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ABSTRACT
This paper focuses on the decentralized optimization prob-
lem, where agents in a network cooperate to minimize the
sum of their local objective functions by information ex-
change and local computation. Based on alternating direction
method of multipliers (ADMM), we propose CC-DQM, a
communication-efficient decentralized second-order opti-
mization algorithm that combines compressed communica-
tion with event-triggered communication. Specifically, agents
are allowed to transmit the compressed message only when
the current primal variables have changed greatly compared
to its last estimate. Moreover, to relieve the computation cost,
the update of Hessian is scheduled by the trigger condition.
To maintain exact linear convergence under compression, we
compress the difference between the information to be trans-
mitted and its estimate by a general contractive compressor.
Theoretical analysis shows that CC-DQM can still achieve an
exact linear convergence, despite the existence of compres-
sion error and intermittent communication, if the objective
functions are strongly convex and smooth. Finally, we vali-
date the performance of CC-DQM by numerical experiments.

Index Terms— decentralized optimization, ADMM, effi-
cient communication, second-order algorithms.

1. INTRODUCTION

In recent years, the decentralized optimization problem has
attracted increasing attention due to its extensive application
in multi-robots network [1], smart grids [2], large-scale ma-
chine learning [3], wireless sensor networks [4], etc. A large
number of first-order algorithms including [5, 6, 7] have been
proposed for decentralized optimization problems. Compared
with the first-order algorithms which just utilize the gradient
of the objective function, the second-order algorithm lever-
aging the extra Hessian information can accelerate the con-
vergence. Recently, several decentralized second-order algo-
rithms are proposed, see [8, 9, 10, 11, 12], to name a few.

Decentralized optimization relies on communication be-
tween agents. In most existing decentralized second-order
algorithms including [8, 9, 10, 11, 12], agents need to trans-
mit accurate updates at every iteration, which can cause high

Corresponding author: Shaofu Yang (sfyang@seu.edu.cn).

communication costs due to the large payloads and frequent
communication. High communication costs is undesirable for
the scenarios with limited bandwidth and power constraints.
Moreover, in many second-order algorithms including [8, 9,
10, 11], to approximate the Newton direction, agents are re-
quired to implement several rounds of inner-loop where extra
communication is needed. Hence it is very necessary to im-
prove the communication efficiency of the second-order algo-
rithm.

To relieve the communication cost, a popular method is
to compress the exchanged message so that fewer bits are
transmitted per communication round. In decentralized opti-
mization, many algorithms with compressed communication
[13, 14, 15, 16, 17, 18] have been proposed, among which
[13, 14, 15] belong to ADMM-based quantization algorithms
where solving subproblem at every iteration is required and
[16, 17, 18] belong to first-order communication-compressed
methods. Based on DGD [5], the work of [16] proposes
a well-designed quantization scheme and achieve the exact
convergence. In [18], a gradient tracking algorithm with com-
pressed communication is introduced, which can converge
exactly at a linear convergence. Based on the first-order al-
gorithm NIDS[19], the authors in [17] propose a compressed
communication algorithm which can also achieve linear ex-
act convergence. Despite the progress, few decentralized
second-order algorithms with compressed communication
are reported.

An alternative method to alleviate the communication
cost is intermittent communication which can reduce total
communication rounds. The event-triggered communication
scheme is a very appealing method in reducing communi-
cation rounds. It can also be regarded as the celebrated
communication-censoring mechanism[20, 21] whose main
idea is only to transmit informative message. Recently, many
decentralized algorithms with event-triggered communica-
tion are reported, see [21, 22, 23], to name a few. Moreover,
there are some works, including [14, 24, 25], that combine
compressed communication with event-triggered communi-
cation.

In this paper, we aim at developing a decentralized
communication-efficient second-order algorithm with a linear
convergence rate to the exact solution. Since the communi-
cation cost is determined by the total communication rounds
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and the bits per communication round, we improve com-
munication efficiency from these two aspects. Our main
contributions are as follows.

• Based on ADMM, We develop a communication-
efficient second-order algorithm by combining com-
munication compression with event-triggered commu-
nication termed CC-DQM. Compared with our prior
work C-DQM [23], an event-triggered communication
algorithm, CC-DQM can save the transmitted bits per
communication round. Compared with the existing
quantized ADMM [13, 24], CC-DQM can achieve an
exact convergence due to the implementation of a to-
tally different contractive compressor. Compared with
CQ-GGADMM [14], CC-DQM can be applicable to
a general contractive compressor, not just a specific
quantizer. Moreover, CQ-GGADMM can only apply
to bipartite graphs while C-DQM can apply to non-
bipartite graphs.

• We theoretically prove that CC-DQM can achieve an
exact linear convergence if the objective functions are
strongly convex and smooth. Numerical experiments
demonstrate the effectiveness and efficacy of the pro-
posed algorithm.

