypes (in degrees).

All of these problem sets are unlearnable by single dendrite neurons operating under

supervised SAS alone.

On the other hand, endowing these class supervised neurons with the full algorithm

dendritogenesis, CDS and SAS, i.e., DC&SAS, overcomes catastrophic interference. For all

problem sets and all training methods, neurons and networks train to error-free performance.

The data in figure 2 relies on 10 simulations of each problem set, and these 10 simulations are

repeated for each of the three training paradigms. In every simulation, the single dendrite

neurons suffer catastrophic interference. On the other hand for every simulation over every

problem set, neurons equipped with the full algorithm, dendritogenesis combined with CDS

and the supervised adaptive synaptogenesis, are one hundred percent successful in obtaining

error-free performance to every prototype. The only differences over training type is that the

phased training methods create neurons which usually match the number of prototypes per

class while concurrent training tends to create neurons with just two dendrites. Regardless

of the developed neurons, with unperturbed prototype training and testing, the DC&SAS

algorithm uniformly obviates catastrophic interference.
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Figure 2: Denritogenesis avoids catastrophic interference for all four problem sets. Training uses the noise-
free eight dimensional prototype set associated as either: the 2|2|4 three-class problem; the 2,3,3 three-class
problem; the 4|4 two-class problem; or the 2|6 two-class problem. Regardless of the training method, single
dendrite neurons cannot solve this problem due to anti-Hebbian synaptic competition on this one dendrite.
With dendritogenesis and CDS, all four problems are solved perfectly no matter which of the three training
paradigms used, concurrent, progressive, or segregated. The number of supervised neurons corresponds to
the number of classes in any problem set. Each simulation is distinguished by a random number seed which
affects the random adaptive synaptogenesis and affects the within epoch orders of exemplar presentations.

3.2. Learning the prototypes as latent variables: generalization, abstraction, and the limits on robustness

Although the above low dimensional problems incontrovertibly demonstrate the utility of

DC&SAS, these noise-free problem sets do not require two of the most prized properties of

the neural paradigm, the abilities to conditionally cluster and to generalize. To demonstrate

these properties, the eight 8-D prototypes are extended to eight, 256 dimension (256-D) pro-

totypes that become latent variables via randomly perturbing them to create each training

or testing exemplar. Thus each single dimension of the eight dimensional space maps, with-

out overlap, its value to 32 dimensions of the 256 dimension space, but there still remains

just eight prototypes. Now however, via the exemplar generation method of randomized
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prototype perturbation, the prototypes are latent. That is, prototypes are never seen during

training or during testing when there is prototype perturbation.

The problem sets remain the same (4|4; 2|6; 2|3|3; 2|2|4) but now 128 dimensions of

each prototype are valued one and 128 dimensions are valued zero, nevertheless, the angles

between prototype pairs, but not exemplar pairs, remain the same. That is, the angles

between prototypes are just as in Fig 1b.

20/20 40/20 60/20

20/20 40/20 60/20

Figure 3: Visualizing representative exemplars as a function of fixed on-noise and varying the fractional
occlusion perturbation of prototypes. With fixed 20.3% on-noise, the three diagrams illustrate exemplars
constructed from successively greater occlusions: 20.3%, (20/20), 39.8%, (40/20), and 60.2%, (60/20). In
the top row, each checkerboard-like diagram contains 10, 256-D exemplars as column vectors for each of
the eight prototypes, thus 80 column vectors. Note how much more difficult it is to guess the underlying
prototypes as the fractional occlusion increases. For these {0, 1}256 vectors, white pixels correspond to a one
and a black pixel corresponds to zero. Randomizing the positions of the column vectors make it impossible
to identify a prototype at 60/40. Random shuffling of the top-row destroys perception of the different latent
prototypes. Each figure in the bottom row is created by randomizing the position of the column of the
corresponding figure just above.

Associated with each prototype are the exemplars it generates. Such exemplars are gen-
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erated, for training and testing, via two types of randomization: (i) random occlusion of

a prototype (a fixed fraction of the 128 one’s is randomly complemented to a zero) and

(ii) random on-noise (a fixed fraction of a prototype’s zero-valued dimensions is randomly

complemented to a one). For three such randomizations, the Figure 3 visualizes 80 column

vector exemplars, ten for each prototype. The top row places the sibling exemplars next to

each other while the bottom row randomizes exemplar positions, pointing out the difficulty

one has in perceiving the different sets of exemplars as randomizations increase. Three frac-

tional randomizations are shown. For simplicity, the occlusion perturbations are rounded.

For example 20.3% is denoted 20%. A white pixel corresponds to a one and a black pixel is

a zero. Note that with 60.3% occlusion and 20.3 % on-noise, designated 60/20 contains only

51 firing neurons from the prototype’s 128, while there are 27 non-prototype neurons being

turned on. In this labeling scheme occlusion fraction always precedes on-noise fraction.

For another visualization of perturbation effects on exemplars see Fig A.1.

As Fig 4 shows for progressive training, each of the four problem sets is learned with

zero errors for perturbations up to 30/20. As fractional occlusion increases beyond 30/20,

error-rates rise very slowly, until something greater than the 50/20 perturbation.

Figure 4: For progressive training, each of the four problem sets is learned with zero errors when the prototype
perturbations are 30/20. As occlusion increases beyond 30%, the error-rates rise slowly up to 50% and then
accelerate. Nevertheless, even with 60% occlusion the patterns are learnable to a significant extent with an
error-rate of about 10%. See Table 5 for the defined problem sets indicated by the inset legend. On noise is
20% throughout.α = 1; εw = 0.002; εγ = 0.05. Empirical stability criterion halts training at 500 consecutive
epochs with no connection changes, or if this does not occur (which is the case for larger perturbations), the
maximum training epochs is 3000.

Somewhere above this perturbation level, there is an acceleration of error-rate. Neverthe-

less, even the 60/20 perturbations are learnable to a significant extent with an error-rate of
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just less than 5%.

Fig 5, with its pair of figures, gives a fuller picture of the interaction between occlusion and

on-noise while limiting our attention to the 4|4 problem and progressive training. Quantita-

tively, fractional on-noise seems slightly less harmful to performance than random occlusion.

Comparing between types of randomization, both the 30/20 and 20/30 randomizations per-

form with no errors in ten out of ten simulations. However, performance deteriorates a little

faster for occlusion. Specifically, the 50/20 error-rate of 1.1% is more than double the 0.42%

error-rate when 20/50 prototype perturbations are used. Beyond these perturbation values,

performance deteriorates rapidly, although still below chances levels of 50% even for the

70/20 and 20/70 prototype perturbations.

(a) (b)

Figure 5: Perfect performance, i.e., error-rate zero, is sustained for up to 30% occlusion and 20% on-noise.
On-noise appears to be slightly less harmful to classification performance than occlusion. In any event,
occlusion and on-noise combine to make the task more difficult. The inset legend of the left graph indicates
the three fixed levels of on-noise and similarly for fractional occlusion for the graph on the left. The number
of complemented input lines for each fractional randomization of 10%, 20%, 30%, 40%, 50%, 60%, and 70%
corresponds to 13, 26, 38, 51, 64, 77, and 90, respectively. The progressive paradigm is used for all training.
Same parameter values as Fig 4

.

Two small calculations point out the satisfactory nature of this performance under the

perturbation procedure. Recall Fig 1b: Six out of seven prototypes share half their active

input-lines, i.e., they share 64 out of the 128 neurons valued one for each such pair. As in

the XOR problem, this fact alone creates a competitive situation between prototype pairs

or even among multiple prototypes. Further recall, a correct discrimination requires the

appropriate neuron to have a dendrite that produces the largest, ydj value. This desired
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maximum excitation must occur in spite of the inherent overlap of exemplars, and with

random perturbations this overlap can be extensive. Consider the extent to which the 50/20

and 20/60 perturbations can produce exemplars that are far from their parent-prototype.

It is even possible for such an exemplar to be even closer to a non-parent prototype than

its own parent. For example, the 50/20 complements 64 ones to zeros for an exemplar so

this portion of the perturbation by itself might generate an exemplar equally close to the

parent and non-parent, but then 20 percent of the parent’s zeros are complemented to ones

which implies the generated exemplar can end up much closer to a non-parent than a parent

prototype. A similar possibility exists for the 20/60 perturbation. That is, the on-noise

complements 77 zeros of the parent latent variable to ones which again, this perturbation

alone can move an exemplar closer to a non-parent latent variable. Moreover, this movement

toward a non-parent is only exacerbated by the 26 of the parent’s active input-lines being

complemented to off. Recall that for the 50/20 perturbations the error-rate is only about

1.1%.

Not surprisingly, error-rates are parameter sensitive. If one speeds up convergence by

raising εw by 12.5-fold, from 0.002 to 0.025, then the 50/20 error-rates increase about four-

fold. Nevertheless, with this larger εw and larger error-rates the qualitative shapes of the

curves and general conclusions of this section remain the same.

In sum, if zero error is required, then up to 30/20 or 20/30 randomizations can be tolerated

(even 30/30 perturbations are learnable to error-free performance; see below). If a maximum

of 5% error-rates are acceptable, then the acceptable learning occurs even when prototype

perturbations are as large as 60/20 and 20/60. Considering how far exemplars can range

away from parent prototypes in these later two cases, such a five percent error-rate is not at

all disappointing.

3.2.1. Progressive training is robust against unequal prototype probabilities

The results in previous subsections are based on equal prototype probabilities within a

class while the class probabilities are often unequal. Thus one way of varying prototype

probability has been examined. However there is another way to examine prototypes that

are not equally probable, i.e., within a class. Even in this case, the model can still learn and

produce error-free performance .

The data in Table 6 document the appropriate comparisons when, for each class, one of
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the four prototypes appears at one-tenth the frequency of the other prototypes in that class

(progressive training with 20/30 perturbations). There are two control training-conditions.

First, there is an equal frequency set of prototypes, designated 1,1,1,1. This is the standard

progressive paradigm with all prototypes equally probable although the prototypes are intro-

duced in the usual progressive manner. The second control, designated 1,10,10,10 introduces

the low probability prototypes (one for each class) in the first of the four phases of training.

Obviously, there is no within class competition going on during this first phase. However,

on every later phase, each of the pairs (one for each class) of low probability prototypes

is trained one-tenth as much as any other prototype in its class. Thus, in later phases, a

low probability prototype is associated with a smaller and smaller fraction of exemplars per

epoch; in the final phase of progressive training, such an exemplar occurs once out of the

31 exemplars (of its class) per epoch. The important training-challenge is the third set,

designated 10,10,10,1. In this case the low probability prototypes do not get trained until

the final phase of progressive training. Note that in each epoch of this last phase, there are

30 occurrences total for the three other prototypes of the same class for every single training

trial devoted to the low probability prototype.

Prototype Class Dendrites Connections D vs P? D vs D†

Occurrences Error Count/Nrn Count/Dendrite Max Min

per epoch per class Mean (SEM) Median Median Angle (deg) Angle (deg)

1, 1, 1, 1 0.00 (0.00) 4 102 28.8 62.7

1, 10, 10, 10 0.00 (0.00) 4 102 29.0 62.8

10, 10, 10, 1 0.00 (0.00) 4 102 28.7 62.9
? every dendrite against every prototype † all six dendritic pairs

Table 6: Classification error and connectivity are unaffected by unequal prototype probabilities with
progressive training. The mean and standard error of the mean are provided for the class error. The
dendrite and connection counts are median values rounded up to the nearest integer and were the same
across all dendrites and neurons. “Max Angle D-P” is the maximum angle between dendrites and their
preferred prototype across all dendrites, both neurons, and 10 simulations; “Min Angle D-D” is the
minimum angle between dendrites across all dendrite pairs (six pairs per neuron), both neurons, and
10 simulations. Dataset: 8, 256D, nonorthogonal patterns, 4 prototypes per class, 30% ON noise and 20%
Occlusion. ( α = 1, εw = 0.025, εγ = 0.05, and convergence criterion 500 trials.)

Notably all three variants of the progressive training paradigm result in 10 out of 10

simulations with perfect, error-free performance. Moreover, as indicated by the numbers in

the table, there are no notable differences between the neurons that develop in each of the
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paradigms. These comparisons include number of dendrites per neuron, number of synapse

per dendrite, angle between the low probability prototype and the dendrite that recognizes

its this prototype’s exemplars (‘Max Angle D-P”), and finally, there is no meaningful dif-

ference across angles generated by dendritic pairs (“Min Angle D-D”). The results can be

compared to other results presented previously and to be presented further below. In sum,

the imbalanced relative frequency of 10:1 is well tolerated.

