
Stable Invariant Models via Koopman Spectra

Takuya Konishia,b,∗, Yoshinobu Kawaharaa,b

aGraduate School of Information Science and Technology, Osaka University, 1-5
Yamadaoka, Suita, Osaka, Japan

bCenter for Advanced Intelligence Project, RIKEN, 1-4-1
Nihonbashi, Chuo-ku, Tokyo, Japan

Abstract

Weight-tied models have attracted attention in the modern development of
neural networks. The deep equilibrium model (DEQ) represents infinitely
deep neural networks with weight-tying, and recent studies have shown the
potential of this type of approach. DEQs are needed to iteratively solve
root-finding problems in training and are built on the assumption that the
underlying dynamics determined by the models converge to a fixed point. In
this paper, we present the stable invariant model (SIM), a new class of deep
models that in principle approximates DEQs under stability and extends the
dynamics to more general ones converging to an invariant set (not restricted
in a fixed point). The key ingredient in deriving SIMs is a representation of
the dynamics with the spectra of the Koopman and Perron–Frobenius oper-
ators. This perspective approximately reveals stable dynamics with DEQs
and then derives two variants of SIMs. We also propose an implementation
of SIMs that can be learned in the same way as feedforward models. We
illustrate the empirical performance of SIMs with experiments and demon-
strate that SIMs achieve comparative or superior performance against DEQs
in several learning tasks.

Keywords: Neural networks, Deep learning, Dynamical systems, Spectral
analysis

∗Corresponding author
Email address: konishi@ist.osaka-u.ac.jp (Takuya Konishi)

© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0
license http://creativecommons.org/licenses/by-nc-nd/4.0/

ar
X

iv
:2

20
7.

07
47

5v
2

 [
cs

.L
G

]
 1

9
Ju

n
20

23

http://creativecommons.org/licenses/by-nc-nd/4.0/

1. Introduction

A feedforward neural network learns a representation by explicitly iterat-
ing a number of layer-by-layer computations. Each layer performs a transfor-
mation of outputs from the previous layer, which is typically characterized
by different sets of parameters among the layers. However, several recent
studies have shown that models with weight-tying, i.e. the ones employing
the same transformation in each layer, achieve results competitive with state-
of-the-art performances (Bai et al., 2019b; Dabre & Fujita, 2019; Dehghani
et al., 2019). Motivated from this fact, Bai et al. (2019a) recently proposed
the deep equilibrium model (DEQ), which is equal to running an infinitely
deep feedforward model with weight-tying instead of using a finite number
of layers. The models compute a representation by finding a fixed point (or
an equilibrium point) with root-finding in practice, and are thus regarded as
an instance of the so-called implicit-depth models such as neural ordinary
differential equations (Chen et al., 2018). The following studies on DEQs
have shown capability in this type of approach in several learning tasks (Bai
et al., 2020; Winston & Kolter, 2020).

The forward pass of DEQs and their variants involves solving root-finding
problems, which can lead to a high computational time and tends to be un-
stable (regarding, for example, the sensitivity in hyper-parameter tuning
and initialization). Hence, DEQs sometimes require extensive and time-
consuming tuning to achieve strong performance and convergence to solu-
tions (Linsley et al., 2020). Additionally, DEQs assume that the underlying
dynamics determined by the models converge to a fixed point. However, as
is often reported in papers on sequential neural models such as recurrent
neural networks and also known in the scientific studies of brain activity, a
broader class of convergence such as nonlinear oscillations could convey pre-
ferred capabilities in learning (Selverston & Moulins, 1985; Townley et al.,
2000; Chang et al., 2019; Kag et al., 2020).

In this study, we propose a novel class of deep models, referred to as the
stable invariant model (SIM). The key insight behind SIMs is to interpret
the underlying dynamics regarding DEQs through the Koopman operator.
The Koopman operator is a linear operator over functions defined on latent
states of dynamics (Koopman, 1931; Mezić, 2005). Because of its linearity,
we can capture inherent temporal and spatial patterns of dynamics by the
representation of the spectra, i.e. eigenvalues and eigenvectors, of the corre-
sponding Koopman operator. We first show that the spectra of the Koopman

2

x

z0 · · · z∗
fθ fθ fθ

DEQ

z0

x
z

φ
ÛV̂ φ̂−1

z

SIM z∗ ≈ z

Figure 1: Comparison of DEQs and single-tier SIMs. The notation is introduced in Sec-
tions 2 and 3.

operator clarify stable dynamics with DEQs and then develop two variants
of SIMs. The first models, single-tier SIMs, principally approximate DEQs
under the stability. The resulting models, somewhat surprisingly, consist of
only three-step transformations, although they approximate DEQs that are
infinitely deep (see Figure 1). Moreover, the second models, two-tier SIMs,
extend the dynamics to broader ones converging to an invariant set (e.g. a
set of points, curve, and more general manifold) by employing the connection
between the Koopman and Perron–Frobenius operators. We further provide
a practical scheme to implement SIMs so that they can be learned in the same
manner as feedforward models. Finally, we illustrate the behaviors of SIMs
with numerical experiments in supervised learning tasks. We demonstrate
that our models achieve competitive or superior performances compared to
DEQs with less computational time.

The remainder of this paper is organized as follows. First, in Section 2,
we briefly review DEQs, and the Koopman and Perron-Frobenius operators.
In Section 3, we propose SIMs along with the description of their resulting
architectures and characteristics. We describe the related works in Section 4
and investigate the empirical performance of our models in three learning
tasks in Section 5. We conclude this paper in Section 6. The details of
some equation derivations and experiments are presented in Appendix A
and Appendix B, respectively.

3

2. Background

2.1. Deep Equilibrium Models

One of the core ideas in DEQs is weight-tying, i.e. the same set of param-
eters is shared across the layers of a deep network. Formally, DEQs consider
an L-layer weight-tied transformation with shared parameters θ:

zl+1 = fθ(zl,x), l = 0, 1, . . . , L− 1, (1)

where x ∈ RD is the input to the model, zl ∈ Rd is the hidden state of the
l-th layer, and fθ : Rd+D → Rd is a continuous function. DEQs suppose that
stacking such layers infinitely tends to a fixed point:

lim
l→∞

zl = lim
l→∞

f l
θ(z0,x) := fθ(z

∗,x) = z∗. (2)

The forward pass of DEQs uses root-finding algorithms to directly compute
the fixed point z∗ by solving the equation z∗ = fθ(z

∗,x). Then, z∗ is
transformed to an output y by a function h as y = h(z∗). We can train
DEQs with backpropagation by computing the gradient of the fixed point
through implicit differentiation (Krantz & Parks, 2013).

A series of transformations in Eq. (1) can be viewed as a discrete-time
nonlinear dynamical system where the hidden state zl is a state vector at
step l. The underlying dynamics are determined by the transformation fθ,
which is affected by the input x at every step.

2.2. Koopman and Perron–Frobenius Operators

We briefly overview the Koopman and Perron–Frobenius operators. Please
see other references, e.g. (Mauroy et al., 2020), for more information.

Definitions. Consider a discrete-time nonlinear dynamical system: zt+1 =
f(zt), defined on a state space S⊂Rd, where zt ∈ S is the state vector
at time t, and f : S → S is a (possibly, nonlinear) state-transition function.
Let g ∈ G be an observable, which is a scalar complex-valued function on
S in some (Banach) space G. The Koopman operator K : G → G is defined
through the following composition:

(Kg) (z) = g (f(z)) ,

where z ∈ S is a state vector. K acts on observables and maps g to a new
function Kg. Although the dynamics described by f may be nonlinear, K is
linear and infinite-dimensional.

4

The Perron–Frobenius operator is often used to describe the transition
of the density over the state of dynamical systems (Lasota & Mackey, 1994;
Gaspard, 1998; Cvitanović et al., 2020). Given a measure space (S,A, µ)
that consists of a state space S, σ-algebra A, and measure µ, we suppose
that f is nonsingular if µ(f−1(A)) = 0 for a Borel set A ∈ A such that
µ(A) = 0, where f−1(A) is the preimage of f given A. Let p ∈ L1 denote a
density function on S in the space of absolutely integrable functions L1. The
Perron–Frobenius operator P : L1 → L1 acts on densities and is defined as∫

A

(Pp)(z)dµ =

∫
f−1(A)

p(z)dµ, A ∈ A.

It should be noted that the Koopman (or Perron–Frobenius) operator is the
adjoint of the Perron–Frobenius (or Koopman) operator for appropriately
defined spaces.

Koopman Spectrum. Because the Koopman operator K (and also Perron–
Frobenius operator) is linear, it can be characterized by spectral properties.
We assume K has only point spectra and also has non-trivial eigenfunctions.
Let λj ∈ C, j = 1, 2, . . ., be the eigenvalue of K. The eigenfunction ϕj : S → C
for λj satisfies the relation

(Kϕj) (z) = ϕj (f(z)) = λjϕj(z).

