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Abstract

Directed graphs model asymmetric relationships between nodes and research
on directed graph embedding is of great significance in downstream graph
analysis and inference. Learning source and target embedding of nodes sep-
arately to preserve edge asymmetry has become the dominant approach, but
also poses challenge for learning representations of low or even zero in/out de-
gree nodes that are ubiquitous in sparse graphs. In this paper, a collaborative
bi-directional aggregation method (COBA) for directed graphs embedding is
proposed by introducing spatial-based graph convolution. Firstly, the source
and target embeddings of the central node are learned by aggregating from
the counterparts of the source and target neighbors, respectively; Secondly,
the source/target embeddings of the zero in/out degree central nodes are
enhanced by aggregating the counterparts of opposite-directional neighbors
(i.e. target/source neighbors); Finally, source and target embeddings of the
same node are correlated to achieve collaborative aggregation. Extensive
experiments on real-world datasets demonstrate that the COBA comprehen-
sively outperforms state-of-the-art methods on multiple tasks and meanwhile
validates the effectiveness of proposed aggregation strategies.
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1. Introduction

Graph embedding usually refers to learning a low-dimensional vector con-
taining both the attribute features and the structural features of each node
in the graph. The embedding result can facilitate downstream tasks such as
link prediction, node classification, graph reconstruction, etc.

Graphs modeling real-world network systems are often directed, that is,
the relations between nodes are asymmetric. However, implicit information
from edge directions is often ignored in most graph embedding methods [1,
2, 3, 4]. Although these methods can be extended to handle directed graphs,
it is hard to predict edge directions in tasks such as link prediction and graph
reconstruction by learning a single representation of nodes. Ideally, directed
graph embedding (DGE) can preserve not only the proximity between nodes
but also the asymmetry of the proximity.

To tackle this challenge, recent DGE works [5, 6, 7, 8, 9, 10] use two
embeddings to represent a node. Source embedding represents the node as a
source node, containing the structural information of outgoing edges. Target
embedding represents the node as a target node, containing the structural
information of incoming edges.

Real-world directed networks are often sparse where many nodes do not
have sufficient source neighbors or target neighbors for training, resulting in
the performance degradation of most DGE methods [6, 7, 8, 9]. This problem
was somehow alleviated with two recently developed methods, NERD [5]
and DGGAN [10]. The former increases the probability of low-degree nodes
being sampled and and the latter generates fake source and target neighbor
nodes from a shared latent distribution. However, these two methods as
well as other DGE methods do not take the correlation between two types
of embeddings into consideration. Although source embedding and target
embedding describe two structural features of a node, they are supposed to
be intrinsically connected since they describe the same node.

In this paper, a directed graph embedding method based on collabo-
rative bi-directional aggregation, called COBA, is proposed. Firstly, the
method extends spatial-based graph convolution from undirected graphs to
directed graphs through a bi-directional aggregation strategy that updates
source/target embeddings by aggregating the counterparts from source/target
neighbors, respectively. Secondly, a reverse aggregation strategy is proposed
to handle nodes with zero in/out degrees, which aggregates the counter-
parts from neighbors in the opposite direction when updating either the
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source or target embeddings of the central node. Finally, a collaborative
aggregation strategy is further proposed to leverage the correlation between
source embedding and target embedding of the same node, that is, the tar-
get/source embedding of the central node is additionally used when updating
its source/target embedding. The proposed method can achieve promising
representations for directed graphs through the above aggregation strategy.

The main contributions in this paper can be summarized as follows:

• Spatial-based graph convolution is introduced into directed graph em-
bedding for the first time to learn dual embeddings (i.e., source and
target embeddings) of nodes.

• A collaborative bi-directional aggregation strategy is proposed not only
to facilitate learning zero in/out-degree nodes, but also to leverage the
correlation between two embeddings.

• Comparative experiments on real-world datasets show that COBA com-
prehensively outperforms state-of-the-art DGE methods on different
downstream tasks.