It is worth pointing out that the best settings used here for concurrent training are

different than the settings for the progressive training paradigms. Also, as will be described

later, the nature of concurrent developed neurons can be altered with changes of certain

parameters. For concurrent training, the value of εγ is decreased from 0.05 of phased training

to 0.03. Then concurrent training yields zero error performance even when there are the two

low probability prototypes. Notably, with this parameterization, neurons are producing zero

errors with only two dendrites per neuron.

There is no need to test segregated training as it never simultaneously trains with exem-

plars from different prototypes.

3.3. Resistance to catastrophic interference across two tasks

There are many recent algorithms that resist catastrophic interference (Grossberg, 1976;

Carpenter and Grossberg, 1987; Carpenter et al., 1991; McCloskey and Cohen, 1989; French,

1991, 1999; McClelland et al., 1995; Kirkpatrick et al., 2017; Zenke et al., 2017; Masse et al.,

2018; Limbacher and Legenstein, 2020; Delange et al., 2021). Some of these papers go beyond

taxing the memory limits by explicitly creating inputs that will overwrite, and here such

overwriting of previously stored memories is conceivable given the possibility of shedding

and severe weight modifications. One particular method that encourages overwriting first

trains on one set of prototypes (task 1) and then permutes each prototype vector and then

trains again (task 2). That is, each class specific neuron must learn a new but related

prototype. For example, in the case of images, the ordering of pixels are permuted. Thus

the memory attack requires remembering two types of inputs, the original unpermuted input

vectors and the permuted input vectors.

Using εw = 0.025, εg = 0.05, and α = 1, this method was applied to the eight, 256-

D prototypes for the 4|4 problem without random perturbation (task 1) and trained with

20/30 exemplars (task 2). The network is progressively trained on task 1 for 1000 epochs
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and then the network was concurrently trained on task 2 for an additional 1000 epochs.

Testing was performed on a different set of 800 unpermuted test patterns, and then on

another set of 800 permuted test patterns. Without randomization, there were no errors on

both the unpermuted and permuted test sets; with 20/30 randomization, the mean error on

the unpermuted test set was 0.34% (with a standard error from the mean of 0.072) and the

mean error on the permuted test set was 0.30% (0.092). Thus, the total mean test error

across the two tasks was below one percent, i.e., 0.64% implying that the two-task problem

is successfully encoded and overwriting is avoided.

3.3.1. Further observations on the limits of generalization and robustness

As already noted, the ability to abstract and generalize typifies the neural paradigm, and

as earlier prototype perturbation results indicate, the full algorithm, DC&SAS, leaves this

desirable property intact. This subsection explores perturbation effects in an arguably more

systematic way. That is, we quantify the ability to generalize by training with a fixed 20/20

perturbation and then testing under different amounts of prototype perturbations. (Recall

earlier, that training and testing perturbations where altered in parallel).

Figure 6: One measure of generalization is how much classification performance resists degradation with
increased occlusion or increased on-noise during testing. This graph shows that classification performance
is resistant to approximately twice the amount of occlusion or twice the amount of on-noise during testing.
All training is concurrent with 20% occlusion and 20% on-noise. During testing one of these randomizations
(occlusion or on-noise) remains fixed at 20% while the other randomization is systematically varied. α =
1; εw = 0.025; εγ = 0.05; stability criterion is 800 epochs without a connection change.

Again we study the 4|4 problem with equiprobable prototypes All training exemplars are
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generated by 20/20 perturbations. During testing either one of these randomizations (either

occlusion or on-noise) stays fixed at 20% while the other randomization is systematically

varied. Figure 6 shows the resulting learned performance when concurrent training is used.

The two different randomizations varied during testing produce error curves that are qualita-

tively similar. Quantitatively, fractional occlusion during testing is slightly more deleterious

to performance than the same value of fractional on-noise during testing. Importantly for

either type of randomization, 40/20 and 20/40, error-rates are well under one percent. More

pointedly, with the differing perturbations during training vs at test, there is an absolute

guarantee that the exemplars with the higher on-noise during testing are well beyond the

cluster of exemplars experience during training. Similarly for high occlusion levels, there is

a guarantee that testing exemplars, whose signals are remote from the training exemplars,

can fall into a subspace of active input-lines equally shared by exemplars generated from two

different prototypes.

Figure 7: Progressive training at 20/20 produces better generalization than concurrent training at 20/20.
Generalization is judged by testing at occlusions greater than 20%. The two-dendrites per neuron of con-
current training do not generalize as well as the four-dendrites per neuron the develop with progressive
training. The superior ability to generalize when using progressive training is barely noticeable at prototype
perturbation of 40/20 but is easily seen at higher levels of occlusion. The concurrent data are a replotting
of data from the previous figure. Same parameterizations as this previous figure, Fig 6. .

While on the topic of generalization, one might ask if the four dendrite solution pro-

duced by progressive training to the 4|4 problem is superior to a two dendrite per neuron

solution produced by concurrent training as occur using our standard parameterizations.
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To help answer this question, one compares concurrently trained networks with their po-

tentially zero-error, two functional dendrites per neuron solution to progressively trained

networks with their potentially zero-error, four dendrite per neuron solution. In fact when

faced with higher perturbations during testing, progressively trained simulations, which pro-

duce the four dendrite per neuron solution, yield better performance compared to concurrent

training, with its two functional dendrites per neurons. Fig 7 compares two networks, one

progressively trained vs another concurrently trained; both training styles used 20/20 pro-

totype perturbations. The testing challenged each of the two developed networks at larger

occlusion values than used during training (replicated in 10 simulations for each training

paradigm). Progressive training is superior with nearly error-free at 50/20 testing, 0.14%,

while with concurrent training testing at 50/20 produces a larger, 2.56% error-rate. More-

over, this difference of error-rates grows as fractional occlusion during testing increases.

The next result continues with the question of performance generalization, in particular,

when testing perturbations differ from training perturbation. For the first such comparison,

Fig 8 replots the test-data of the progressively trained networks of Fig 7. These replotted

data (the dashed line) serve as a baseline for comparing the effect of training and testing with

the same perturbations at both stages. (Note differences from the previous figure, the y-axis

scaling and the extension to 70% occlusion, which is not plotted in the earlier figure.) Begin-

ning at the 40/20, the deleterious effect of larger training perturbations appears, and this de-

terioration of performance accelerates with greater prototype perturbations during training.

The specific percent error-rates for sequential occlusion values of {40, 50, 60, 70} percent are

{0 vs 2.5, 0.1 vs 4.8, 3.5 vs 14.1, 30.1 vs 45.7, }, fixed 20/20 training vs perturbation-matched

training and testing, respectively..
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Figure 8: Training with greater prototype perturbations does not help generalization. Occlusion during
training, not during testing, tends to impose a stronger limitation on the classification accuracy. This graph
compares using the same occlusion for training and testing against using a fixed 20% occlusion for training
and varying the test occlusion. Beyond 30% occlusion, using the same occlusion for training and testing
results in higher error-rates and thus poorer generalization. The patterns were based on the nonorthogonal,
256-D prototypes with four prototypes per class (4,4) and progressive training. Same parameterizations as
Fig 6.

These comparisons call for a full comparison of training perturbation vs testing perturba-

tion effects, especially a comparison that addresses the interaction effect directly. To examine

the interaction effects the simulations are performed near the boundary of zero vs non-zero

error-rates.

Table 7’s contingency table confirms the super-additive effect of training and testing at a

prototype perturbation larger than 30/20. Here 50/20 perturbations are used. The predicted

error-rate from an additive effect is 0.08 + 0.19 = 0.27% while the actual error rate is 1.05%.

Thus the actual error-rate of 1.05 is about four times the error-rate of a purely additive

effect.

These four different types of simulations with altered parameter settings of εw−0.025 and

800 training epochs yields the super-additive effect except with higher error rates including

50/20 train 30/20 test having a higher error rate than 30/20 train and test.

To summarize this section, we hypothesize that (i) DC&SAS is as capable of generalization

as any other neural paradigm that encodes pairwise statistics in its synaptic weights, that (ii)

progressive training with its four-dendrite solution produces a more robust result compared

to concurrent training with its two functional dendrite solutions; and finally in the case of
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Test

Train
30/20 50/20

30/20 0.06%
(0.06%)

0.08%
(0.05%)

50/20 0.19%
(0.13%)

1.05%
(0.14%)

Table 7: Super-additive effect on error-rate when both training and testing exemplars are 50/20 prototype
perturbations. Progressive training for 3000 epochs. εw = 0.002; εγ = 0.05; α = 1.

occlusive randomization (iii) training at higher perturbations does not prepare the developed

network for testing at these same higher perturbations.

3.4. Why does DC&SAS work?

Due to the highly overlapped nature of the feature vectors associated with different classes,

the discrimination problems here require non-linear separations for error-free performance.

A multiple dendrite allowance per neuron provides at least the possibility of such error-

free performance. However, multiple dendrites per neuron is often not enough to guarantee

such performance. In many situations, there needs to be a developmental mechanism that

encourages a distinctively different connectivity for the dendrites of a single neurons. In this

regard, CDS is a critical part of the developmental algorithm.

Before literally dissecting the DC&SAS algorithm, this section first quantifies the dis-

tinctiveness of the different dendritic connectivities. In the cases when there is a dendrite

for every prototype, this quantification suggests conceptualizing each dendrite’s converged

synaptic weight vector as its estimate of one particular prototype. In the cases where train-

ing uses a moderate amount of random prototype perturbations, each dendrite is learning

a conditional approximation of a cluster center, and this dendritic weight vector is most

strongly excited by the exemplars of one particular, latent prototype. That is, each such

cluster center reflects the one prototype that a particular dendrite recognizes. Moreover, as

the number of prototypes per class increases, the number of dendrites per relevant neuron

tends to increase.
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3.4.1. What are the dendrites learning when the prototypes are not latent?

The answer to this question can be simple, but only for the simplest problem set. In the

case of the 4-D XOR problem set, the two class-supervised neurons each end up with two

dendrites. For each neuron, the dendritic pair is an orthogonal set. That is, each dendrite of

one neuron acquires two of the four possible synaptic connections, and these two connections

are totally different for each dendrite of one neuron. Thus the angle between dendrites of

one neuron is ninety degrees.

In the case of progressive and segregated training, the 8-D problem sets are also easily

interpreted since dendrites match prototypes. However in terms of dendrites vs prototypes,

with concurrent training there is a wider variety of zero-error solutions with many dendrites

recognizing two prototypes.

In contrast to this simplest example, there is more complexity to the learned solutions

for the 8-D problem sets. Challenging the algorithm with the noise-free 8-D problem sets

can lead to a variety of solutions. The solutions vary with the problem set and the training

method. In general, for progressive and for segregated training, there is a consistent tendency

to develop more dendrites on a neuron when there are more prototypes to be learned by that

neuron.

3.4.2. What are the dendrites learning when the prototypes are latent?

Depending on the training style (concurrent vs either of the two phased methods) and

depending on parameters setting (εw and εγ), there are some quantitative differences in the

dendrites that form when exemplars are randomly perturbed versions of the 256-D proto-

types. However, there is, arguably, one particular type of result that is of greatest interest,

and this is where we start. Later parts of this subsection describe results that differ quanti-

tatively from the result we find most engaging.

3.4.3. DC&SAS can selectively encode each latent variable with one and only one dendrite

When using progressive or segregated training, there are a wide range of parameter set-

tings that create one and only one dendrite matched to every prototype for 30/20 and 20/30

perturbations. For example in the case of progressive training, 0.002 ≤ εw ≤ 0.05 and

0.001 ≤ εγ ≤ 0.05.
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Prototypes Median Dendrites Median Connections

per Class per Neuron per Dendrite per Neuron

2|2|4 2; 2; 4 90

2|3|3 2; 3; 3 90

4|4 4; 4 90

2|6 2; 6 90

progressive training; 30/20; εw = 0.002; εγ = 0.05

Table 8: Dendrites match prototypes for each class, 30/20 prototype perturbations

Table 8 summarizes a result for progressive training on all four problem sets with exem-

plars formed through 30/20 perturbations with εw = 0.002 and εγ = 0.05. For each of the

four problem sets, performance is perfect, zero-errors for ten out of ten simulations.

