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Abstract

Infectious diseases remain among the top contributors to human illness and death worldwide, among

which many diseases produce epidemic waves of infection. The lack of specific drugs and ready-to-

use vaccines to prevent most of these epidemics worsens the situation. These force public health

officials and policymakers to rely on early warning systems generated by accurate and reliable

epidemic forecasters. Accurate forecasts of epidemics can assist stakeholders in tailoring counter-

measures, such as vaccination campaigns, staff scheduling, and resource allocation, to the situation

at hand, which could translate to reductions in the impact of a disease. Unfortunately, most of

these past epidemics exhibit nonlinear and non-stationary characteristics due to their spreading

fluctuations based on seasonal-dependent variability and the nature of these epidemics. We an-

alyze various epidemic time series datasets using a maximal overlap discrete wavelet transform

(MODWT) based autoregressive neural network and call it Ensemble Wavelet Neural Network

(EWNet) model. MODWT techniques effectively characterize non-stationary behavior and sea-

sonal dependencies in the epidemic time series and improve the nonlinear forecasting scheme of

the autoregressive neural network in the proposed ensemble wavelet network framework. From a

nonlinear time series viewpoint, we explore the asymptotic stationarity of the proposed EWNet

model to show the asymptotic behavior of the associated Markov Chain. We also theoretically

investigate the effect of learning stability and the choice of hidden neurons in the proposal. From

a practical perspective, we compare our proposed EWNet framework with twenty-two statistical,

machine learning, and deep learning models for fifteen real-world epidemic datasets with three

test horizons using four key performance indicators. Experimental results show that the proposed

EWNet is highly competitive compared to the state-of-the-art epidemic forecasting methods.

Keywords: Wavelet methods, MODWT, epidemiology, neural networks, time series forecasting.

1. Introduction

Epidemiological modeling is a centuries-old field of research; however, still handy in guiding

decision-making and devising appropriate interventions that mitigate the impacts of epidemics
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[93, 37, 64]. Most recently, epidemiological modeling and forecasting have become an immediate

choice for designing policies for public health officials during outbreaks [29, 55, 33]. Epidemiological

forecasting models (we will henceforth refer to as epicasters) can be used to forecast the total num-

ber of confirmed cases to define intervention strategies (e.g., [96]). Recent examples of real-time

modeling during epidemic outbreaks can be drawn from vector-borne diseases such as Malaria [83],

Dengue [53], the flu (Influenza) [81], viral infection (Hepatitis) [106], and most recent Covid-19

pandemic [16, 17]. Despite tremendous progress in public health practice in the 21st century, infec-

tious diseases caused by microorganisms are still the leading cause of morbidity and mortality on

the global level. Out of many causes of mortality, deaths due to infectious diseases (more precisely,

epidemics and pandemics) are one of the leading causes of death in the last centennial [50]. Since

many of these epidemics were not foreseen or predicted thus, their untimely outbreak results in the

mass destruction of limited resources and the collapse of the economy [6]. This problem is pivotal in

developing countries, particularly with the concurrent rising trends in the occurrence of epidemics.

Therefore, early knowledge of epidemic timing, intensity, and mortality rates are crucial in design-

ing countermeasures to reduce the impact of such cumbersome outbreaks. However, these early

warning systems are usually designed following two strategies: “nowcasting” and “forecasting”.

While the former helps develop situational awareness by predicting the disease incidence at a time

near the available data [110, 17], the latter is designed for formulating control response strategies

well ahead of time to handle large-scale emergencies [52, 15]. In our research, we combine the tasks

of nowcasting and forecasting for predicting the disease incidence (specifically epidemics) at a time

near and after the available data and collectively designate it as “epicasting”. The primary goal

of the epicasting models is to accurately forecast the disease dynamics for formulating real-time

outbreak management decisions and developing informed future response policy [82, 65].

Within the scope of epidemic modeling and forecasting, several mechanistic (or deterministic)

and phenomenological models have been proposed. Amongst the available deterministic method-

ologies, compartmental models are widely used to study the changes in the characteristics (e.g.,

age, gender) and state (e.g., susceptible to, infectious with, or recovering from a particular dis-

ease) of the population by segregating them into several “compartments” [8]. The simple SIR

(susceptible-infected-recovered) model, consisting of a system of three coupled non-linear ordinary

differential equations, yields several fundamental insights into outbreaks of infectious diseases and

their control [107]. Despite these mechanistic models’ vast applicability, they are more suitable for

“understanding” the disease dynamics rather than real-time forecasting the outbreak, which is one

of the primary motivations for epicasting [54]. To overcome the problem of limited predictability

of the mechanistic approaches, several attempts to anticipate the infectious disease dynamics with

statistical and machine learning approaches have been adopted [19, 15, 17]. Some examples of epi-

casting models are as follows: Modified version of autoregressive (AR) model for forecasting dengue

epidemic datasets [24]; Bayesian methodology for analyzing malaria outbreak [83]; Autoregressive

likelihood ratio for forecasting influenza incidence [81] amongst many others. While statistical

models focus on parametric methods for predicting disease outbreaks, modern machine learning,

and deep learning methodologies have been used to learn temporal disease dynamics in a purely

data-driven approach [87, 111]. Several other statistical forecasters have been developed in the

recent literature; among them, the most popular models are Random Walk (RW) [74], Random

Walk with Drift (RWD) [27], Autoregressive Integrated Moving Average (ARIMA) [7], Exponential
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Smoothing State Space (ETS) [46], Theta Model [5], Wavelet-based ARIMA (WARIMA) [2], Self-

exciting Threshold Autoregressive (SETAR) [99], Trigonometric Box-Cox ARIMA Trend season-

ality (TBATS) [22], Bayesian Structural Time Series (BSTS) [89], and Hybrid ARIMA-WARIMA

(we call it Hybrid-1) [16]. With the increasing data availability and computation power, machine

learning and deep learning architectures have become a vital part of epidemic forecasting and are

widely used as individual forecasters or in a hybridized environment [105, 15, 52]. A non-exhaustive

list of such machine learning and deep learning models are Artificial Neural Networks (ANN) [84],

Autoregressive Neural Networks (ARNN) [28], Support Vector Regression (SVR) [92], Long Short-

term Memory (LSTM) network [42], NBeats [72], Deep AR [86], Temporal Convolutional Networks

(TCN) [18], Transformers [111], Hybrid ARIMA-ANN (we call it Hybrid-2) [115], Hybrid ARIMA-

ARNN (we call it Hybrid-3) [15]. Applying leading-edge research concerning epicasting of dengue,

malaria, influenza, and other infectious disease confirmed cases, recovered cases, and mortality us-

ing the above-mentioned compartmental, statistical, machine learning, and deep learning methods

are given in Table 1.

Albeit the applicability of statistical models for epicasting, these models impose some restric-

tions on the data characteristics before their application. For example, real-world epidemic datasets

show complex, noisy, non-stationary, and nonlinear behavior owing to the changing population

size and climatic conditions [107, 25]. In such a scenario, pre-processing the complex time series

with suitable mathematical transformations has often yielded satisfactory results [11]. One such

widespread mathematical transformation is log transformation which effectively analyzes skewed

data and reduces variability. Log transformation generally makes the transformed dataset conform

more closely to the normal distribution. In recent literature, log-transformed time series data is

modeled using a linear AR model, followed by the inverse transformation of the forecasts [62].

However, this transformation changes the symmetric measurement errors on the original scale to

asymmetric errors on the log scale because the linear fit is performed on the log-scaled data. Log

transformation is also highly impacted by outliers or peaks in the time series datasets visible in

most epidemic data. Another popularly used transformation in time series literature is the Fourier

transformation. Although Fourier transforms are ideal for periodic signals, their performance for

non-periodic signals and signals with changing characteristics over time (i.e., non-stationary time

series) is unsatisfactory as this transformation will generally give the averaged data. Hence, the

direct use of Fourier transformation to pre-process the non-stationary real-world epidemic signals

is avoided [9]. To overcome this problem, wavelet transform has been considered as an efficient

mathematical tool for the past three decades [75, 76, 104]. Wavelet transformations are in many

ways a generalization of the Fourier transform that allows the independent choice of time and

frequency resolution at different times and frequencies [9]. The ability of the wavelet transforma-

tion to decompose the original series into many high and low-frequency coefficients allows for the

appropriate extraction of signal from noise [76]. In the literature, most wavelet decomposition in-

cluded a discrete wavelet transform (DWT) followed by a statistical or machine learning approach

to generate forecast [63, 85, 117, 15]. However, the restriction on signal length imposed by the

DWT approach led to the application of a maximal overlap discrete wavelet transform (MODWT),

which has similar properties to DWT but is free from the limitations [76]. Moreover, the MODWT

approach provides increased resolution for noisy data, and unlike DWT, the number of coefficients

at each level is the same as that of the original series. Applications of the MODWT-based autore-
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Table 1: Related works on epidemiological forecasting

Research Topic Disease Countries Model Results Conclusion
Forecasting epidemics
based on geographical
hierarchy [35]

Influenza United States Weighted combination of
forecasts for different re-
gions where the weights are
selected relative to the pop-
ulation size - a probabilistic
coherence approach.

The proposed approach is
79% more efficient in predict-
ing influenza incidence for
multiple seasons.

National incidence is a
weighted average of region-
wise incidence and selecting
the weights based on the
demography of regions is
an essential consideration in
improving forecasts.

Parameter identifica-
tion in epidemic fore-
casting [68]

Influenza United States Local lagged adapted gener-
alized method of moments
(LLGMM) for parameter
identification in compart-
mental SEIRS model.

The model shows a good
qualitative fit for long-term
forecasts.

The LLGMM parameter
estimation technique shows
promising results in forecasting
the incidence rate and can be
further improved by consider-
ing more complex models than
SEIRS.

Forecasting epidemics
with sparse represen-
tation [81]

Dengue
and in-
fluenza

Brazil, Mexico,
Singapore, Tai-
wan, Thailand,
and the United
States

Autoregressive Likelihood
Ratio (ARLR) Methodology.

The forecasts generated by
the ARLR model reduce the
RMSE and MAE scores by
18% compared to traditional
forecasting techniques.

Electronic health records, his-
torical incidence data, and fre-
quency of internet search terms
on Google trends provide valu-
able information for epicasting.

Epidemic analysis and
forecasting [41]

Dengue Malaysia Seasonal and Trend de-
composition with Loess
method (STL), Holt Method,
ARIMA, and STL-ETS.

MAE, RMSE, and MASE
scores are the least for the
STL method.

The dengue data exhibits trend
and seasonality and can be best
forecasted with the STL model.

Overcoming the chal-
lenges in epidemic
forecasting due to
data scarcity [83]

Malaria Burkina Faso Bayesian methodology for
spatio-temporal prediction.

6-months ahead forecasts
have actual cases within 95%
credible interval.

Spatial fractional variance
value suggested a strong spa-
tial dependence of malaria
incidence.

Early detection of epi-
demic outbreak [24]

Dengue San Juan and
Iquitos

A weighted ensemble of nega-
tive binomial regression, sea-
sonal ARIMA, and general-
ized linear ARMA models,
with weights, selected rela-
tive to the performance on
training data.

Ensemble method is most
suitable for forecasting out-
breaks compared to its com-
ponents as evident from the
MAE score.

Climate and terrain factors
provide useful information for
forecasting the dengue out-
break in these regions.

Predicting epidemic
incidence with Baidu
search-engine data
[61]

Dengue South China Generalized Additive Mixed
(GAMX) Model.

GAMX showed 72% and 10%
improvement in RMSE and
R2 compared to the General-
ized Additive Model (GAM)
for generating 6-months
ahead forecasts.

Historical incidence data along
with climatic conditions played
an essential role in accurately
forecasting dengue incidence in
South China.

Forecasting Dengue
[10]

Dengue San Juan and
Iquitos

Ensemble framework includ-
ing two-dimensional method
of analogs, additive Holt
Winter’s method with and
without wavelet smoothing.

Ensemble model forecasts a
maximum number of weekly
cases and total case count
with minimum RMSE score
compared to traditional fore-
casters.

Their method scored the
maximum rank in predicting
weekly maximum count and
total count in the 2015 NOAA
Dengue Challenge.

Modelling epidemic
transmission [51]

Dengue Guangzhou,
China

ARIMA with exogenous vari-
ables (ARIMAX).

The forecasts generated by
the model report an RMSE
value of 0.6445 and a consis-
tency rate of 0.7917.

Imported cases and climatic
conditions are key determi-
nants of modeling local epi-
demic transmission.

Hybrid methodology
for epicasting [15]

Dengue Peru, Philip-
pines, Puerto
Rico

Remodeling the ARIMA
residuals with an ARNN
model and hybridizing the
ARIMA and ARNN outputs
for forecasting dengue cases.

Hybrid model produces the
best forecast with a one-year
lead time based on MAE,
RMSE, and sMAPE scores.