2. PROBLEM SETUP

Consider n agents connected through a communication net-
work cooperatively solve the following consensus optimiza-
tion problem

min
x∈Rd

n∑
i=1

fi(x), (1)

where x refers to the decision variable and fi : Rd → R is the
local objective function owned by agent i. Denote the com-
munication graph as G = {V, E}, where V = {1, 2, · · · , n}
is the set of agents and E ⊂ V × V is the set of edges.
(j, i) ∈ E implies that message can be transmitted from agent
j to agent i. Moreover, there does not exist self-loop in G,
i.e., (i, i) /∈ E . We use Ni = {j | (j, i) ∈ E} to repre-
sent the set of neighbors of agent i and di = |Ni| to rep-
resent the degree of agent i. The degree matrix is repre-
sented by D = diag{d1, d2, · · · , dn} and denote the adja-
cent matrix of G as W, where wij = 1 if (j, i) ∈ E and
wij = 0 otherwise. The signed Laplacian matrix is defined
as L = D −W and the unsigned Laplacian matrix is de-
fined as Lu = D + W. Denote the eigenvalues of L with
ascending order as λ1 ≤ λ2 ≤ · · · ≤ λn. Similarly, we use
λ̂1 ≤ λ̂2 ≤ · · · ≤ λ̂n to represent the eigenvalues of Lu. The
Euclidean norm of vector x is denoted by ‖x‖.

3. ALGORITHM DEVELOPMENT

In this section, we develop a communication-efficient decen-
tralized second-order method. To solve problem (1), based on
ADMM, the authors in [12] proposed an elegant second-order
method DQM, where the update of agent i is as follows:

xi,k+1 = xi,k −
(
2cdiI+∇2fi(xi,k)

)−1(
∇fi(xi,k)

+ c
∑
j∈Ni

(xi,k − xj,k) + φi,k

)
(2a)

φi,k+1 = φi,k + c
∑
j∈Ni

(xi,k+1 − xj,k+1), (2b)

where the penalty parameter c is a positive constant. DQM
is an ADMM-type algorithm, which reduces the computa-
tion burden of DADMM [26] by approximating the objective
function quadratically. In DQM, information is required to
be transmitted at every iteration, which is undesirable for
settings where the communication source is limited. To
relieve the communication burden of DQM, in our prior
work [23], a communication-censored mechanism is lever-
aged to reduce the communication round. In order to fur-
ther reduce communication costs, we not only schedule the
communication instants by communication-censored mech-
anism but also compress the exchanged information. The
resulting algorithm is termed communication-censored and
communication-compressed DQM, abbreviated as CC-DQM.

Communication compression. The compression scheme
we implement is a common δ-contractive compressor, which
is defined as follows:

Definition 1. The compressor C : Rd → Rd is called δ-
contractive compressor if it satisfies

E
(
‖x− C(x)‖2

)
≤ δ‖x‖2 ∀x ∈ Rd, (3)

where 0 ≤ δ < 1.

Many important sparsifiers and quantizers satisfy defini-
tion 1. Next, We introduce some contractive compression op-
erators.

Example 1. [27] C(x) = q(x)τ −‖x‖∞1d, where [q(x)]i =
b [x]i+‖x‖∞τ + 1

2c, τ = 2‖x‖∞/(2b − 1).

Example 2. [17] Denote sign (x) and |x| as the elementwise
sign of x and the elementwise absolute value of x, then the
compressor is defined as

C(x) =
(
‖x‖∞ sign (x)2−(b−1)

)
· b2

b−1|x|
‖x‖∞

+ uc,

where · stands for the the Hadamard product and u is a ran-
dom vector uniformly distributed in [0, 1]d.



Algorithm 1 CC-DQM
1: For any agent i, randomly choose xi,0 ∈ Rd. Let φi,0 =

0,yi,0 = 0.
2: for k = 0, 1, 2, · · · do
3: for i = 1 to N do
4: Update xi,k+1 by eq. (4a);
5: if ‖xi,k+1 − yi,k‖ ≥ µk then
6: Compute C(xi,k+1 − yi,k);
7: Transmit C(xi,k+1 − yi,k);
8: Let yi,k+1 = C(xi,k+1 − yi,k) + yi,k.
9: else

10: Let yi,k+1 = yi,k;
11: Do not send any message.
12: end if
13: Update φi,k+1 by eq. (4b).
14: end for
15: end for

Example 1 is a deterministic quantizer and 32 + bd bits
are required to quantize a vector with d dimensions. Example
2 is a stochastic quantizer and 32 + (b+ 1)d bits are required
to quantize a vector with d dimensions.

For any agent i, since it can not get xj,k, the exact iter-
ates of its neighbors j, to estimate xj,k and its iterates xi,k,
two state variables yj,k and yi,k are introduced respectively.
It is worth noting what we compress is xi,k+1 − yi,k, the
difference between the decision variable xi,k+1 and the state
variable yi,k.

Communication-censored mechanism(Event-triggered
communication mechanism). The key idea of this mech-
anism is that communication is allowed only when the dif-
ference between the current decision variable and the latest
estimate is sufficiently large. Specifically, if the innovation
‖xi,k+1 − yi,k‖ is greater than the threshold µk, agent i will
compress xi,k+1 − yi,k and transmit it to the neighbors. Oth-
erwise, agent i does not transmit any message. After receiving
all the information, agent i updates the state variables yj,k+1

with j ∈ i ∪ Ni. Moreover, to reduce the computation cost
resulting from calculating the inverse of 2cdiI + ∇f(xi,k),
the update of Hessian is scheduled by th triggered condition.
Specifically, for agent i, if communication is un-triggered
at iteration k, then it does not need to perform the matrix
inversion step at iteration k + 1. The detailed procedure of
our proposed algorithm is shown in Algorithm 1.