2. Related Work

Traditional graph embedding research is oriented towards undirected graphs
and mainly uses three types of graph modeling methods: matrix factoriza-
tion [11, 12], random walks [1, 3, 4] and deep graph neural networks [2, 13, 14,
15]. Among them, deep graph neural networks represented by spectral-based
graph convolutional networks [13] and spatial-based graph convolutional net-
works [2, 14] have made remarkable progress and become the prevailing back-
bone of deep graph learning models.

In the community of directed graph embedding, existing methods can
be roughly classified into two categories depending on whether it repre-
sents a node with one or two embeddings. Single-embedding methods are
mainly based on GNN models. DGCN [16], DiGCN [17] and DGCN [18]
extend spectral-based graph convolution to directed graphs but fail to pre-
serve asymmetry directions of edges. FastMap-D [19], GREED [20] and
Gravity-VAE [21] can preserve asymmetry proximity by defining a sophis-
ticated asymmetric operation instead of inner product but they are time-
consuming due to pairwise distance computations.
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Recently, most DGE methods tend to learn two embeddings for each node
to better represent edge asymmetries. HOPE [7] and ATP [8] factorize a ma-
trix as the source and target embedding matrices of nodes. The matrix in
HOPE preserves asymmetric transitivity by approximating high-order prox-
imity and the matrix in ATP incorporates graph hierarchy and reachability
information. APP [9] and NERD [5] are random walk-based methods that
use learned vertex embeddings as source embeddings and context embed-
dings as target embeddings. DGGAN [10] and DiGAE [6] are GNN-based
methods. The former introduces GAN into directed graph and learns source
and target embeddings separately with the use of the fake neighbors gener-
ated by two connected generators and the latter employs parameterized GCN
layers as encoder and the inner product of the source and target embeddings
as decoder to learn two latent representations.

In the above DGE methods, only NERD [5] and DGGAN [10] notice and
try to solve the low-degree node embedding problem. NERD [5] increases
the sampling probability of low-degree nodes through an alternating random
walk strategy. But it fails to update the source embedding for low-out-
degree nodes and the target embedding for low-in-degree nodes as these two
types of nodes are sampled as target nodes and source nodes, respectively.
DGGAN [10] connects two generators by a shared latent variable to jointly
generate negative samples but ignores the correlation between source and
target embeddings.

This paper proposes a simple yet effective dual-embedding DGE method,
which designs a collaborative bi-directional aggregation strategy based on
spatial-based graph convolution to solve the source/target embedding prob-
lem of low (mostly zero) out/in-degree nodes. To our best knowledge, only
Bi-GCN [22] adopts a bi-directional processing approach that is somewhat
related to our work. However, Bi-GCN deals with a tree structure (i.e., ru-
mor tree) not a graph structure, using two spectral GCNs to simulate rumor
propagation and dispersion in two directions. Moreover, COBA can adjust
the aggregation strategy according to the local structure of nodes, which is
essentially different from Bi-GCN.

3. Preliminaries

3.1. Directed Graph

Given a directed graph G = {V , E}, where V is the set of nodes and E is
the set of directed edges. Let N = |V| be the number of nodes and M = |E|
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the number of directed edges. Each node pair (u, v) ∈ E (u, v ∈ V) denotes
a directed edge from u to v. A ∈ RN×N is the adjacency matrix of G. If
(u, v) ∈ E , then A (u, v) = 1; otherwise A (u, v) = 0. X ∈ RN×F is the feature
matrix of all nodes in G, where F is the dimension of the feature vector xv.
Let N (v)+ = {u| (u, v) ∈ E} be the set of source neighbors pointing to node
v through incoming edges and N (v)− = {u| (v, u) ∈ E} the set of target
neighbors pointed by node v through outgoing edges.

3.2. Dual Embedding for Directed Graphs

The dual-embedding model in this paper is specifically designed for di-
rected graphs which aims to seek two functions: fs (X,A)→ S ∈ RN×d and
ft (X,A) → T ∈ RN×d by optimization, where d is the dimension of node
embeddings. Here, each node v in directed graph G is represented by a source
embedding sv ∈ R1×d and a target embedding tv ∈ R1×d.