Prototypes Median Dendrites Median Connections

per Class per Neuron per Dendrite per Neuron

Progressive Training 20/30

2|2|4 2; 2; 4 All 102

4|4 4; 4 All 102

2|6 2; 6 All 102

Segregated Training 20/30

2|2|4 2; 2; 4 All 102

4|4 4; 4 All 102

2|6 2; 6 {103, 102};{102, 102; 102, 102, 102, 102}

Table 9: Dendrites match prototypes for each class, 20/30 prototype perturbations

For a little variety, the perturbations are changed to 20/30 and similar results are obtained,

Table 9 using εw = 0.002 and εγ = 0.05. Again performance is perfect for all simulations (10

out 10 for each problem set and each type of training), and again, each dendrite matches

one of the latent prototypes.

Regarding the noted training dependence of the dendrite matching prototype develop-

ment, the two-dendrite solution that the standard settings produce when using concurrent

training can be altered to a four-dendrite per neuron solution. In particular, such a re-

sult is accomplished by substantially speeding up synaptogenesis via εγ = 0.999 instead of

εγ = 0.05 backed up by a reduced γdj(t) decrement factor, 0.001 instead of 0.95, plus using

an average missed-detection signal via α = 0.01 instead of 1.0. With these new parameters

concurrent training finds an error-free, typically four-dendrite per neuron solutions instead

of a two-dendrite per neuron solution to the 4|4 20/30 and 30/20 problems. Quantitatively

the new parameter settings yield the four-dendrite solution 80% of the time, and with such
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four-dendrite per neuron developments, each dendrite is recognizing one and only one pro-

totype.

These results justify the idea that dendrites are learning conditional cluster centers. In

the case of progressive and segregated training with moderate prototype perturbations, each

cluster center is a mildly perturbed version of a single prototype. In the case of concurrent

training with the typical parameter settings, there is a strong tendency to merge a pair of

underlying cluster centers. As part of this merging, a smaller fraction, compared to phased

training, of each prototype is combined to create such a merger of cluster centers.

3.4.4. Quantifying dendrites as cluster centers

(a) (b)

Figure 9: The angles between dendrites nearly match the angles between prototypes (compare to Figure 1b).
The 90 deg angles are reproduced while the dendritric pairs are at a slightly greater angle to each other
than the prototype pairs of 60 deg. Each square indicates the angle between two dendrites on the same
neuron. Dataset: nonorthogonal, 256-D patterns based on 4 prototypes in each of two classes (4,4) with
20/30 prototype perturbations. Progressive training. (εw = 0.025; εγ = 0.05; α = 1.)

This remarkable result, unmixing of all the conditional mixture distributions, deserves

further quantification. This section quantifies all the dendritic pairs and dendrite-prototypes

pairs for the 4|4 and the 2|6 problems using 20/30 perturbed prototypes.

First the dendrite-to-dendrite comparisons are made for these two problems. These fig-

ures, Fig 9 and Fig 10b, resemble the earlier Fig 1b that compares all pairs of prototype
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angles for the 256-D generating set. Through this comparison, we see that the dendrites are

packed about as tightly as the original prototypes. Of course the diagonals match but so

do the orthogonal comparisons. The only quantitative difference is that the dendrites are

slightly farther apart, for the 4|4 problem ca. 67 degrees for the dendrites and for the 2|6
problem ca. 68 degrees, compared to the 60 degrees of the prototype pairings. The reason

for this difference is that the dendrites have only 102 inputs each, a proper subspace of the

128 positively valued dimensions of the prototypes.

(a) (b)

Figure 10: Just as in the previous 4|4 problem, the 2|6 problem produces dendritic pairs with slightly greater
angles (where possible) than prototype pairs. Once again these angles should be compared to Figure 1b.
Each square indicates the angle between two dendrites on the same neuron. Dataset: nonorthogonal, 256-D
prototypes, (2,6) with 20/30. Progressive training. (εw = 0.025; εγ = 0.05; α = 1.)

Having seen these dendritic angles, the dendrite-to-prototype angles of Figs 11 and 10 will

not be surprising. The 90 degree angles match up to the prototype-against-prototype angles.

The angles on the diagonals of Figs 9 and 10 are positive rather than zero because there are

102 connections per dendrite while each prototype has 128 dimensions valued one. For the

same reason, the angles that are sixty degrees for the prototype-to-prototype comparisons

are again slightly larger for the corresponding dendrite-to-prototype comparisons, about 64

degrees.

Thus the simulations show that each dendrite points to a subspace belonging to just one
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of the latent prototypes when trained with exemplars of moderately perturbed prototypes.

To say it another way, each dendrite’s input set is a proper subset of the {xi = 1}’s defining

one and only one prototype.

(a)

(b)

Figure 11: Each dendrite points towards just one prototype, 28.1 deg, and away from the others, 63 deg. A
dendrite fails to point exactly in the direction of its prototype because each dendrite has, on average, 102 of
the prototype’s 128 one-valued dimensions. Up to some small amount of randomness, for the same reason
the angle between one dendrite and its non-recognized prototypes is slightly greater than the 60 deg between
most prototypes. Progressive training on the 4|4 problem with 20/30 prototype perturbation; εw = 0.025;
εγ = 0.05; α = 1.
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(a)

(b)

Figure 12: As in the previous figure each dendrite points more towards one prototype than any other, this
time for the 2|6 problem. Progressive training, prototype perturbations (εw = 0.025; εγ = 0.05; α = 1.)

The size of this proper subspace is under parametric control of γdj(0), the initial rate of

synaptogenesis where permitted. Table 10 quantifies this, nearly linear, control. Decreasing

γdj(0), decreases connections per dendrite up to the point that error-free performance can

barely be sustained. For example, lowering the initial rate of synaptogenesis by 40%, γdj(0) =

0.6, produces a 38% reduction in connections, and the angle between a dendrite and its

favored prototype increases to ca. 45 degrees. Given that most prototypes themselves

overlap fifty percent, it is not at all surprising that error-free performance is lost when

γdj(0) = 0.5. At this parameter value the developed connectivity becomes even sparser than
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64 connections out of the 128 possible when single prototype exclusivity is maintained by a

dendrite.

Class Error Dendrite Counts Median Connection Counts Reduction

per dendrite from 102

γdj(0) % Neuron 1 Neuron 2 Neuron 1 Neuron 2 %

1.0 0.00 4 4 102 102 102 102 102 102 102 102

0.9 0.00 4 4 94 93 91 92 89 92 93 90 10

0.8 0.00 4 4 83 85 82 83 79 83 82 81 19

0.7 0.00 4 4 74 76 72 70 69 71 71 72 30

0.6 0.01 4 4 62 68 62 67 58 62 64 64 38

Table 10: Reducing the initial synaptogenesis rate parameter, γdj(0), reduces connectivity. Progressive
training; 4|4 problem set; 20/30 prototype perturbations. At γdj(0) ≥ 0.7 all simulations produce exactly
four dendrites per neuron. At γdj(0) = 0.6 eight simulations produced four dendrites per neuron but two
out of ten simulations developed redundant dendrites. εw = 0.025; εγ = 0.05; α = 1. Stability criterion 500
continuous epochs of fixed connectivity; median total epochs of training ca. 1300.

The desirable amount of connectivity depends on ones preferences. More connections, up

to the 128 defining features of one prototype, will provide greater resistance to prototype

perturbations during testing. On the other hand, more connections imply greater energy

use, and thus a lower energy efficiency under many modest prototype perturbations .

3.4.5. With large perturbations not all dendrites identify just one prototype

As seen above (Table 7), the effect of prototype perturbations during training alone can

contribute more to errors than the same perturbations selective to just testing. To under-

stand the structural effects of larger prototype perturbations during training, this section

examines dendrites and number of connections per dendrite at rates of perturbation that

include but go beyond 20/30 and 30/20. Above these moderate rates of perturbations, there

are structural correlates associated with the onset of a positive error-rate. The most con-

sistent result is the tendency to produce fewer functional dendrites per neuron and more

non-functional dendrites.

Fig13 displays the results across perturbation levels during training. At 30/20 or 20/30

and below, neurons reliably appear with four dendrites, one for each prototype. Beginning

at 40/20 and 20/40 prototype perturbations, this number of functional dendrites-per-neuron

drops. Slightly more than half the neurons have fewer than four dendrites, and by 50/20 and
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20/50, many more than half the neurons have less than four functional dendrites. Neverthe-

less error-rates under such perturbations are near or below 1% (Fig 5). Such low error-rates

imply that at least one of the three functional dendrites on each neuron is recognizing ex-

emplars from two different prototypes.

Figure 13: Larger prototype perturbations, associated with non-zero error-rate, lead to fewer dendrites per
neuron but more synapses per dendrite. Four dendrites per neuron, one per prototype, dominate from
0% through 30% prototype perturbations. At 40% or greater perturbations, the three dendrite per neuron
dominates. At occlusions greater than 40%, there is a strong trend for increased connections per dendrite.
With 40/60 or 60/40 perturbations, the median synapse count per dendrite is about the same. The median
are over 10 simulations, that is, 20 neurons. Progressive training on the 4|4 problem set. (α = 1; εw = 0.002;
εγ = 0.05. Empirical stability criterion halts training at 500 epochs with no connection changes, or if this
does not occur (which is the case for larger perturbations), the maximum training epochs is 3000.)

To confirm and better define the boundary of reliable four dendrite-per-neuron solutions

vs three or less, simulations for the 4|4 problem with progressive training are examined at

30/30 perturbations (εw = 0.002; εγ = 0.05; α = 1). Typically, training for 800 epochs is

required to achieve the 500 epoch stability criterion. Error-free performance is nearly always

obtained under 30/30 perturbations (train and test), with an the average error-rate of 0.29%

over twenty simulations (40 neurons). However, the number of functional dendrites per

neuron is sometimes four but most of the time it is three, with one or more non-functional

dendrites per neuron. Once again, the very small error rate along with fewer than four

functional dendrites per neuron implies that some single dendrites are reliably recognizing

exemplars from two different prototypes.

Regarding connection counts per dendrite at 30/20 and smaller occlusions, there is the

systematic relationship connection counts equals 128 times the quantity one minus occlusion
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fraction. In the case of varying on-noise at 20/30 or below, connections counts are essentially

constant at 128× (1−0.2) ≈ 102. For the larger perturbations (but below 70/20 and 20/70)

with the small but positive possibility of an error, the median number of connections per

functional dendrite approaches or reaches the full prototype matching value of 128.

(a)

(b)

Figure 14: The 20/50 prototype perturbations during progressive training produces neurons with three
functional dendrites. This representative simulation has an error-rate of 1.96% nearly an exact match of
the 2% rate averaged over all ten simulation. Note the dendrites doing double-duty for discrimination,
dendrite three of neuron one, which recognizes prototypes two and three, and dendrite two of neuron two,
which recognizes prototypes six and seven. The numbering of dendrites takes into account non-functional
dendrites. εw = 0.002; εγ = 0.05; α = 1, Training for 3000 epochs.

To get a better idea about those dendrites doing double-duty relative to prototypes being

discriminated, let us look at the angles between dendrites and prototypes for a representative

simulation. The angles of Fig 14, which is the outcome of 20/50 training, should be compared

to those of Fig 11, which is the outcome of 20/30 training on the same 4|4 problem. The

first thing one notices is that the two neurons of Fig 11 have four dendrites each while each
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of the two neurons of Fig 14 have just three dendrites.

In Fig 14, it is easy to find the dendrites doing double-duty. On neuron one, note that

functional dendrite three has an angle of 45.0 degrees relative to prototype two and an angle

of 45.1 degrees relative to prototype three and no smaller angle. Similarly on neuron two,

functional dendrite three is doing double duty. This time the two poorly but still, nearly

always, successfully discriminated prototypes are six and eight again with ca. 45 degree

angles relative to each of the two prototypes.

Another way to view the effects of prototype perturbations on development is to com-

pare minimum angles between dendrites, particularly between dendrites of different neurons,

which comparisons predict discrimination errors. With increasing perturbation, these angles

decrease. The effect is particularly dramatic for occlusive perturbations; see Fig A.2.