According to the above discussion, we give the update of
xi and φi, which are as follows:

xi,k+1 = xi,k −
(
2cdiI+∇2fi(yi,k)

)−1(
∇fi(xi,k)

+ c
∑
j∈Ni

(yi,k − yj,k) + φi,k

)
(4a)

φi,k+1 = φi,k + c
∑
j∈Ni

(yi,k+1 − yj,k+1). (4b)

Compared with the quantized ADMM [13, 24], CC-DQM can
converge exactly and enjoy a smaller computation cost since it
does not need to solve a subproblem at every iteration. Com-
pared with the communication-censored ADMM [21, 23, 28],
CC-DQM can reduce the transmitted bits per communication,
thus relieving the communication cost greatly. Moreover, as
we will show later, compared with the quantized first-order
method [17, 25], CC-DQM enjoys a faster convergence rate,
thus achieving a smaller communication cost. The work in
[29] proposed an elegant compressed second-order decentral-
ized algorithm, which can achieve an asymptotic local super-
linear convergence. Compared with CC-DQM, it reduce the
communication round by accelerating the convergence rate
not by intermittent communication. Moreover, due to the ex-
change of Hessian and multi-step consensus, it may transmit
more bits per communication round.

4. CONVERGENCE RESULTS

In this section, we will show the convergence properties of
CC-DQM.

Assumption 1. The local objective function fi is vi-strongly
convex and its gradient is `i-Lipschitz continuous, i.e.,
∀x, x′ ∈ Rd, 〈∇fi(x′)−∇fi(x), x′ − x〉 ≥ vi ‖x′ − x‖2,
and ‖∇fi(x′)−∇fi(x)‖ ≤ `i‖x′ − x‖.

Assumption 2 (Communication Graph). G is undirected,
connected and Lu is positive definite.

Assumption 1 is very common in decentralized optimiza-
tion. Under Assumption 1, we can know f is v-strongly con-
vex and `-smooth, with v = mini{vi} and ` = maxi{`i}.
Assumption 2 implies that L is semi-positive definite with a
simple zero eigenvalue. Note that a positive definite Lu means
G is non-bipartite. We first give the convergence result when
the event-triggered communication is absent.

Theorem 1. Under Assumptions 1 and 2, let C be δ-contractive
compressor, in CC-DQM, if µk = 0, c and δ are chosen such
that

δ

(1−
√
δ)2

<
G(β)

3cλn + 2cβλn +
cλ2

n

βλ2

, (5)

with G(β) > 0, β > `2

2cλ2v
, where

G(β) =
cλ̂1
2
− 2cβλ2`

2

2cβλ2v − `2
− (c2λ̂2n + 4`2)

cβλ2
,

then the sequence E(x̃k) with x̃k = [x1,k, . . . ,xn,k] is con-
vergent to the optimal solution x∗ at a linear rateO(σk) with
0 < σ < 1.



The introduction of compression makes the update inex-
act and therefore may slow down the convergence rate. But
when the δ is not very large, the effect is almost negligible.
To satisfy (5), δ can not be too large, which means that exces-
sive compression of the information to be transmitted should
be avoided. The RHS of (5) has a global maximum F ∗ only
determined by the communication graph, meaning that the
choice of δ is related to the graph but not the objective func-
tion. When δ is chosen such that the LHS of (5) is less than
F ∗, then there always exists a sufficiently large c such that (5)
holds. Moreover, when we adopt Example 1 or Example 2, δ
decays exponentially as the number of quantization bits b in-
creases. So a very small b can satisfy the requirement, which
will be demonstrated in our experiment. The restriction on δ
implies that to ensure a linear convergence, the decaying rate
of the compressed error can not be too slow.

Corollary 1. Under Assumptions 1 and 2, let C be δ-
contractive compressor, when µk = 0 and C is unbiased, i.e.
E
(
C(x)

)
= x, if δ

(1−
√
δ)2

< λ̂1

3λn
and c > `2

v
2(1−

√
δ)2

λ̂1(1−
√
δ)2−3λnδ

,

the sequence E(x̃k) is convergent to the optimal solution x∗

at a linear rate.

Finally, we will give the result of combining the compres-
sion with the communication-censored mechanism.

Theorem 2. Under Assumptions 1 and 2, let C be δ-contractive
compressor, if c and δ are chosen such that (5) holds and
µk = αρk−1 with α > 0, 0 < ρ < 1, the sequence E(x̃k) is
convergent to the optimal solution x∗ at a linear rate O(σ̃k),
where σ̃ = max(σ, ρ).

Theorem 2 shows that CC-DQM can still achieve an ex-
act and linear convergence after combining event-triggered
communication with compression if µk decays linearly. It
is worth noting that the convergence rate parameter σ̃ equals
max(σ, ρ), which implies that the convergence rate of CC-
DQM can not exceed the decaying rate of the threshold.

5. NUMERICAL EXPERIMENTS

This section provides numerical simulations to show the
performance of CC-DQM. We consider a logistic regres-
sion problem where the dataset comprises German credit
data from the UCI Machine Learning Repository. De-
fine the connectivity ratio τ as the number of edges di-
vided by n(n−1)

2 . The communication graph is a stochas-
tic graph with connectivity ratio τ = 0.4. There exist
n = 100 agents in the graph and each agent holds mi = 10
samples. The optimization problem is minx∈Rd f(x) =∑n
i=1

1
mi

∑mi

j=1 log
(
1 + e−bijx

Taij

)
, where aij ∈ R24 rep-

resents the feature vector and bij ∈ {1,−1} represents the
label. Moreover, we define errk := ‖xk−x∗‖2

‖x0−x∗‖2
to measure

the convergence. We tune the parameter c such that DQM

can achieve the fastest convergence and ρ is tuned to make
C-DQM get the best communication rounds performance.