Hybrid ARIMA-ARNN model
is best suited for long-term
forecasting.

Modelling trajectories
of Dengue [53]

Dengue Iquitos and San
Juan

Gaussian process (GP) re-
gression model.

The GP approach predicts
the future by memorizing his-
torical data and performs su-
perior to the generalized lin-
ear model (GLM) techniques
that model the lagged obser-
vations along with climatic
conditions.

This method is advantageous in
situations with a lack of ancil-
lary covariates.

Modelling and fore-
casting epidemics
[106]

Hepatitis
B

China Seasonal ARIMA and grey
model (GM).

RMSE & MAE scores of the
SARIMA model were lower
than the GM model in fore-
casting the future trajectory.

Utilizing SARIMA model fore-
casts is a supporting tool for
health officials to control hep-
atitis outbreaks in China.

Malaria forecasting
data from 1994 to
1999 [34]

Malaria Honghe State,
China

Artificial Neural network
(ANN).

ANN model has been used
and decreased the error of
statistical models.

Neural network model was ef-
fective for forecasting malaria.
It has the ability for more ac-
curate forecasting and easy ap-
plicability.

Prediction of the
spread of influenza
epidemics [101]

Influenza-
like
illness
(ILI)

France Naive method. Ten weeks ahead forecast
for the temporal and spatial
spread of influenza was gen-
erated.

Their method proved appro-
priate for forecasting both na-
tional and regional ILI inci-
dences during the epidemic and
pre-epidemic periods.

Deep learning ap-
proach for modeling
epidemic [87]

Malaria Telangana, In-
dia

Long short-term memory
(LSTM) model.

12-months ahead prediction
was evaluated based on sev-
eral accuracy measures.

LSTM successfully forecasts
the endemic periods in the up-
coming year for four different
regions in Telangana.

Machine learning-
based algorithm to
determine epidemic
transmission [12]

Malaria Rajasthan, In-
dia

Hybridized Support Vector
Machine with Fire Fly Algo-
rithm (SVM-FFA).

One step ahead forecast was
evaluated based on different
performance indicators.

The coupled SVM-FFA ap-
proach exhibited better accu-
racy in predicting malaria inci-
dence than several benchmark
forecasters.
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gressive moving average (ARMA) model and hybrid ARIMA-WARIMA (based on error correction

approach) have been proposed for meteorological forecasting and epidemic forecasting [117, 15].

Recent studies have also focused on the application of MODWT-based deep learners, Wavelet

Transformers (W-Transformers) and Wavelet NBeats (W-NBeats) for modeling real-world time se-

ries and stock-price datasets, respectively [88, 91]. Several studies have also attempted to model

MODWT decomposed coefficients with an artificial neural network for predicting electricity price

[85], generating weather forecasts [71], analyzing the wholesale price of agricultural commodities

[3], forecasting the occurrence of flood [69], and foretelling the daily river discharge [80]. These

studies suggest that the wavelet-based neural network model generates more accurate forecasts than

the multilayered perceptrons. However, these wavelet neural networks [1] have less application in

the epidemic incidence prediction owing to the unavailability of a vast amount of historical data

and discrepancy regarding the choice of the hidden neurons in wavelet neural network resulting

in an unstable learning algorithm. Another major disadvantage of the previously built wavelet

neural networks is that they lack the desired theoretical properties like asymptotic stationarity,

which makes long-term forecasts unstable and inaccurate. To mitigate these concerns, this paper

attempts to design a novel ensemble of wavelet neural networks, and we call it EWNet, that can

handle epicasting problems and generate short, medium, and long-term forecasts that are more

reliable and accurate as compared to state-of-the-art methods from statistics and machine learning

literature. EWNet is first built theoretically with the help of the MODWT algorithm combined

with ARNN models in an ensemble setup and further used to solve the epicasting problem. More

precisely, our proposed EWNet model initially decomposes the epidemic datasets into several “de-

tails” (describing high-frequency variations at a particular time scale) and “smooth” (describing

low-frequency variations) using a MODWT-based additive decomposition. In the subsequent step,

EWNet models the “details” and “smooth” segments of the data with a series of autoregressive

feedforward neural networks having pre-defined architecture specified in the theoretical sections.

Finally, an ensemble approach is applied to ensure the reduction of bias in the overall forecast.

The main contributions of the paper can be summarized in the following manner:

1. We present a novel formulation of the proposed EWNet model designed to handle nonlinear,

non-stationarity, and long-range dependency of real-world epidemic datasets. We analyze

several theoretical properties of the proposed framework, including asymptotic stationarity,

ergodicity, irreducibility, and learning stability.

2. The proposed EWNet model has a solid mathematical basis and is more explainable and

reliable than modern deep learning techniques. In addition, the model does not have growing

variance over time and exhibits better long-range forecastability for epidemic datasets.

3. From a practitioner’s viewpoint, we extensively study the global characteristics of fifteen real-

world infectious disease datasets covering influenza, malaria, dengue, and hepatitis B from

different regions. We demonstrate the epicasting ability of the proposed EWNet model on

all the fifteen epidemic datasets by a rolling window approach having three test horizons -

short, medium, and long-term and measure their performance using four accuracy metrics,

namely Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute

Scaled Error (MASE), and symmetric Mean Absolute Percent Error (sMAPE).
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4. We check the efficacy of the proposed model by comparing its performance indicators with a

total of 22 state-of-the-art forecasters ranging from traditional time series models to the most

recent deep learning algorithms. We show that our proposal can generate a better long-term

forecast and outperform most forecasters on average. Moreover, we report the robustness of

the forecast generated by our proposed EWNet method using a non-parametric test. Finally,

the statistical significance of the experimental results and the potential threats to validate

the results provide a strong justification for the multi-disciplinary usability of the proposed

EWNet model in future studies.

The remaining sections of this paper are structured as follows. Section 2 provides a detailed

description of the formulation of the proposed EWNet model. Then, in Section 3, we provide

the statistical properties of the proposed EWNet model describing its stable learning, geometric

ergodicity, and asymptotic stationarity, along with the practical implications of these theoretical

results. A detailed summary of the real-world epidemic data characteristics, performance measures

used in this study, and forecast evaluation of the proposed methodology with other state-of-the-art

forecasters are provided in Section 4. Finally, Section 5 evaluates the statistical significance of the

improvements in forecasts due to the application of the proposed EWNet model and investigates

the unexpected threats to the validity of these results. We conclude this paper in Section 6 with

some discussion and the future scope of research.

2. Method

This section gives an overview of the maximal overlap discrete wavelet transform (MODWT)

approach. We then present the detailed formulation of the EWNet model. The key of the ensem-

ble wavelet neural network (EWNet) model is the wavelet decomposition of time series and the

construction of an ensemble of autoregressive neural networks.

2.1. Wavelet Transformations and DWT Approach

In our study, we utilize a discrete wavelet transformation (DWT) approach to denoise the

epidemiological data (time-indexed) followed by an autoregressive neural network architecture [28].

In particular, we concentrate on ‘maximal overlapping’ versions of DWT that are applicable for

arbitrary time series. DWT represents a signal using an orthonormal basis representation that

has been widely used in smoothing signals [76, 104], compressing digital images [39], geophysics

[117], atmosphere [75], economics [4], energy [112], and material science [60] among many others.

We start with the description of wavelets and the DWT approach that can create a basis for the

MODWT algorithm to be used in the proposal.

The Daubechies wavelets [20] are a family of orthogonal wavelets defining a discrete wavelet

transform. We consider discrete compactly supported filters of Daubechies class of wavelets here.

We denote by {gm : m = 0, 1, . . . ,M − 1} the scaling filters and {hm : m = 0, 1, . . . ,M − 1} the

wavelet filters. We restrict the scaling filter and wavelet filter to satisfy unit energy assumptions

(refer to Eqn. 1) and even-length scaling assumptions (refer to Eqn. (2)) defined as follows:

M−1∑
m=0

g2
m =

M−1∑
m=0

h2
m = 1 (1)
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M−1∑
m=0

gmgm+2n =

M−1∑
m=0

hmhm+2n = 0 (2)

for all non-zero and integer n. These two properties together are called the “orthonormality prop-

erty” in wavelet literature [76]. Scaling and wavelet filters are also related by the following restric-

tion:

gm ≡ (−1)m+1hM−1−m or hm ≡ (−1)mgM−1−m; for m = 0, 1, . . . ,M − 1.

Thus, we call {gm} as “quadrature mirror” filter corresponding to {hm}. The construction scheme

of DWT coefficients is well known as the ‘pyramid algorithm’ [75].

Suppose we denote the epidemic time series to be transformed by Y = {Yt : t = 0, 1, . . . , N−1}.
With V0,t ≡ Yt, the jth stage input to the pyramid algorithm is {Vj−1,t : t = 0, . . . , Nj−1−1}, where

Nj = N/2j . In the DWT pyramid algorithm, jth stage outputs are the jth level wavelet and scaling

coefficients and these jth level coefficients can directly be linked to the series {Yt}, following [104].

Uj,t =

Mj−1∑
m=0

hj,mY(2j(t+1)−1−m) mod N and Vj,t =

Mj−1∑
m=0

gj,mY(2j(t+1)−1−m) mod N ;

where the jth level filters have the same unit energy and related properties as discussed in Eqn. (1)

and Eqn. (2) along with
Mj−1∑
m=0

gj,m = 2j/2 and

Mj−1∑
m=0

hj,m = 0.

At level j the nominal frequency band to which the corresponding wavelet coefficients {Uj,t} is

given by |l| ∈
(

1
2j+1 ,

1
2j

)
. However, DWT restricts the sample size to be exactly a power of 2,

whereas wavelet details and scaling coefficients of a DWT decomposed signal do not scale and

are shift-invariant. We may overcome these deficiencies of DWT by using a modified version of

DWT, namely the maximal overlap discrete wavelet transformation (MODWT) based on haar filter

[75, 77].

2.2. MODWT algorithm

The MODWT is an improved and modified version of the DWT algorithm. Both DWT and

MODWT allow to perform a multi-resolution analysis which is a scale-based additive decomposition

[70]. However, the MODWT algorithm overcomes the deficiencies of the DWT algorithm and can

handle the circular shift in the signal. Thus it is best suited for decomposing epidemiological

time series that exhibit non-stationary seasonal patterns. Several applications of MODWT in time

series analysis can be found in [117, 3, 116]. Therefore, in our study, we consider MODWT, which

is well-defined for all sample sizes and shift-invariant. This is also called nondecimated wavelet

transform, as there is a redundancy of wavelet and scaling coefficients at each decomposition level

of the original series following a particular pattern. A mathematical formulation of MODWT can

be extended directly from the DWT formulation in Section 2.1.

Here, we define MODWT filters {h̃j,m} and {g̃j,m} by re-normalizing the DWT filters:

h̃j,m =
hj,m

2j/2
and g̃j,m =

gj,m

2j/2
; (3)
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and width Mj of MODWT and DWT are the same. Another modification made w.r.t. the DWT

filter is that MODWT filters do not have unit energy, i.e.,

Mj−1∑
m=0

h̃2
j,m =

Mj−1∑
m=0

g̃2
j,m =

1

2j
,

and, therefore, there is no need for downsampling by 2j in the MODWT. With Ṽ0,t ≡ Yt, then the

MODWT pyramid algorithm generates the MODWT wavelet coefficients {Ũj,t} and the MODWT

scaling coefficients {Ṽj,t} [76]. These coefficients can also be formulated in terms of filtering of {Yt},
using the filters as in Eqn. (3):

Ũj,t =

Mj−1∑
m=0

h̃j,mY(t−m) mod N and Ṽj,t =

Mj−1∑
m=0

g̃j,mY(t−m) mod N ;

where Mj = (2j−1)(M−1)+1. Similar to DWT, the MODWT coefficients at level j are associated

to the same nominal frequency band |fq| ∈
(

1
2j+1

1
2j

]
and are defined as the convolutions of the time

series Yt. Thus, the wavelet coefficients at each level will have the same length as that of the original

series. The coefficients can also be expressed using matrix notation as follows [76]:

Ũj = ũjY and Ṽj = ṽjY,

where the square matrices ũj and ṽj of order N × N comprises values dictated by wavelet filters

and scaling filters, respectively.

ũj =


h̃j,0 h̃j,N−1 h̃j,N−2 . . . h̃j,3 h̃j,2 h̃j,1
h̃j,1 h̃j,0 h̃j,N−1 . . . h̃j,4 h̃j,3 h̃j,2

...
...

... . . .
...