λj and ϕj are called the Koopman eigenvalue and Koopman eigenfunction,
respectively. If an observable g is in the subspace of G spanned by the
Koopman eigenfunctions {ϕj} := {ϕj | j = 1, 2, . . .}, the observable can be
represented as

(Kg) (z) = g (f(z)) =
∞∑
j=1

λjvjϕj(z),

where the coefficient vj ∈ C, j = 1, 2, . . ., is referred to as the Koopman
mode associated with g. The subspace spanned by {ϕj} is invariant under
the Koopman operator, i.e., the observables in the subspace remain in the
subspace after being acted by K.

Finite-Dimensional Approximation. Consider a subspace of observables which
is spanned by N basis functions {φj} := {φj : S → C | j = 1, 2, . . . , N}. If g

5

exists on the subspace, then g is represented as a linear combination of the
basis functions, i.e. g(z) = w⊤φ(z), where we denote the concatenation of
the basis functions as a vector-valued one φ = (φ1, . . . , φN)⊤ : S → CN , and
w ∈ CN is the coordinate of g on the subspace. By projecting the action
of K onto the span of {φj}, we approximate K with another linear operator
KN . This approximates the Koopman operator K and satisfies

(KNg)(z) = (Kw)⊤φ(z),

where K ∈ CN×N is referred to as the Koopman matrix. The above shows
that a temporal evolution of g with KN is represented by applying K to
the coordinate w. Therefore, the Koopman matrix owns the one-to-one
correspondence to KN . Moreover, the Koopman eigenvalues, eigenfunctions,
and modes of KN can be obtained from the eigenvalues, right-eigenvectors,
and left-eigenvectors of K, respectively.

Additionally, the Koopman matrix provides an approximation of the dy-
namics through the basis functions:

φ (f(z)) ≈ (K⊤φ)(z) := (Aφ)(z), (3)

where A is the transpose of the Koopman matrix, i.e. A = K⊤. Eq. (3)
indicates that a temporal evolution with f can be approximated by a tem-
poral evolution with the finite and linear dynamics described by A over a
lifted space with φ. The equation holds if K = KN .

It should be noted that, if g is a real-valued function, then it is sufficient
to consider real-valued ones for the corresponding quantities (such as φj, w
and K).

3. Stable Invariant Models

In this section, we introduce our proposed SIMs. The models are mo-
tivated by two problems concerning DEQs. First, DEQs work under the
assumption that the underlying dynamics are stable, i.e. Eq. (2) holds for
any input and initial state. However, it is in general hard to assess whether
nonlinear dynamics satisfy the assumption. We address this problem by ap-
proximately specifying the stable dynamics using the Koopman spectrum,
which leads our first single-tier SIMs by identifying the convergent behavior
for a fixed point.

6

The second problem is that DEQs only consider convergence to a fixed
point. In the literature on dynamical systems, one often considers more
general convergence to an invariant set: for a dynamical system on a state
space S, a set S ⊂ S is said to be an invariant set if any trajectory starting in
S remain in S. The convergence to an invariant set allows for the dynamics
that oscillate on the set. Notable examples include limit cycles, tori, and
other nonlinear oscillations (Strogatz, 2015). We also refer to dynamics as
stable if the dynamics converge to a bounded invariant set for any input and
initial state and construct our second two-tier SIMs by incorporating only
the dynamics converging to an invariant set via the Koopman and Perron–
Frobenius operators.

3.1. Approximating DEQs

We begin by considering the representations of DEQs with the Koopman
operator. However, it should be noted that fθ in Eq. (1) has another vector x
as an input differently from f in Section 2.2. Although there are several ways
to define the Koopman operator for such a case, we consider the following
Koopman operator K acting on the observable g of both the hidden state z
and input x (Proctor et al., 2018):

(Kg)(z,x) = g(fθ(z,x),x). (4)

The action of this operator is restricted so that x is maintained at the same
point. Even if x is injected, the properties of the Koopman operator discussed
in Section 2.2 still hold.

Hereafter, we consider a real-valued observable g. First, let φj(z,x) : Rd+D

→ R be N real-valued basis functions (j = 1, . . . , N). The concatenation is
given by a vector-valued basis function φ. If Eq. (1) converges to a fixed point
z∗ as in Eq. (2), we can approximate z∗ with x by the Koopman operator
of Eq. (4) as

(z∗,x) =
(

lim
l→∞

fθ(zl,x),x
)

=
(

lim
l→∞

f l
θ(z0,x),x

)
≈ φ̂−1

(
φ
(

lim
l→∞

f l
θ(z0,x),x

))
≈ φ̂−1

(
lim
l→∞

Alφ(z0,x)
)
. (5)

7

Here, we define a function φ̂−1 in the first approximation. The equation

holds if there exists the inverse function φ−1 and φ̂−1 = φ−1. Strictly in-
vertible φ with respect to all possible inputs and outputs is rather restrictive

and expensive in practice. We relax the invertibility by supposing φ̂−1 as
a surrogate function that approximately models the output–input relations
in the subspace where most of the inputs and outputs are distributed. The
second approximation of Eq. (5) follows the finite-dimensional approxima-
tion of the Koopman operator through the lifted dynamics as described in
Eq. (3). The basis functions need higher expressiveness to better approxi-
mate the subspace of the observables that the Koopman operator acts. By

dividing the surrogate function φ̂−1 into two parts corresponding to z and x,

i.e. φ̂−1 = (φ̂−1
z , φ̂−1

x), the fixed point z∗ can be approximated more directly
as

z∗ ≈ φ̂−1
z

(
lim
l→∞

Alφ(z0,x)
)
. (6)

3.2. Convergent Behavior via Koopman Spectra

The approximation (6) assumes that DEQs converge to a fixed point.
However, whether a DEQ converges to a fixed point depends on the behavior
of the underlying dynamics with the DEQ. The approximation (6) allows
us to characterize the convergent behavior of a DEQ via eigenvalues of the
corresponding A.

First, we denote by λj ∈ C for j = 1, 2, . . . , N the eigenvalues of A.
It should be noted that the eigenvalues can be complex values even though
A is a real matrix (because it is not necessarily symmetric). For any real
matrix A, there exists a nonsingular matrix U ∈ RN×N that consists of
the generalized-eigenvectors including the ordinal eigenvectors of A. We
represent U and U−1 with N vectors, respectively, as U = (u1, . . . ,uN) and
U−1 = (v1, . . . ,vN)⊤, where uj is associated with a generalized-eigenvector
of λj if λj is real, and the real or imaginary part of a generalized-eigenvector
of λj if λj is non-real. Additionally, let ρ(A) be the spectral radius of A, i.e.
ρ(A) := max{|λ1|, . . . , |λN |}. We can then classify the convergent behavior
of the lifted dynamics into the following four cases:

(i). If ρ(A) < 1, then the dynamics converge to the origin:

lim
l→∞

Alφ(z0,x) = 0.

8

(ii). If ρ(A) = 1, all the eigenvalues with |λj| = 1 take the values 1, and
their corresponding eigenvectors are linearly independent, then the
lifted dynamics converge to a fixed point. That is, if we denote by
J1 = {j | λj = 1} the index set of such eigenvalues, then we have

lim
l→∞

Alφ(z0,x) =
∑
j∈J1

ujv
⊤
j φ(z0,x). (7)

(iii). If ρ(A) = 1 and the eigenvectors with eigenvalues of |λj| = 1 are
linearly independent, then the lifted dynamics do not converge to a
point but oscillates in the state space. More concretely, if we denote
λj = αj + iβj, J2 = {j | λj = −1}, and J3 = {(j, k) | |λj| = |λk| =
1, βj = βk ̸= 0, λk = λj}, then we have

lim
l→∞

Alφ(z0,x) = lim
l→∞

(∑
j∈J1

ujv
⊤
j +

∑
j∈J2

(−1)lujv
⊤
j

+
∑

(j,k)∈J3

(
cos(l∆j)uj − sin(l∆k)uk

)
v⊤j

+
(

sin(l∆j)uj + cos(l∆k)uk

)
v⊤k

)
φ(z0,x),

(8)

where i is the imaginary unit, and ∆j = arctan(βj/αj). J3 is the set of
index pairs whose eigenvalues are conjugated. It should be noted that
there always exists a conjugate eigenvalue for every non-real eigenvalue
when A is real.

(iv). Otherwise, at least one element among the states of the lifted dynamics
diverges.

We describe the derivations of the four cases in Appendix A. Figure 2 shows
the complex plane and coordinates of the eigenvalues described in the above
cases. The red and green dots, and the blue line denote the locations of the
eigenvalues that correspond to J1, J2, and J3, respectively. The gray area
shows the area where the absolute values of the eigenvalues are less than
1. The first three cases approximately correspond to the stable dynamics
with the DEQ. Case (i) converges to the origin regardless of x, which is
useless for any learning problems. In contrast, case (ii) converges to a fixed
point that reflects x. Case (iii) does not converge to any fixed point but
oscillates on a manifold in the state space, where the terms corresponding to

9

Re

Im

1−1

i

−i

J3

J1J2

Figure 2: Areas where eigenvalues corresponding to J1, J2, and J3 are located in the
complex plane.