We first compare CC-DQM with the existing ADMM-
type communication-efficient algorithm including COCA,
DQM, C-DQM. COCA [21] is a communication-censored
ADMM, where agents need to solve subproblems at ev-
ery iteration. C-DQM [23] is the communication-censored
version of DQM. In this experiment, the compressor we
implement is Example 1, the deterministic quantizer. The
relevant results can be seen in Fig. 1. As we can see, CC-
DQM is the most communication efficient as it can not only
save communication rounds but also reduce the transmitted
bits per communication round. Our Theorem 1 shows that
to achieve a linear and exact convergence, the number of
quantization bits can not be too small. In our experiment,
CC-DQM can converge linearly when we implement 2 bit
deterministic quantization. Moreover, it is worth noting that
the convergence of CC-DQM is nearly the same as DQM.
We then compare CC-DQM with the existing first-order
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Fig. 1. Comparison with the existing ADMM-type
communication-efficient algorithm.

communication-efficient methods, including SPARQ-SGD
[25] and LEAD [17]. SPARQ-SGD combines event-triggered
communication with compressed communication and LEAD
is a communication-compressed algorithm. For a fair com-
parison, in SPARQ-SGD, we use the full gradient instead
of the stochastic gradient. We consider biased compressor
Example 1 and the unbiased compressor Example 2. In both
schemes, we let b = 2. As shown in Fig. 2, compared with
the existing first-order methods, no matter what kind of com-
pressor is implemented, CC-DQM always enjoys the smallest
communication cost. This is because CC-DQM enjoys a
faster convergence rate than other algorithms.
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order algorithms.
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Supplementary Material

A. PREPARATION FOR THE PROOF

We first give the matrix form of CC-DQM, which is as follows:

x̃k+1 = x̃k − D̃−1

(
∇f(x̃k) + φk + cLỹk

)
(6a)

φk+1 = φk + cLỹk+1 (6b)

where D̃ = 2cD + ∇2f(ỹk). To proof Theorem 1 and Theorem
2, we introduce a key Lemma estimating the error caused by event-
triggered communication and compression. Define ẽk = ỹk − x̃k.

Lemma 1. Denote C as the contractive operator with the parameter
δ ∈ [0, 1), in CC-DQM, the error ẽk+1 satisfies

E(‖ẽk+1‖2) ≤
√
δE(‖ẽk‖2) +

δ

1−
√
δ
E(‖x̃k+1 − x̃k‖2)

+ nµ2
k+1. (7)

Proof. For agent i at iteration k + 1, if hi,k = ‖xi,k+1 − yi,k‖ −
µk+1 < 0, then communication is not triggered and yi,k+1 = yi,k.
So we can get

ei,k+1 = ‖xi,k+1 − yi,k+1‖ < µk+1 (8)

When hi,k > 0, yi,k+1 = C(xi,k+1−yi,k)+yi,k. So we can know

ei,k+1 =C(xi,k+1 − yi,k)− (xi,k+1 − yi,k) (9)

According to the property of compressor, we can obtain:

E(‖ei,k+1‖2|yi,k,xi,k+1) ≤ δ‖xi,k+1 − yi,k‖2

≤ δ‖xi,k+1 − xi,k − (yi,k − xi,k)‖2

≤ δ(1 + t−1)(‖xi,k+1 − xi,k‖2)

+ δ(1 + t)‖ei,k‖2 (10)

Let t = 1√
δ
− 1 and take expectations, then we can obtain

E(‖ei,k+1‖22) ≤
√
δE(‖ei,k‖22) +

δ

1−
√
δ
E(‖xi,k+1 − xi,k‖2).

(11)

By combing (8) and (11), then we can finish the proof. �

Since CC-DQM is an ADMM-type algorithm, according to [26],
we give its optimal condition.

Lemma 2. Suppose (x̃∗, z̃∗,λ∗) is a primal-dual optimal pair of the
augmented Larriangian. Then, it holds that Mx̃∗ = 0, 1

2
Mux̃

∗ =
z̃∗, and there exist a unique µ∗ lying in the column space of M
satisfying φ∗ = MTµ∗, λ∗ = [µ∗;−µ∗], and

∇f(x̃∗) + φ∗ = 0. (12)

Next, we show the relationship between rk and φk. As φ0 = 0,
by recursive computation based on (6b), we have φk+1 = φ0 +

c
∑k+1
s=1 Lỹs = c

∑k+1
s=1 Lỹs. As L = 1

2
MTM, we further have

φk+1 = 2cMTrk+1, (13)

rk+1 = rk +
1

4
Mỹk+1. (14)

Recalling Lemma 2, by letting r∗ = 1
2c
µ∗, we have φ∗ = 2cMTr∗.

The remain task is to show the convergence of (x̃k, rk) to (x̃∗, r∗).
Define

Vk =
c

2
E(‖x̃k − x̃∗‖2Lu

) + 4cE(‖rk − r∗‖2) + rE(‖ẽk‖2),

(15)

where r is a positive constant, which will be determined later. It is
clear that the convergence of CC-DQM is equivalent to Vk → 0 as
k → ∞. Regarding the evolution of Vk. We have the following
lemma, which is infrastructural for our main result.