In sum, the larger prototype perturbations do not just alter dendritic angles but lead to

the development of fewer functional dendrites. With fewer dendrites than prototypes, the

excitations provided by dendrites doing double-duty will be weaker than when a dendrite is

just pointing at a large fraction of the subspace of just one prototype.

Having quantified the kinds of neurons that the algorithm builds in response to its training

experience, it is time to get a better understanding just how the algorithm builds these

dendrites, in particular, the role played by CDS.

3.5. Dissecting the algorithm shows that Cross Dendritic Suppression is critical for robust performance

As the initial data of Results point out, dendritogenesis can protect against catastrophic

interference. However, as the data just below demonstrate, dendritogenesis without CDS is

often useless or nearly so. In particular when training with perturbed prototypes, (i) CDS

is a necessary partner, working along with dendritogenesis, to obtain the simulations with

perfect, error-free performance; and (ii) CDS is necessary for fully stabilized connectivity.

Table 11 presents a quick characterization of error-rates and time to stabilize with and

without CDS for both concurrent and progressive training on the 4|4 problem with 20/30

perturbations. CDS improves both error-rates and appears necessary for empirical conver-

gence.

Concurrent training without CDS never attains a low error-rate and never stabilizes.

Progressive training error-rates without CDS are imperfect but attain a possibly acceptable

of 5.6% error-rate after 800 epochs. However, this error-rate is a function of training duration.
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As examined in one simulation, stopping just around epoch 400 yields a 1.0% error-rate but

this error-rate quickly increases with more training, {5.6, 6.6, 18.6} percent errors at the

end of training epochs 800, 1600, and 3600, respectively. Halting the simulation at epoch

3600, produces an error-rate of 18.6%. Correlated with this increasing error-rates is a decline

in connections for the functional dendrites. Also on-going during this prolonged training is

the formation of many non-functional dendrites.

CONCURRENT PROGRESSIVE
ERROR STABILITY EXTRA ERROR STABILITY EXTRA
RATE ONSET DENDRITES RATE ONSET DENDRITES

(%) (epochs) per neuron (%) (epochs) per neuron
Without CDS 13.1 NEVER 2.5 10.6 NEVER 2.75

With CDS 0.0 261 0.0 0.0 337 0.0
median values across 10 simulations

Table 11: Error, stability onset, and extra dendrite counts with and without CDS. Without CDS, error rates
increase with additional training. 4|4 problem set. 20/30 prototype perturbations. α = 1.

When CDS is included in the simulations, the error-rate improves all the way to perfect

performance for both training paradigms. Similarly with CDS present, the training time

to best error-rate shortens, and there is empirical stabilization of errors and stabilization of

connectivity.

Using the 4|4 problem with 20/30 prototype perturbations, Table 12 presents a much

more detailed comparison that substantiates the importance of CDS. Not only does this

table present simulations without vs with CDS, but using the retrospective trick of endowing

neurons with the exact number of dendrites usually found under the full algorithm, one can

actually compare without vs with dendritogenesis. (In this table’s left-hand column the

letter D=dendritogenesis and the presence of CDS is indicated by the letter C; DC&SAS =

Dendritogenesis (without dendritogenesis, each neuron had four dendrites);

Conc = Concurrent training; Prog = Progressive training.)
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Paradigm Training Error (%) Comments

Without CDS

8D exemplar=ptototype

SAS-only Conc 50.0 redundant dendrites

SAS-only Prog 50.0 redundant dendrites

D&SAS Conc 0.0 2 & 3-dendrite solutions

D&SAS Prog 0.0 3 & 4-dendrite solutions

256D 20/30 prototype perturbations

SAS-only Conc 50.4 redundant dendrites

SAS-only Prog 50.6 redundant dendrites

D&SAS Conc 13.6 unused & redundant dendrites

D&SAS Prog 10.7 unused & redundant dendrites

With CDS

8D exemplar=ptototype

C&SAS Conc 0.0 2, 3 & 4-dendrite solutions, unused dendrites

C&SAS Prog 0.0 2, 3 & 4-dendrite solutions, unused dendrites

DC&SAS Conc 0.0 2-dendrite solution

DC&SAS Prog 0.0 2, 3 & 4-dendrite solutions

256D 20/30 prototype perturbations

C&SAS Conc 0.0 2 & 3-dendrite solutions, unused dendrites

C&SAS Prog 0.0 2 & 3-dendrite solutions, unused dendrites

DC&SAS Conc 0.0 2 & 3-dendrite solutions, unused dendrites

DC&SAS Prog 0.0 4-dendrite solution

unused dendrites := did not win the competition during testing
redundant dendrites := represents the same prototype as another dendrite

Table 12: 4|4 problem set. C=CDS. D=dendritogenesis. When no D, then four dendrites per neuron
ab initio. α = 1.

Jumping into the very bottom of the table, one sees that the full algorithm gives the

best performance (compare the bottom two rows to entries above them). In addition to

error-based performance, the most consistent neuron constructions require CDS. That is,

the number of dendrites is the same – 10 out of 10 simulations – both for concurrent, with

its two or three-dendrite solution and for progressive training, with its four dendrite solution.

Just above these bottom two rows are results produced without dendritogenesis but using

neurons endowed, ab initio, with four dendrites. Here too, error-free performance obtains,

but only if CDS is present (cf. the top-half of the table). However, in obtaining the error-

free performance, it is often the case that one of the pre-endowed dendrites recognizes two

prototypes while the fourth pre-endowed dendrite is non-functional (redundant) in the sense
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that it never wins a single competition for most excited dendrite.

In sum, overall, reliable error-free performance – and in the case of progressive training,

full unmixing of each class’s contribution to the conditional mixture distributions – requires

CDS to be included with dendritogenesis and supervised adaptive synaptogenesis.

3.5.1. Effect of CDS and dendritogenesis on stability

(a) Without CDS (b) With CDS

Figure 15: CDS is necessary for concurrent training to produce zero errors and to reach a stable connectivity
count. Without CDS connection (left two figures), counts and classification errors never stabilize ), but with
CDS (right two figures), errors stabilize within 40 epochs and connectivity stabilizes within 250 epochs. 4|4
problem set with 20/30 prototype perturbations.εw = 0.025; εγ = 0.03; α = 1.0

Time-dependent visualizations underscore the necessity of CDS for stabilization. Fig

15 illustrates examples of certain underlying dynamics that further distinguish simulations

(as in Table 11), with vs without CDS, under concurrent training. Comparing connection

counts when CDS is present (top right), one sees two dendrites developing with a large,

initial connectivity overshoot, followed by a gradual connection decrease until epoch 248, at

which time the youngest dendrite stabilizes with 64 connections. On the other hand without

CDS (top left), a third and fourth dendrite are created. Moreover, the youngest dendrite

never seems to stabilize while the third dendrite requires more than 600 epochs to stabilize.

Comparing the two error-rate graphs, with CDS (bottom right) reaches zero error around

training epoch 40 while, without CDS (bottom left), there is no hint that error-rate will ever

stay below 20%.

All three training methods require CDS to stabilize. See appendix figure A.3 which

compares shedding over time for each of the the three training procedures with vs without

CDS. There is no hint of connectivity stabilizing without CDS.
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In sum, when learning under modest prototype perturbations (20/30 or 30/20), the ob-

served simulations demonstrate that removing CDS from the algorithm leads to three unde-

sirable outcomes: (i) non-functional and occasionally redundant dendrites; (ii) a prolongation

of time to stability, or more often an inability to demonstrate stable connectivity; and (iii)

suboptimal, i.e., non-zero, error-rates. Supposing that there exists parameter settings that

avoid all three of these issues, our search of parameter space indicates the difficulty in find-

ing these hypothetical settings when CDS is not part of the algorithm. Thus our minimum

conclusion is that without CDS the algorithm is not robust and easily succumbs to one or

more of the three issues just mentioned.

3.6. Dynamics of dendritogenesis and stabilization of connectivity

3.6.1. Developmental onset of dendritogenesis distinguishes the different training paradigms and the time for

overall stabilization, εw = 0.025; εγ = 0.03 or εγ = 0.05; α = 1

Having just investigated empirical stabilization with and without CDS, a description of the

dynamics of dendritogenesis and descriptions of various measures of empirical convergence

is owed to the reader. Empirical convergence to stabilization is measured in a variety of

ways: (i) error-rate, (ii) connection counts, (iii) shedding, and (iv) some form of synaptic

weight stabilization occurring after (ii) stabilizes and (iii) is zero. In what follows, (a) the

problem set is the two-class 4|4 with 20/30 prototype perturbations, and (b) all assertions

of stabilization are limited to prototype perturbations no larger than 20/40 and 40/20.

For each illustrated neuron, Figure 16 juxtaposes error-rate (i.e., missed-detections) with

γdj(t) and with the dendritogenesis events (blue equilateral triangles at the top of each

error graph). In general for each neuron, dendritogenesis is suppressed until the newest

dendrite has been sufficiently successful. Sufficient success is visualized by the declining γdj(t)

value crossing the dashed line, i.e., γdj(t) ≤ θγ. Having reached or crossed this threshold,

dendritogenesis awaits only an increase in error-rates.
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B   Neuron 1, Progressive training
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D   Neuron 2, Segregated training

Figure 16: Developmental dynamics. Dendritogenesis (blue inverted triangles) is driven by missed detection
errors (red lines) and γdj(t) (black lines). Dendritogenesis requires γdj(t) < θγ and one missed detection error
when α is set to one. At the very beginning of training, each neuron is endowed with a single, unconnected
dendrite. With concurrent training, only two dendrites are required but the second dendrite does not appear
until γdj(t) < θγ for the first dendrite. In the case of progressive training, a new dendrite is created on each
neuron sometime within the first epoch of each new phase. In the case of segregated training, a new dendrite
is created between the first and second exemplar of each new phase. All training is for the 4|4 problem set
and 20/30 prototype perturbations. (εw = 0.025 for all training methods; εγ = 0.03 for concurrent training
to avoid a non-functional dendrite while εγ = 0.05 for progressive and segregated training.)

The main differences in the sub-figures is a result of the way prototypes are mixed during

training. A secondary, and parameter dependent difference, is that concurrent training here

is producing a two dendrite per-neuron solution while the phased methods find a four dendrite

per-neuron solution.

(Comparisons that follow are made in terms of epochs. Such comparisons are straight-

forward for any one type of training. However, if the reader would rather compare across

training methods, then a decision must be made. One might continue to compare in terms of

number of epochs, but there is a good argument to compare in terms of number of training

trials (number of exemplars). The issue is that the trials per epoch differ with training style.
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Note that the x-axis for each training method is different and that time is in epochs rather

than trials. The following figure visualizes the relationship between epochs and training

trials. For concurrent training, there are eight trials per epoch, one for each prototype. For

segregated training, there is just one trial per epoch. In the case of progressive, the number

of trials per epoch is increasing over phases. With each successive phase, two new prototypes,

one for each class, are added into the defined epoch. Thus, from the first through the fourth

phase of progressive training, there are two, four, six, and finally eight trials per epoch.)

In any event, Fig 16 illustrates that the parameter settings are producing rapid con-

vergence within a phase, where the parameter settings are the same for all three training

methods.

The table 13 gives the exact time of the critical events defining the dendriteogenesis dy-

namics illustrated in Fig 16. This table includes, precisely, each epoch when dendritogenesis

occurs (Birth column) and when dendritogenesis is permitted to occur based on γdj(t). For

example, one compares the first time γdj ≤ θγ, for dendrite one of progressive this is epoch

60, to the birth of the second dendrite, which is epoch 101. The table also supplies the

number of training exemplars per epoch, thus allowing the reader to convert epoch values to

total training events. For the phased training methods, the numerical difference between the

permissive γdj(t) < θγ and the next dendritogenesis event is indicative of the conservative

developmental settings; that is, the parameter settings can be tweaked to produce faster

development. For example under progressive training, 60 vs 101 is a delay of 41, 160 vs 205

for delay of 45, and 200 vs 303 is a delay of 103 epochs. Under segregated training, the delay

is even longer, about 140 epochs. Such longer delays are due to both phase durations and to

the single prototype training that completes training for one class before introducing a new

prototype of the other class. In sum, such large developmental delays are not necessary for

zero error development but are useful to illustrate within phase convergence.