J2 and J3 respectively include coefficients such as (−1)l and cos(l∆j) that
neither diverge nor converge. Lastly, case (iv) diverges and the corresponding
dynamics are not stable.

3.3. Model Description

We derive SIMs based on the above analysis of DEQs from the perspective
of the Koopman spectrum. We first describe the variant that approximates
DEQs by leveraging case (ii). Moreover, we present another variant of SIMs
that incorporates a broader class of dynamics by utilizing case (iii).

Fixed Point. Case (ii) represents the dynamics that converge to a fixed point
as in Eq. (7). Because DEQs assume that the underlying dynamics converge
towards a fixed point, which are covered by case (ii), we can approximate
the fixed point of a DEQ by plugging Eq. (7) into Eq. (6):

z∗ ≈ φ̂−1
z

(∑
j∈J1

ujv
⊤
j φ(z0,x)

)
= φ̂−1

z

(
Û V̂ φ(z0,x)

)
, (9)

where Û ∈ RN×K and V̂ ∈ RK×N consist of the vectors that are the rows of
U and V whose indices belong to J1 and K is the size of J1. Interestingly,
this approximation implies that a fixed point of DEQs can be represented as
a finite-depth model that consists of three-step transformations if the basis
functions can approximate the subspace of the observables that the corre-
sponding Koopman operator acts. We refer to the right-hand side of Eq. (9)
single-tier SIMs. This comes from the fact that a state of the dynamics is
lifted to another tier with φ.

10

Original space

First-tier space

Second-tier space

z0x

φ

ψ

φ̂−1
z

≈ z∗

ψ̂−1

φ̂−1
z

z⋆

Figure 3: Overview of SIMs.

Invariant Set. Case (iii) represents the dynamics that converge to an in-
variant set given by Eq. (8). While such dynamics do not converge to any
single fixed point, it is necessary to characterize case (iii) with some rep-
resentative point to obtain a trainable model. We here focus on invariant
sets being characterized by spectra with eigenvalue 1 of the corresponding
Perron–Frobenius operator (Billings & Schwartz, 2008; Froyland & Padberg,
2009). This viewpoint suggests that the spectra can encode the information
of convergent trajectories in case (iii).

Now, let ψ be the (finite-dimensional) basis functions of an embedding
of the state into some Hilbert space that encodes the density defining the
corresponding Perron–Frobenius operator. Building upon the above insight,
we propose to represent case (iii) as the following extended equilibrium over
the states on one more lifted space similar to case (ii):

z⋆ := φ̂−1
z

ψ̂−1

∑
j∈J ′

1

u′
jv

′⊤
j ψ (φ(z0,x))

= φ̂−1

z

(
ψ̂−1

(
Û ′V̂ ′ψ (φ(z0,x))

))
,

(10)

where J ′
1 is the index set of the spectra of the Perron–Frobenius operator

analogous to J1, and Û ′ and V̂ ′ are the corresponding matrices. ψ̂−1 is an-
other surrogate function for approximating the inverse function of ψ. The
new point z⋆ reflects the convergent behavior of the dynamics over an invari-
ant set. We refer to this type of models as two-tier SIMs, which come from
the structure involving two-tier maps by φ and ψ. Two-tier SIMs are also

11

represented as finite-depth models.

Figure 3 shows the overview of SIMs. The black arrows denote the first
transformation with the basis functions φ. The blue and red arrows cor-
respond to the transformations of the single-tier and two-tier SIMs, respec-
tively. Each model considers the convergent behavior of the dynamics in the
first-tier or second-tier space and then returns to the original space with the
surrogate functions.

Although DEQs are defined by the transformation fθ, SIMs require the
specification of the basis functions φ and ψ. One natural question may
be how the two approaches and convergence properties relate to each other.
Generally, if two dynamical systems converge to similar fixed points or invari-
ant sets, the corresponding dynamics also have similar topological properties.
However, the actual transformations are determined by many factors (e.g. the
training algorithms and choice of basis functions), and the convergence re-
gions of the two approaches will be different. Investigating how fθ can be
associated with φ and ψ is an important future work.

3.4. Practical Implementation

The key to encode high expressiveness in the dynamics with SIMs is
to utilize rich basis functions. Therefore, we leverage neural networks with
structures to construct the components in our models (9) and (10) as follows.

First, we utilize a neural network whose inputs are only x, which we
denote by µNN(x), to approximate φ(z0,x). This is because the initial state
z0 can be basically assumed to be zero. Although we can prepare a non-zero
z0 (e.g. the original implementation of DEQs allows to use the final state
of the previous step in the training loop), the effectiveness of such a biased
initial state is unclear. Therefore, we assume that z0 is always zero and
encoded in the basis functions, and thus drop z0 from the input of φ.

Next, because Û and V̂ in Eq. (9) are simply real matrices, we can deal
with them as two consecutive linear layers although Û and V̂ respectively
consist of linearly independent vectors. Although we could consider the con-
straint, we ignore it because the vectors in a learned matrix will rarely be
linearly dependent. V̂ has another implicit constraint: V̂ originates from
U−1 and thus is affected by Û . However, V̂ is also influenced by the vectors
of U which correspond to eigenvalues with an absolute value less than 1.
Although these vectors disappear by taking the limit and do not appear in
the model, V̂ will have degrees of freedom thanks to the vectors. From this

12

observation, we model V̂ independently from Û .
Further, we prepare another neural network for the surrogate functions,

φ̂−1
z and ψ̂−1. This network is, principally, required to approximate the

inverse function corresponding to the respective part of φ and ψ. However,
even approximately modeling a neural network to be invertible is costly and
difficult unless the dimension of the lifted space is identical to that of the
original space (Papamakarios et al., 2021). The invertibility will also require

SIMs to consider φ̂−1
x that is omitted from Eq. (6). This is because it is

necessary to construct φ̂−1 including φ̂−1
x to approximate the invertibility

even though the output of φ̂−1
x is never used in subsequent transformations.

In this paper, we focus on the practical aspect of our implementation and

approximate φ̂−1
z in Eq. (9) or the composition of φ̂−1

z and ψ̂−1 in Eq. (10) by
a neural network νNN without the restriction of invertibility. This approach
follows the same manner as common encoder-decoder models; an encoder
model is usually designed independently of the corresponding decoder model
despite their close connection of going back and forth between original and
latent spaces.

For two-tier SIMs, we employ random Fourier features (RFFs) (Rahimi
& Recht, 2007) to approximate the embedding ψ, i.e.

ψ(x) =
1√
M/2

(
sin(ω⊤

1 x), cos(ω⊤
1 x), · · · , sin(ω⊤

M/2x), cos(ω⊤
M/2x)

)⊤
,

ωj ∼ P (ω),

where ωj ∈ RN for j = 1, . . . ,M/2 are random vectors drawn from a prob-
ability distribution P (ω), to avoid the increase of the computational cost
along the sample size when using reproducing kernels. Because ψ is the
M -dimensional real-valued function, Û ′ and V̂ ′ are defined as M ×K ′ and
K ′ × M real matrices, respectively, where K ′ is the size of J ′

1. We model
those matrices in the same way as Û and V̂ .

Putting the above pieces together, we model Eqs. (9) and (10) by zsingle-tier
and ztwo-tier, respectively, as follows:

zsingle-tier = νNN

(
Û V̂ µNN(x)

)
and (11)

ztwo-tier = νNN

(
Û ′V̂ ′ψ (µNN(x))

)
.

In the end, those implementations of SIMs are realized as feedforward mod-
els. The implementations no longer require any root-finding algorithms for

13

the forward pass and implicit differentiation for the backward pass. In the
following experiments, we will instantiate more specific examples of the im-
plementations for each task. However, the implementations do not limit
themselves to such particular forms and have the flexibility to take various
configurations by changing µNN and νNN.

A practical merit of DEQs compared to feedforward models is the memory
efficiency: the required memory does not depend on the number of transfor-
mations by fθ owing to root-finding and implicit differentiation. Because we
realize SIMs as feedforward models, they do not fully inherit this efficiency.
However, DEQs also model fθ with feedforward architectures such as Trans-
formers (Vaswani et al., 2017; Bai et al., 2019a) and thus need the memory
for fθ, which could be potentially large. Additionally, we notice that DEQs
are infinitely deep. The naive approximation with a feedforward model may
need to increase the depth of the feedforward model. Our derivation showed
that it is critical to approximate the DEQs according to the form of Eq. (11).
If the basis functions of SIMs could be represented by shallower models, it
will save a lot of memory compared to naive approximations. We can re-
gard SIMs as an intermediate approach that can approximate infinitely deep
models while avoiding the simple dependence on depth.

3.5. Relation to Implicit Neural Representation

Implicit neural representation has recently gained interest in the machine
learning community. The aim is to represent complex natural signals (e.g.
images, 3D objects, and audio waves) with a function modeled by a neural
network (Sitzmann et al., 2020; Tancik et al., 2020).