...
...

h̃j,N−2 h̃j,N−3 h̃j,N−4 . . . h̃j,1 h̃j,0 h̃j,N−1

h̃j,N−1 h̃j,N−2 h̃j,N−3 . . . h̃j,2 h̃j,1 h̃j,0

 (4)

and ṽj can similarly be expressed as in Eqn. (4) with each {h̃j,m} replaced by {g̃j,m}. Thus, the

original series (Y ) can be written from its MODWT based via,

Y =

J∑
j=1

ũTj Ũj + ṽTJ ṼJ =

J∑
j=1

Dj + SJ ,

where Dj = ũTj Ũj is the jth level (j = 1, 2, . . . , J) details and SJ = ṽTJ ṼJ is the J th level smooth

of the MODWT decomposition. A more detailed description and pseudo-code of the MODWT

algorithm is available in [75]. MODWT is valid for any integer N , whereas DWT needs N to be an

integer multiple of 2. Also, MODWT is a more handy tool for handling non-stationary and seasonal

discrete time series, which is the case in most epidemic datasets. These properties of MODWT are

a key element for pre-processing highly non-stationary and long-term dependent epidemic datasets.

The remaining nonlinearity of the epidemic time series is further modeled with the ARNN model

in the proposed EWNet framework. For graphical illustration, the MODWT decomposition on the

Colombia Dengue dataset is presented in Fig. 1. We aim to create a new set of random variables

(equal-sized time series named as details and smooth coefficients of MODWT algorithm) and use

them to build a novel ensemble of autoregressive neural nets in the EWNet framework. In the next

subsection, we combine the MODWT algorithm and ARNN model to utilize their complimentary

benefits for epicasting.

8
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Figure 1: MRA-based MODWT decomposition of the Colombia dengue dataset with the original epidemic time series
and its 6 levels. In Figure, (a) denotes the original time series in actual frequency scale; (b)-(f) denote the detail
coefficients reproduced by the MODWT algorithm with haar filter, and (g) represents the scaling coefficients of the
series generated by MODWT algorithm with haar filter. The figure depicts time-localized information on frequency
patterns that are identified by wavelets.

2.3. Proposed EWNet model

This section provides a detailed formulation of our proposed EWNet methodology that utilizes

a wavelet decomposition algorithm as a data pre-processing step. A salient feature of the MODWT

algorithm is that it helps to decompose epidemic time series in trend and higher frequency bands

which are exploited for forecasting in the proposal. The multiresolution analysis of MODWT

decomposes the discrete time series Yt (t = 1, 2, . . . , N), where N is the number of historical

samples, into high-frequency information and low-frequency information by applying corresponding

filters. These high and low-frequency decomposed series are termed wavelet (details), and scaling

(smooth) coefficients can track the original series as:

Yt =
J∑
j=1

Dj,t + SJ,t.

Theoretically, Dj,t (j = 1, 2, . . . , J) components capture the non-smooth bumpy details (local fluc-

tuations) of the series Yt, indicated by the fast dynamics whereas its counterpart SJ,t apprehends

the smooth tendencies (overall “trend” of the original signal) of the series, signalized by slow dy-

namics. Epidemic time series considered in this study have long-term memory (as reported in Table

2), and long-term memory processes have a high degree of correlation. With the help of MODWT

(with ‘haar’ filter), we create a new set of random variables (equal-sized time series), namely, the

wavelet coefficients, that are approximately uncorrelated (both within and between scales). The

decomposition process can be iterated, with successive approximations being decomposed in turn,

so that the original signal is broken down into many lower-resolution components. Simultaneously,

the problem of generating forecasts ŶN+h (h-step ahead forecasts) based on Y1, Y2, . . . , YN can be

solved by generating the forecasts D̂j,N+h (j = 1, 2, . . . , J) and ŜJ,N+h, based on their previous
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observations, i.e.,

D̂j,N+h = f(Dj,1, Dj,2, . . . , Dj,N ); j = 1, 2, . . . , J,

ŜJ,N+h = f(SJ,1, SJ,2, . . . , SJ,N ),

where f is the autoregressive neural network function. We choose the value of J + 1 as a floor

function of log (base e) of the length of training subset as suggested by [75].

In our proposed framework, we utilize these decomposed time series using an ensemble of

neural networks for generating the forecasts from several decomposed components. The neural

net comprises of three layers - one input layer with p nodes, one hidden layer with k nodes, and

an output layer with no recurrent connections (feedforward structure). We operate J + 1 of these

feedforward neural networks, each of which models p lagged observations from a series to generate

a one-step-ahead forecast in a single iteration.

D̂j,N+1 = α0,j +
k∑
i=1

βi,jφ(αi,j + β
′
i,jDj); j = 1, 2, . . . , J,

ŜJ,N+1 = η0 +

k∑
i=1

δiφ(ηi + δ
′
iSJ);

where Dj , SJ denotes p lagged observations of the corresponding decomposed series (j = 1, 2, . . . , J),

α0,j , η0, αi,j , βi,j , ηi, δi (i = 1, 2, . . . , k; j = 1, 2, . . . , J) are the connection weights of the network,

β
′
i,j , δ

′
i are p dimensional weight vectors, and φ is the nonlinear activation function (precisely, logistic

sigmoidal activation function). The weights of the network take random values at the beginning and

are then trained by gradient descent back-propagation approach [84]. This procedure is continued

iteratively until the forecast of the desired horizon is obtained. Eventually, the forecasts originating

from all the trained networks are aggregated to produce the final forecast as

ŶN+h =
J∑
j=1

D̂j,N+h + ŜJ,N+h

The choice of the hyperparameter p is based on the minimization of forecast error for the validation

set in a cross-validation way

p = argmin
p

1

|V|
∑
t∈V

2|Ŷt − Yt|
|Ŷt|+ |Yt|

∗ 100%,

where Yt is the series at time point t, Ŷt is the predicted value at time point t, V is the validation

set and the number of neurons k = [p+1
2 ] in the hidden layer is chosen (proof is discussed in Section

3.1). Detailed descriptions of the EWNet model parameters are described below.

1. Wavelet levels (J + 1): An integer value specifying the level of the wavelet decomposition of

the original series.

In order to account for the maximum level in the decomposition, we set J + 1 = blogeNc
based on the recommendation of [75].

2. Fast Flag: Denotes the wavelet decomposition achieved by using pyramid algorithm described

in [76].
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Figure 2: Schematic diagram of the EWNet framework: Given the original input series of size n, we employ MODWT
transformation to decompose the series into one smooth and J details coefficients each of size n. In the subsequent
step, each of the transformed series is modeled with an autoregressive neural network and their forecasts are combined
via inverse MODWT transformation to generate the one-step ahead ensemble forecast.

3. Boundary: A “periodic” boundary is set and it is used to obtain coefficients from the training

time series.

4. MaxARParameter (p): An integer indicating the value of the lagged inputs in each of the J+1

ARNN models. This is a tuning parameter in EWNet and is chosen using cross-validation.

5. Hidden neurons (k): The number of hidden neurons in (J + 1) ARNN models are set to

k =
[
p+1

2

]
(discussed in details in Section 3.1).

6. NForecast (h): The desired forecast horizon.

A schematic flow diagram of the proposed EWNet model is portrayed in Fig. 2. A detailed

inspection of Fig. 2 describes the mechanism of generating a one-step-ahead forecast in the proposed

EWNet model, where each wavelet decomposed series is modeled with autoregressive neural network

architecture. Using one-step ahead forecasts, we iteratively find the multi-step ahead forecasts from

the EWNet model. Based on the non-stationary and nonlinear characteristics of the time series, we

apply MODWT-based decomposition to break the series into multiple sub-frequencies. Following

this, each detail and smooth component is fed into an ARNN model for prediction purposes. The

wavelet analysis can efficiently diagnose the main frequency components of the signal, and the

ARNN can now model the details and smooth components of the series with higher accuracy; thus,

the name of the model, Ensemble Wavelet Neural Network (EWNet), is justified. In the proposed

model, the time series is first decomposed into several sub-time series [D1, D2, . . . , DJ , SJ ], where

the former J series are the wavelet detail components, and SJ is the smooth component as depicted

for the Colombia dengue data in Fig. 1. Finally, the forecasted series is formed through inverse

wavelet transform from the forecast generated by the details and smooth components. A detailed

description concerning the implementation of the model is available in Algorithm 1. So far as the
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study proceeds, in the following section, we develop the theoretical results of the proposed EWNet

model from a nonlinear time series viewpoint and show the stability in the learning of our proposal,

asymptotic behavior, and their practical implications.

Remark 1. Most machine learning and deep learning frameworks utilize a sliding window approach
to reconstruct the time series forecasting task as a supervised learning problem. The previous steps
are used as inputs, and the next step as the outputs. However, in the proposed EWNet architecture,
we employ an ensemble ARNN framework on the MODWT decomposed training series. Unlike
most machine learning and deep learning approaches, the proposed model does not reconstruct the
epidemic series into an input-output supervised framework; instead, it utilizes p-lagged observations
of each of the wavelet decomposed training data and generates a one-step-ahead forecast using a
nonlinear function as discussed in Algorithm 1. Moreover, we recursively update the training data
with the latest forecast (obtained from EWNet) to develop the multi-step ahead forecasts for each
transformed series using the same nonlinear activation function. Finally, we consider an ensemble
of the forecasts generated from each wavelet decomposed series and obtain our desired results. In the
experimental evaluation, we utilize the original test data only to compute the forecasting accuracy
of the proposed EWNet framework in comparison with benchmark methods.

Algorithm 1 Proposed EWNet model

Input : Univariate time series {Y1, Y2, . . . , YN} with N historical observations.
Output: Record prediction corresponding to the historical data window, fitted values of the original

series, and h-step ahead forecast (h to be specified by user).

Train Procedure:
1 Compute the maximal overlap discrete wavelet transform (MODWT) of the original time series via

pyramid algorithm.
2 Extract the wavelet and scaling coefficients corresponding to each level and transform them to time

series objects.
3 Model these individual time series using an autoregressive neural network with p lagged values.
4 Select the MaxARParam corresponding to the minimum accuracy measure (MASE) on the valida-

tion set and k as specified.
Test Procedure:

Execute the previously mentioned steps for acquiring the forecast on the hold-out test set.
5 The fitted model generates a one-step-ahead prediction.
6 Iterate the process until the forecast of the desired horizon is computed.
7 Combine the final forecasts generated from the wavelet and scaling series using an inverse MODWT

approach to achieve the desired output.

3. Statistical Properties of EWNet Model

In this section, we explore several theoretical aspects of the proposed EWNet approach and

discuss their practical implications from practitioners’ points of view. We start with the learning

stability problem of EWNet and then investigate the asymptotic behavior of the associated Markov

chain.
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3.1. Stable Learning using EWNet model

We investigate the effect of learning stability and the choice of hidden neurons in the EWNet

model. In unstable neural network models, the number of hidden nodes in hidden layers either

becomes too large or too small. This instability in the neural network gets reflected in the output

layer of the neural net, and a trade-off is required. Several previous studies established theoretical

results on the choice of hidden neurons of feedforward neural network, for example, see [94, 114, 14].

In the proposed EWNet, we consider the following assumptions to ensure learning stability in the

proposed ensemble framework.

(a) EWNet has three layers: one input, one hidden, and one output layer with no recurrent

connections (feedforward structure). Also, there is no direct connection from the input to the

output layer in EWNet.

(b) Gradient descent backpropagation [40] learning is used without introducing an inertia term

to train the EWNet model.

(c) EWNet starts with random weights, and the network is mainly trained for one-step forecast-

ing, although multi-step ahead forecasts can also be computed recursively.

(d) We further assumed that the learning rate (η) is the same for all the connections and con-

nection weights
(
w(o)

)
and error signal

(
δ(o)
)

in the output layer are assumed to have a

symmetrical distribution with respect to the origin.

(e) The number of lagged inputs (p) in EWNet(p, k) model is selected by a grid search optimiza-

tion algorithm and the number of hidden neurons is set to k =
[

(p+1)
2

]
unless it is particularly

specified. The above choice of k provides stability of learning in the proposed EWNet model.

Assumptions (a) - (d) are trivially true. But, the assumption (e) is critical, and we discuss below

the choice of hidden neuron and stability of learning for the EWNet(p, k) model. Throughout this

section, we denote the triplet notion (i, h, o) as the (input, hidden state, and output) of the EWNet

model. The change of internal state ∆u through learning for the same input patterns is considered

a rough standard for the stability of learning in the proposed EWNet, as previously described in

seminal papers on statistical properties of neural networks [108, 43]. The change in weights from

the ith input to the j̃th hidden neuron can be mathematically written as

∆w
(h)

j̃i
= ηδ

(h)

j̃
x

(i)
i ,

where, x
(i)
i is the output of the ith input neuron, δ

(h)

j̃
is the propagated error signal for the j̃th

hidden neuron and can be mathematically expressed as

δ
(h)

j̃
=

∂E

∂u
(h)

j̃

,

where E is the L2-error loss between the training signal yl and output value x
(o)
l . The change in

the internal state can be written as

∆u
(h)

j̃
=

p∑
i=1

∆w
(h)

j̃i
x

(i)
i = ηδ

(h)

j̃

p∑
i=1

(
x

(i)
i

)2
.
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The propagated error signal δ
(h)

j̃
in the hidden layer is computed as

δ
(h)

j̃
= g′

(
u

(h)

j̃

)
w

(o)

lj̃
δ

(o)
l , (5)

where g′(·) is the derivative of the activation function (logistic sigmoidal activation function of

EWNet model is both continuous and differentiable), δ
(o)
l is the output error signal, and w

(o)

lj̃
is the

output weights. Accordingly, δ
(h)

j̃
is inversely proportional to the number of hidden neurons and can

be computed using Eqn. (5). Under the standard regularity condition that g′
(
u

(h)

j̃

)
and w

(o)

lj̃
δ

(o)
l

are independent [32, 43], the variance of δ
(h)

j̃
, denoted by V

(
δ

(h)

j̃

)
, is mathematically represented

as

V
(
δ

(h)

j̃

)
= E

[
g′
(
u

(h)

j̃

)
w

(o)

lj̃
δ

(o)
l − E

(
g′
(
u

(h)

j̃

)
w

(o)

lj̃
δ

(o)
l

)]2

=
[
E2
(
g′
(
u

(h)

j̃

))
+ V

(
g′
(
u

(h)

j̃

))]
E
[
w

(o)

lj̃
δ

(o)
l

]2
.