3.3. Spatial-based Graph Convolution

Spectral-based graph convolution requires the Laplacian matrix to be
symmetric, which inherently conflicts with the asymmetry of directed graphs,
while spatial-based graph convolution can effectively aggregate information
from neighbors through asymmetric directed edges, which is more convenient
for DGE tasks.

In GNN models, spatial-based graph convolution represented by Graph-
SAGE [2] was initially designed for undirected graphs. The representation
of central node v is updated by aggregating the information of the sampled
neighbors. This paper for the first time introduces spatial-based graph con-
volution into DGE in a dual embedding framework.

4. Model

This section details the collaborative bi-aggregation strategy in our DGE
model COBA.

4.1. Overall Framework

The overall framework of COBA is illustrated in Figure 1. The aggre-
gation module in the middle is the crucial part of our model, which con-
tains three types of operations, i.e., bi-aggregation, reverse aggregation and
collaborative aggregation. Bi-aggregation is short for bi-directional aggre-
gation, indicating that the central node not only obtains information from
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Figure 1: The overall framework of COBA. The colors of nodes represent their different
labels. The dotted lines in the aggregation module in the middle indicate different types
of aggregation. Left and right semicircles represent source and target embeddings of the
node, respectively.

source neighbors when updating its source embedding but also from target
neighbors when updating its target embedding. Unfortunately, this strategy
does not work for zero in-/out-degree nodes since they have no source/target
neighbors. Therefore, reverse aggregation is further proposed to address this
problem, where zero in-/out-degree nodes can get information from neigh-
bors in the opposite direction (i.e., target/source neighbors). To correlate
two embeddings of the same node, collaborative aggregation is finally pro-
posed, that is, the two embeddings of the same node are aggregated with
each other.

4.2. Bi-Aggregation

Considering the direction consistency of propagation, the property of the
central node as a source node is supposed to be similar to that of its source
neighbors and analogously, the property of the central node as a target node
is supposed to be similar to that of its target neighbors. Therefore, two one-
way aggregators, denoted by AGGs and AGGt, are designed to aggregate the
source and target embedding of the central node, respectively. For node v,
its source embedding and target embedding are both initialized by xv. When
updating the source embedding of node v at layer l (i.e., s

(l)
v in Eq. 2), the
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source embedding of central node at layer l− 1 and source embeddings from
source neighbors (see Eq. 1) are all used.

s
(l)
N (v) = AGGs

({
s(l−1)u ,∀u ∈ N (v)+

})
, (1)

s(l)v = σ
(

COMBINE
(
s(l−1)v , s

(l)
N (v)

)
·W s

)
. (2)

Likewise, the target embedding of central node v is aggregated as:

t
(l)
N (v) = AGGt

({
t(l−1)u ,∀u ∈ N (v)−

})
, (3)

t(l)v = σ
(

COMBINE
(
t(l−1)v , t

(l)
N (v)

)
·W t

)
, (4)

where AGGs and AGGt are mean aggregators, COMBINE(·, ·) is the con-
catenate operator, W s ∈ R2d×d and W t ∈ R2d×d are learnable parameter
matrices.

4.3. Reverse Aggregation

However, a pure bi-directional aggregation does not perform well for zero
in/out-degree nodes. Taking a node with zero in-degree as an example (the
situation is similar for nodes with zero out-degree), its source embedding
cannot learn neighborhood proximity due to the lack of source neighbors,
but can only aggregate itself. A similar problem exists when updating the
target embedding of zero out-degree nodes.

This paper proposes a reverse aggregation method to handle this prob-
lem. Note that the source and target neighbors of a node are close in the
context path (that is, a 2-hop neighborhood), so the node with insufficient
source/target neighbors can also obtain additional information from its re-
verse neighbors when updating itself. To avoid introducing too much noisy
data that is not beneficial for identifying edge directions, this paper ag-
gregates the information from reverse neighbors only for zero in/out-degree
nodes. Therefore, the bi-aggregation is further improved by optionally using
the reverse aggregation according to the degree of nodes.

s
(l)
N (v) = AGGs

({
s(l−1)u ,∀u ∈ N (v)−

})
, v ∈ V in (5)

t
(l)
N (v) = AGGt

({
t(l−1)u ,∀u ∈ N (v)+

})
, v ∈ Vout (6)

where V in and Vout are the set of zero in-degree nodes and zero out-degree
nodes, respectively.
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4.4. Collaborative Bi-Aggregation

The above strategy efficiently learns dual embeddings of nodes including
zero in/out-degree nodes. However, it is noticed that two types of embed-
dings propagate independently on the network without any communication
between them. We believe that the source embedding and the target em-
bedding of a common node are latently correlated although they describe
different structural properties of the node.