Lemma 3. Under Assumptions 1, 2, 3 if c and δ is chosen such that

δ

(1−
√
δ)2

<
G(β)

3cλn + 2cβλn +
cλ2

n
βλ2

, (16)

with G(β) > 0, β > `2

2cλ2v
, where

G(β) =
cλ̂1

2
− 4`2cβλ2

4cβλ2v − 2`2
− (c2λ̂2

n + 4`2)

cβλ2
,

then there exists r > 0, η > cλ2
2cλ2v−β−1`2

and σ̂ > 0 such that the
sequence Vk generated by CC-DQM satisfies

Vk+1 ≤
1

1 + σ̂
Vk + nψµ2

k+1,

where ψ = r + 1
1+σ̂

(
1.5cλn + 2cβλn +

(cβ−1+4σ̂c)λ2
n

2λ2

)
,

σ̂ = min

{
1−
√
δ

√
δ +

2cλ2
n(1+

√
δ)

rλ2

− λ2(Ξ̃1 + Ξ̃2 − (1−
√
δ)Ξ̃1)√

δrλ2 + 2cλ2
n(1 +

√
δ)

,

cλ2(cλ̂1 − 2r δ

1−
√
δ
− 2Ξ̃1

δ

1−
√
δ
− 4η`2)− 2(c2λ̂2

n + 4`2)β−1

8c2λ̂2
n + 32`2 + 4c2λ2

n + 4cλ2r
δ

1−
√
δ

,

cλ2(2v − η)− `2β−1

c2λ2λ̂n + `2

}
> 0, (17)

Ξ̃2 + Ξ̃1

√
δ

1−
√
δ

< r <
cλ̂1 − 4η`2

2 δ

1−
√
δ

− c2λ̂2
n + 4`2

cλ2
δ

1−
√
δ
β
− Ξ̃1,

Ξ̃1 =
3cλn

2
+ 2cβλn +

cλ2
n

2βλ2
, Ξ̃2 =

3cλn
2

+
cλ2
n

2βλ2
.

Proof. Before proceeding, inspired by [12], we define the approxi-
mated error on ∇f(x̃k+1) as δk = ∇f(x̃k) + ∇2f(ỹk)(x̃k+1 −
x̃k) −∇f(x̃k+1). Sine f satisfies ` smooth, we can know ‖δk‖ ≤
γ‖x̃k+1 − x̃k‖ with γ = 2`. Next, we begin to give our proof.
Denote∇2f(ỹk) as H̃k. According to (6a), we can obtain that

∇f(x̃k+1)

= ∇f(x̃k) + H̃k(x̃k+1 − x̃k)− δk

= D̃(x̃k − x̃k+1)− φk − cLỹk + H̃k(x̃k+1 − x̃k)− δk

= 2cD(x̃k − x̃k+1)− φk − cL(x̃k + ẽk)− δk

= cLu(x̃k − x̃k+1)− cLx̃k+1 − φk − cLẽk − δk

= cLu(x̃k − x̃k+1)− cL(ỹk+1 − ẽk+1)− φk − cLẽk − δk



= cLu(x̃k − x̃k+1)− φk+1 + cL(ẽk+1 − ẽk)− δk, (18)

where the third equality utilizes D̃−H̃k = 2cD and ỹk = x̃k+ ẽk,
the fourth equality utilizes 2D = Lu +L. By noting that∇f(x̃∗) =
−φ∗, we have

E
(
(x̃k+1 − x̃∗)T(∇f(x̃k+1)−∇f(x̃∗))

)
= cE

(
(x̃k+1 − x̃∗)TLu(x̃k − x̃k+1)︸ ︷︷ ︸

Ξ1

)
+ E

(
(x̃k+1 − x̃∗)T(φ∗ − φk+1)

)︸ ︷︷ ︸
Ξ2

+E
(
(x̃∗ − x̃k+1)Tδk

)︸ ︷︷ ︸
Ξ4

+ cE
(
(x̃k+1 − x̃∗)TL(ẽk+1 − ẽk)

)︸ ︷︷ ︸
Ξ3

. (19)

Next, we further estimate the above four terms. Regarding Ξ1, by
using 2xTAy = ‖x + y‖2A − ‖x‖2A − ‖y‖2A, we have

Ξ1 =

c

2

(
E(‖x̃k − x̃∗‖2Lu

)− E(‖x̃k+1 − x̃∗‖2Lu
)− E(‖x̃k − x̃k+1‖2Lu

)

)
.

Regarding Ξ2, as φk+1−φ∗ = 2cMT(rk+1− r∗), Mx̃∗ = 0, and
rk+1 − rk = 1

4
Mỹk+1, one has

Ξ2 = − 2cE
(
x̃T
k+1M

T(rk+1 − r∗)
)

= − 2cE
(
(ỹk+1 − ẽk+1)TMT(rk+1 − r∗)

)
= 4cE

(
‖rk − r∗‖2 − ‖rk+1 − r∗‖2 − ‖rk − rk+1‖2

)
+ 2cE

(
ẽT
k+1M

T(rk+1 − r∗)
)

≤ 4cE
(
‖rk − r∗‖2 − ‖rk+1 − r∗‖2 − ‖rk − rk+1‖2

)
+ 2cβE(ẽT

k+1Lẽk+1) + cβ−1E(‖rk+1 − r∗‖2).