The boundary of the stable learning of a hidden neuron is summarized as η.
( p
k

)
by adding the effect

of learning rate η to the above discussion. The number of hidden neurons becoming too large can

make the output neurons unstable, whereas if the number of hidden neurons becomes too small,

the hidden neurons become unstable again. Here a trade-off is derived for the learning structure of

the EWNet algorithm. We introduce a balancing equation as follows:

αη.
(p
k

)
= η.k, (6)

where the L.H.S. and R.H.S. of Eqn. (6) are obtained from the viewpoint of the boundary of

stable learning in hidden and output neurons, respectively. Here, we also pose α as a constant for

consistency. Therefore, we initially choose the number of hidden neurons to be k =
√
α.p. We take

the minimum value of α to be 1 and the maximum value of α to be p (≥ 1). Thus, k lies between
√
p and p for stable learning in the EWNet model. A natural choice of k ∈ (

√
p, p) is [p+1

2 ], can be

easily derived using AM-GM inequality. Thus, we conclude that the network structure proposed

in the EWNet model has stable learning property that is desired from the statistical perspective.

Next, we prove the asymptotic stationarity of the associated stochastic process from a nonlinear

time series point of view, following [66].

3.2. Geometric Ergodicity and Asymptotic Stationarity

The proposed ensemble wavelet-based autoregressive neural network (EWNet) model is an in-

tegrated approach that combines wavelet transformation with the ARNN algorithm. First, the

wavelet decomposition coefficients for time series data are transported into the ARNN model to

set up a forecast ensemble in the proposed framework. Wavelet transformation decomposes a time

series into J + 1 independent orthogonal components with both time and frequency localization.

Then, we fit several specific autoregressive neural network models to the component series and

obtain forecasts later aggregated to get the actual predictions and, after that, out-of-sample fore-

casts. Therefore, we only need to show that, under the sufficient conditions stated below, a single

autoregressive neural network process is ergodic and asymptotically stationary to ensure that the

whole process is ergodic and asymptotically stationary.
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We start with a simple ARNN(1, k) process with k hidden units that can be defined by the

following stochastic differential equation:

yt = f(yt−1,Θ) + εt,

where yt−1 is the previous lagged input, Θ denotes the weight vector, εt is a sequence of indepen-

dently and identically distributed (i.i.d.) random errors, and f denotes an autoregressive neural

network function. The output of an ARNN(1, k) model with activation function G (e.g., logistic

sigmoidal activation function) is given by

f(yt−1,Θ) = ψ1yt−1 + ν +

k∑
i=1

βiG (φi,1yt−1 + µi)

= ψ1yt−1 + g (yt−1, β, φ) , (7)

where the weight components are the shortcut connections ψ1, the hidden layer to output unit

weights β = (ν, β1, β2, . . . , βk)
′ and the input to hidden unit weights φ = (φ1,1, . . . , φk,1, µ1, . . . , µk)

′

are collected together in the network weight vector Θ.

Remark 2. Our proposed EWNet model can be thought of as a sum of J + 1 different ARNN(p, k)
processes, where J + 1 denotes the number of details and smooth coefficients obtained using the
MODWT algorithm.

Now, we show the ergodicity and stationarity of a simple ARNN(1, k) process. In statistical

analysis of nonlinear time series, the ergodicity and stationarity of the underlying process are of

particular interest since, for such processes, a single realization displays the whole probability law

of the data generation process [66]. Before discussing the results for ergodicity and stationarity, we

discuss the concept of irreducibility for the ARNN(1, k) process, which acts as a connectionist in

establishing the theoretical results.

3.2.1. Irreducibility

‘Irreducibility’ is a very primordial concept of a Markov chain in which, irrespective of the

starting point, the Markov chain can reach all parts of the state space [66]. Another key property

of Markov chains is called ‘aperiodicity’ which refers to a Markov chain with no cycles. More

formally, the definition of ‘irreducibility’ can be given as follows [73].

Definition 1. A Markov chain is called irreducible if

∞∑
t=1

P t(y,A) > 0 for all y ∈ X , whenever

λ(A) > 0, where P t(y,A) denotes the transition probability from the state y to the set A ∈ B in t
steps where the state space X ⊆ R2, and B is the usual Borel σ-field and λ be the Lebesgue measure.

Now, we write the ARNN(1, k) process in the state space form as follows:

yt = ψ1yt−1 + F (yt−1) + εt, (8)

where F (yt−1) = g (yt−1, β, φ) refers to the nonlinear component of yt. Thus, yt is considered as

a Markov chain with state space X ⊆ R2 equipped with Borel σ-field B and Lebesgue measure λ.
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To establish the results for irreducibility, we begin by writing Eqn. (8) as a control system driven

by the control sequence {εt} :

yt = Ft(y0, ε1, . . . , εt),

where the definition of Ft(·) follows inductively from Eqn. (8). We define At+(y) as the set of all

states that are accessible from y at time t:

A0
+ := {y} and At+(y) := {Ft(y0, ε1, . . . , εt); εi ∈ θ},

where the control set θ is an open set in R. The control system Ft is said to be forward accessible

if the set

∞⋃
t=0

At+(y) has a nonempty interior for each y ∈ X . Generally, forward accessibility refers

to the set of reachable states that is not concentrated in some lower dimensional subset of X . This

property together with an additional assumption on the noise process ensures the irreducibility of

the corresponding Markov process [66]. Now, we write the control system defined in Eqn. (8) as

follows:

yt = ψ1yt−1 + F (yt−1) + εt

= ψ2
1yt−2 + ψ1F (yt−2) + F (yt−1) + εt. (9)

Consider a special case: when F ≡ 0, the control system Ft is referred to as a controllable

linear system, where every point of the state space is accessible regardless of its initialization for

any control value εt. The underlying assumptions of a forward control system (as in Eqn. (8)) are

presented below in Prop. 1.

Proposition 1. The sufficient conditions of forward accessibility for the control system (in Eqn.
(8)) are the followings:

1. G ∈ C∞ is a bounded, non-constant, and asymptotically constant function (C∞) (any function
is C∞ if derivatives of all orders are continuous).

2. The linear part of R.H.S. of Eqn. (8) is controllable, i.e., ψ1 6= 0.

Proof. The proof builds on [73, 100]. Logistic squasher activation functions (used in the EWNet
model) satisfy Assumption 1. Assumption 2 of Prop. 1 implies the non-vanishing criterion (con-
trollability) of the linear part of R.H.S. of Eqn. (8). Since Assumption 1 holds for the ARNN
model, then for any k ∈ Z+ and any scalars β0, βi, µi and φi 6= 0, the condition

β0 +
k∑
i=1

βiG
′(φiy + µi) = 0, ∀ y ∈ R

implies β0 = 0 (from Assumption 1). Next, we define a major element of the generalized control-
lability matrix (GCM) as follows:

c = ψ1 +
k∑
i=1

βiφi,1G
′ (φi,1(ŷ1) + µi) .

We can set θ ≡ R and choose any ŷ1. Then Assumption 2 implies that c 6= 0. This indicates that
the GCM matrix is a non-singular matrix and, therefore, the control system in Eqn. (8) is forward
accessible, concluding the proof of Prop. 1. Related lemmas for multilayered perceptron are given
as Lemma 2.5-2.7 in [45].
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Remark 3. The controllability of the linear components of the ARNN process is shown in Prop.
1 implies forward accessibility. But, the associated Markov chain is said to be irreducible when the
support of the distribution of the noise process is sufficiently large.

Therefore, under suitable conditions on the distribution of the noise process εt, we can show

the irreducibility of the corresponding Markov chain.

Theorem 1. (Theorem of Irreducibility) Suppose the distribution of εt is absolutely continuous
w.r.t. the Lebesgue measure λ and the probability distribution function (p.d.f.) ν(·) of εt is positive
everywhere in R and lower semi-continuous. Then under the condition prescribed in Prop. 1, the
Markov chain in Eqn. (8) is irreducible on the state space (R2,B).

Proof. The proof build on [100, 13, 73]. It is trivial that the state y∗ = 0 is globally attractive
from the control system defined in Eqn. (8), and the next component of yt, regardless of its origin,
can reach the point 0 in one step. Furthermore, we consider the iterated first component from
t = 0 to t = 2 and define it as y2 = . . . + g(. . . , β, φ), where all the terms that are functions of
the starting point or the second component are necessarily omitted. Owing to the bounded and
continuous function g(·) and non-zero value of ψ1, it is obvious that the initial component can reach
the point 0, irrespective of its starting point and the second component, in two steps. Following the
above-stated argument, we can conclude that the state space in R2 is connected since every state
can be approached in two steps. Hence, the Markov Chain, defined in Eqn. (8) is ‘aperiodic’ and
‘irreducible’. An immediate instance is a Gaussian white noise that satisfies the conditions stated
in Theorem 1 without loss of generality.

Remark 4. Theorem 1 shows the irreducibility property for the ARNN(1, k) process and demon-
strates its proximity to the concept of forward accessibility of a control system. However, we also
showed that ARNN processes might not exhibit forward accessibility, and in such scenarios, inferring
about the data-generating process from the observed data is impossible.

3.2.2. Ergodicity and Stationarity

This section shows the (strict) stationarity of the state-space form defined in Eqn. (8). For a

state-space {yt}, the notion of stationarity has a close relationship with the geometric ergodicity of

the process. The geometric ergodicity of a stochastic process implies that the underlying distribu-

tion of the process converges to the unique stationary solution at a geometric rate for any initials

of the model [66]. A formal definition of geometric ergodicity and asymptotic stationarity can be

given following [100].

Definition 2. A Markov chain {yt} is called geometrically ergodic if there exists a probability
measure Π on (X ,B, λ) and a constant ρ > 1 such that lim

t→∞
ρt||P t(y, ·)−Π(·)|| = 0 for each y ∈ X ,

where || · || denotes the total variation norm. Then, we say the distribution of {yt} converges to Π
and {yt} is asymptotically stationary.

Hence, {yt} is (strictly) stationary when it starts in the infinite past or with initial distribution

Π. We give the main result on ergodicity and stationarity of the associated Markov chain in the

theorem below.

Theorem 2. (Main Theorem) Suppose the Markov chain {yt} of the ARNN(1, k) process satisfies
the conditions of Theorem 1 and E|εt| <∞. Then, a sufficient condition for the geometric ergodicity
(vis-a-vis asymptotic stationarity) of the Markov chain {yt} is that |ψ1| < 1.
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Proof. To show the geometric ergodicity, we use Theorem 15.0.1 of [66] and verify the drift criterion
15.3 of Theorem 15.0.1 of [66]. Similar results for the vector threshold autoregressive model are
discussed in [97].

We begin the proof by recalling the state-space model in Eqn. (8):

yt = ψ1yt−1 + F (yt−1) + εt,

where F (·) is the nonlinear part and the intercept. For the general ARNN(p, k) process, we define
the following matrix:

Ψ :=


ψ1 ψ2 . . . ψp−1 ψp
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0


as the shortcut connections to the autoregressive part. Now, there exists a transformation Q
such that Γ = QΨQ−1 where the diagonal elements Γ consists of the eigenvalues of Ψ and the
off-diagonal elements are arbitrarily small. Considering, T (y) = ||

∑
y|| as the test function and

τ = {y ∈ Rp, T (y) ≤ c′}, for some c′ <∞, as the test set, we have

E[T (yt)|yt−1 = y] ≤ ||QΨy||+ ||QF (y)||+ E||Qεt||
≤ (||Λ||+ ||∆||)T (y) + ||QF (y)||+ E||Qεt||,

where Λ is a diagonal matrix with the eigenvalues of Ψ, i.e., Λ = diag(Γ) and ∆ = Γ − Λ. Since,
the absolute value of the largest eigenvalue of Ψ is strictly less than one, following the assumption
of Theorem 2, then ||Λ|| < 1, and the transformation Q can be so chosen that (||Λ|| + ||∆||) <
1 − ε for some ε > 0. Since the second and third terms are bounded, we can choose ε such that
E[T (yt)|yt−1 = y] ≤ (1− ε)T (y) + δ1τ (y) for some 0 < δ <∞ and for all y. The result is also valid
for the test function T (y) + 1 and hence, we get the desired result.