An empirical convergence criterion, specifies ”no change” of quantified variable , or vari-

ables, over some specific but arbitrary period of time. As pointed out earlier, the most

demanding criterion for convergence here is no change in connections. Inevitably this crite-

rion can be replaced by the cessation of shedding since it is always the case that shedding

continues beyond the last occurrence of synaptogenesis. As also noted earlier, the appendix

contains a figure illustrating the dynamics of connectivity, including synaptogenesis and
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Dendrite Birth min
t
γdj(t) ≤ θγ Trials

(epoch) (epoch) per epoch

CONCURRENT

First 0 26 8

Second 26 77 8

PROGRESSIVE

First 0 60 2

Second 101 160 4

Third 205 260 6

Fourth 303 360 8

SEGREGATED NEURON 1

First 0 60 1

Second 201 260 1

Third 402 461 1

Fourth 602 660 1

SEGREGATED NEURON 2

First 0 160 1

Second 301 360 1

Third 501 560 1

Fourth 701 760 1

Table 13: Important epochs of figure 16, i.e., birth epoch and γdj(t) permitting dendritogenesis, for the three
different training paradigms. 4|4 problem set and 20/30 random prototype perturbations.

shedding with and without CDS. Without CDS, there is no stable connectivity. Fig 17 fur-

ther illustrates the temporal dynamic of shedding for all the training paradigms when CDS is

present. This figure directly compares shedding (light gray bars) to connection counts (dark,

seemingly continuous lines). Two points are notable. First, comparing between Figs 16 and

17, error-rates are zero well before the no-connectivity-change criterion (≡no-shedding cri-

terion) is satisfied. Related to the first, is a second difference arising from the conservative

nature of using the cessation of shedding as the convergence criterion. Every time even a

single shedding event occurs, the convergence-criterion clock starts over. Here, as in most

of the simulations, empirical convergence requires 800 epochs of continuously zero changes

of connectivity. Note that everything else measured in this and the previous figure has

stabilized. (Because the data of Fig 17 come from exactly the same neurons, and plotted

with the same timescales as in the previous figure, this new figure allows comparisons of

the shedding dynamic to the error-rate dynamic and dendritogenesis times in Fig 16.) Note

the late, isolated shedding event under concurrent training occurring just before epoch 250
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while the connection count has hardly changed since epoch 150. This single last shedding

event required the simulation to continue well beyond the illustrated timeline, extending to

more than 1000 epochs just to be certain that there were no more connection changes (see

Fig A.3).

(a) (b)

(c) (d)

Figure 17: Most of the connection counts and shed counts stabilize quickly for concurrent (upper left),
progressive (lower left), and segregated training (right figures, one for each neuron). For this graph training
is for a fixed number of epochs. Concurrent is trained for 1300 epochs. Progressive is trained for 800 epochs.
Segregated is trained for 1900 epoch. These data are from the same simulations generating Figure 16. Note
different x-axes needed for different training paradigms. Parameters as in Fig 16.

In terms of epochs to stabilize, the convergence of segregated training appears particularly

tedious, having to wait until ca. epoch 1200 for a single, last shedding event to occur and

then simulating for another 800 epochs (not illustrated) to ascertain the absence of another

shedding event. However, the epochs timescale is misleading. Segregated training employs

only a single trial per epoch. Thus comparing number of trials to converge (note alternate
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time-axis on the top of each subfigure of Fig 17), segregated is just time consuming, if not

a little faster, than the other two training paradigms.

However, there are two reasons for this apparently slow stabilization. First, there is

only one trial per epoch, and second, segregated introduces only one class per phase while

progressive introduces a new prototype for each class per new phase of training.

The connection counts over time also reveal that all three training procedures are tuned

to produce an overshoot of synaptic connections, which speeds up development (Ju et al.,

2017). In the case of concurrent, the overshoot is extreme, as large as is possible. In the

case of progressive and segregated, the connectivity overshoots are a more modest fraction

of final count per dendrite, about 40 % larger than the stable final value 102 connections

per dendrite. In regard to the stable connection count values for perturbation levels of

30/20 and 20/30 or below and γdj(0) = 1, there is a reliable relation between the occlusion

fraction and number of connections per dendrite, specifically, number of stable connections

equals occlusion fraction times 128 where 128 is the number of ones in a parent prototype.

However, the reader will recall Table 10 showing that the number of stable connections

decreases linearly with decreasing γdj(0), down to as small as 63 (median) connections when

γdj(0) = 0.6.

3.6.2. Other settings and convergence

Recall that concurrent training can produce a two-dendrite per neuron or a four-dendrite

per neuron solution to the 4|4 problem depending on the parameter settings. The convergence

of the previous figure corresponds to the two dendrite per neuron solution. Here on the other

hand, Fig 18 illustrates convergence for a neuron that develops four functional dendrites,

produced by altering parameters to α = 0.01 instead of one and εγ = 0.999 instead of 0.03

or 0.05. Because dendritogenesis is so rapid, (a) uses a stretched time-axis. (Note: only

the first four dendrites are functional.) Although useful for viewing the time separation of

dendritogenesis, this stretched axis is not useful for convergence, so Fig 18(b) illustrates

the same data over a longer time. Note the nearly ten-fold faster convergence compared to

the earlier Fig 17(a), which illustrates convergence of the concurrent paradigm with settings

that produce a two-dendrite per neuron solution. The faster convergence here is due to the

rapid decrease in the rate of synaptogenesis, as controlled by εγ. Note that with α = 0.01, it

appears that errors continue beyond the time of the last shedding event. In fact there are no
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errors occurring after the last shedding event. The stretched out, no-zero error rate is due

to the slow decay of the exponential moving averager that is tracking missed detections.
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Figure 18: The concurrent training dynamic when a four-dendrite, prototype matching neuron develops.
Dendrite development occurs very quickly using the parameter settings conducive to four dendrites per
neuron trained on the 4|4 problem set. To see the successive timepoints of dendrite births, the timescale of
(a) is stretched compared to (b) and (c). Although convergence to zero errors begins its descent quickly, as
in (b), reaching zero, ca. at epoch 70, this time to converge is slow compared to the convergence of shedding
to zero (see c). Even though onset of shedding is delayed, around epoch 10 in (c), shedding halts very soon
after, around epoch 34. Average error is the mean value of the missed-detections per epoch. Equilateral
triangles in a and b indicate each dendritogenesis event. Dotted line in (a) and (b) indicated dendritogenesis
threshold θγ = 0.05. α = 0.01, εw = 0.025, εγ = 0.999.

In the case of phased training, convergence is relatively robust and predictable to param-

eter settings, particularly εw. Smaller values of this parameter slows down convergence, but

it has other advantages (see below). Fig 19 compares time to connectivity convergence for

εw equals 0.025 vs 0.002, a 12.5-fold range. The most important difference is that given the

same f phase durations, the slowed convergence of the 0.002 setting results in connectivity

stabilizations that occur a little beyond the phase that a new prototype is introduced. Note
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that connection counts themselves achieve their final value within (or just about within)

each phase.

Figure 19: The synaptic modification rate parameter εw has a strong influence on the connectivity stability.
In (a) with εw = 0.025, the connection counts are observed to stabilize within the first 25 epochs of each
phase, and connectivity does not change after epoch 336. In (b) with εw = 0.002, the connection counts
do not stabilize until epoch 582. The errors dropped to 0 by epoch 302 for both values of εw. (Progressive
training, εγ = 0.05, α = 1.)

3.6.3. Convergence and stabilization of synaptic weight values

Because εw is a non-adaptive, small positive constant, the synaptic weight values never

stop fluctuating. However, while ∆w’s do not converge to zero, their expectation and long

term empirical average do not change (Levy and Geman, 1982). Figure 20 illustrates such

stabilizations for representative dendrites each from a representative neuron (all trained with

the progressive paradigm on the 4|4 problem with 20% occlusion and on-noise varied from

10 to 40% in steps of ten).

Note that all eight dendritic weight vectors converge to an average angle relative to its

learned prototype. The greater the prototype perturbations the greater the average angle

against the dendrites preferred prototype and the greater the fluctuations of this angle around

the average. For both values of εw, both of these increases are monotonic.

The numerical values will make it easier to compare across εw’s. Using the last 400 epochs

for the measurements and noting values in the sequence of increasing perturbations (20/10,

20/20, 20/30, 20/40): for the average angle, εw = 0.025 27.5, 27.8, 28.2, and 29.5 degrees

which are larger than the same averages when εw = 0.002 26.88, 26.90, 26.94, 27.05 degrees.
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Comparing the standard deviation in these angles in the same way, for εw = 0.025 0.08, 0.11,

0.21, 0.23 degrees. For ε = 0.002 the standard deviations are about ten times smaller, 0.01,

0.01, 0.01, 0.02.

Figure 20: Stochastic convergence of the average angle between a dendrite and its preferred prototype.
Comparing across figures, smaller εw slows convergence but decreases variance around each stable point.
Increasing on-noise modestly slow convergence and produces greater variance around stable points. The
small but noticeable differences in stable-point angles. Although individual synaptic weights are fluctuating
above and below their on-average stable point, the fluctuating angle is consistently moving farther away as it
responds to successively higher levels of on-noise. Progressive training on the 4|4 problem set with the same
prototype perturbations for training and testing. All simulations are running at zero error. All simulations
but the 20/40 achieve stable connectivity using the 500 epoch criterion. The 20/40 simulation ran for 3000
training epochs with no connections changes during the final 302 epochs.

In the appendix the reader will find more data concerning the time course of various

convergences to stable values including Fig A.4, stability as a function of (comparing two)

phase duration, and comments on convergence in parameter settings Appendix E.

In sum, the important point of this section is that quantitative dynamics depends on

the training method but all three methods display convergence to stable connectivity when

prototype perturbations are moderate (30/20 or 20/30) or even smaller.

4. Discussion

4.1. Overview of results

The results demonstrate that a neocortex-inspired and biologically plausible (i.e., local)

neuron algorithm solves certain computational problems that simpler neural-like elements

find difficult, costly, or impossible.
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The ingredients to the algorithm are the following:

(i) There is at least one neuron per class. At each trial, a feature vector occurs, then

each neuron transmits its dominant dendritic excitation to the interneuron, whose feedback

determines the winner (or winners if there are more than one neuron per class); the winner(s)

is the class prediction based on the featurers present.

(ii) Then the class signal arrives. The neuron-localized in-class signal is a necessary

permissive event for various modifications at such a neuron; the in-class signal also allows

the determination of a missed detection by an in-class neuron.

(iii) Modification of existing weights, including shedding, occurs only at the most excited

dendrite (via CDS) of an in-class neuron.

(iv) If youngest dendrite has been sufficiently successful (enough correct predictions) and

if the missed-detection error-rate is sufficiently large (as small as a single error as controlled

by the α setting), then one new dendrite appears.

(v) If this in-class neuron committed a missed detection, all dendrites of this neuron are

eligible to participate in synaptogenesis.

The algorithm endows neurons with five notable characteristics: (A) The algorithm resists

catastrophic interference. (B) The algorithm produces a one-layer, two neuron solution to the

XOR and to related, but harder non-linear discriminations. (C) As a function of increasing

input dimension and number of coactive features, the memory capacity seems unlimited (but

see Section 4.3.3). (D) The algorithm can unmix the components of a mixture distribution,

and within a class, (E) the algorithm performs this unmixing in an unsupervised manner.

The simulations in Results are designed not just to demonstrate the five preceding func-

tions but are also designed to understand (i) how the CD&SAS algorithm works (see also

Section 4.5) and (ii) in what senses the algorithm is extendable beyond the low dimensional

simulations, i.e., 256-D inputs and the minimal two or three primary neurons, of the Results.

Regarding this last point, the variety of 256-D problem sets imply the feasibility of suc-

cessfully extending the algorithm to input worlds with larger and possibly less well defined

structures and statistics. The results demonstrate that the algorithm can be expanded to

any number of classes and that these classes can have varying probabilities as in the 2/2/4

problem where the third class is twice as likely as each of the other two and the 2/6 problem

where the second class is three times as likely as the first class. Individual prototypes can
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vary widely in probability (Table 6) where one prototype is one-tenth as likely as any other

prototype in the same class.