Regarding Ξ3, we have

Ξ3 =
c

2
E
(
x̃T
k+1M

TM(ẽk+1 − ẽk)
)

=
c

2
E
(
(ỹk+1 − ẽk+1)TMTM(ẽk+1 − ẽk)

)
= 2cE

(
(rk+1 − rk)TM(ẽk+1 − ẽk)

)
+ cE

(
ẽT
k+1L(ẽk − ẽk+1)

)
≤ c

2
E
(
(ẽk+1 − ẽk)TL(ẽk+1 − ẽk)

)
+ 4cE

(
‖rk+1 − rk‖2

)
+ cE

(
ẽT
k+1Lẽk

)
.

Regarding Ξ4, we have

Ξ4 ≤
η

2
E(‖δk‖2) +

1

2η
E(‖x̃k+1 − x̃∗‖2)

≤ ηγ2

2
E(‖x̃k+1 − x̃k‖2) +

1

2η
E(‖x̃k+1 − x̃∗‖2).

Define

Ṽk =
c

2
E(‖x̃k − x̃∗‖2Lu

) + 4cE(‖rk − r∗‖2).

Due to the v-strongly convexity of f , we have (x̃k+1−x̃∗)T(∇f(x̃k+1)−
∇f(x̃∗)) ≥ v ‖x̃k+1 − x̃∗‖2, which yields

vE(‖x̃k+1 − x̃∗‖2)

≤ Ξ1 + Ξ2 + Ξ3 + Ξ4

≤ Ṽk − Ṽk+1 +

(
ηγ2

2
− cλ̂1

2

)
E(‖x̃k+1 − x̃k‖2)

+ cβ−1E(‖rk+1 − r∗‖2) + cλn(2β + 1)E(‖ẽk+1‖2)

+ cλnE(‖ẽk‖2) + cλnE(‖ẽk‖‖ẽk+1‖) +
1

2η
E(‖x̃k+1 − x̃∗‖2)

≤ Ṽk − (1 + σ̂)Ṽk+1 +

(
ηγ2

2
− cλ̂1

2

)
E(‖x̃k+1 − x̃k‖2)

+

(
1

2η
+
cσ̂λ̂n

2

)
E(‖x̃k+1 − x̃∗‖2)

+

(
cβ−1 + 4cσ̂

)
E(‖rk+1 − r∗‖2)

+
cλn(4β + 3)

2
E
(
‖ẽk+1‖2) + ‖ẽk‖2

)
. (20)

Next, we consider the term ‖rk+1 − r∗‖2. Recalling (18), we
have

∇f(x̃k+1)−∇f(x̃∗) + cLu(x̃k+1 − x̃k) + δk

= cL(ẽk+1 − ẽk)− 2cMT(rk+1 − r∗) (21)

Denote the left-side and right-side of equation (21) as ΞL and ΞR,
respectively. By applying ‖x + y‖2 ≥ 1

2
‖y‖2 − ‖x‖2 to ‖ΞR‖2,

we obtain

‖ΞR‖2 ≥
1

2

∥∥∥2cMT(rk+1 − r∗)
∥∥∥2

− c2 ‖L(ek+1 − ek)‖2

≥ 4c2λ2‖rk+1 − r∗‖2 − 2c2λ2
n(‖ek‖2 + ‖ek+1‖2).

Regarding ‖ΞL‖2, we have

‖ΞL‖2 ≤ 2`2‖x̃k+1 − x̃∗‖2 + 4
(
c2λ̂2

n + γ2
)
‖x̃k+1 − x̃k‖2.

Combining estimation on ‖ΞR‖2 and ‖ΞL‖2 yields

E(‖rk+1 − r∗‖2) ≤ c2λ̂2
n + γ2

c2λ2
E(‖x̃k+1 − x̃k‖2)

+
λ2
n

2λ2
E((‖ẽk‖2 + ‖ẽk+1‖2))

+
`2

2c2λ2
E(‖x̃k+1 − x∗‖2). (22)

Substituting (22) into (20), we have

(1 + σ̂)Ṽk+1 − Ṽk

≤
(

(β−1 + 4σ̂)(c2λ̂2
n + γ2)

cλ2
− cλ̂1 − ηγ2

2

)
E(‖x̃k+1 − x̃k‖2)

+

(
1

2η
+
cσ̂λ̂n

2
+
`2(β−1 + 4σ̂)

2cλ2
− v
)
E(‖x̃k+1 − x̃∗‖2)

+
(
2βcλn +

3cλn
2

+
(1 + 4σ̂β)cλ2

n

2λ2β
)︸ ︷︷ ︸

Ξ1

E(‖ẽk+1‖2)

+

(
3cλn

2
+

(1 + 4σ̂β)cλ2
n

2λ2β

)
︸ ︷︷ ︸

Ξ2

E(‖ẽk‖2). (23)



According to the definition of Vk, we can know

Vk − (1 + σ̂)Vk+1 =Ṽk + rE(‖ẽk‖2)− (1 + σ̂)Ṽk+1

− (1 + σ̂)rE(‖ẽk+1‖2). (24)

In Lemma 1, the relationship between E(‖ẽk+1‖2) and E(‖ẽk‖2) is
estimated, which can be seen in (7). To estimate Vk, we substitute
(7) and (23) into (24), thus obtaining

(1 + σ̂)Vk+1 − Vk

≤
(
− cλ̂1 − ηγ2

2
+

(β−1 + 4σ̂)(c2λ̂2
n + γ2)

cλ2

+
r(1 + σ̂)δ

1−
√
δ

+ Ξ1
δ

1−
√
δ

)
E(‖x̃k+1 − x̃k‖2)