Remark 5. Theorem 2 states the sufficient condition for the geometric ergodicity of the ARNN(1, k)
process. Consider the following example: if ψ1 = 1, then the long-term behavior of the ARNN(1, k)
process can be determined by the nonlinear part and the intercept term of the process. Moreover, the
geometric convergence rate in Theorem 2 implies that the memory of the ARNN process vanishes
exponentially fast. This means that the simplest version of the ARNN(p, k) process converges to a
Wiener process [59]. Also, theoretical results suggest that the shortcut weight corresponding to the
autoregressive part determines whether the overall process is ergodic and asymptotically stationary.

3.2.3. Practical Implications of Theoretical Results

Some interpretations and practical implications of the theoretical results are discussed below

from practitioners’ points of view:

(a) In the ideal situation, when an irreducible ARNN process generates the data, the estimated

weights are not too far from the true weights. Then, one can draw an indirect conclusion on

the statistical nature of the estimated shortcut weight corresponding to the autoregressive

part being less than one in absolute terms, and then the data generation process is said

to be ergodic and stationary. But, if the conditions are not met, the model is likely to be

unspecified, and the estimation procedure should be diligently done.
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(b) The theoretical results of asymptotic stationarity and ergodicity for the EWNet(p, k) model

would directly follow from the ARNN(p, k) process since the proposed EWNet is a simple

aggregation of several ARNN models fitted after the Wavelet decomposition of the time

series data. These theoretical results guarantee that the proposed EWNet model cannot

show ‘explosive’ behavior or growing variance over time.

(c) The theoretical result for the number of hidden nodes in the EWNet model is set to a fixed

value depending on the number of lagged inputs (as discussed in Section 3.1). Due to this,

the running time of the EWNet model is minimal as compared to unstable neural networks in

which the number of hidden nodes either becomes too large or too small. Thus, our proposed

model does not face the problem of under-fitting or over-fitting.

4. Experimental Analysis

In this section, we present a detailed description of the: Epidemic datasets and their global

characteristics (refer to Section 4.1); Performance measures used in our study (refer to Section

4.2); Benchmark forecasters utilized in our study (4.3), and Implementation of the proposed EWNet

model for epidemiological datasets along with its performance comparison with the state-of-the-art

forecasters (refer to Section 4.4).

4.1. Epidemic Datasets and their Global Characteristics

Epidemic datasets are accumulated from publicly available data resources (health websites,

published manuscripts, etc.). They represent crude data of diseases, namely dengue, malaria, hep-

atitis B, and influenza, occurring in distinct regions. In this study, we have considered 15 datasets,

amongst which 11 of them represent the overall number of subjects infected by a particular disease

in a week, whereas the remaining corresponds to the aggregated monthly caseload. For example,

the dengue incidence cases in Ahmedabad are recorded weekly per 104 population, whereas, for

the Philippines, we consider the total number of people suffering from dengue across several re-

gions per 106 population. These epidemic time series datasets are of different lengths and free

from missing observations. Moreover, we analyze several global attributes of these datasets to

understand real-world epidemiological datasets’ structural patterns and identify the best-suited

epicasting framework for the given scenario. Since the primary objective of this study is to provide

a meaningful epicasting technique for real-world epidemic datasets, comprehensive knowledge of the

data is the foundation step to accomplish this goal. Thus, we study several classical and advanced

time series characteristics of the epidemic datasets based on the recommendations of [21, 57]. A

detailed description and usage of these global characteristics are summarized below:

Stationarity is a time series’s foremost fundamental statistical property essential for many classical

forecasting models. A time series is said to be generated from a stationary process if the series

does not change over time. Our study used the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test

to test the null hypothesis that the given time series is stationary [90]. This test is implemented

using the kpss.test function of “tseries” package in R.

Nonlinearity is another essential time series feature that determines the model variant to be used.

For testing the null hypothesis that the observed time series is linear, we perform a Teraesvirta’s

neural network test, using the nonlinearityTest function of the R package “nonlinearTseries” [95].
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Table 2: Global characteristics of epidemic datasets

Datasets Time span Frequency Length Behavior
Australia Influenza 1947 - 2015 Weekly 974 Long term dependent, Non-stationary, Non-seasonal, Nonlinear

Japan Influenza 1998 - 2015 Weekly 964 Long term dependent, Stationary, Non-seasonal, Nonlinear
Mexico Influenza 2000 - 2015 Weekly 830 Long term dependent, Non-stationary, Non-seasonal, Nonlinear

Ahmedabad Dengue [26] 2005 - 2012 Weekly 424 Long term dependent, Non-stationary, Non-seasonal, Nonlinear
Bangkok Dengue [79] 2003 - 2017 Monthly 180 Long term dependent, Non-stationary, Seasonal, Nonlinear

Colombia Dengue 2005 - 2016 Weekly 626 Long term dependent, Non-stationary, Non-seasonal, Nonlinear
Hong Kong Dengue 2002 - 2017 Monthly 192 Long term dependent, Non-stationary, Seasonal, Linear
Iquitos Dengue [24] 2002 - 2013 Weekly 598 Long term dependent, Stationary, Non-seasonal, Nonlinear

Philippines Dengue [15] 2008 - 2016 Monthly 108 Long term dependent, Stationary, Non-seasonal, Nonlinear
San Juan Dengue [52] 1990 - 2013 Weekly 1196 Long term dependent, Stationary, Non-seasonal, Nonlinear

Singapore Dengue 2000 - 2015 Weekly 838 Long term dependent, Non-stationary, Non-seasonal, Linear
Venezuela Dengue 2002 - 2014 Weekly 660 Long term dependent, Non-stationary, Non-seasonal, Linear

China Hepatitis B [106] 2010 - 2017 Monthly 92 Long term dependent, Non-stationary, Seasonal, Nonlinear
Colombia Malaria 2005 - 2016 Weekly 626 Long term dependent, Non-stationary, Non-Seasonal, Linear
Venezuela Malaria 2002 - 2014 Weekly 669 Long term dependent, Non-stationary, Non-Seasonal, Nonlinear

Seasonality is another essential feature of a time series that refers to the repeating patterns of the

series within a fixed period. We analyze the given series by performing a combined test comprising

of the Kruskall-Wallis test and QS test of seasonality, often termed Ollech and Webel’s test, to

determine the presence of seasonal patterns. This test was performed using isSeasonal function of

“seastests” in R.

Long range dependence in time series processes has attracted much attention in probabilistic time

series. To compute the time series’s long-range-dependency or self-similarity parameter, Hurst

exponent(H), is used [44]. The value of H is computed using the hurstexp function of the R pack-

age “pracma”.

On performing the above-mentioned statistical tests and computing the global characteristics

of epidemic datasets, we summarize the relevant results in Table 2.

4.2. Performance Measures

In our analysis, we evaluate the forecasts obtained from the proposed model and other baseline

models using four popularly used accuracy measures, namely Root Mean Squared Error (RMSE),

Mean Absolute Scaled Error (MASE), Mean Absolute Error (MAE), and symmetric Mean Absolute

Percent Error (sMAPE) [47]. The mathematical formula for calculating these measures is given

below:

RMSE =

√√√√ 1

N

N∑
t=1

(yt − ŷt)2; MASE =

∑F+N
t=F+1 |ŷt − yt|

N
F−S

∑F
t=S+1 |yt − yt−S |

;

MAE =
1

N

N∑
t=1

|yt − ŷt|; and sMAPE =
1

N

N∑
t=1

2|ŷt − yt|
|ŷt|+ |yt|

× 100%;

where N denotes the forecast horizon, ŷt is the forecast against the actual value yt. By definition,

the minimum value of these performance measures suggests the ‘best’ model.

4.3. Benchmark Forecasting Models

Below we provide a brief description of the baseline models included in the experimental analysis

and their implementation:

(a) Statistical Models:
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• Random Walk (RW), also popularly known as the persistence model, is one of the simplest

stochastic models based on the assumption that in each period the time-dependent variable

takes a random step away from its previous value, and the steps are independently and

identically distributed in size with zero-mean [74].

• Random Walk with Drift (RWD) is a variant of the persistence model where the distribution

of step sizes has a non-zero mean [27]. If the series being fitted by a random walk model

has an average upward (or downward) trend that is expected to continue in the future, one

includes a non-zero constant term in the model, i.e., assume that the random walk undergoes

“drift”.

• Autoregressive Integrated Moving Average (ARIMA) is one of the most popular forecasting

techniques that track linearity in a stationary time series [7]. The ARIMA model is a linear

regression model indulged to track linear tendencies in stationary time series data. The model

is expressed as ARIMA(p,d,q), where p, d, and q are integer parameter values that decide

the structure of the model. More precisely, p and q are the order of the AR and MA models,

respectively, and parameter d is the level of the difference applied to the data.

• Exponential Smoothing State Space (ETS) models are very effective univariate forecasting

techniques. This model comprises of three components - an error component (E), a trend

component (T), and a seasonal component(S). Forecasts are computed in this model as a

weighted average of historical data, with exponentially decreasing weights for distant obser-

vations [46].

• Theta Method is a univariate time series framework that decomposes the series into two or

more ‘theta lines’ and extrapolates them using various forecasting techniques; the predictions

for each series are aggregated to produce the outcome [5].

• Trigonometric Box-Cox ARIMA Trend seasonality (TBATS) model handles time series data

with multiple seasonal patterns using an exponential smoothing method [22].

Various statistical models, namely RW, RWD, ARIMA, ETS, Theta, and TBATS models are

implemented using the “forecast” package of R statistical software.

• Self-exciting Threshold Autoregressive (SETAR) is an extended autoregressive model that

allows for flexibility in the model parameters through a regime-switching behavior [98]. We

execute this model using the setar function of the “tsDyn” package in R with the default

embedding dimension as 4.

• Wavelet-based ARIMA (WARIMA) model is a variant of the ARIMA method. This model de-

composes a non-stationary time series into several wavelet coefficients and generates forecasts

from each of these series using an ARIMA model, and the final prediction is an aggregate of

these candidate forecasts [2]. The WARIMA models are trained on the datasets with “Wavele-

tArima” package of R with the default parameters MaxARParam = MaxMAParam = 5.

• Bayesian Structural Time Series (BSTS) framework models structural time series in Bayesian

framework for generating short-term forecasts and was implemented using “bsts” package in

R [89].
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(b) Machine Learning Approaches:

• Artificial Neural Networks (ANN), also known as neural nets, are popularly used in supervised

learning problems. It is an extreme simplification of human neural systems and comprises

of computational units analogous to biological neurons. ANNs consist of three layers: input,

hidden (one or more), and output. Each neuron in the mth layer is interconnected with the

neurons of the (m + 1)th layer by some signal. Each connection is assigned a weight. The

output may be calculated after multiplying each input with its corresponding weight. The

output passes through an activation function to get the final ANN output. This multi-layered

feedforward neural network can also model time-dependent signals using fully connected hid-

den layers [84]. In standard ANN, a cross-validation approach is applied to choose the number

of hidden layers and the number of hidden nodes. Furthermore, the weights are optimized

using a gradient descent back-propagation algorithm. The ANN framework is implemented

using the mlp function of “nnfor” package in R.

• Autoregressive Neural Network (ARNN) is a modification of the ANN algorithm specialized

for time series forecasting applications. Many potential problems in fitting ANN models were

revealed such as the possibility that the fitting routine may not converge or may converge to a

local minimum. Moreover, it was found that an ANN model which fits well with the training

data may give poor out-of-sample forecasts [28]. To overcome these challenges, a single

hidden-layered feedforward architecture, namely ARNN is proposed to generate forecasts in

time series datasets [28]. It uses an autoregressive (AR) model to choose the optimal number

of nodes in the input layer. This tends to reduce the effect of extreme input values, thus

making the network somewhat robust to outliers as compared to a standard ANN model.

The inputs to each node are combined using a weighted linear combination and modified by

a nonlinear (sigmoidal activation) function before computing output. The model weights are

directly estimated from the data using backpropagation, and the number of neurons in the

hidden layer is set to k = (p + 1)/2 where p denotes the number of inputs selected using

AR model [47]. We use the nnetar function of the “forecast” package of R to implement the

ARNN framework.

• Support Vector Regression (SVR) is a supervised learner that fits an optimal hyperplane to

predict the future values of a time series [92]. To apply the SVR model, we transform the

time series data into a matrix in which each value relates to the time window (lags = 15)

that precedes it. Followed by the transformation, the radial basis kernel-based SVR model

is fitted to the dataset by setting the regularization parameter to 1.0 and the loss penalty

parameter value to 0.2 to generate the multi-step ahead forecasts in a recursive manner. In

this study, we utilize the “sktime” library in python to perform the data transformation and

implement the SVR framework on epidemic datasets.