Coming at extensions of learnable problem sets from the other direction, a substantial

fraction of Results is dedicated to pointing out feature vectors and the associated class that

are learnable versus those that are not learnable in the sense of achieving zero or nearly

errors. Note that in the 256-D world, even before any prototype perturbations, the eight

prototypes are severely overlapped (fifty percent in most every direction, Fig 1b). See Fig 3

for examples with randomizations); nevertheless, the 20/40 and 40/20 prototype perturba-

tions are still learnable to the level of error-free performance. However, when exemplars are

the result of further perturbations (e.g., 30/30 prototype perturbations during training and

testing), errors begin to creep in. If the exemplars from different classes become too similar,

which is what occurs at large prototype perturbations, as in Figs 6 60/20 and 20/60, then

discrimination performance deteriorates to unacceptable levels. Of course, such deterioration

can be expected of most any paradigm faced with both extreme amounts of uniform ran-

domization and, probabilistically speaking, never a repeated exemplar. That is, recall that

at the larger prototype perturbations, the generated exemplars of training and testing can

be closer to a non-parent prototype than parent prototypes; therefore, even if this particular

exemplar is associated with the dendrite that points at its parent exemplary, two aspects of

the future are note worthy: this exemplar will never occur again (with high probability), and

there will be exemplars from another parent prototype appearing very close to this ”learned”

exemplar, leading to a classification error.

Most influential to the research here is the work of Mel and colleagues. In fact, we have put

into practice some suggestions in Behabadi and Mel 2014; Mel et al. 2017; Cazé et al. 2013.

They demonstrate via simulations that neurons with dendrites can provide much greater

functionality, memory capacity, and classification accuracy than neurons with a single set of

weights Mel (1991); Poirazi and Mel (2001). Mel’s model has two commonalities with the

model proposed here: the neuron’s output is determined by multiple dendrites each having a

set of synaptic weights, and these dendritic weights can grow or shrink or shed. However, the

adaptive flavor of Mel’s model is different from the model proposed here primarily because (a)

it uses gradient descent with annealing to determine the dendritic weights, (b) the dendrites

do not compete to determine the neuron’s output, (c) the synaptic modification rule is driven
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by derivatives and error signals, (d) synaptogenesis is not driven by missed detection errors,

and (e) the number of dendritic branches is fixed; i.e., there is no explicit dendritogenesis

rule driven by missed detection errors.

4.2. Understanding the algorithm as biological

4.2.1. The current algorithm evolved from AS and SAS

Adaptive synaptogenesis was created as a synaptogenic algorithm consistent with Hebbian

synaptic modification (Levy and Desmond, 1985; Levy et al., 1990). A key part of the

algorithm is the biased random formation of synapses and the selective shedding (see also

Scholl et al. (2021)). In the AS algorithm synaptogenesis of excitatory synapses is designed

to create, homeostatically, a desired activity level by favoring neurons with low activity and

ignoring neurons with appropriate activity. In the SAS algorithm Baxter and Levy (2019,

2020), this desired activity level is conditional on the class. Here the conditioning is also

extended to a dendrite of that class.

As will be covered in detail below, the widj synaptic modification equation encodes a

positive correlation at a synapse via a stochastic approximation (averaging) algorithm. The

shedding rule enforces this restriction to positive correlations and, working in concert with

synaptogenesis, provides a random sampling mechanism that functionally searches, via bi-

ased random synaptogenesis, for local positive correlations.

In the absence of dendritogenesis and with an endowment of just one dendrite per neu-

ron, the synaptic modification equation confers a undesirable susceptibility to catastrophic

interference (Fig 2), particularly when synaptogenesis produces new synapses on this solo

dendrite. When these new synapses are sufficiently co-activated by a novel prototype, the

anti-Hebbian aspect of the synaptic modification rule (subtraction terms E[Xi] and widj)

weaken and eventually discard synapses acquired during earlier learning. Indeed the single

dendrite neuron, using the ∆widj modification equation, is not only subject to catastrophic

interference given the appropriate sequence of exemplars but it is not saved by AS or SAS in

the case of the prototypes used here. However, enhancing SAS (i) with dendritogenesis, (ii)

the inhibitory feedback interneuron, and (iii) CDS leads to encodings, i.e., dendritic weight

vectors, corresponding to distinct exemplar clusters generated around individual prototypes.

Moreover, disruptive synaptogenesis and weight development on previously successful den-

drites is now avoided, ultimately because there are no missed detections by a neuron but
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even before that synaptogenesis becomes highly unlikely due to the decrementing γdj driven

by a large number of successful, in-class discriminations by a dendrite.

4.2.2. Restating the algorithm for biological feasibility

This section translates the DC&AS algorithm into a more biological form. To begin, there

are primary neurons (e.g., pyramidal neurons), which are excitatory in their output. One

target of this output is very fast inhibitory neuron that feeds back to all the primary neurons

that excite this one special neuron.

In the biological setting, processing occurs continuously in time with a start signal, e.g.,

the ending of a saccade and the beginning of a fixation. With the start signal, neurons are

reset and then feature-based excitation builds up continuously in time. A summed, somatic

depolarization affects all electronically proximal dendrites to the same excitation, but each

such dendrite has its own localized excitation added to this general depolarization. As the

excitatory signals are building up on each dendrite, one dendrite will be the first to reach the

NMDA-receptor mediated threshold (Schiller et al. (2000), which might also be augmented by

a voltage-activated Na-conductance Ariav et al. (2003)), which has two effects. First, there

is the local communication from the spiking dendrite to the other perisomatic dendrites

of this neuron. This spike provides the CDS signal, perhaps activating K+ conductances,

which prevents the other dendrites from firing and modifying; events which correspond to the

within neuron dendritic competition. The second effect is initial segment spike-initiation Mel

et al. (2017). It is this event that is communicated to the neuron’s recipients including the

inhibitory interneuron. In turn, the inhibitory interneuron is excited and feeds it inhibition

to all neurons suppressing further spikes. In the event that no neuron spikes in a particular

time-window (especially during very early development before many synapses are formed),

the threshold to fire is lowered uniformly across all neurons (or neurons are uniformly excited

by GABA-A synapses) until one dendrite (and thus just one neuron) fires. For even more

realism, there are multiple neurons coding for a prototype-class and the feedback is tuned

to allow an appropriate number of neurons to fire.

Also relevant to the biological perspective are the interpretations of the different training

paradigms; for such interpretations in the context of life-long learning, see Appendix G.
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4.2.3. Robustness versus energy efficiency

In regard to parameterizing for more or fewer connections per dendrite, there is a trade-

off. With more connections specific to one prototype, the angle between dendrites increases,

which is desirable because there is greater resistance to prototype perturbations. On the

other hand, one loses the implicit energy efficiency of fewer synapses.

4.2.4. Limitations on encodings and memory

It might seem that the memory capacity is infinite. Consider the following extension

of the present model in the context of the perturbation-free 8-D problem set and the 4|4
problem set, which will produce four dendrites per neuron. Double the input space to

sixteen dimensional and double the number of prototypes by just replicating the original

eight prototypes but shifted from the original first eight dimensions to the newly created

dimensions nine through sixteen. Note that the eight new prototypes are orthogonal to the

first eight prototypes. These new prototypes are divided up evenly between the two classes,

and their will be no difficulty creating eight more dendrites, four more on each neuron.

Continue this prototype enhancement by increasing input dimension for a long as you like,

and the new prototypes will be individually encoded via new dendrites. In this manner, one

might argue for unlimited memory capacity.

Of course, physical limitations inevitably appear, so memory capacity is not infinite. As

a computer program, the memory capacity of this algorithm is limited by computer memory.

From the biological perspective, there is also a limit on memory. This limit occurs in terms

of space occupied by the dendrites, synapses and axons. There are profound spatial and

energy consumption problems if one trying to increase the number of dendrites and synapses

beyond some finite value. Time is also limiting, particularly in the context of biological

development, where this developmental time maps to number of training trials.

There are also training experiences that a single layer network can never learn. A well

known behavioral/cognitive problem is learning reversals while still retaining original mem-

ories. Again the 4|4 problem will do as an example. First, train to perfect performance

with prototypes one through four associated with class I and prototypes five through eight

associated with class II. Then reverse the prototype-class association (e.g., prototypes five

through eight are now associated with class I). Repeat such contingency reversal many times

as segregated trainings. A mammal can learn both contingencies and use the initial results of
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a single test to determine its responses on that particular day. That is, mammals can learn

higher order context-dependent associations. Undoubtedly it takes multiple brain regions to

solve such a problem, and certainly it is not solvable by the single layer model used here.

4.3. Stabilization of learned encodings

Because dendritogenesis and synaptogenesis require a missed-detection, any simulation

that achieves error-free performance will not gain another synapse although connections can

still be shed whenever the ∆widj equation drives a synaptic weight down to the shedding

threshold. However, under the error-free assumption such shedding is merely part of the

weight stabilization process. That is, the weight modification equation produces on-average

zero change in a stationary environment when connectivity is fixed (see Fig 20; see also

Fauth et al. (2015); Fauth and Tetzlaff (2016) ). Such stationary inputs include concurrent

training and the last phase of progressive training. In the case of segregated training, each

phase is locally stationary so here too there is convergence in terms of the average value of

synaptic weights.

A back of the envelope calculation supports the empirically observed error-free perfor-

mance and implied no new connections. First note that, under these moderate perturbations,

the developed dendrites point rather specifically in the direction of the prototype (in the case

of progressive and segregated training) or pair of prototypes (in the case of concurrent train-

ing at standard parameter settings). The connections that are made are precisely limited

input lines that define the appropriate prototype (or pair of prototypes). Then once such

specific connectivity is established, the issue becomes how far can generated exemplars move

beyond a parent prototype into the vicinity of a non-parent prototype. Consider the case, a

dendrite developed with concurrent training that contains 64 connections (see Fig 15). All

of these 64 connections belong exactly to the intersection of two prototypes; such a dendrite

recognizes 32 of these 64 connections which are shared by five of the other six prototypes.

Recalling that the prototype perturbation method is exact (i.e., constant) in the number of

complemented input lines, the 30/20 perturbation produces an exemplar that shares seventy

percent of the one-valued lines of the parent prototype, so there will be this percentage of

activated connections on the prototype appropriate dendrite, i.e., 45 synapses. On the other

hand, the on-noise of 20% only activates 26 input lines, all of which may possibly activate

synapses on a single inappropriate dendrite. Then so long as the weights are all about the

58



Levy & Baxter Submitted to Neural Networks July 20, 2022

same, the dendrite with 45 active input lines will be more excited than the dendrite getting

the 26 active inputs. Thus the appropriate dendrite is more excited by a wide margin; i.e.,

no errors occur under this worst possible 30/20 randomization of input lines. The calculation

produces an even wider margin of safety for the phase training methods and the parame-

ter settings used here since each dendrite contains 90 or more connections belonging to it

recognized prototype.

By design, parameters, e.g., εw, εγ, and γ(0) are selected to produce weight convergence

within each phase (or not long after) when using a phased training method.

Convergence of synaptic weight values is in the sense of stochastic convergence, i.e., spend-

ing most of the time near an on-average stable point (Ljung and Box, 1978; Kushner and

Yin, 2003; Kushner, 2010). Examples are seen in Fig 20. When the settings are appropriate

for convergence, the ∆w algorithm converges in the limit of many samples to a small region

with a standard deviation of about the size of εw. The center of this region is a particular

conditional statistic; the form of this conditional statistic depends on the particular ∆w

equation in use.

4.4. Understanding the algorithm from the perspective of machine learning and statistical inference

4.4.1. The algorithm develops latent variables that correspond to the true latent, vector variables

Having established at least empirical, on-average stability of dendrite weight vectors (Fig

20), it is appropriate to understand and interpret what each dendrite is encoding when

reaching such a state. Such insights include both the vector statistic encoded by a dendrite

and also latent variable interpretations of this vector and the scalar excitations mediated

by such a vector. For the latent variable interpretation, we will call (i) the prototype (or

in some cases intersection of prototypes) ”the true” latent variable versus (ii) a dendrite’s

developmentally learned latent variable, i.e., its weight vector, and finally (iii) the scalar

latent variable that is the projection of an exemplar, x(t), onto the normalized, learned

dendritic weight vector,
wdj∑
i widj

, yielding a ydj(t), i.e., equation (1) using the stable weight

values which are not time-dependent.

First, because the true structure that generates exemplars is known to us, the researchers,

one can compare the created latent vector variables, the dendritic vectors, to the true latent

vector, the exemplar-generating prototypes. In fact even under moderate levels of prototype

perturbations, the algorithm allows dendrites to develop in a manner that successfully creates
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latent variables, which allow perfect discrimination performance, but do not precisely match

the true latent variables.