To this end, a collaborative bi-aggregation module is finally assembled.
Eq. 2 and 4 are correspondingly rewritten as:

s(l)v = σ
(

COMBINE
(
s(l−1)v , t(l−1)v , s

(l)
N (v)

)
·W s

)
, (7)

t(l)v = σ
(

COMBINE
(
t(l−1)v , s(l−1)v , t

(l)
N (v)

)
·W t

)
. (8)

4.5. Train

In the model training phase, the positive sample set Epos is composed
by sampling the existing edges in the directed graph but the composition
of the negative sample set Eneg is different from that in undirected graphs.
Specifically, for each node v, n nodes that do not point to v are randomly
sampled as source nodes to form negative samples with v. At the same time,
n nodes that are not pointed by v are randomly sampled as target nodes to
also form negative samples with v. We use the inner product and the sigmoid
function as activation function to predict directed edges. The loss function
is defined as the binary cross entropy loss:

L = Ei∈Epos − log (yposi ) + Ej∈Eneg − log
(
1− ynegj

)
, (9)

where yposi and ynegj are the predicted value for the i-th positive samples and
the j-th negative samples respectively. W s and W t in Eq.7 and Eq.8 are
trained by minimizing the loss L.

5. Experiment

In this section, we empirically evaluate and discuss the performance of dif-
ferent models including COBA, on six real-world datasets and on three tasks,
i.e., directed link prediction, node classification and graph construction.
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Dataset #Nodes #Edges Avg. degree 0-indegree 0-outdegree #Labels

Jung 6,120 50,535 16.51 63.92% 1.06% -
Wikivote 7,115 103,689 29.15 66.54% 14.13% -
Google 15,763 171,206 21.72 0.01% 21.02% -
Cora 23,166 91,500 7.90 40.09% 8.48% 10

Amazon-Photo 7,650 143,663 37.60 2.59% 10.99% 8
Pubmed 19,717 44,338 4.50 10.38% 80.34% 3

Table 1: Statistics of datasets.

5.1. Dataset

Six publicly available datasets are used, which are graphs in different
application scenarios.

Jung1 is a software dataset of JUNG 2.0.1 libraries where nodes represent
Java classes and edges denote the dependence between Java classes. Wikiv-
ote2 is a social network where nodes represents users and edges describes the
voting relationship between users. Google3 collects web links from the Google
website where nodes are websites and edges represent hyperlinks. Cora4 and
Pubmed5 are both citation networks with node labels. Nodes are academic
papers, edges represent citation relationships and labels are categories of pa-
pers. Amazon-Photo6 is a co-purchase graph. Nodes are products, edges
describe the dependence of goods being purchased at the same time and la-
bels indicate the category of goods. Table 1 summarizes the details of all
datasets, each with a specific scale and sparsity.

5.2. Comparison Methods and their Settings

The comparison methods include: (1) baseline undirected graph embed-
ding methods, including random walk-based methods like DeepWalk [3],
LINE-1 [4], node2vec [1], and two spatial-based graph convolution meth-
ods GraphSAGE [2] and GAT [14]; (2) directed graph embedding methods,

1http://konect.cc/networks/subelj jung-j/
2http://snap.stanford.edu/data/wiki-Vote.html
3http://konect.cc/networks/cfinder-google/
4http://konect.cc/networks/subelj cora/
5https://linqs.org/datasets/#pubmed-diabetes
6https://pytorch-geometric.readthedocs.io/en/latest/ modules

/torch geometric/datasets/amazon.html
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highlighting on seven dual-embedding methods, i.e. LINE-2 [4], HOPE [7],
APP [9], NERD [5], ATP [8], DGGAN [10] and DiGAE [6].