(c) Deep Learning Models:

• Long Short-term Memory (LSTM) is a variant of the recurrent neural network (RNN) ap-

proach that models the long-term dependencies in a sequence prediction problem using several

feedback connections in the training phase [42]. For implementing the LSTM networks, we

utilize the default number of input and output observations as 10 and 3, respectively; the
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number of feature maps for each hidden RNN layer is set as 25, and the model is trained over

100 epochs [38]. It is a popular benchmark deep learner for time series forecasting tasks.

• Neural Basis Expansion Analysis for Time Series (NBeats) model is extensively designed for

forecasting time series datasets. It comprises of a fully connected neural network architecture

with several blocks. Each block contains two layers - the first is responsible for processing the

time series data to reproduce the past and forecast the future, and the second layer remodels

the residuals obtained from the first to update the forecasts [72]. For the experimentation,

we set the default number of blocks as 4.

• Deep Autoregressive (Deep AR) is a time series forecasting model that utilizes a recurrent

neural architecture for generating point estimates and interval estimates about future time

points [86].

• Temporal Convolutional Networks (TCN) model utilizes convolutions to learn the sequential

pattern in a time series and generalizes this pattern in the future [18]. We train the TCN

model with a default kernel size of 2 and 4 filters.

• Transformers is a state-of-the-art deep learning model that analyzes the sequential patterns

in time series using a multi-headed attention mechanism. This model can learn complex

dynamic systems of historical data [111]. We implemented the transformers model with the

input dimensionality as 64 and specified the number of heads in the multi-headed attention

mechanism as 8. These default parameters avoid over-fitting in univariate series.

All the above-stated deep learning frameworks have been implemented using the python

library “Darts” [38] specially designed for modeling time series datasets.

• W-Transformer is a wavelet-based deep learner which has been recently proposed as an

extension of the EWNet framework [88] for large-frequency time series data. This model

utilizes a MODWT decomposition to the time series data and builds multi-head attention-

based local transformers on the decomposed datasets to vividly capture the time series’s

non-stationarity and long-range nonlinear dependencies.

• Wavelet NBeats (W-NBeats) is a wavelet variant of the data-driven NBeats framework, pro-

posed as an extended version of EWNet [91]. This model decomposes the time-indexed signal

using a DWT approach with a Daubechies 4 filter into high-frequency and low-frequency

wavelet coefficients. Followed by the DWT mechanism, the transformed series are individu-

ally modeled using an NBeats framework to generate one-step ahead forecasts. Finally, the

forecasts generated by the detailed and smooth coefficients are aggregated to recursively gen-

erate the desired multi-step ahead predictions. This method is more useful for handling time

series with multiple seasonal patterns. We implement the W-Transformers framework using

the procedure described in [88]. In a similar way, we implement the W-NBeats framework.

(d) Hybrid Models:

The idea of generating hybrid forecasts of a time series after splitting it into linear and nonlinear

components was first suggested by Zhang [115]. It comprises of two stages - firstly, the linear part

of the series is predicted using a linear model (e.g., ARIMA), and the residuals generated from this
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linear model are assumed to contain nonlinear patterns and are re-modeled in the second stage using

a nonlinear model (e.g., ARNN) [15]. The forecasts from these two stages are finally aggregated to

generate the desired output. This hybridized approach has shown significant improvement over its

component forecasters in several applications [115, 13, 17, 15]. We have considered three hybridized

methods in our study, namely: 1. Hybrid ARIMA-WARIMA (We call it Hybrid-1) [16]; 2. Hybrid

ARIMA-ANN (We call it Hybrid-2) [115]; 3. Hybrid ARIMA-ARNN (We call it Hybrid-3) [15].

Forecasts for these hybrid models are generated using the implementation available at [17].

4.4. Experimental Results and Benchmark Comparison

In this section, we discuss the implementation of the proposed EWNet model for epicasting.

Several benchmark models are also considered for comparing the performance of our proposed epi-

caster. To assess the effectiveness of EWNet and comparative models, we use the standard cross-

validation technique for time series forecasting, say rolling window method [23]. To demonstrate

the generalizability of the EWNet model, we analyze its epicasting performance for three differ-

ent forecast horizons - long, medium, and short-term spanning over (52, 26, 13) weeks for weekly

datasets and (12, 6, 3) months for monthly datasets, respectively. Furthermore, we compare the

accuracy measures of our proposed EWNet model with state-of-the-art statistical models, machine

learning methods, advanced deep learning architectures, and hybridized approaches. We initially

partitioned the datasets into three segments for the experimentation: train, validation, and test set.

The validation set was chosen to represent the temporal behavior of both the train and test sets

[47]. We considered the validation size twice that of the test, following [36]. The validation set was

used for tuning the hyper-parameters of the proposed EWNet(p, k) model based on MASE metric,

a popularly used forecasting metric [47]. Implementation of the EWNet algorithm (see Section 2.3

for details) is done using R statistical software.

During the implementation of the EWNet model, a multiresolution-based MODWT approach

was first employed using the modwt function of the “wavelets” package in R to decompose the

training data into its corresponding wavelet and scaling coefficients using the pyramid algorithm

with ‘haar’ filter and the number of levels set to the floor function of loge(length(train)) (see

details in Algorithm 1). In the next step, each series of wavelet and scaling coefficients (also named

as details and smooth, respectively) are modeled with an autoregressive neural network having p

lagged inputs and k hidden nodes arranged in a single hidden layer. For selecting the value of p, we

follow a grid search approach over the range (1−20) for epidemic datasets considered in this study.

The choice of another model parameter (k) defining the number of hidden nodes in the hidden layer

of EWNet was made using the previously defined formula k =
[

(p+1)
2

]
(as described in Section 3.1).

Implementation of neural network generates a one-step-ahead forecast of the series using the nnetar

function of R statistical software [47]. Once the forecast for the validation of the desired horizon

is generated for a grid of p values, the parameter (p) was chosen by minimizing the MASE score

on the validation dataset. Once the p is finalized, we re-train the model using the chosen value

of p to generate one-step ahead out-of-sample forecasts. Furthermore, autoregressive feedforward

neural network is also utilized iteratively to generate the forecast of the desired horizon. Finally,

the output generated from all the networks is aggregated for forecasting the epidemic datasets.

Below we discuss the values of the EWNet model parameters (p, k) used for different epidemic

datasets. In the case of the Singapore dengue incidence dataset, the chosen parameters were (1, 1)

for all three forecast horizons, however, for the Venezuela dengue dataset, the values of (p, k) are
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selected as (1, 1), (7, 4), and (11, 6) for 13, 26, and 52-weeks ahead forecasts, respectively. For

forecasting short, medium, and long-term dengue incidence in Colombia, we use (11, 6), (30, 15),

and (7, 4) as the values of the hyperparameters whereas for malaria incidence, the corresponding

values are (19, 10), (13, 7), and (20, 10). For generating 3, 6, and 12-months ahead forecasts of

hepatitis B incidence in China, the selected values of (p, k) are (2, 1), (1, 1), and (15, 8). In the case

of the Bangkok dataset, the trained EWNet model utilizes (5, 3), (6, 3), and (1, 1) as the model

tuning parameters for forecasting dengue cases with 3, 6, and 12-month lead time, respectively.

The values of the hyperparameters (p, k) of the EWNet model for generating short, medium, and

long-term forecasts of the Philippines are (19, 10), (15, 8), and (14, 7) and for Hong Kong datasets

were (7, 4), (6, 3), and (10, 5), respectively. The malaria case loads of Venezuela are forecasted

for short-term using EWNet (20, 10) model, and for the medium and long-term forecast the fitted

EWNet model architecture has (12, 6) and (1, 1) as the chosen set of parameters values. In the

case of Iquitos dengue incidence, the tuning hyper-parameter values are (19, 10), (1, 1), and (5, 3)

for 13, 26, and 52-weeks ahead forecasts. For generating a long-term forecast of dengue incidence

in San Juan the model, hyper-parameters are selected as (9, 5) whereas, in the case of short and

medium-term forecasting, the chosen values are (20, 10) and (1, 1). The forecasts for Ahmedabad

dengue cases are generated with the chosen architecture of the EWNet model as (9, 5), (19, 10),

and (15, 8) for 13, 26, and 52 weeks, respectively. For generating short, medium, and long-term

forecasts of influenza incidence cases the proposed model is trained with (1, 1), (10, 5), and (1, 1) for

Japan, (2, 1), (5, 3), and (1, 1) for Mexico, and (13, 7), (14, 7), and (4, 2) for Australia, respectively.

Once we implemented our proposed model on these epidemic datasets, we generated out-of-

sample forecasts for different forecast horizons. Beneath, we summarize the epicasting performance

of the proposed EWNet model with other state-of-the-art forecasters in terms of four performance

measures. Three different forecast horizons are considered: short, medium, and long-term. Exper-

imental results presented in tables 5, 4, and 3 depict that the models’ efficiency depends mainly on

the type of disease considered and the forecast horizon. The accuracy measures for the Australian

influenza cases show that our proposed EWNet architecture outperforms all the benchmark epi-

casters for different forecast horizons. Notably, the short-term forecast of the EWNet framework

is more reliable than the second-best epicaster, ARNN. This improvement in the forecast accuracy

is predominately attributed to the MODWT decomposition of the epidemic series. In the case of

influenza incidence in Japan, the data-driven SVR model epicasts the 13-weeks ahead disease dy-

namics most accurately as measured by the RMSE metric, whereas the forecasts generated by the

conventional Theta model lie closer to the actual incidence cases in terms of the absolute, scaled, and

relative error metrics. However, the deep learning-based LSTM network and the hybrid ARIMA

ANN methods are more precise for their medium-term forecasting analog. Moreover, the long-term

influenza forecasts generated by the proposed EWNet framework for the Japan region are highly

competitive with the deep neural architecture-based NBeats and ARNN frameworks. For Mexico’s

long-term influenza forecasting task, the proposed EWNet framework outperforms the baseline epi-

casters in terms of all the key performance indicators except the sMAPE score, where the LSTM

network exhibits the least score. On the contrary, for the medium-term and short-term counterparts

of the Mexico influenza epicasting, the persistence model and the hybridized ARIMA-WARIMA

(Hybrid-1) frameworks, respectively, produce the best results. Moreover, based on the accuracy

measures of the dengue forecasting, we can conclude that the proposed EWNet model generates
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a more reliable long-term and medium-term forecast for Ahmedabad and Hong Kong regions. In

particular, for the Ahmedabad dengue incidence cases, the 52-weeks ahead forecast is improved by

37% due to the use of the stable nonlinear neural network framework with the MODWT decomposi-

tion (as done in EWNet) instead of the linear ARIMA model with the MODWT decomposition (as

done in WARIMA). However, for the short-term dengue forecasting of these regions, the proposed

EWNet model and the Deep AR framework display competitive performance. The former model

has the least RMSE and MASE scores and the latter performs best in terms of MAE and sMAPE

metrics. Furthermore, for the dengue incidence cases of the Iquitos, Philippines, and Venezuela re-

gions, the proposed EWNet approach demonstrates superior long-term forecasting ability compared

to all the statistical, machine learning, and deep-learning forecasters. However, for the 26-weeks

and 13-weeks ahead epicasting of the Venezuela dengue cases, the kernel-based SVR model, the

persistence model, and the EWNet framework generate competitive out-of-sample predictions. Al-

though the proposed EWNet framework and the SVM model exhibit the best short-term forecasting

performance for the Philippines and Iquitos regions, the deep learning-based LSTM and NBeats

methods significantly surpass other forecasters with the lowest medium-term forecasting error for

these regions, respectively. The long-term forecasts generated by the proposed EWNet model for

Singapore’s dengue cases are competitive with the conventional RWD’s epicasts. However, the

stochastic ETS model and the machine learning-based ANN framework demonstrate better fore-

casting ability for this region’s medium-term and short-term dengue incidence cases. Additionally,

for the crude dengue incidence dataset of the San Juan region, the ARNN, EWNet, and LSTM

models generate better out-of-sample predictions with 13-weeks, 26-weeks, and 52-week lead times,

respectively. For the Bangkok region’s long-term and medium-term dengue forecasts, we observe

that the ETS model and RW model of statistical paradigm outperform all the forecasters, respec-

tively. However, the performance of these forecasters lags behind the proposed EWNet model in

generating a 13-weeks ahead forecast. Furthermore, the hyperplane-based SVR model generates the

best medium-term forecasts for Colombia’s dengue and malaria incidence cases. However, for the

short-term forecast, although the SVR model can maintain its performance superiority in dengue

incidence cases, the proposed EWNet framework significantly improves the forecast accuracy for

malaria cases. On the other hand, for the 52-weeks ahead forecast of the Colombia region, the pro-

posed EWNet model generates the best dengue forecast, and the traditional RWD model provides

the same for the malaria counterpart. For the Venezuela region, statistical BSTS and WARIMA

models, data-driven ARNN and Deep AR methods, and the proposed EWNet framework gener-

ate competitive forecasts for malaria incidence. Furthermore, in the case of hepatitis B cases in

China, the proposed EWNet model and the SVR model generate competitive long-term forecasts.