SIMs have an interesting connection to implicit neural representation by
(Tancik et al., 2020). Tancik et al. (2020) proposed to use a Fourier feature
mapping as a pre-processing. If the basis functions modeled by µNN of single-
tier SIMs are modeled by an RFF ψ, then the implementation of the SIMs
is the same as the Fourier feature mapping by (Tancik et al., 2020) up to the
term Û V̂ :

zRFF = νNN

(
Û V̂ ψ(x)

)
. (12)

As in Eq. (11), z0 is omitted from ψ(x) because it is supposed to be zero
and does not affect the output of ψ. Alternatively, this RFF only model
can be interpreted as an instance of two-tier SIMs when µNN is an identity
mapping. RFFs have been initially proposed as an approximation for kernel

14

methods, which are also applied for basis functions in Koopman operator
analysis (Kawahara, 2016). Hence, RFFs will be a natural choice as a class
of basis functions for SIMs. Eq. (12) indicates that such a reasonable choice
leads to a similar method to (Tancik et al., 2020).

4. Related Works

The origin of DEQs dates back to the work on recurrent backpropaga-
tion (RBP) (Almeida, 1987; Pineda, 1987). Those studies proposed to uti-
lize early implicit-depth models and have been applied to other studies, e.g.
graph neural networks (Gori et al., 2005; Scarselli et al., 2008). Recently,
Liao et al. (2018) revisited the RBP algorithm and improved it with the con-
jugate gradient method and Neumann series. Bai et al. (2019a) introduced a
perspective of the use of a fixed point as a replacement for depth and called
the approaches the DEQ. This study also proved the universality of a single
DEQ layer and developed a practical quasi-Newton method that works for
large-scale sequential tasks. Subsequent studies have reported the theoretical
analysis (Kawaguchi, 2021; Pabbaraju et al., 2021) and proposed improved
architectures (Bai et al., 2020; Xie et al., 2021). Several relevant studies
focused on the stability issue of DEQs. Winston & Kolter (2020) proposed
monotone DEQs (monDEQs) with guaranteed convergence to a fixed point
based on monotone operators. Bai et al. (2021) also proposed to stabilize
the training using Jacobian regularization.

The Koopman operator has been known for a long time as a tool for ana-
lyzing dynamics in physics (Koopman, 1931). It has recently received atten-
tion that the spectral properties of the Koopman operator play an important
role in revealing global characteristics of the underlying dynamics (Mezić,
2005). Because the Koopman operator is linear but infinite-dimensional,
a major challenge is how to compute the spectra of the Koopman opera-
tor in practice. Dynamic mode decomposition (DMD) (Schmid, 2010) has
gained popularity as a data-driven approach to computing a reasonable finite-
dimensional approximation of the Koopman spectra (Rowley et al., 2009).
While the original DMD algorithm supposes that the basis functions are
linear, several subsequent studies have been proposed to utilize nonlinear
basis functions (Williams et al., 2015), a kernel-based approach (Kawahara,
2016), a Bayesian formulation (Takeishi et al., 2017a), and learning from
data (Takeishi et al., 2017b).

15

The Koopman operator is also applied to machine learning and the re-
lated fields. Dogra & Redman (2020) leveraged the representation with the
Koopman operator to accelerate the training of neural networks. Manojlović
et al. (2020) analyzed the dynamics in the training of neural networks with
the Koopman operator and proposed a method to characterize the architec-
tures of neural networks with the Koopman spectrum. Takeishi & Kawahara
(2021) proposed a neural network to learn stable dynamical systems by uti-
lizing a map obtained by, for example, an eigenfunction of the Koopman
operator (although it is not described explicitly in the paper) by extending
stable deep dynamics models by Manek & Kolter (2019).

5. Experiments

We evaluated SIMs through experiments on three supervised learning
tasks. For all tasks, we first trained models with candidates of hyper-
parameters on training data and evaluated them on validation data. We then
selected the best hyper-parameter, re-trained the model with the best one,
and evaluated the trained model on test data. We implemented our proposed
models and training algorithms using Pytorch (Paszke et al., 2019). For the
basic building blocks and optimizers, we used the existing implementation
in Pytorch. We tuned the hyper-parameters using Tune (Liaw et al., 2018).
In all experiments, we set the search algorithm to the random search and
trial scheduler to the asynchronous successive halving algorithm (ASHA) (Li
et al., 2020). We conducted the experiments on an internal computing server
with Intel Xeon Bronze 3104 CPUs and NVIDIA V100 GPUs.

We set µNN as a task-specific neural network for each task. For ψ, we
used a normal distribution to sample random vectors. For νNN, we used a
three-layer fully connected network (FCN) with ReLU activation (Nair &
Hinton, 2010) for all tasks in common. We used a linear function as h to fit
the dimension of the hidden state to the output size and then the softmax
function if the addressed task is a classification problem. For SIMs, we set
K = N/2 and K ′ = M/2, respectively.

The details of the datasets, model architectures, and training algorithms
are described in Appendix B.

5.1. Copy Memory Task

We first report the results of the copy memory task (Hochreiter & Schmid-
huber, 1997) to evaluate the effectiveness of SIMs against DEQs. The goal

16

of the copy memory task is to predict a sequence of digits of length T + 20
from another input sequence of the same length. The first ten elements of the
input sequence consist of digits randomly drawn from 1 to 8, the subsequent
T −1 elements are filled with 0, and the last eleven elements are all 9. Given
this input, the first T +10 elements of the output sequence are 0 and the last
ten elements are the same as the first ten ones of the input sequence. Hence,
this task evaluates how well a model can remember the first elements of an
input. In the experiment, we set T to 500 and followed the experimental
procedure of (Bai et al., 2018).

For SIMs, we applied the temporal convolutional network (TCN) architec-
ture to model µNN by following the implementation of (Bai et al., 2018): the
architecture includes 1D dilated causal convolution, ReLU activation, and
residual connection (He et al., 2016). Because the method of applying the
TCN is rather complicated compared to other tasks, we explain the case of
the single-tier SIM as an example. Formally, if we denote x ∈ {0, 1, . . . , 9}520
as an input sequence, the TCN outputs the sequence of states:

W = TCN(x),

where W = (w1, . . . ,w520) ∈ RN×520 and wj ∈ RN denotes a state on the
lifted space at the j-th position in the sequence. Each state feeds the common
architecture:

zsingle,j = νNN

(
Û V̂ wj

)
(j = 1,, 520),

where zsingle,j ∈ Rd is the hidden state of the j-th position. The prediction
at the j-th position of the output sequence is obtained from zsingle,j. We can
interpret this architecture as follows; for this task, the model has different
µNN for each position, but it transforms all the positions to the hidden states
at once by the TCN, and then the same subsequent transformation is applied
to all the positions. Although we could use different νNN and Û V̂ for each
position, the above architecture can retain memory in practice while keeping
the model size small.

For the DEQ, we applied the Universal Transformer (Dehghani et al.,
2019) as the base function fθ and mostly adopted the original implementa-
tion of (Bai et al., 2019a). However, the public source code was optimized for
the tasks of language modeling; hence, we mainly modified the following two
parts of the implementation. First, the implementation uses the adaptive
softmax function (Baevski & Auli, 2019; Grave et al., 2017) to address the

17

0.5 1.0 1.5

Run Time (ms) ×107

10−6

10−2

T
ra

in
in

g
L

o
ss

(a)

DEQ

SIM (single)

SIM (two)

5 10 15 20

Epochs

(b)

DEQ

SIM (single)

SIM (two)

Figure 4: Training losses along (a) run-time, and (b) epochs for three compared methods
in the copy memory task.

Table 1: Test cross-entropy loss (test loss) and the number of learnable parameters
(#params) in the copy memory task.

Test loss #params

DEQ 2.24e-09 17,010
SIM (single) 7.03e-09 17,294
SIM (two) 5.06e-08 17,294

large word vocabulary. Because the copy memory task considers only ten
digits, we did not use this architecture in the experiment. Second, the imple-
mentation uses the memory padding and nonzero initial hidden states that
employ the final states of the previous step in a training loop. We tested the
two techniques but observed that the test loss was considerably worse even
though the training loss was fine. Hence, we omit the techniques and instead
used the empty memory and zero initial hidden states in the experiment.

Table 1 shows the test cross-entropy loss per sequence and the number
of learnable parameters for each model. Although the DEQ achieved the
lowest loss, the single-tier SIM obtained was comparable with almost the
same number of learnable parameters. Figure 4 (a) shows the progress of
the training losses along the run-time for 20 epochs when we re-trained the
models. The training speed depends on the batch size. During the hyper-
parameter search, 1, 1, and 10 were selected as the batch size for the DEQ,
single-tier SIM, and two-tier SIM, respectively. Hence, the two-tier SIM was
the fastest to complete the training. For the DEQ and single-tier SIM, the
single-tier model was ten times faster than the DEQ under the same batch
size. Figure 4 (b) shows the progress of the training losses along the epochs.
We can observe that the single-tier SIM converged faster than the DEQ.