Second, once at or near convergence to a stable connectivity, the excitation of each den-

drite by an exemplar is also a meaningful latent variable. This scalar latent variable is a

dendrite’s estimate of the resemblance between the current exemplar and a dendrite’s learned

weight vector. With this perspective, such a scalar latent variable is just a projection upon

a constructed basis. In the case of the 4|4 problem with no more than moderate proto-

type perturbations and phased training, there are eight dendrites (e.g., Figs 11 and 12) and

therefore eight such projections – one for each dendrite, valued ydj(t). Thus, such a set of

dendrites can be interpreted as a basis set. For the inputs used here, these dendrites are

approximately equiangular (see Figs 9 and 10). Then one is encouraged to note (i) this eight

dimensional encoding is a significant compression from the 256-D input vector and (ii) the

equiangular approximation implies an approximation of the optimal Welch-bound for such

non-orthogonal non-negative bases.

When there is not a one-to-one correspondence between prototypes and functional den-

drites, it is still sensible to discuss learned latent variables. Under concurrent training with

α = 1 and εγ = 0.03 or 0.05 and under any training paradigm at larger prototype pertur-

bations, a dendrite’s latent variable might be a combination of prototypes depending on the

number of synapses per dendrite. This combination is an intersection, not a union, with the

resulting stabilized synapses per dendrite relatively smaller than for a dendrite that responds

strongly to only a single prototype. For example, a dendrite with 64 synapses can recognize

the two prototypes that share exactly these 64 out of the 128 active input lines of each of

these two prototypes. (Recall that a dendrite that is selective to a single prototype might

have from 90 to nearly 128 synapses.) Given a dendrite that is the intersection of prototype,

one can still consider such a dendrite’s weight vector to be a latent variable; this latent

variable just does not to any single one of the true latent variables.

Regardless of the existence of the one-to-one correspondence between dendrites and pro-

totypes, the stable point of each dendrite’s weight vector can be interpreted as the examples

in Table 14. This table presents four similar modification equations, all of which are com-

patible with the dendritogenesis algorithm and two of which, (c) and (d), generated some of

the data already presented here. (The list of suitable forms is by no means limited to those
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illustrated; these are just the ones we have examined.) In all cases where there is condition-

ing, the conditioning state limits the expectation to the in-class neuron and its most excited

dendrite; that is, z∗j · 1dmax(dj) = 1.

Modification equation with CDS Converges to

(a) ∆widj(t) ∝ (Xi(t)− widj)z∗j (t)1dmax(dj) E[Xi|z∗j (t)1dmax(dj)]

(b) ∆widj(t) ∝ (Xi(t)− E[Xi]− widj)z∗j (t)1dmax
(dj) E[Xi|z∗j (t)1dmax

(dj)]− E[Xi]

(c) ∆widj(t) ∝ (Xi(t)− widj)z∗j (t)1dmax(dj)ydj
E[XiYdj |z∗j (t)1dmax

(dj)]

E[Ydj |z∗j (t)1dmax(dj)]

(d) ∆widj(t) ∝ (Xi(t)− E[Xi]− widj)z∗j (t)1dmax(dj)ydj
E[XiYdj |z∗j (t)1dmax

(dj)]

E[Ydj |z∗j (t)1dmax(dj)]
− E[Xi]

Eigen-equation interpretation of stable weight vector (wdj := wdj(∞))

Matrix ·wdj = wdj · Scaler

(c’) E[XXT |z∗j (t)1dmax
(dj)] ·wdj = wdj · E[XTwdj |z∗j (t)1dmax

(dj)]

(d’) (E[XXT |z∗j (t)1dmax(dj)]− E[X] · E[XT |z∗j (t)1dmax(dj)]) ·wdj = wdj · E[XTwdj |z∗j (t)1dmax(dj)]

Table 14: Some of the weight modification algorithms compatible with DC&SAS algorithm and their stable
attractor

Each of the four modification equations can be interpreted in terms of an encoded condi-

tional statistic to which they converge. Versions (a) and (c) are recommended for segregated

training where the mathematical and implemented meaning of E[Xi], which appears in (b)

and (d), is, at the very least, troublesome; for example, we do not know what this expec-

tation means given the non-stationary nature of the inputs when using segregated training.

Versions (a) and (b) are best understood in terms of expectations of individual input line

activity conditioned on z∗j = 1 and the winner of the local dendrite competition. These two

equations, and their encoded statistic, only differ by the unconditional offset E[Xi]. On the

other hand, the conditioning of the learned expectation in (c) and (d) not only depends on

the same two binary conditioning variables but also depends on Ydj , which is a continuous

rather than a binary variable. Bringing the ydj(t) multiplier into the modification equation

yields a single synapse learned ratio of two statistics, which is less easy to understand with-

out further assumptions. Instead of assuming a particular linear relationship, we interpret

the stable expectation of the dendrite’s entire weight vector.
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Re-expressing a dendrite’s stable synapses as a weight vector in the form of (c’) and

(d’) provides an alternative, and for some, a more intuitive statistical interpretation of the

synaptic encodings. Specifically, the weight vector converges, in alignment, to the direction

of dominant eigenvector (call it e1dj) of one of the indicated matrices. Although there is

an explicit form of the length of such a wdj, here the normalized form (wdj ÷
∑

iwidj =

e1dj ÷
∑

i ei1dj) is used in the calculation of a ydj(t), so the un-normalized length is of less

interest here then when not using such normalization in the excitation calculation.

Such a stable weight vector, either of case (c’) or (d’) is a statistic in the sense that each

is based on a particular matrix expectation, which is never calculated by a dendrite. The

implicit matrix statistic in (c’) is the conditional correlation matrix for the one dendrite

with conditioning also dependent on class presence. Unfortunately, as far as we know, in the

case of (d’) the implicit matrix statistic does not have a name. This matrix is almost, but

not quite, the conditional covariance matrix of input vector to the dendrite. The problem

is the centering term. Note that this term is the product of an unconditional expectation

times the appropriate conditional one. To be the conditional covariance matrix requires both

of these means to be conditional in the appropriate way, i.e., just like the conditioning of

the correlation matrix. To fix this, the obvious modification to the associated ∆w equation

(d) does not work. Using the conditional expectation,E[Xi|z∗j (t)1dmax(dj)], as the offset

term instead of the unconditional expectation is incompatible with the DC&SAS algorithm.

Indeed, subtraction of the conditional expectation E[Xi|Z∗
j = 1] is incompatible with SAS

even without dendritogenesis.

4.4.2. The algorithm is in the generative class

From our knowledge of cortical physiology and anatomy, we speculate that this structure’s

computations are primarily in the generative class. Thus our algorithms are designed to cap-

ture information useful to a generative system. Here generative is meant to be distinguished

from discriminative in a manner consistent with Rubinstein et al. (1997), Ng and Jordan

(2001), and Shalev-Shwartz and Ben-David (2014) (chapter 24) . That is, as opposed to a

purely discriminative approach that constructs half-space boundaries leading to a tessella-

tion of feature space into class specific regions, here the algorithm encodes statistics (and

from these statistics and certain assumptions, implicitly encodes probability distributions).

There are at least two ways to use such statistics.
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An arguably desirable implementation using such synaptically stored, dendritically local-

ized conditional expectations is a naive Bayes log-odds calculation for each dendrite (see

Levy et al 1990 which gives a neural conjecture of this approach for a compartmentalized

dendrite to produce a class supervised neuron calculating as a naive Bayesian). For example

consider the stable synaptic encoding of (a) of Table 14. For any one dendrite d, the set

of weights (the dendrite’s weight vector) {wdj = E[Xidj| z∗j (t)1dmax(dj)]} implies a set of

conditional {0, 1} Bernoulli distributions {p(Xi = xi| z∗j (t)1dmax(dj))∀ i ∈ dj}. This set of

probabilities, along with a locally learned class prior, is enough information to imply a log-

odds, naive Bayesian inference at each dendrite. However, such a classic computation is not

implemented. Instead, here, a cluster-similarity approach is used, which approach allows the

presentation to concentrate on what is innovative here, the extension of SAS to DC&SAS

and the dendritic latent encodings.

With the cluster similarity approach, each functional dendrite ends up developing its

representation of some latent cluster center. For discrimination purposes, the similarity

measure in use resembles, but is not, a cosine comparison. The actual comparison used

for dendritic excitation in the competition is a bit of a compromise. We could have used

two different definitions for dendritic excitation, the one used in the ∆w equations (2) and

(3) corresponding to the excitation defined by equation (1) while using a different one for

the excitation of a dendrite used in excitation competitions. That is, for the competitions

compute excitation as
x(t)Twdj√
wTdjwdj

(zero padding of weight vectors as needed). Since this form

uses local information, it is at least biologically plausible, and this form allows the more

intuitive cosine comparison for the competitions. (The x(t) lengths can be ignored as this

input at full dimension is the same everywhere.) Instead we opted, mainly for simplicity,

that both excitations be the same as the ydj(t) calculation of equation (1).

The list in Table 15 points to the distinctiveness of DC&SAS particularly in regard to

the more familiar and eminently successful discriminative algorithms of machine learning. In

comparison to machine learning methods, it is notable that the error-free performance here

occurs without any quantitative error-correction, without calculating derivatives or matrix

inverses, and without any explicit objective-function that is to be optimized. Because there

is no explicit objective function being optimized, there is no need for regularization and its

induced biases. Nor is over-training a problem. As the algorithm here hews to a biological
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perspective and motivations, the algorithm is local by nature. Only the local averaging

property of a stochastic approximation (e.g., Kushner and Yin, 2003) algorithm is used to

encode the necessary statistics.

Table 15: DC&SASD differs from discriminative algorithms.

Special aspects of the algorithm
(1) Synaptic changes limited to a neuron committing a missed-detection
(2) Synaptogenesis limited to active input lines
(3) CDS allows anti-correlated connections to exist on the same neuron but on different dendrites
(4) Modification of existing synapses selects for inputs positively correlated with any one class
(5) A dendrite corresponds to a prototype (or the intersection of multiple prototypes)
Notably absent from algorithm
(6) No backpropagation between neurons
(7) No derivatives or gradients to calculate
(8) No explicit optimization criterion
(9) No regularization

Although of pedagogical utility, the unmistakable distinctions between generative and

discriminative algorithms does not imply that they are mutually exclusive. Indeed, the

machine learning community recognizes certain advantages in combining the two approaches

and such combinations can also be argued to exist as part of evolved brain function. Based on

little more than differences between synaptic modification equations and dominating synaptic

interactions, one can argue which brain regions specialize in generative computations, the

hippocampal formation and the neocortex, and which regions appear to use discriminative-

style encoding methods and computations, the cerebellum and the basal ganglia. Given the

current states of knowledge, we can only await a detailed understanding of how the two

styles of neurocomputation should be interfaced.

In closing, the multi-dendrite interpretation presented here is not the last word in trans-

lating biological neurons into computation neurons. Just as the McCulloch-Pitts single,

one-compartment dendrite serves as a useful simplified neuron both for biological and for

AI simulations, so too for the neuron here in the future. That is, the non-branching, multi-

dendrite neuron presented here is a simplification, but it still should be a useful computa-

tional model of a neuron to incorporate into applications that include understanding the

functionality of biological neural networks and for practical engineering applications.
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Appendix A. Relationship between prototypes and exemplars

The input vectors used in the 256-D simulations, exemplars, are based on prototype vectors with four

groups of consecutive, active input lines, i.e., 128 active input lines out of 256. There are two types of

randomization: occlusion (or off-noise) and on-noise. The number of occlusion bits is the number of bits

turned off in the set of active input lines (i.e., all input lines in the prototypes that are set to 1). The number

of on-noise bits is the number of bits turned on in the set of inactive input lines (i.e., all input lines in the

prototypes that are set to 0). The randomization, the bits turned on and the bits turned off, differs from

epoch to epoch.

With no randomization, the exemplars are equal to the prototype. As the amount of randomization

increases, the angles between the exemplars and the underlying prototype increases. Figure A.1 graphs how

the angles increase as a function of the amount of occlusion in (a) and as a function of the amount of on-noise

in (b). A comparison of Figure A.1 (a) and (b) shows that occlusion causes larger angular differences from

the prototype than on-noise, so it is not surprising that occlusion makes classification slightly more difficult

than on-noise with high levels of randomization.