Among the undirected graph embedding methods, DeepWalk, LINE-1
and node2vec treat the input graph as a directed graph and generate walk
paths through directed edges; GraphSAGE and GAT update the embeddings
of central nodes by aggregating embeddings of source neighbors and these
embeddings can be later aggregated by their target neighbors. We use the
inner product of node embeddings to predict edges. For DeepWalk, node2vec
and APP, the number of walks, the walk length and the window size are set
as 10, 80 and 10 respectively. LINE-1 and LINE-2 are LINEs preserving first-
order proximity and second-order proximity respectively. In LINE-2, vertex
embeddings are regarded as source embeddings and context embeddings are
regarded as target embeddings. We use identity matrix instead of attribute
matrix in DiGAE for fair comparison, even though one-hot encoding could
conceptually hinder the identification of directionality [6]. For COBA, we
set 40 epochs to ensure the convergence of model training. The number of
layers and the number of sampling neighbors are set to 1 and 2, respectively,
and their sensitivity is further explored.

In the link prediction and graph reconstruction tasks, the embedding
dimension of all methods is set to 128. In the node classification task, the
embedding dimension of undirected graph embedding methods is still 128,
while the dimensions of two embeddings in DGE methods are both set to 64 to
obtain the final 128-dimensional concatenated embedding. All experimental
results are the average of 10 runs on a Linux server with RTX 3090.

5.3. Experiments on Link Prediction

Different from link prediction in undirected graphs, the link prediction in
directed graphs not only predicts whether there are edges between nodes, but
also predicts the direction of edges. We randomly select 30% of the edges
as test set and the remaining 70% as training set. Three compositions of
negative samples are set for each test set. In the first setting, the negative
samples are randomly sampled from the unconnected node pairs. In the sec-
ond setting, 50% of the negative samples are from random sampling, and
another 50% of the negative samples are obtained by reversing the unidirec-
tional edges in the positive samples. In the third setting, all negative samples
come from the opposite edges of the unidirectional edges in positive samples.
Among them, the first setting is the same as that for undirected graph link
prediction.
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method
Jung Wikivote Google Cora

0% 50% 100% 0% 50% 100% 0% 50% 100% 0% 50% 100%

DeepWalk 80.88 65.76 50.38 82.68 67.56 52.53 79.08 69.95 60.89 92.60 72.54 52.48
LINE-1 40.07 45.07 50.13 64.11 57.85 51.54 78.81 69.39 60.10 64.90 58.09 51.21

node2vec 92.94 71.72 50.33 88.27 70.47 52.67 84.08 69.68 55.43 81.85 66.60 51.51
GraphSAGE 74.52 62.19 50.26 58.84 54.95 50.44 71.58 63.08 55.46 48.46 49.26 50.20

GAT 80.31 65.31 50.20 77.75 64.68 51.58 85.69 71.30 58.60 85.72 68.80 52.04

LINE-2 59.34 54.74 50.10 87.15 69.66 51.98 74.66 65.40 56.29 68.11 59.44 50.77
HOPE 97.02 96.72 96.42 92.68 90.11 87.51 95.64 91.90 88.08 91.61 85.93 80.22
APP 89.16 88.79 88.41 73.37 66.86 60.40 85.45 85.75 85.83 79.77 75.93 72.29

NERD 57.17 56.93 56.70 76.70 74.34 72.06 69.28 66.07 62.80 84.00 82.95 81.90
ATP 96.28 97.80 99.38 85.07 90.65 96.43 82.05 86.13 90.29 84.54 89.04 93.63

DGGAN 97.79 97.97 98.26 97.68 95.35 95.05 92.66 92.62 93.11 89.96 90.22 90.67
DiGAE 88.77 81.43 74.06 94.67 77.26 59.88 88.46 83.63 78.85 83.30 81.21 79.18

COBA(ours) 98.75 98.99 99.45 98.90 96.50 94.75 99.35 96.27 94.56 97.87 94.26 91.53

Table 2: AUC score of link prediction. 0%,50% and 100% respectively represent the
proportion of negative samples obtained by reversing unidirectional edges in test set. The
best results are bolded and the second best results are underlined.