+

(
1

2η
+
cσ̂λ̂n

2
+
`2(β−1 + 4σ̂)

2cλ2
− v
)
E(‖x̃k+1 − x̃∗‖2)

+

(
r(1 + σ̂)

√
δ + Ξ1

√
δ − r + Ξ2

)
E(‖ẽk‖2)

+

(
r(1 + σ̂) + Ξ1

)
nµ2

k+1. (25)

To obtain the result, the coefficients associated with the E(‖x̃k+1‖2),
E(‖x̃k‖2) and E(‖ẽk+1‖2) in (25) are required to be negative. That
is

r − Ξ2 − Ξ1

√
δ − (1 + σ̂)r

√
δ ≥ 0,

v − 1

2η
− σ̂cλ̂n

2
− `2(β−1 + 4σ̂)

2cλ2
≥ 0,

cλ̂1 − ηγ2

2
− (r + Ξ1)δ

1−
√
δ
− rδσ̂

1−
√
δ

− (c2λ̂2
n + γ2)(β−1 + 4σ̂)

cλ2
≥ 0.

Define

Ξ̃1 = Ξ1|σ̂=0 =
3cλn

2
+ 2cβλn +

cβ−1λ2
n

2λ2
,

Ξ̃2 = Ξ2|σ̂=0 =
3cλn

2
+
cβ−1λ2

n

2λ2
.

As σ̂ can be chosen as a sufficiently small positive real number, it
suffice to require

r − Ξ̃2 − Ξ̃1

√
δ − r

√
δ > 0, (26)

cλ̂1 − ηγ2

2
− (r + Ξ̃1)δ

1−
√
δ
− (c2λ̂2

n + γ2)β−1

cλ2
> 0, (27)

v − 1

2η
− `2β−1

2cλ2
> 0⇒ η >

cλ2

2cλ2v − β−1`2
.

Regarding (26), we can get

r >
Ξ̃2 + Ξ̃1

√
δ

1−
√
δ

.

To ensure (27) can be satisfied, in (27), let r = Ξ̃2+Ξ̃1

√
δ

1−
√
δ

and η =
cλ2

2cλ2v−β−1`2
, then we can obtain

cλ̂1

2
− (Ξ̃1 + Ξ̃2)δ

(1−
√
δ)2
− cλ2γ

2

4cλ2v − 2β−1`2
− (c2λ̂2

n + γ2)

cβλ2
> 0

(28)

Rearrange the terms, then we can obtain:

δ

(1−
√
δ)2

<

cλ̂1
2
− cλ2γ

2β
4cβλ2v−2`2

− (c2λ̂2
n+γ2)

cβλ2

3cλn + 2cβλn +
cλ2

n
βλ2

(29)

Define the RHS of (29) as

F (c, β) =

λ̂1
2
− λ2γ

2β
4cβλ2v−2`2

− (c2λ̂2
n+γ2)

c2βλ2

3λn + 2βλn +
λ2
n

βλ2

.

It is easy to obtain

F (c, β) < F (∞, β) =

λ̂1
2
− λ̂2

n
βλ2

3λn + 2βλn +
λ2
n

βλ2

.

We find that F (∞, β) has a global maximum when β = β∗ =

2u +
√

4u2 + 1
2
λn
λ2

+ 3u, where u =
λ̂2
n

λ2λ̂1
. So when δ is chosen

such that δ

(1−
√
δ)2

< F (∞, β∗), then there always exist a sufficient
large c which can ensure that (29) is satisfied. �

B. PROOF OF THEOREM 1 AND THEOREM 2

Proof. According to Lemma (3), we can know

Vk+1 ≤
1

1 + σ̂
Vk + nψµ2

k+1,with

ψ = r +
1

1 + σ̂

(
1.5cλn + 2cβλn +

(cβ−1 + 4σ̂c)λ2
n

2λ2

)
.

When µk = 0, then we can obtain:

Vk+1 ≤
1

1 + σ̂
Vk ≤

1

(1 + σ̂)2
Vk−1 · · · ≤

V0

(1 + σ̂)k+1
. (30)

Define σ = 1
1+σ̂

, then the proof of Theorem 1 is completed.
When µk = αρk−1, we can get obtain

Vk+1 ≤
Vk

1 + σ̂
+ nψαµ2

k+1 (31)

≤ Vk−1

(1 + σ̂)2
+
nψαµ2

k

1 + σ̂
+ nψαµ2

k+1 ≤ . . .

≤ V0σ
k+1 +

k∑
t=0

nψαρ2(k−t)σt

= σk+1(V0 + nψασ−1
k−1∑
t=0

(
ρ2

σ
)t
)

(32)

Let σ̃ = max(σ, ρ2), according to (32), when σ̃ 6= ρ2, we can know

Vk+1 ≤σ̃k+1(V0 + nψασ̃−1)

k∑
t=0

(
ρ2

σ̃
)t
)

≤σ̃k+1(V0 + nψασ̃−1)
σ̃

σ̃ − ρ2
. (33)

When σ̃ = ρ2, we can get Vk+1 ≤ kσ̃k+1(V0 + nψασ̃−1). �



C. PROOF OF COROLLARY 1

Proof. Revisiting (19), since the compressor is unbiased, then we
can obtain

Ξ3 = cE
(
(x̃k+1 − x̃∗)TL(ẽk+1 − ẽk)