18

Table 2: Mean of the test accuracy over three runs (test acc.) and the number of learnable
parameters (#params) in the image classification task. We showed the results of monDEQs
reported in the paper (Winston & Kolter, 2020).

CIFAR-10 SVHN MNIST

Test acc. #params Test acc. #params Test acc. #params

monDEQ (single) 74.0±0.1 172,218 88.7±1.1 172,218 99.1±0.1 84,460
monDEQ (multi) 72.0±0.3 170,194 92.4±0.1 170,194 99.0±0.1 81,394
SIM (single) 79.4±0.2 168,694 91.8±0.2 168,694 99.4±0.0 81,480
SIM (two) 78.2±0.2 168,264 92.4±0.1 168,264 99.4±0.0 80,466

5.2. Image Classification

We next report the results of the image classification to compare SIMs
to monDEQs. We followed the experiment of image classification conducted
in (Winston & Kolter, 2020). We prepared the CIFAR-10 (Krizhevsky, 2009),
SVHN (Netzer et al., 2011), and MNIST (LeCun et al., 1998) datasets, which
contain images in 10 different classes and evaluated the classification perfor-
mance in the standard setting. Following (Winston & Kolter, 2020), we
evaluated the models on test data three times with different initialization
and reported the averaged performance.

For SIMs, we employed convolutional neural networks for µNN. Following
the VGG models (Simonyan & Zisserman, 2015), µNN consists of two convo-
lutional layers each of which has two convolution filters with ReLU activation
and batch normalization and one max pooling. The output of the convolu-
tion layers is additionally transformed by a linear layer to fit the dimension
of the lifted space. We constrained the number of learnable parameters of
SIMs to be comparable to the one of monDEQs in (Winston & Kolter, 2020).

Table 2 lists the means of the test accuracy over three runs of monDEQs
and SIMs with different initialization. SIMs showed comparable or better
performances against monDEQs for all datasets. Particularly, the perfor-
mance was improved for the CIFAR-10 dataset even though the SIMs have
a similar number of learnable parameters to monDEQ ones.

5.3. Image Regression

Finally, we report the results of the image regression task, which is an
example of implicit neural representation tasks. In Section 3.5, we found
that SIMs have a close connection to the work of (Tancik et al., 2020). The
purpose of the experiment is to verify 1) that the RFF only model actually
works well for this task, and 2) how well the other types of SIMs perform. The

19

Table 3: Mean of the test PSNR over 16 images of two types of datasets in the image
regression task.

Test PSNR

Natural Text

SIM (single) 19.67±2.87 17.54±2.07
SIM (two) 22.24±3.03 23.30±2.72
SIM (RFF only) 25.19±3.92 27.69±1.63

goal of the task is to obtain a neural network where the input is a 2-D pixel
coordinate and the output is its 3-D RGB value. Following (Tancik et al.,
2020), we evaluate SIMs with 32 datasets, where 16 are natural images 1 and
the rest are text images 2. This task considers each of the images to be one
dataset. For an image, we picked 1/4 pixels as training data and other 1/4
as test data. Additionally, we prepared another 1/4 pixels as validation data
to select the hyper-parameters.

We compare three instances of SIMs. The first two models employ an
FCN for µNN: it consists of two linear layers with ReLU activation and one
linear layer to fit the dimension of the lifted space. The last one is the RFF
only model (12).

Table 3 shows the mean of the test PSNR over 16 images of two types of
datasets. The results indicate that the RFF only model was better than the
single-tier SIM. This result is consistent with the original work on (Tancik
et al., 2020). The two-tier SIM was also effective although the test PSNRs
were slightly worse than the RFF only model. Figure 5 illustrates examples
of prediction for two images. Although the single-tier SIM produced blurred
images, the RFF only model can generate sharper ones. Although the images
of the two-tier SIM are a little blurry, the detail can be recognized compared
to the single-tier SIM.

5.4. Discussion

The first two results indicate that SIMs can provide time-effective al-
ternatives to DEQs. This is because SIMs are implemented as feedforward
models, which do not require implicit differentiation even though they can

1https://drive.google.com/uc?id=1TtwlEDArhOMoH18aUyjIMSZ3WODFmUab
2https://drive.google.com/uc?id=1V-RQJcMuk9GD4JCUn70o7nwQE0hEzHoT

20

https://drive.google.com/uc?id=1TtwlEDArhOMoH18aUyjIMSZ3WODFmUab
https://drive.google.com/uc?id=1V-RQJcMuk9GD4JCUn70o7nwQE0hEzHoT

SIM (single) SIM (two) SIM (RFF only)

Figure 5: Examples of prediction in the image regression task.

approximate DEQs. While we compared SIMs to DEQs as fairly as possi-
ble by keeping the number of parameters nearly the same, SIMs performed
slightly better than DEQs in many experiments. It may be because the cho-
sen basis functions were suitable for the tasks, and finite-depth models were
easier to evaluate and optimize. The results also showed that two-tier SIMs
did not necessarily outperform single-tier SIMs for the first two tasks. One
of the reasons would be that even single-tier SIMs suffice for the tasks where
the models can capture the essential feature of sequences and images.

The third result demonstrated that SIMs are also effective in the task of
implicit neural representation. Particularly, we observed that the two-tier
SIM also obtained moderate performance. The work of (Tancik et al., 2020)
does not cover the form of the two-tier models, and we believe that this result
is an interesting finding.

6. Conclusions

In this study, we considered DEQs from the viewpoint of the Koopman
operator, which enables us to identify stable dynamics described by DEQs via
the representation of the spectra. This perspective yielded our proposed SIMs
that approximated DEQs and exploited more general dynamics converging
to an invariant set. Despite having such noteworthy properties, the resulting

21

models can be represented as simple feedforward models, which will provide
new insights into the studies on DEQs.

A promising future work will be to consider more theoretical analysis.
Investigating expressive powers, sample efficiency, and approximation error
bounds would help to further understand SIMs. Another direction will be
to explore ways to exploit dynamics converging to an invariant set. While
we proposed the second-tier SIMs in this paper, other approaches will be
possible and could improve the performance.

Acknowledgements

This work was supported by JST CREST Grant Number JPMJCR1913
and JSPS KAKENHI Grant Numbers 18H03287, 22H00516, and 22K17950.

Appendix A. Convergent Behavior on Lifted Space

We clarify the convergent behavior of the lifted dynamics in Section 3. It
should be noted that the following result is not novel; it employs a known
consequence of linear algebra.

First, we define the l-th step of the lifted dynamics as

φl := Alφ(z0,x),

where φ0 := φ(z0,x). To reveal the property of φl, we decompose Al with
the eigenvalues and eigenvectors.

We begin with the decomposition of A. If A is diagonalizable, it can
be represented by the set of the eigenvalues and corresponding eigenvectors.
However, if A has repeated eigenvalues, A is not necessarily diagonalizable.
Although the Jordan canonical form can be used in such a case, this form
is constructed by complex matrices if A contains complex eigenvalues. To
represent A by real matrices for convenience, we consider the real Jordan
canonical form: any real square matrix can be written as

A = UJU−1,

where U is defined in Section 3.2, and J ∈ RN×N is the following block
diagonal matrix:

J = diag(J1,J2, . . . ,JR),

22

where R ≤ N corresponds to the number of linearly independent eigenvec-
tors. Each block Jr ∈ Rsr×sr (r = 1, . . . , R) is associated with sr repeated
eigenvalues with a value λ(r) if λ(r) is real or sr/2 repeated eigenvalues with

a value λ(r) and their sr/2 complex conjugates with a value λ(r) if λ(r) is
nonreal. If λ(r) is real, Jr is also associated with one ordinal eigenvector of
λ(r) and sr − 1 non-ordinal generalized-eigenvectors. If λ(r) is nonreal, Jr

is associated with a complex conjugate pair of ordinal eigenvectors of λ(r)

and λ(r) and (sr − 1)/2 complex conjugate pairs of non-ordinal generalized-
eigenvectors. It should also be noted that there always exists a conjugate
eigenvalue for every nonreal eigenvalue when A is real. Jr takes one of the
following two forms:

Jr =

{
Jr,R if λ(r) is real

Jr,C if λ(r) is nonreal,

where

Jr,R =

λ(r) 1

λ(r) 1
.

λ(r) 1
λ(r)

 ,

Jr,C =

Cr I

Cr I
.

Cr I
Cr

 .

Here, Cr and I are defined by

Cr =

(
α(r) β(r)

−β(r) α(r)

)
, I =

(
1 0
0 1

)
,

where

λ(r) = α(r) + iβ(r)

λ(r) = α(r) − iβ(r).

23

As a special case, Jr,R can be a scalar λ(r) when sr = 1, and Jr,C can be
Cr when sr = 2. In this case, Jr,R and Jr,C are only associated with one
ordinal eigenvector and a complex conjugate pair of ordinal eigenvectors,
respectively. Moreover, the matrix Cr can be rewritten as a polar form:

Cr = r(r)

(
cos ∆(r) sin ∆(r)

− sin ∆(r) cos ∆(r)

)
,

where

r(r) = |λ(r)| =
√

α2
(r) + β2

(r),

∆(r) = arctan(β(r)/α(r)).