However, for medium-term and short-term forecasting, the MODWT-based WARIMA and EWNet

framework transcends all other epicasters, respectively.

From the above experimental evaluations, it is identifiable that the epicasting performance of

the advanced models, like SVR, ANN, ARNN, LSTM, Transformer, Deep AR, NBeats, and TCN,

drastically drops for long-term forecasting compared with the proposed EWNet model for the ma-

jority of the infectious disease datasets. This phenomenon occurs primarily due to the lack of a

humongous amount of historical data in most datasets, which can also be seen in several recent

studies [36, 17, 78]. Moreover, we can observe that the proposed EWNet framework outperforms

the benchmark forecasters in the epicasting tasks, on average. This is primarily due to the non-
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stationary and nonlinear characteristics of the real-world epidemic datasets, as evident in Table 2.

The wavelets coupled with ARNN in an ensemble framework (as done in the EWNet architecture)

capture the non-stationary and seasonality of the time series using the wavelet decomposition,

whereas the ARNN is responsible for handling nonlinear behavior. Additionally, since the epidemic

datasets exhibit long-range dependency (as in Table 2), the ARNN framework present in the fore-

casting stage of the EWNet model can generate more reliable long-term forecasts [58]. It is also

important to note that, despite the rapid surge of different attention-based models in epidemic

forecasting [111, 88], the performance of the multi-head Transformers model is significantly worse

than the majority of the forecasters. This is because although Transformers can accurately extract

semantic relations among the elements in a long sequence, in a time series modeling for extracting

temporal correlations in an ordered sequence, the model employs positional encoding and tok-

enizes the dataset into several sub-series. This nature of the permutation-invariant self-attention

mechanism eventually leads to the loss of temporal information resulting in imprecise forecast [113].

Moreover, unlike the proposed EWNet framework, the wavelet-based deep learners W-Transformers

and W-NBeats lack the desired theoretical basis that restricts the model from showing ‘explosive’

behavior or growing variance over time, hence they fail to generate reliable forecasting results as

compared to the proposed framework. Another potential cause for their failure is the small-data

problems of epidemic datasets. Most deep learning methods are highly suitable for high-frequency

(e.g., daily or hourly) datasets. However, high-frequency epidemiological datasets with many ob-

servations are seldom available, hence the applicability of these models is limited, especially in the

epicasting domain.

Along with point estimates of the future epidemic cases, we also showcase the probabilistic band

of the forecasts (for the test data). It is crucial in many applications, as they enable optimal decision-

making under various forms of uncertainty in contrast to point forecasts. There are two widely

used approaches for quantifying the uncertainty in machine learning-based forecasts: confidence

intervals (CI) and conformal predictions (CP). The former is useful for quantifying the certainty

of an estimate, whereas the latter is used to create prediction intervals – the confidence around

a given prediction to capture the uncertainty of the model prediction [102]. We employ both

approaches within our framework and obtain probabilistic bands over the point estimates for the

test period of the epidemic datasets. For deriving the confidence intervals, we follow a simple

pre-control limits approach [67] and obtain more than 85% confidence intervals. In formulating

the EWNet framework (as in Eqn. (8)), we assume εt as a sequence of i.i.d. random shocks.

Therefore, under the assumptions of normality, we use the formula for obtaining the probabilistic

bands as upper pre-control limits (UPCL) = mean + 1.5 × sigma and lower pre-control limits

(LPCL) = mean − 1.5 × sigma. Under this assumption, we expect 86% of the test data to lie

within the probabilistic bands. However, the results may violate when the Gaussian assumption

is not met (as seen in a few data examples in Figs. 3 and 4). There are other ways to obtain

the confidence intervals explored in [73] (using simulations via Monte Carlo or bootstrapping)

and in [86] (using expectations of loss function under the forecast distribution). The primary

drawback of these computationally expensive algorithms is that their prediction intervals increase

exponentially for long-range forecasting. However, these approaches are discarded since epidemic

forecasts have real-time usage and cannot be computationally expensive. In Figs. 3 and 4, we

present the probabilistic band obtained using mean ±1.5 sigma for short, medium, and long-term
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forecasts on all the epidemic datasets. Furthermore, we find the conformal predictions to associate

reliable estimates of uncertainty quantification. Conformal prediction converts point estimates to a

prediction region in a distribution-free and model-agnostic way that guarantees convergence [103].

We use the “caretForecast” package in R to obtain conformal prediction intervals which are built

by studying the distribution of the residuals. Since data and modeling uncertainties are considered

for the validation data, conformal prediction generates trustable prediction intervals, as depicted

in Figs. 5 and 6.

Remark 6. Below we provide an in-depth analysis of the probabilistic bands in Figs. 3 - 6 using
pre-control limits and conformal prediction approaches:

• The medium and long-term prediction intervals of the EWNet framework (as in Figs. 3 and
4) for Ahmedabad and Iquitos dengue datasets demonstrate that our proposal underestimates
the crude incidence cases for these regions for a few weeks. One plausible reason for this
could be the changing climatic patterns, including natural calamities, weather changes, and
global warming, which eventually lead to a rise in precipitation, resulting in a sudden dengue
epidemic outbreak.

• For constructing the probabilistic band of the EWNet framework using the confidence inter-
val approach, we assumed that the random shocks εt (refer to Eqn. (8)) follow a Gaussian
distribution. However, this assumption is not met for some epidemic datasets, e.g., dengue
cases of San Juan, Singapore, and Venezuela regions, and thus our results (including CIs)
are violated. Hence, to overcome this drawback, we have also generated the conformal predic-
tions following the model-agnostic approach (Figs. 5, 6), which generates trustable prediction
intervals using the distribution of the residuals.

• Moreover, it is frequently observed that the exposure of a population to any epidemic out-
breaks develops herd immunity resulting in a decrease in the crude incidence cases as seen in
the Colombia dengue and Japan influenza datasets. Traditional compartmental models (e.g.,
SIR) in epidemiology literature consider the population susceptibility cycles in their model
formulation using certain pre-specified constraints; however, our proposed EWNet framework
is unable to generalize this phenomenon owing to its pure data-driven approach. Although,
regarding real-time forecasts and decision-making, accurate and reliable forecasts generated by
EWNet for most datasets significantly enrich the epicasting benchmarks.

• For the malaria forecasting task of Colombia and Venezuela regions, we notice that the corre-
sponding incidence datasets demonstrate certain anomalies (outliers and high peaks). These
sudden changes in the level of infection are due to several factors, including but not lim-
ited to the impact of policy changes, environmental hazards, population behavior, and human
settlements. These anomalous observations in the time series significantly deteriorate the
forecasters’ performance, including our proposed EWNet framework.

• Thus, we recommend that practitioners and health officials consider the factors listed above
while utilizing our EWNet framework for planning and decision-making in public health.
Moreover, EWNet can easily adapt and improve during its usage when new test samples
are available. This makes the proposed forecasting framework useful and reliable from the
practitioner’s perspective.
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Figure 3: The plot shows the ground truth (red), fitted values and forecasts of the EWNet model (blue), forecasts of
the RW model (green), forecasts of the Hybrid-3 model (purple), and the probabilistic band (based on the confidence
interval approach) of the proposed EWNet framework (yellow shaded) for different datasets. On each row, the plots
from left to right represent the training and fitted values of the EWNet framework; long-term forecasts (point and
interval) and ground truth data; medium-term forecasts (point and interval) and ground truth data; and short-term
forecasts (point and interval) and ground truth data, respectively. For each plot, the vertical axis represents dengue
cases, and the horizontal axis represents the time horizon.
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Figure 4: The plot shows the ground truth (red), fitted values of the EWNet model (blue), and forecasts of the
overall top two performing models based on four statistical measures: EWNet (blue), RW (green), Hybrid-3 (purple),
and the probabilistic band (based on the confidence interval approach) of the proposed EWNet framework (yellow
shaded) for different datasets. On each row, the plots from left to right represent the training and fitted values
of the EWNet framework; long-term forecasts (point and interval) and ground truth data; medium-term forecasts
(point and interval) and ground truth data; and short-term forecasts (point and interval) and ground truth data,
respectively. For each plot, the vertical axis represents epidemic cases, and the horizontal axis represents the time
horizon.
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Figure 5: The plot shows the ground truth (red), fitted values and forecasts of the EWNet model (blue), forecasts of
the RW model (green), forecasts of the Hybrid-3 model (purple), and the probabilistic band (based on the conformal
prediction approach) of the proposed EWNet framework (yellow shaded) for different datasets. On each row, the plots
from left to right represent the training and fitted values of the EWNet framework; long-term forecasts (point and
interval) and ground truth data; medium-term forecasts (point and interval) and ground truth data; and short-term
forecasts (point and interval) and ground truth data, respectively. For each plot, the vertical axis represents dengue
cases, and the horizontal axis represents the time horizon.
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Figure 6: The plot shows the ground truth (red), fitted values of the EWNet model (blue), and forecasts of the
overall top two performing models based on four statistical measures: EWNet (blue), RW (green), Hybrid-3 (purple),
and the probabilistic band (based on the conformal prediction approach) of the proposed EWNet framework (yellow
shaded) for different datasets. On each row, the plots from left to right represent the training and fitted values
of the EWNet framework; long-term forecasts (point and interval) and ground truth data; medium-term forecasts
(point and interval) and ground truth data; and short-term forecasts (point and interval) and ground truth data,
respectively. For each plot, the vertical axis represents epidemic cases, and the horizontal axis represents the time
horizon.

5. Significance of the Improvement and Threats to Validity

In this section, we comment on the significance of the improvements in accuracy measures and

discuss the potential threats that can impact the results of our experimental analysis.
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5.1. Overall Assessment of the Benchmark Comparisons and Potential Improvement

A couple of interesting phenomena are observable from the experiments. Firstly, the proposed

EWNet framework produces the best epicasting results in 60% of the datasets (9 out of 15 datasets)

for long-term forecast horizon, whereas in medium-term and short-term forecasting, it outperforms

the competitive forecasters in 27% and 47% cases, respectively in comparison with 22 benchmark

forecasters Secondly, among the baseline forecasters, the ARNN [28] and the support vector regres-

sion (SVR) [92] models generate a better short-term forecast, whereas for medium-term epicasting,

the persistence models namely, random walk (RW) [74] and the random walk with drift (RWD)

[27] methods demonstrate higher accuracy. Moreover, for long-term horizon WARIMA [2], hybrid

ARIMA-WARIMA (Hybrid 1) [16], and TBATS [22] models have better forecasting ability than the

previously proposed baseline epicasters. Nevertheless, the overall performance of the random walk

(RW) [74] model and hybrid ARIMA-ARNN (Hybrid-3) [15] framework are better than other base-

lines in terms of different accuracy measures. Another critical observation is that the performance

of the advanced deep learning frameworks, specifically LSTM [42], NBeats [72], and Deep AR [86]

is superior in comparison with other models for 17% of the cases. This observation is interesting

since the epidemic datasets’ lengths range from 92 to 1196, and deep learners mostly succeed with

large datasets. It is a common problem in epidemic datasets since historical records are seldom

available. In our experimental evaluation, we also employed other wavelet-based ensemble tech-

niques with traditional ARIMA model and data-driven Transformers and NBeats methods in the

combination phase as WARIMA [2], W-Transformers [88], and W-NBeats [91] models, respectively.

Although the WARIMA [2] method generates better epicasts for the long-term horizon, its overall

rank of 9.79 (w.r.t. MASE score, ref Fig. 7(b)) lags behind the proposed EWNet framework with

an overall rank of 3.69 (w.r.t. MASE score, ref Fig. 7(b)). This failure of the WARIMA model is

primarily attributed to the inability of the linear ARIMA method to generalize well on nonlinear

epidemic datasets. In the case of the recently proposed W-Transformers model [88], the authors

have extended the idea of EWNet by incorporating the attention-based Transformers model with

the MODWT decomposed time series. As aptly pointed out by the authors in their manuscript,

this approach works better with high-frequency datasets having several observations; however, for

the epidemic datasets with fewer historical observations, this framework fails to generate satisfac-

tory forecasts [88]. Moreover, the W-NBeats architecture utilizes the deep learning-based NBeats

model in the ensemble framework. Since the NBeats model is a fully-connected deep neural net-

work architecture based on backward and forward residual links, it is a benchmark method for

large time series datasets with complex seasonalities [72]. However, real-world epidemic datasets

exhibit irregularities and typically comprise of limited data (low-frequency), leading to the failure

of the W-NBeats framework to generate satisfactory results in the epicasting task as compared to

the proposed EWNet model.