We use AUC score to evaluate the performance of all methods (see Ta-
ble 2). It demonstrates that COBA achieves the best AUC value in most
cases, which indicates its effectiveness for representing directed edges. Most
of the comparison methods, including COBA do not perform as well in the
third setting as in the first setting. This is because the third task is more
difficult as the model needs not only to determine whether there is an edge
but also to determine the direction of the edge. ATP generally performs
better in the 100% setting than other settings, probably because it adds
the hierarchical information of nodes when constructing the matrix, which is
very helpful in identifying the edge directions. The undirected graph embed-
ding methods usually achieve good results in the first setting (0%), but their
performance gradually declines as the proportion of directional judgment on
edges increases, indicating that one embedding is difficult to preserve the
directionality of edges.

5.4. Experiments on Node Classification

We then apply all methods to the node classification task to compare their
ability to learn the distribution of label-related features. We employ three
datasets with node labels: Amazon-Photo, Pubmed and Cora (see Table 1).
The ratio of training set to test set is still 7:3.

Table 3 summarizes the experimental results on Micro-F1 and Macro-F1
indicators. It demonstrates that COBA achieves the best performance on
Amazon-Photo and Cora; it does not perform as well as NERD on Pubmed,
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method
Amazon-Photo Pubmed Cora

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

DeepWalk 90.15 88.96 44.03 32.98 69.68 59.64
LINE-1 87.02 87.15 47.95 40.23 46.10 25.09

node2vec 89.02 88.70 39.01 28.43 60.58 41.97
GraphSAGE 39.88 5.70 44.83 32.49 58.63 52.46

GAT 39.66 5.69 58.50 43.42 64.84 54.43

LINE-2 85.97 85.87 47.31 37.66 40.65 15.79
HOPE 39.30 16.40 58.84 49.36 40.89 8.48
APP 25.40 10.86 65.19 61.74 69.14 59.86

NERD 88.58 87.73 75.69 74.19 66.33 53.18
ATP 52.42 44.36 53.08 46.66 40.24 11.28

DGGAN 34.51 11.81 43.07 31.98 40.24 6.49
DiGAE 74.77 64.02 45.17 35.31 40.73 7.86

COBA(ours) 92.16 92.07 71.52 67.91 70.75 63.31

Table 3: Micro-F1 and Macro-F1 scores of node classification. The best results are bolded
and the second best results are underlined.

but still significantly outperforms other methods. It is noted that Pubmed is
much sparser than the other two datasets, while NERD can learn the influ-
ence of neighboring nodes through alternate paths, so as to better retain the
label information of nodes, especially in sparse networks. Although the bi-
aggregation strategy in COBA can also alleviate the problem of insufficient
learning caused by network sparsity, it relies more on information propaga-
tion from neighbors, which is less effective than the random walk strategy of
NERD. Overall, COBA’s performance is much more stable across different
types of datasets. We also observe that the node classification performance
of undirected graph embedding methods is similar to or even better than
that of some DGE methods, which indicates that the edge direction has no
significant influence on the information propagation of node labels and one
embedding can also represent label-related features of nodes. Some DGE
methods such as HOPE and DGGAN can achieve good results on link pre-
diction but perform poorly and unstable on node classification. The main
reason is probably that these methods intend to learn the structural fea-
tures by designing specific proximity metrics and losses, without learning
the label-related features of nodes, so it is difficult to generalize to the node
classification task.
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method
Jung Wikivote Google Cora

0% 50% 100% 0% 50% 100% 0% 50% 100% 0% 50% 100%

COBA-Re-Co 98.18 98.70 99.46 98.70 96.36 94.02 99.33 96.00 93.96 97.46 93.85 91.80

COBA-Re 98.46 98.84 99.51 98.78 96.66 94.82 99.19 96.17 94.50 97.44 94.16 92.73

COBA 98.75 98.99 99.45 98.90 96.50 94.75 99.35 96.27 94.56 97.87 94.26 91.53

Table 4: Results of an ablation study. COBA-Re denotes the COBA removing the reverse
aggregation, and COBA-Re-Co denotes the COBA removing both reverse and collabora-
tive aggregations. The best results are marked in bold.