The real Jordan canonical form can represent φl as

φl = UJ lU−1φ(z0,x),

where

J l = diag(J l
1,J

l
2, . . . ,J

l
R).

Each J l
r can be written as

J l
r,R =

λl
(r)

(
l
1

)
λl−1
(r) · · ·

(
l

sr−1

)
λl−sr+1
(r)

λl
(r) · · ·

(
l

sr−2

)
λl−sr+2
(r)

.
...

λl
(r)

(
l
1

)
λl−1
(r)

λl
(r)

 , (A.1)

or

J l
r,C =

C l

r

(
l
1

)
C l−1

r · · ·
(

l
sr/2−1

)
C

l−sr/2+1
r

C l
r

(
l
1

)
C l−1

r · · ·
(

l
sr/2−2

)
C

l−sr/2+2
r

.
...

C l
r

(
l
1

)
C l−1

r

C l
r

 , (A.2)

24

where

C l
r =

(
r(r)

(
cos ∆(r) sin ∆(r)

− sin ∆(r) cos ∆(r)

))l

= rl(r)

(
cos l∆(r) sin l∆(r)

− sin l∆(r) cos l∆(r)

)
.

This form makes it easy to evaluate the convergent behavior of the lifted
dynamics: because the number of steps l only depends on the block diagonal
matrix J l, it suffices to focus on each block of J l that takes the form of
Eq. (A.1) or (A.2).

If the spectral radius ρ(A) < 1, all the elements in every block of J l

converge to 0 by taking the limit l → ∞. Hence, the lifted dynamics in
case (i) converges to the origin:

lim
l→∞

φl = UONU
−1φ(z0,x)

= 0,

where ON ∈ RN×N is a zero square matrix of order N .
If ρ(A) = 1, we can classify the limit of the r-th block J l

r into the following
six cases:

⟨1⟩. If |λ(r)| < 1, then J l
r converges to a zero matrix:

lim
l→∞

J l
r = Osr .

⟨2⟩. If λ(r) = 1 and sr = 1, then J l
r converges to 1:

lim
l→∞

J l
r = lim

l→∞
λl
(r) = 1.

⟨3⟩. If λ(r) = −1 and sr = 1, then J l
r neither converges nor diverges and

takes the form of

J l
r = λl

(r) = (−1)l.

⟨4⟩. If λ(r) ∈ {1,−1}, and sr > 1, then the non-diagonal elements of J l
r(=

J l
r,R), e.g.

(
l
1

)
λl−1
(r) , diverge.

25

⟨5⟩. If |λ(r)| = 1, λ(r) is nonreal, and sr = 2, then J l
r neither converges nor

diverges and takes the form of

J l
r = C l

r =

(
cos l∆(r) sin l∆(r)

− sin l∆(r) cos l∆(r)

)
. (A.3)

⟨6⟩. If |λ(r)| = 1, λ(r) is nonreal, and sr > 2, then the non-block-diagonal

parts of J l
r(= J l

r,C), e.g.
(
l
1

)
C l−1

r , diverge.

Hence, if at least one block falls into cases ⟨4⟩ or ⟨6⟩, the lifted dynamics
diverges: the complexity of the non-diagonal elements or non-block-diagonal
parts is at least O(l). This case falls into case (iv).

Case (ii) means all the blocks are either case ⟨1⟩ or ⟨2⟩, and each block in
case ⟨2⟩ corresponds to one of the eigenvalues in J1. Hence, the eigenvectors
with eigenvalues of λj = 1 are linearly independent. In the end, J l converges
to a diagonal matrix PJ1 ∈ RN×N where the diagonal elements corresponding
to J1 are 1 and the rest are 0, and we obtain Eq. (6):

lim
l→∞

φl = UPJ1U
−1φ(z0,x)

=
∑
j∈J1

ujv
⊤
j φ(z0,x).

Case (iii) means that all the blocks are either case ⟨1⟩, ⟨2⟩, ⟨3⟩, or ⟨5⟩.
Each block in cases ⟨3⟩ and ⟨5⟩ corresponds to one of the eigenvalues of J2 and
the complex conjugate pairs of the eigenvalues of J3, respectively. Hence, the
eigenvectors with eigenvalues of |λj| = 1 are linearly independent. In addition
to PJ1 , if we denote PJ2 ∈ RN×N as a diagonal matrix where the diagonal
elements corresponding to J2 are -1 and the rest are 0 and PJ3 ∈ RN×N as a
block diagonal matrix where the diagonal blocks corresponding to the pairs
of J3 take the form of Eq. (A.3) and the rest are zero, we obtain Eq. (7):

lim
l→∞

φl = lim
l→∞

U (PJ1 + PJ2 + PJ3)U
−1φ(z0,x)

= lim
l→∞

(∑
j∈J1

ujv
⊤
j +

∑
j∈J2

(−1)lujv
⊤
j

+
∑

(j,k)∈J3

(
cos(l∆j)uj − sin(l∆k)uk

)
v⊤j

+
(

sin(l∆j)uj + cos(l∆k)uk

)
v⊤k

)
φ(z0,x).

26

Table B.4: Settings of Tune and ASHA for each task.

Copy memory Image classification Image regression

#trials 100 200 200
Scope last last last

#max t (ASHA) 6 80 100
Metric (ASHA) loss accuracy PSNR
Grace period (ASHA) 3 5 5
Reduction factor (ASHA) 2 2 2

Lastly, if ρ(A) > 1, at least one block of J l diverges. This case falls into
case (iv).

Appendix B. Experimental Details

We show the detailed settings and configurations of the experiments in
Section 5. It should be noted that we used the default values of Pytorch for
the arguments not mentioned below.

Table B.4 shows that the settings of Tune and ASHA for each task. #tri-
als denotes the number of trials in running a search algorithm. Scope denotes
the method of selecting the best hyper-parameters. We used last that se-
lects the best one by comparing the last performance at the end of training.
#max t denotes the number of maximum epochs or iterations in a trial.
ASHA periodically stops trials when the specified metric is poor and reduces
them by a factor of the reduction factor. However, any trial is run until the
grace period. Those settings are partially different for each task but the same
as compared methods in a task.

Table B.5 shows the detailed architecture of the reverse model νNN in
SIMs. The first column denotes the layers of νNN, which transform the
input in order from the top to the bottom layers. “× 2” means that the
same transformation has been repeated twice. The second column denotes
detailed information about the layers. The variable #hidden units is set to
a different value for each task.

Appendix B.1. Copy Memory Task

Table B.6 lists the statistics of the dataset in the copy memory task.
#train, #valid, and #test denote the number of training, validation, and
test data, respectively. We first trained the models with the candidates of
hyper-parameters on the training data and selected the best hyper-parameter

27

Table B.5: Architecture of the reverse model νNN in SIMs for all tasks.

Detail

Fully connected layer × 2
Linear output features: #hidden units
ReLU

Linear layer
Linear output features: #hidden units

on the validation data. We then used both training and validation data to
re-train the model with the best hyper-parameter and evaluated it on the test
data. A data point of this dataset consists of the pair of an input sequence
of length 520 and an output sequence of length 520. We generated all the
data points by following the procedure of (Bai et al., 2018).

Table B.7 shows the model architecture of the TCN. The first building
block is the temporal convolution layer where we adopted the architecture
of (Bai et al., 2018): it mainly consists of the 1D dilated causal convolution,
ReLU activation, and residual connection, and down-sampling with 1D con-
volution is applied to the residual connection (He et al., 2016) except for the
first layer. We stacked this layer eight times and then connected a linear
layer to fit the dimension of the lifted space.

Table B.8 lists the configurations of the compared models. The upper and
lower rows denote the configuration of the model architectures and training
algorithms, respectively. The configuration with the set notation (e.g. [1e-
3, 1e+3) and {1, 2, 5, 10, 20}) means that the corresponding variable was
tuned as a hyper-parameter within the range of the set. For each trial,
ASHA sampled a candidate from the set uniformly at random. For the
configuration with a real interval, it was sampled in the logarithmic space
with base 10. In this task, we tuned the bandwidth of the RFF, batch size,
and learning rate. The configuration of the DEQ indicates that the variables
of the implementation of (Bai et al., 2019a): we set it to ensure almost the
same number of learnable parameters as SIMs. For the training algorithm of
the DEQ, we adopted Adam (Kingma & Ba, 2015) with the step-wise cosine
decaying schedule for the learning rate as in (Bai et al., 2019a). For SIMs,
we used Adam with a constant learning rate schedule and slightly larger ϵ
to improve the stability of the training algorithm. We also used gradient
clipping with the default values of the DEQ and TCN. For all compared
models, we minimized the cross-entropy loss, i.e. the negative log-likelihood
with the softmax function. Although every model contains the Dropout

28

Table B.6: Statistics of the dataset in the copy memory task.