(a) (b)

Figure A.1: Angles between exemplars and the underlying prototype increase with increasing randomization,
and the occlusion angles are larger than on-noise angles at high levels of randomization. (a) Mean angles
as a function of occlusion, (b) mean angles as a function of on-noise. Means were computed across 1000
exemplars per prototype.

Appendix B. Effect of prototype perturbations on the angle between dendrites

Figure A.2 shows how prototype perturbations levels affect the angle between dendrites for progressive

training with the 4|4 problem set. The solid curve in both graphs represent the mean minimum angle between

dendrites on the same neuron, and the dashed curve represents the mean minimum angle between dendrites

on different neurons. The means are computed across both neurons and ten simulations. The slight increase

from 0 to 30% in Figure A.2 (a) is expected with increasing occlusion; however, beyond 30% occlusion, with
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the 20% on-noise, the randomization is severe enough to cause the minimum angle to decrease. In Figure A.2

(b), the minimum angle does not decrease significantly until the on-noise exceeds 50%. Comparing the two

graphs leads one to conclude that performance might be worse for 50/20 versus 20/50, which is confirmed

by simulations (see Figure 5 - fig 5).

(a)
(b)

Figure A.2: Increasing occlusion decreases the minimum cross-neuron dendritic angle beginning at 40/20
but the decrease with increasing on-noise perturbations is much less significant. Recall that error-rates move
away from zero when the occlusion values rise from 40/20 to 50/20 and when on-noise rises from 20/40 to
20/50, but error-rates are more severe for occlusion versus on-noise. Based on these graphs, the more severe
error-rates for occlusion can be attributed to the smaller minimum angles between dendrites, which can be
attributed to the larger angles between the exemplars and prototypes (see Figure A.1). The coherence values
(i.e., the maximum inner product) are shown on the right y-axes. The means are across both neurons and 10
simulations, i.e., across 20 neurons. (Progressive training on the 4|4 problem set with εw = 0.002, εγ = 0.05.)

local covariance

Appendix C. Shedding dynamics with and without CDS

Connectivity counts are not definitive for stabilization because there could be a “treadmilling effect” with

shedding and synaptogenesis running at equal rates. Tracking the amount of on-going shedding is revealing

because if shedding does not stabilize over time, then synaptogenesis is still creating new synapses, some of

which are being shed.

Figure A.3 graphs shedding over time, with and without CDS, for each of the three training paradigms,

using the 4|4 problem set with 20/30 prototype-perturbations. For all three training paradigms, shedding

without CDS (light gray lines) continues throughout the simulations; thus, connectivity does not stabilize.

On the other hand when CDS is present (black lines), shedding stops and connectivity stabilizes. Shedding

stops within 242 epochs for concurrent training. For progressive training, shedding stops by epoch 337

shortly after exemplars based on the last two prototypes are introduced at epoch 301 (the beginning of the

fourth phase). For segregated training, most of the shedding stops soon after the last training phase, which
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begins at epoch 701, phase eight. However, two shedding events occur during the second pass through the

eight training phases. It is then confirmed that shedding stops after epoch 1110.

(a) Concurrent (b) Progressive (c) Segregated

Figure A.3: With CDS (black lines), shedding, and implicitly synaptogenesis, stop for all three training
methods. Without CDS (light gray lines), shedding persists throughout the simulations; moreover, there
is some tendency for increased shedding with prolonged training. With CDS, (black line), the connection
counts stabilize by epoch 242 for concurrent training and shortly after exemplars based on the last two
prototypes are introduced at epoch 301 for progressive training. For segregated training, a second pass
through the eight phases are necessary for shedding to stop (which happens after epoch 1110). Note the
different timescales on each graph. (Problem set 4|4 with 20/30 prototype perturbations.)

Appendix D. Time to stability versus phase duration

Figure A.4 graphs the time it takes for the connections to stabilize as a function of the phase duration.

For very short phase durations, the solution consists of two dendrites per neuron which is the same solution

observed for concurrent training. For phase durations of 50 epochs or more, the solution consists of four

dendrites per neuron. The minimum phase duration with a four-dendrite solution is 50 epochs; phase

durations longer than 100 epochs have longer development times without any performance benefit.

Figure A.4: The time it takes connectivity to stabilize increases with increasing phase duration for progressive
training. With very short phase durations, the connectivity is similar to concurrent training: the solution
consists of two dendrites on each neuron. With phase durations of 50 epochs or more, the solution consists
of four dendrites on each neuron. Classification performance was perfect (0 errors) for all simulations.

67



Levy & Baxter Submitted to Neural Networks July 20, 2022

Appendix E. Parameter settings affect rate of development and convergence

The purpose of this appendix is to explain how the parameters affect development, connectivity, and

classification performance, and to provide some guidelines for setting parameters. There are four key pa-

rameters: the synaptic modification rate parameter, εw; the parameter controlling the decrement rate of

synaptogenesis, εγ ; the averaging rate of the missed detection error signal, α; and the initial value of the

synaptogenesis rate parameter, γdj(0).

The synaptic modification rate parameter, εw, controls the update rate of the synaptic weights on each

dendrite. If εw is too large, the synaptic weights will tend to oscillate and fail to stabilize; if εw is too

small, the development time, i.e., the time it takes for the connectivity to stabilize, may be unnecessarily

lengthened. For concurrent training, a value of εw of 0.002 tends to yield acceptable results and development

times for a variety of circumstances. For progressive and segregated training, the phase duration and the

value of εw are recommended to be set so that the weights approach their asymptotic values within each

phase. Figures 19 (a) and (b) compare the stabilization of connectivity for εw values of 0.025 and 0.002,

respectively. In Figure19(a) with εw = 0.025, the connectivity is observed to stabilize within the first 25

epochs of each phase; whereas in Figure19(b) with εw = 0.002, the connectivity does not stabilize until epoch

582. The classification performance was perfect for both of these simulations, and the errors dropped to 0

by epoch 302 (just after the creation of the fourth dendrite) for both values of εw. Note that smaller values

of εw tend to slow down synaptic shedding, but smaller values can provide better performance at high levels

of randomization.

The rate of synaptogenesis is determined by the parameter γdj(t), which is local to each dendrite. This

synaptogenesis rate parameter is decremented as the dendrite successfully responds to exemplars associated

with the latent prototype the dendrite has learned. A successful response means that the dendrite was the

most excited dendrite and the neuron to which the dendrite belongs did not make a missed detection error.

The decrement rate of γdj(t), 1− εγ , along with the initial value γdj(0) and the threshold θγ , determines how

many dendritic successes are required before a new dendrite can be created. If εγ is too large, the existing

dendrite(s) may not fully develop before new dendrites are created; if εγ is too small, existing dendrites may

not be able to become selectively sensitive to one or more latent prototypes, or the development time may be

unnecessarily delayed. For phase durations of 100 epochs with progressive and segregated training, a value

of εγ = 0.05 tends to yield acceptable performance. For concurrent training, a smaller value such as 0.03

helps prevent extra, non-functional dendrites from being created. Note that using a large value of εγ , such

as 0.999, essentially requires only a single dendritic success for the creation of a new dendrite; such a large

value of εγ will tend to cause a proliferation of dendrites early in development. We used this approach, along

with α = 0.01, to cause concurrent training to produce four dendrites per neuron (corresponding to the four

latent prototypes per class) with a relatively high (≈80%) probability.

The missed detection error signal, ēMD
j (t), is used for dendritogenesis. Using the instantaneous MD error

signal (i.e., setting α = 1) often yields acceptable performance. However, in environments with high levels
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of noise, instantaneous missed detections may tend to cause dendritogenesis to create unnecessary dendrites.

Using an averaged missed detection error signal (equation ??) tends to avoid the creation of such unnecessary

dendrites. The parameter α controls the extent of averaging. We have examined several values of α; a value

of 0.01 along with θMD = 0.05 tends to yield acceptable results for a variety of noisy environments.

The remaining four parameters, listed at the bottom of Table 1, were constant across all of the results

presented. The initial value of a synaptic weight, W0, must be set to a value sufficiently larger than the

synaptic shedding threshold, θw; otherwise, new synapses will be shed soon after they are formed. As a

guideline, the value of W0 should also be set at least 50% below the estimated asymptotic or final values of

the synaptic weights. From a biological viewpoint, the synaptic weights should increase as new patterns are

learned so W0 should be set such that the final weight values are greater than W0. However, the algorithm

does not require that the final weight values end up above W0, and the algorithm will function as long as

W0 is sufficiently larger than θw. The dendritogenesis threshold, θγ , along with εγ and γdj(0), control how

often dendrites can form. When γdj(t) drops below θγ , dendritogenesis will occur when ēMD
j (t) > θMD. If

α = 1, the error signal is binary so θMD can be set to any value less than 1; when α < 1, the value of θMD

determines the dendritogenesis sensitivity to missed detection errors.

Appendix F. Miscellaneous implementation considerations

The datasets considered herein consist of binary input vectors with identical L1 norms across a given

set of input vectors. While there is nothing inherent in the algorithm that requires binary input vectors or

identical L1 norms, training with non-binary vectors or with vectors having significantly different L1 norms

can lead to poor performance without preprocessing. The following preprocessing steps are suggested for

input vectors that are non-binary or that have significantly different L1 norms.

Angles between pairs of prototypes, pairs of dendrites, and prototype vs dendrite pairs are calculated as

arc cosine of the usual vector pair definition of sine including the usual Euclidean distance. When these is

a space (dimensional) mismatch between vector pairs, zero padding is used.

1. If xi(t) < 0 or xi(t) > 1 for any i or t, transform the N-dimensional input vectors to [0, 1]N .

2. Let L1(t) =
∑
i xi(t) and let E[L1(t)] be the mean value of L1(t) across all t (t is assumed to be

discretized). If (maxt(L1(t)) − mint(L1(t)))/E[L1(t)] > 0.1, then transform the input vectors us-

ing complement coding or L1 normalization. Complement coding expands the input vector dimen-

sionality by 2; complement coding an N-dimensional input vector forms the 2N-dimensional vector

[x1, x2, . . . , xN , 1 − x1, 1 − x2, . . . , 1 − xN ]. L1 normalization consists of dividing the input vectors

by L1(t). Complement coding tends to be a more reliable approach to dealing with input vectors

not satisfying the L1 criterion versus L1 normalization, and complement coding can provide improved

performance even if L1(t) is constant because large and small inputs are weighted similarly.
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Appendix G. Interpreting the different training paradigms as reflecting different stages of

life-long learning

Recently the machine learning community has become interested in distinctive training procedures, e.g.,

mini-batch and transfer learning, that improve learning. One approach to simulating lifelong learning that

has been used recently is to create multiple tasks using permuted inputs and then attempt to learn the

different tasks. As shown in Section 3.3, the proposed network is able to learn two tasks with negligible

degradation in performance.

In the Results section, progressive training was demonstrated to be superior to concurrent training. Our

knowledge that progressive training is superior to concurrent training comes from the behavioral psychology

literature (Alvarado and Rudy (1992)). This knowledge is put to use in training recurrent, spiking neural

networks including showing that the superiority of progressive training over concurrent training (Shon et al.,

2000), just as occurs in animals. In addition to searching for superior training methods in a general context,

there are a biologically relevant contexts that encourage comparisons between training methods.

From the dual perspective of biology and life-long learning, we hypothesize that an organism’s sensory

experiences, from prenatal to adult, will correlate with a change in the manner that new experiences occur.

For example prenatal learning will be more like concurrent training with its random presentations. Immedi-

ately postnatal, the complexities of the sensed world grows gradually with much repetition, corresponding

to progressive training. Finally, as one grows older, new experiences occur in single batches without the

repetition of progressive training. After a while one-shot experiences predominate but here we must defer to

the complexity of the mammalian brain with its multiple memory systems including a hippocampal forma-

tion that supports long-term neocortical encoding (Levy, 1989; August and Levy, 1996; Scoville and Milner,

1957; Wilson and McNaughton, 1993, 1994).
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Petanjek, Z., Judaš, M., Kostović, I., Uylings, H.B., 2008. Lifespan alterations of basal dendritic trees of

pyramidal neurons in the human prefrontal cortex: a layer-specific pattern. Cerebral cortex 18, 915–929.
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neoteny of synaptic spines in the human prefrontal cortex. Proceedings of the National Academy of

Sciences 108, 13281–13286.
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