5.5. Experiments on Graph Reconstruction

The graph reconstruction task is used to evaluate the quality of the em-
beddings in reconstructing the original graph. We conduct experiments on
the Jung and Google datasets using the dot product of vectors to reconstruct
the adjacent matrix. Without loss of generality, we randomly sample 10% of
the nodes as the test set, where the top k nearest target neighbors for each
node are used to calculate the precision. We plot 7 representative methods
for comparison in Figure 2.
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Figure 2: Precision@k of graph reconstruction.

The experimental results show that COBA has the most powerful graph
reconstruction ability under different k values. It verifies that COBA can
well preserve the neighborhood relationship through its sophisticated aggre-
gation strategy, which is beneficial for graph reconstruction. As the value
of k increases, the precision of all methods gradually decreases, because the
number of the neighbors of test nodes remain constant. Note that NERD
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Figure 3: Results of parameter analysis.

achieves good results in both link prediction and node classification but does
not perform well in graph reconstruction, even inferior to most undirected
graph embedding methods. It suggests that the alternating walk strategy
is not conducive to preserving the structural proximity of neighbors. For
example, two nodes may not necessarily be structurally similar even though
they point to the same node, but NERD considers them to be similar.

5.6. Ablation Studies

In this section, we investigate the impact of both bi-directional aggrega-
tion and collaborative aggregation on the performance of the COBA model.
We observe the AUC changes in link prediction by removing different aggre-
gation operations from the complete COBA. The ablation results on Jung,
Wikivote, Google and Cora are shown in Table 4.

The experimental results show that both bi-directional aggregation and
collaborative aggregation are effective in most cases. However, the bi-aggregation
often fails as the proportion of directional judgment on edges increases. For
example, COBA-Re slightly outperforms COBA on most datasets when the
test set is composed of 100% reverse edges. It indicates that using informa-
tion from neighbors in opposite direction is not beneficial to the direction
judgment. Meanwhile, the model performance degrades slightly after using
collaborative aggregation at the 0% setting on Google and Cora. The pos-
sible reason is that the two datasets are larger in scale, with more nodes
and richer structures, while collaborative aggregation focuses more on lo-
cal embedding correlations, making it difficult to learn the global structure
of the graph well under the 0% setting. Note that COBA-Re-Co still out-
performs existing methods, which shows that bi-directional aggregation can
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already learn the direction information from the source and target neighbors
to update dual embeddings of central nodes.

5.7. Parameter Analysis

Finally, we analyze the influence of the parameters in COBA on the per-
formance, including the embedding dimension d, the number of negative
samples n for each node and the number of aggregation layers l. We con-
ducted link prediction task with the second setting (50%) on the Jung dataset
to observe the changes in model performance with different parameters, and
the results are shown in Figure 3.

Firstly, 32-dimensional embeddings are not sufficient to represent the
properties of nodes, so the results of the model are the worst. With the
increase of the dimension, the representative ability of node embeddings
gradually improves and reaches the optimum at 128 dimensions. However,
although the model can also achieve good results with 256 dimensions of em-
beddings, its performance is slightly lower than that with 128-dimensional
embeddings, probably because the large-dimensional embeddings lead to
over-fitting.

Secondly, for different number of negative samples n, the model with
n = 2 achieves better result than that with n = 1. As the value of n increases,
the performance tends to stabilize, but it brings additional computational
burden. Therefore, n is set to 2 by default as it is sufficient for training
COBA.

Finally, the model has the best performance when using one-layer aggre-
gation. As the number of layers increases, the performance of the model
decreases significantly, indicating that a deeper neural network will lead to
the over-smoothing issue, making it difficult to distinguish the node repre-
sentation.

6. Conclusion

In this paper, we propose a directed graph method based on collabo-
rative bi-directional aggregation. This method can aggregate the informa-
tion of neighbors from two directions, learn better representation for zero
in/out-degree nodes, and correlate two embeddings by aggregating from each
other. Extensive experiments on multiple datasets show that our method has
promising performance in link prediction, node classification and graph re-
construction.
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