#train #valid #test Input dim. Output dim.

4,500 500 500 520 × 1 520 × 1

Table B.7: Architecture of the TCN in SIMs for the copy memory task.

Details

Temporal convolution layer × 8
1D dilated causal convolution kernel size: 8, output channels: 10
Weight normalization
Chomp
ReLU
Dropout
1D dilated causal convolution kernel size: 8, output channels: 10
Weight normalization
Chomp
ReLU
Dropout
Residual connection
ReLU

Linear layer
Linear out features: N

layer (Srivastava et al., 2014), we did not apply it for all models.

Appendix B.2. Image Classification

Table B.9 shows the statistics of three datasets in the image classification
task. We pre-processed these datasets in almost the same way as (Winston
& Kolter, 2020). The difference from (Winston & Kolter, 2020) is to addi-
tionally prepare the validation data. We initially used 90% of the prepared
training data as training data and the remaining 10% as validation data. We
then used both of them to train models with the best hyper-parameters for
evaluating the performance on the test data.

Table B.10 shows the architecture of µNN in SIMs. We first used a com-
bination of convolution and max-pooling layers, which follows the VGG ar-
chitecture (Simonyan & Zisserman, 2015) and then applied a linear layer to
fit the dimension of the lifted space.

Table B.11 lists the configuration of SIMs. In this task, we tuned the
bandwidth of the RFF, the batch size, the number of epochs, the learning
rate, and the learning rate schedule. We set the model architectures of SIMs
as almost the same size as that of the compared monDEQs. We also applied
the training algorithm of the monDEQs to SIMs: the learning rate schedules

29

Table B.8: Configurations of compared models in the copy memory task.

DEQ SIM (single-tier) SIM (two-tier)

Model architectures
n head 8 - -
d head 5 - -
d model 40 - -
d inner 40 - -
pre lnorm True - -
wnorm True - -
f thres 30 - -
#pretraining steps 0 - -
N - 32 32
M - - 32
Bandwidth of RFF - - [1e-3, 1e+3)
#hidden units of νNN - 32 32
Dropout rate 0.0 0.0 0.0

Training algorithms
Batch size {1, 2, 5, 10, 20} {1, 2, 5, 10, 20} {1, 2, 5, 10, 20}
#epochs 20 20 20
Optimizer Adam Adam (ϵ=1e-5) Adam (ϵ=1e-5)
Learning rate [1e-4, 0.05) [1e-4, 0.05) [1e-4, 0.05)
Learning rate schedule cosine (step-wise) constant constant
Gradient clipping value 0.25 1.0 1.0

Table B.9: Statistics of three datasets in the image classification task.

#train #valid #test Input dim. Output dim.

CIFAR-10 45,000 5,000 10,000 32 × 32 × 3 10 × 1
SVHN 65,931 7,326 26,032 32 × 32 × 3 10 × 1
MNIST 54,000 6,000 10,000 28 × 28 × 1 10 × 1

are also implemented in the same way as the monDEQs. As in the monDEQs,
we minimized the cross-entropy loss for SIMs.

Appendix B.3. Image Regression

Table B.12 shows the statistics of a dataset in the image regression task.
All the images have 512 × 512 pixels, and we used equally spaced 1/4 (65,536)
pixels from an image as training data, another 1/4 pixels as validation data,
and other 1/4 pixels as test data. It should be noted that all the images are
the same size and thus have the same statistics.

Table B.13 shows the architecture of µNN in SIMs. We used a neural
network that consists of two fully connected layers and one additional linear
layer to fit the dimension of the lifted space.

Table B.14 shows the configuration of SIMs. In this task, we tuned the
number of hidden units of µNN, the first and second lift dimensions (i.e. N

30

Table B.10: Architecture of µNN in SIMs for the image classification task.

Details

Convolution layer × 2
2D convolution kernel size: 3, padding: 1, output channels: #channels
Batch norm.
ReLU

Max pooling layer kernel size: 2, stride: 2
Convolution layer × 2

2D convolution kernel size: 3, padding: 1, output channels: #channels
Batch norm.
ReLU

Max pooling layer kernel size: 2, stride: 2
Linear layer

Flatten
Linear out features: N

Table B.11: Configurations of SIMs in the image classification task.

SIM (single-tier) SIM (two-tier)

Model architectures
#channels of µNN 24 (MNIST) or 38 (others) 21 (MNIST) or 36 (others)
N 50 50
M - 104
Bandwidth of RFF - [1e-3, 1e+3)
#hidden units of νNN 32 32

Training algorithms
Batch size {64, 128, 256, 512} {64, 128, 256, 512}
#epochs {20, 40, 60, 80} {20, 40, 60, 80}
Optimizer Adam Adam
Learning rate [1e-4, 0.05) [1e-4, 0.05)
Learning rate schedule {1cycle, step, constant} {1cycle, step, constant}
Step size for step schedule {5i | i ∈ (1, 2, ...10)} {5i | i ∈ (1, 2, ...10)}

and M), the bandwidth of the RFF, and the learning rate. Following (Tancik
et al., 2020), we applied Adam with the constant learning rate and performed
the full batch gradient descent which uses all data points (pixels) for the up-
date of parameters. #iterations denotes the number of steps in the gradient
descent and was set to 2000 as in (Tancik et al., 2020). We minimized the
mean squared loss for all models. The difference from (Tancik et al., 2020) is
that we did not apply the sigmoid function before the output for each model:
we observed such a setting improved the performance.

References

Almeida, L. B. (1987). A learning rule for asynchronous perceptrons with
feedback in a combinatorial environment. In IEEE First International

31

Table B.12: Statistics of each dataset in the image regression task. It should be noted
that all 32 datasets have the same statistics.

#train #valid #test Input dim. Output dim.

65,536 65,536 65,536 2 × 1 3 × 1

Table B.13: Architecture of µNN in SIMs for the image regression task.

Details

Fully connected layer × 2
Linear output features: #hidden units
ReLU

Linear layer
Linear output features: N

Conference on Neural Networks (pp. 609–618).

Baevski, A., & Auli, M. (2019). Adaptive input representations for neural
language modeling. In 7th International Conference on Learning Repre-
sentations .

Bai, S., Kolter, J. Z., & Koltun, V. (2018). An empirical evaluation of
generic convolutional and recurrent networks for sequence modeling. arXiv
preprint arXiv:1803.01271.

Bai, S., Kolter, J. Z., & Koltun, V. (2019a). Deep equilibrium models. In
Advances in Neural Information Processing Systems 32 (pp. 688–699).

Bai, S., Kolter, J. Z., & Koltun, V. (2019b). Trellis networks for sequence
modeling. In 7th International Conference on Learning Representations .

Bai, S., Koltun, V., & Kolter, J. Z. (2020). Multiscale deep equilibrium
models. In Advances in Neural Information Processing Systems 33 (pp.
5238–5250).

Bai, S., Koltun, V., & Kolter, J. Z. (2021). Stabilizing equilibrium mod-
els by Jacobian regularization. In Proceedings of the 38th International
Conference on Machine Learning (pp. 554–565).

Billings, L., & Schwartz, I. B. (2008). Identifying almost invariant sets in
stochastic dynamical systems. Chaos , 18 .

32

Table B.14: Configurations of SIMs in the image regression task.

SIM (single-tier) SIM (two-tier) SIM (RFF only)

Model architectures
#hidden units of µNN {32, 64, 128, 256, 512} {32, 64, 128, 256, 512} -
N {32, 64, 128, 256, 512} {32, 64, 128, 256, 512} {32, 64, 128, 256, 512}
M - {32, 64, 128, 256, 512} -
Bandwidth of RFF - [1e-3, 1e+3) [1e-3, 1e+3)
#hidden units of νNN 256 256 256

Training algorithms
#iterations 2000 2000 2000
Optimizer Adam Adam Adam
Learning rate [1e-4, 0.05) [1e-4, 0.05) [1e-4, 0.05)
Learning rate schedule constant constant constant

Chang, B., Chen, M., Haber, E., & Chi, E. H. (2019). AntisymmetricRNN: A
dynamical system view on recurrent neural networks. In 7th International
Conference on Learning Representations .

Chen, T. Q., Rubanova, Y., Bettencourt, J., & Duvenaud, D. (2018). Neural
ordinary differential equations. In Advances in Neural Information Pro-
cessing Systems 31 (pp. 6572–6583).

Cvitanović, P., Artuso, R., Mainieri, R., Tanner, G., & Vattay, G. (2020).
Chaos: Classical and Quantum. ChaosBook.org. Niels Bohr Institute,
Copenhagen.

Dabre, R., & Fujita, A. (2019). Recurrent stacking of layers for compact
neural machine translation models. In Proceedings of the 33rd AAAI Con-
ference on Artificial Intelligence (pp. 6292–6299).

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., & Kaiser, L. (2019).
Universal transformers. In 7th International Conference on Learning Rep-
resentations .