)
= −cE(ẽT

kLx̃k+1),

= cE
(
(ỹk+1 − ẽk+1)TLẽk

)
= cE

(
(ỹk+1)TLẽk

)
= 2cE

(
(rk+1 − rk)TMẽk

)
,

≤ 4cE(‖rk+1 − rk‖2) +
cλn
2

E(‖ẽk‖2)

Ξ2 = − 2cE
(
x̃T
k+1M

T(rk+1 − r∗)
)

= − 2cE
(
(ỹk+1 − ẽk+1)TMT(rk+1 − r∗)

)
= 4cE

(
‖rk − r∗‖2 − ‖rk+1 − r∗‖2 − ‖rk − rk+1‖2

)
+ cE(‖ẽk+1‖2L)

≤ 4cE
(
‖rk − r∗‖2 − ‖rk+1 − r∗‖2 − ‖rk − rk+1‖2

)
+ cλnE(‖ẽk+1‖2).

By reusing the strong convexity of f as (20), we can know:

vE(‖x̃k+1 − x̃∗‖2)

≤ Ξ1 + Ξ2 + Ξ3 + Ξ4

≤ Ṽk − Ṽk+1 +

(
ηγ2

2
− cλ̂1

2

)
E(‖x̃k+1 − x̃k‖2)

+
1

2η
E(‖x̃k+1 − x̃∗‖2) (34)

According to the definition of Vk+1, we can obtain:

Ṽk − Ṽk+1

= Vk − (1 + σ)Vk+1 +
cσλ̂n

2
E(‖x̃k+1 − x̃∗‖2)

− rE(‖ẽk‖2) + 4cσE‖rk+1 − r∗‖2 + (1 + σ)rE(‖ẽk+1‖2)

≤Vk − (1 + σ)Vk+1 +
cσ

2
λ̂nE(‖x̃k+1 − x̃∗‖2)

+
(1 + σ)rδ

1−
√
δ

E(‖x̃k+1 − x̃k‖2) + r
(
(1 + σ)

√
δ − 1

)
E(‖ẽk‖2)

+ 4cσE‖rk+1 − r∗‖2

(22)
≤Vk − (1 + σ)Vk+1 + (

cσλ̂n
2

+
2`2σ

cλ2
)E(‖x̃k+1 − x̃∗‖2)

+

(
4c2σλ̂2

n

cλ2
+

4σγ2

cλ2
+

2δλ2
ncσ

(1−
√
δ)λ2

+
(1 + σ)rδ

(1−
√
δ)

+
δcλn

1−
√
δ

)
E(‖x̃k+1 − x̃k‖2) +

(
r(1 + σ)

√
δ − r

)
E(‖ẽk‖2)

+
2λ2

ncσ(1 +
√
δ)

λ2
E(‖ẽk‖2) + (

√
δcλn +

cλn
2

)E(‖ẽk‖2)

(35)

Substitute (35) into (34) and rearrange the terms, then we can get:

Vk − (1 + σ)Vk+1

≥
(
cλ̂1

2
− ηγ2

2
− 2δλ2

ncσ

(1−
√
δ)λ2

− 4c2σλ̂2
n + 4σγ2

cλ2

− (1 + σ)rδ

1−
√
δ
− δcλn

1−
√
δ

)
E(‖x̃k+1 − x̃k‖2)

+

(
r − r(1 + σ)

√
δ − 2λ2

ncσ(1 +
√
δ)

λ2

−
√
δcλn −

cλn
2

)
E(‖ẽk‖2)

+

(
v − cσλ̂n

2
− 2`2σ

cλ2
− 1

2η

)
E(‖x̃k+1 − x̃∗‖2) (36)

To ensure the linear convergence of Vk, let the RHS of (36) be greater
than 0, that is, the coefficient of each term should always be positive,
which yields

v − cσλ̂n
2
− 2`2σ

cλ2
− 1

2η
≥ 0, (37)

r − r(1 + σ)
√
δ − 2λ2

ncσ(1 +
√
δ)

λ2
−
√
δcλn −

cλn
2
≥ 0

cλ̂1

2
− ηγ2

2
− 2δλ2

ncσ

(1−
√
δ)λ2

− 4c2σλ̂2
n + 4σγ2

cλ2
,

− (1 + σ)rδ

1−
√
δ
− δcλn

1−
√
δ
≥ 0 (38)

Since σ > 0 can be arbitrary small, to satisfied (38), we need

r(1−
√
δ) ≥

√
δcλn +

cλn
2
⇒ r ≥

√
δcλn + cλn

2

1−
√
δ

,

v − 1

2η
≥ 0⇒ η ≥ 1

2v
,

cλ̂1

2
− ηγ2

2
− rδ

1−
√
δ
− δcλn

1−
√
δ
≥ 0. (39)

Rearrange (39), we can get

c
( λ̂1

2
− 3λn

2

δ

(1−
√
δ)2

)
>
γ2

4v
. (40)

Since c > 0 and γ = 2`, to make sure the existence of c, let λ̂1
2
−

3λn
2

δ

(1−
√
δ)2

> 0, then we can obtain

c >
`2

v

2(1−
√
δ)2

λ̂1(1−
√
δ)2 − 3λnδ

(41)

When δ = 0, (41) becomes c > 2`2

vλ̂1
, which is the requirement of

the penalty parameter c in DQM [12]. �
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