From Tables 5-3, we observe a significant improvement in epicasting by applying the proposed

EWNet framework as reported by the RMSE, MASE, MAE, and sMAPE scores. Furthermore, the

evaluation of the EWNet model on the crude incidence data of various diseases for diverse regions

portrays that the proposed methodology can capture the long-range dependence of the series. Thus,

based on the experimental evaluations, we can conclude that the framework proposed in this paper

can potentially be used as an early warning system by public health officials and disease control

programs to plan and prevent the outbreak with a substantial lead time.
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5.2. Statistical Significance of the Results

Next, we focus on determining the statistical significance of the forecasts obtained from our

proposed model compared to its counterparts generated by other benchmark forecasters. We ini-

tially utilize multiple comparisons with the best (MCB) [56] procedure to determine the relative

performance of different methods. For this non-parametric test, we compute the models’ average

ranks based on the RMSE, MASE, MAE, and sMAPE scores for different epidemic datasets and

their corresponding critical distances. The results of the MCB test presented in Fig. 7 can be

interpreted as follows: The proposed EWNet model has the least rank (3.57), (3.69), (3.82), and

(4.31); in terms of RMSE, MASE, MAE, and sMAPE scores. Moreover, the upper boundary of the

critical distance for the EWNet model (marked by the shaded region) is the reference value for the

test. Since all the benchmark forecasters have critical intervals (w.r.t. RMSE, MASE, and MAE

scores) entirely above the reference value without overlap, they perform significantly worse than

the proposed EWNet method. In the case of the sMAPE metric, there is a slight overlap between

the critical intervals of the EWNet framework and the RW model; however, the non-overlapping

critical intervals for the other baseline forecasters indicate that their performance is significantly

worse than the proposed method.

(a) (b)

(c) (d)

Figure 7: Visualization of the multiple comparisons with the best (MCB) analysis. The figure demonstrates the MCB
test results w.r.t. (a) RMSE metric, (b) MASE metric, (c) MAE metric, and (a) sMAPE metric. The vertical axis for
each plot represents the average rank and the horizontal axis depicts the corresponding model such that EWNet-3.57
in (a) indicates the average rank of the proposed EWNet model based on RMSE metric is 3.57, and similar to others.

Alongside the MCB test, we consider a non-parametric Friedman test [30, 31] for determining the

robustness of our experimental evaluation. This statistical methodology tests the null hypothesis

that all models are equivalent based on their rankings across various accuracy measures for different

datasets. The ranking mechanism assigns rank 1 to the best-performing method, rank 2 to the

second-best, and so on. The average of the ranks across all the datasets is then computed for

different models. This distribution-free test rejects the null hypothesis of model equivalence if

the value of the test statistic is greater than the critical value [48]. Let rm,d denote the rank
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Table 6: Average rank of the algorithms corresponding to the performance measures (best-ranked model is
highlighted)

Models RMSE MASE MAE sMAPE

RW [74] 10.27 9.378 9.200 9.156

RWD [27] 10.60 10.07 9.933 9.889

ARIMA [7] 9.786 9.961 9.887 9.604

ETS [46] 9.741 10.18 10.07 9.911

Theta [5] 10.56 10.80 10.67 10.33

WARIMA [2] 9.422 9.788 9.778 9.400

SETAR [99] 10.01 10.18 10.20 9.244

TBATS [22] 10.17 10.63 10.62 10.27

BSTS [89] 12.96 12.82 12.69 13.29

Hybrid-1 [16] 9.876 9.766 9.689 9.711

ANN [84] 12.07 12.71 12.98 12.09

ARNN [28] 11.42 10.93 11.27 10.56

SVR [92] 10.29 9.600 9.444 10.36

Hybrid-2 [115] 9.862 10.22 10.61 9.822

Hybrid-3 [15] 9.380 9.511 9.889 9.978

LSTM [42] 14.80 14.56 14.47 15.44

NBeats [72] 13.12 13.07 13.27 13.20

Deep AR [86] 14.79 14.61 14.46 14.71

TCN [18] 22.36 22.07 22.00 21.73

Transformers [111] 14.48 15.50 15.23 16.40

W-NBeats [91] 18.27 18.07 17.96 17.67

W-Transformer [88] 18.22 17.84 17.80 18.47

Proposed EWNet 3.573 3.689 3.822 4.431

assigned to m-th model (out of M̃ models) for the d-th dataset (out of D̃ datasets). The Friedman

test compares the average rank, computed using the following formula, among several algorithms:

Rm = 1
D̃

∑
d rm,d. Under the null hypothesis, i.e., the ranks Rm are equal for all m = 1, 2, . . . , M̃ ,

the Friedman statistic defined as:

χ2
F =

12D̃

M̃(M̃ + 1)

[∑
m

R2
m −

M̃(M̃ + 1)2

4

]
,

follows χ2 distribution with (M̃ − 1) degrees of freedom, when M̃ and D̃ are large. Owing to

several difficulties with the Friedman statistic for a lesser number of datasets and algorithms, a

modification of the test statistic was proposed in 1980 by Iman [48] as

FF =
(D̃ − 1)χ2

F

D̃(M̃ − 1)− χ2
F

,

which is distributed as F distribution with (M̃ − 1) and (M̃ − 1)(D̃ − 1) degrees of freedom.

Following the Friedman test procedure, we compute the ranks of various models for different

epidemic datasets. Table 6 provides the average ranks of the models for different accuracy measures.

From Table 6, we can infer that the proposed EWNet model gets the upper hand in epicasting the
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Table 7: Values of Friedman Test statistic for various accuracy metrics

Test Statistic RMSE MASE MAE sMAPE

χ2
F 316.60 306.88 302.00 311.42

FF 20.686 19.766 19.314 20.193

disease dynamics over all other models. Amongst several benchmarks, hybrid ARIMA-ARNN

(Hybrid-3) (second best model w.r.t RMSE) and random walk (RW) (second best model w.r.t

MASE, MAE, and sMAPE) perform better than other baselines. Moreover, we summarize the

value of the Friedman test statistics χ2
F and FF obtained for the 23 models across different test

horizons of the 15 datasets in Table 7. Since the observed value of the statistic FF (as tabulated

in Table 7) is greater than the critical value F22,968 = 1.553, so we reject the null hypothesis at 5%

level of significance and conclude that the performance of the algorithms considered in our study

is significantly different across all the performance measures.

Furthermore, we proceed to check whether the forecast performance of the proposed EWNet

model is significantly different from other models by utilizing a post-hoc non-parametric Wilcoxon

signed-rank test [109]. This test checks the null hypothesis that no significant difference exists

between the forecasts generated by the proposed EWNet model and state-of-the-art approaches

at 95% significance level. The distribution-free Wilcoxon signed-rank test procedure rejects the

null hypothesis if the calculated p-value for the test is below 0.05 and concludes that there is a

significant difference between the epicasting ability of the proposed model and other state-of-the-art

methods. From the results obtained in this test, tabulated in Table 8, we can infer that the proposed

EWNet model’s performance is statistically significant compared to all other models considered in

the analysis. Thus from the above performed statistical tests, we can infer at a 5% significance level

that the potential improvement in the epicasting performance of our proposed EWNet framework

is robust and statistically significant.

5.3. Validation of Data, Results, and Performance Measures

Our analysis is based on fifteen epidemic datasets (influenza, dengue, malaria, and hepatitis B)

collected from publicly available sources. The dengue datasets have been used multiple times in

various studies for formulating better epicasting techniques [15, 24, 53, 52]. Our chosen datasets

are diverse in nature, representing several diseases from distinct locations, with varied lengths,

frequency, and statistical characteristics, which generalizes our findings. However, further investi-

gations on some other infectious disease datasets are essential in future work. We did not consider

Covid-19 datasets in our study due to their dubious nature, and thus forecasting Covid-19 majorly

failed due to lack of transparency, errors, and lack of determinacy [49]. In our study, RMSE, MASE,

MAE, and sMAPE are considered as the key performance indicator [7, 46]. Different accuracy mea-

sures are available in the time series forecasting literature, and the metric’s choice may influence

the forecasters’ performance. Although we considered both absolute, percentage, and scaled error

measures for computing the epicasters’ performance, several other measures can be considered for

studying the effectiveness of different models. The proposed EWNet overall performed well com-

pared with twenty-two statistical, machine learning, and deep learning models. However, epidemic

outbreaks sometimes vary with respect to climatic, social, environmental, biological, and human

factors. In this study, we have only studied the past observations of epidemic datasets and ex-
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Table 8: Statistical Significance values (p-values) for EWNet and other models for Wilcoxin Signed-rank test

RMSE MASE MAE sMAPE

RW [74] 0.00012 0.00094 0.00466 0.00200

RWD [27] 0.00008 0.00084 0.00452 0.00188

ARIMA [7] < 0.00001 < 0.00001 < 0.00001 0.00108

ETS [46] < 0.00001 0.00014 < 0.00001 0.00138

Theta [5] < 0.00001 < 0.00001 < 0.00001 0.00058

WARIMA [2] < 0.00001 < 0.00001 < 0.00001 0.00328

SETAR [99] < 0.00001 < 0.00001 < 0.00001 0.00424

TBATS [22] < 0.00001 < 0.00001 < 0.00001 0.00016

BSTS [89] < 0.00001 < 0.00001 < 0.00001 < 0.00001

Hybrid-1 [16] < 0.00001 < 0.00001 < 0.00001 0.00228

ANN [84] < 0.00001 < 0.00001 < 0.00001 < 0.00001

ARNN [28] < 0.00001 < 0.00001 < 0.00001 < 0.00001

SVR [92] 0.00028 0.00194 0.00052 0.00100

Hybrid-2 [115] < 0.00001 < 0.00001 < 0.00001 < 0.00001

Hybrid-3 [15] < 0.00001 < 0.00001 < 0.00001 < 0.00001

LSTM [42] < 0.00001 < 0.00001 < 0.00001 < 0.00001

NBeats [72] < 0.00001 < 0.00001 < 0.00001 < 0.00001

Deep AR [86] < 0.00001 < 0.00001 < 0.00001 < 0.00001

TCN [18] < 0.00001 < 0.00001 < 0.00001 < 0.00001

Transformers [111] < 0.00001 < 0.00001 < 0.00001 < 0.00001

W-NBeats [91] < 0.00001 < 0.00001 < 0.00001 < 0.00001

W-Transformer [88] < 0.00001 < 0.00001 < 0.00001 < 0.00001

trapolated the forecasts based on past dependency to provide valuable insights into the disease

dynamics.

6. Conclusions and Discussions

Infectious disease outbreaks play an essential role in global morbidity and mortality. Real-time

epidemic forecasting provides an opportunity to predict geographic disease spread and case counts to

inform public health interventions better when outbreaks occur. Providing actionable insights, such

as accurate forecasting of case counts with reliable uncertainty quantification, is critical for resource

allocation and preparedness planning. Epidemic forecasting (called ‘epicasting’) is beginning to be

integrated into infectious disease outbreak response decision-making processes. We propose an

EWNet model that could accelerate the adoption of forecasting among public health practitioners,

improve epidemic management, save lives, and reduce the economic impact of outbreaks. We

investigated our proposed model on the laboratory-confirmed cases of influenza, dengue, hepatitis

- B, and malaria datasets for different regions. The majority of these datasets exhibit assertive

nonlinear and non-stationary behavior. We proposed a new variant of the wavelet-based forecasting

technique using the ARNN model and outperformed several statistical, machine learning, and deep

learning models on average. Additionally, we have shown theoretical results and derived their

appropriate probabilistic bands, which back the success of the proposed EWNet model. Based

on the experimental results with epidemic datasets, the proposed EWNet model is well-suited
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to extrapolate the future dynamics of non-stationary and nonlinear epidemic datasets due to the

hybridization of wavelet decomposition and ARNN framework. The proposed EWNet model can

be deployed as an early warning system that can be monitored and automatically retrained with

crude incidence data of the infectious disease in an incremental training or batch training procedure.

Additionally, the theoretical basis for selecting the model’s hyperparameters significantly reduces its

run-time complexity compared to state-of-the-art deep learners. It enables the proposed epicaster

to generate real-time forecasts. These real-time forecasts backed with reliable prediction intervals

will allow health officials to monitor infectious disease dynamics and aid in designing effective

disease-combatting policies. However, several factors can be identified as essential components in

establishing a good prediction for an epidemic or disease risk. For example, the accuracy of EWNet

can be improved if we include geographical scale, temperature, rainfall, or other attributes that

impact individual epidemics. These limitations of outbreak prediction will ensure the adoption

of predictive tools by public health officials, operations managers, and healthcare practitioners.

Forecasting the epidemic outbreak based on certain auxiliary variables may be considered a future

scope of work to further improve the EWNet model for multivariate set-up. Another interesting

future direction would be to explore the EWNet model in various other applied forecasting research.
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