Dogra, A. S., & Redman, W. T. (2020). Optimizing neural networks via
Koopman operator theory. In Advances in Neural Information Processing
Systems 33 (pp. 2087–2097).

Froyland, G., & Padberg, K. (2009). Almost-invariant sets and invariant
manifolds—connecting probabilistic and geometric descriptions of coherent
structures in flows. Physica D: Nonlinear Phenomena, 238 , 1507–1523.

Gaspard, P. (1998). Chaos, Scattering and Statistical Mechanics volume 9 of
Cambridge Nonlinear Science Series . Cambridge University Press.

33

Gori, M., Monfardini, G., & Scarselli, F. (2005). A new model for learn-
ing in graph domains. In Proceedings of 2005 IEEE International Joint
Conference on Neural Networks, vol. 2 (pp. 729–734).

Grave, E., Joulin, A., Cissé, M., Grangier, D., & Jégou, H. (2017). Efficient
softmax approximation for GPUs. In Proceedings of the 34th International
Conference on Machine Learning (pp. 1302–1310).

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for
image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (pp. 770–778).

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural
Computation, 9 , 1735–1780.

Kag, A., Zhang, Z., & Saligrama, V. (2020). RNNs incrementally evolving on
an equilibrium manifold: A panacea for vanishing and exploding gradients?
In 8th International Conference on Learning Representations .

Kawaguchi, K. (2021). On the theory of implicit deep learning: Global con-
vergence with implicit layers. In 9th International Conference on Learning
Representations .

Kawahara, Y. (2016). Dynamic mode decomposition with reproducing ker-
nels for Koopman spectral analysis. In Advances in Neural Information
Processing Systems 29 (pp. 911–919).

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimiza-
tion. In 3rd International Conference on Learning Representations .

Koopman, B. O. (1931). Hamiltonian systems and transformation in Hilbert
space. Proceedings of the National Academy of Sciences of the United
States of America, 17 , 315–318.

Krantz, S. G., & Parks, H. R. (2013). The Implicit Function Theorem:
History, Theory, and Applications . Modern Birkhäusr Classics. Birkhäusr.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images.

Lasota, A., & Mackey, M. C. (1994). Chaos, Fractals, and Noise: Stochas-
tic Aspects of Dynamics volume 97 of Applied Mathematical Sciences .
Springer New York, NY.

34

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based
learning applied to document recognition. Proceedings of the IEEE , 86 ,
2278–2324.

Li, L., Jamieson, K. G., Rostamizadeh, A., Gonina, E., Ben-tzur, J., Hardt,
M., Recht, B., & Talwalkar, A. (2020). A system for massively parallel
hyperparameter tuning. In Proceedings of Machine Learning and Systems
(pp. 230–246). volume 2.

Liao, R., Xiong, Y., Fetaya, E., Zhang, L., Yoon, K., Pitkow, X., Urtasun, R.,
& Zemel, R. (2018). Reviving and improving recurrent back-propagation.
In Proceedings of the 35th International Conference on Machine Learning
(pp. 3082–3091).

Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J. E., & Stoica,
I. (2018). Tune: A research platform for distributed model selection and
training. arXiv preprint arXiv:1807.05118.

Linsley, D., Ashok, A. K., Govindarajan, L. N., Liu, R., & Serre, T. (2020).
Stable and expressive recurrent vision models. In Advances in Neural In-
formation Processing Systems 33 (pp. 10456–10467).

Manek, G., & Kolter, J. Z. (2019). Learning stable deep dynamics models. In
Advances in Neural Information Processing Systems 32 (pp. 10718–10728).

Manojlović, I., Fonoberova, M., Mohr, R., Andrĕjcuk, A., Drmăc, Z.,
Kevrekidis, Y., & Mezić, I. (2020). Applications of Koopman mode anal-
ysis to neural networks. arXiv preprint arXiv:2006.11765.

Mauroy, A., Mezić, I., & Susuki, Y. (2020). The Koopman Operator in
Systems and Control . Springer International Publishing.

Mezić, I. (2005). Spectral properties of dynamical systems, model reduction
and decompositions. Nonlinear Dynamics , 41 , 309–325.

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th International Conference
on Machine Learning (pp. 807–814).

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., & Ng, A. Y. (2011).
Reading digits in natural images with unsupervised feature learning. In
NIPS Workshop on Deep Learning and Unsupervised Feature Learning .

35

Pabbaraju, C., Winston, E., & Kolter, J. Z. (2021). Estimating Lipschitz
constants of monotone deep equilibrium models. In 9th International Con-
ference on Learning Representations .

Papamakarios, G., Nalisnick, E. T., Rezende, D. J., Mohamed, S., & Laksh-
minarayanan, B. (2021). Normalizing flows for probabilistic modeling and
inference. Journal of Machine Learning Research, 22 , 1–64.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., & Chintala, S. (2019). PyTorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information
Processing Systems 32 (pp. 8024–8035).

Pineda, F. J. (1987). Generalization of back-propagation to recurrent neural
networks. Physical review letters , 59 , 2229–2232.

Proctor, J. L., Brunton, S. L., & Kutz, J. N. (2018). Generalizing Koopman
theory to allow for inputs and control. SIAM J. Appl. Dyn. Syst., 17 ,
909–930.

Rahimi, A., & Recht, B. (2007). Random features for large-scale kernel
machines. In Advances in Neural Information Processing Systems 20 (pp.
1177–1184).

Rowley, C. W., Mezić, I., Bagheri, S., Schlatter, P., & Henningson, D. S.
(2009). Spectral analysis of nonlinear flows. Journal of Fluid Mechanics ,
641 , 115–127.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G.
(2008). The graph neural network model. IEEE Transactions on Neural
Networks , 20 , 61–80.

Schmid, P. J. (2010). Dynamic mode decomposition of numerical and exper-
imental data. Journal of Fluid Mechanics , 656 , 5–28.

Selverston, A. I., & Moulins, M. (1985). Oscillatory neural networks. Annual
Review of Physiology , 47 , 29–48.

36

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for
large-scale image recognition. In 3rd International Conference on Learning
Representations .

Sitzmann, V., Martel, J. N. P., Bergman, A. W., Lindell, D. B., & Wet-
zstein, G. (2020). Implicit neural representations with periodic activation
functions. In Advances in Neural Information Processing Systems 33 (pp.
7462–7473).

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R.
(2014). Dropout: A simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15 , 1929–1958.

Strogatz, S. H. (2015). Nonlinear Dynamics and Chaos: With Applications
to Physics, Biology, Chemistry, and Engineering, Second Edition. CRC
press.

Takeishi, N., & Kawahara, Y. (2021). Learning dynamics models with stable
invariant sets. In Proceedings of the 35th AAAI Conference on Artificial
Intelligence (pp. 9782–9790).

Takeishi, N., Kawahara, Y., Tabei, Y., & Yairi, T. (2017a). Bayesian dy-
namic mode decomposition. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence (pp. 2814–2821).

Takeishi, N., Kawahara, Y., & Yairi, T. (2017b). Learning Koopman invari-
ant subspaces for dynamic mode decomposition. In Advances in Neural
Information Processing Systems 30 (pp. 1130–1140).

Tancik, M., Srinivasan, P. P., Mildenhall, B., Fridovich-Keil, S., Raghavan,
N., Singhal, U., Ramamoorthi, R., Barron, J. T., & Ng, R. (2020). Fourier
features let networks learn high frequency functions in low dimensional
domains. In Advances in Neural Information Processing Systems 33 (pp.
7537–7547).

Townley, S., Ilchmann, A., Weiß, M. G., McClements, W., Ruiz, A. C.,
Owens, D. H., & Pratzel-Wolters, D. (2000). Existence and learning of
oscillations in recurrent neural networks. IEEE Transactions on Neural
Networks , 11 , 205–214.

37

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. In Advances
in Neural Information Processing Systems 30 (pp. 5998–6008).

Williams, M. O., Kevrekidis, I. G., & Rowley, C. W. (2015). A data–driven
approximation of the Koopman operator: Extending dynamic mode de-
composition. Journal of Nonlinear Science, 25 , 1307–1346.

Winston, E., & Kolter, J. Z. (2020). Monotone operator equilibrium net-
works. In Advances in Neural Information Processing Systems 33 (pp.
10718–10728).

Xie, X., Wang, Q., Ling, Z., Li, X., Wang, Y., Liu, G., & Lin, Z. (2021). Opti-
mization induced equilibrium networks. arXiv preprint arXiv:2105.13228.

38

	Introduction
	Background
	Deep Equilibrium Models
	Koopman and Perron–Frobenius Operators

	Stable Invariant Models
	Approximating DEQs
	Convergent Behavior via Koopman Spectra
	Model Description
	Practical Implementation
	Relation to Implicit Neural Representation

	Related Works
	Experiments
	Copy Memory Task
	Image Classification
	Image Regression
	Discussion

	Conclusions
	Convergent Behavior on Lifted Space
	Experimental Details
	Copy Memory Task
	Image Classification
	Image Regression

