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Abstract

Federated learning (FL) is a promising approach that enables distributed clients to col-
laboratively train a global model while preserving their data privacy. However, FL often
suffers from data heterogeneity problems, which can significantly affect its performance. To
address this, clustered federated learning (CFL) has been proposed to construct personalized
models for different client clusters. One effective client clustering strategy is to allow clients
to choose their own local models from a model pool based on their performance. However,
without pre-trained model parameters, such a strategy is prone to clustering failure, in which
all clients choose the same model. Unfortunately, collecting a large amount of labeled data
for pre-training can be costly and impractical in distributed environments. To overcome
this challenge, we leverage self-supervised contrastive learning to exploit unlabeled data for
the pre-training of FL systems. Together, self-supervised pre-training and client clustering
can be crucial components for tackling the data heterogeneity issues of FL. Leveraging these
two crucial strategies, we propose contrastive pre-training–based clustered federated learn-
ing (CP-CFL) to improve the model convergence and overall performance of FL systems.
In this work, we demonstrate the effectiveness of CP-CFL through extensive experiments in
heterogeneous FL settings, and present various interesting observations.

Keywords: Federated learning, Client clustering, Contrastive learning, Pre-training, Data
heterogeneity

1. Introduction

Training a neural network for intelligent applications demands a diverse and rich source
of real-world data generated by end-user devices. These devices can range from personal
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smartphones to institutional data silos, where data privacy and security concerns are promi-
nent (Voigt and Bussche, 2017). Conventionally, neural networks are trained on a central
server with use of a collected dataset. However, growing data privacy and security con-
cerns may hinder data collection by service providers (Voigt and Bussche, 2017). Moreover,
transmitting large amounts of data from edge devices onto a central server can lead to high
communication costs (Dinh et al., 2020; Nguyen et al., 2020).

To address these limitations, centralized learning systems are gradually transitioning
towards federated systems, which offer better data privacy guarantees. Edge devices in
a federated learning (FL) system (Konečnỳ et al., 2016a,b; McMahan et al., 2017) can
collaboratively train a model without sharing sensitive data. An FL system consists of a
central server, coordinating the training, and a set of distributed client devices. The training
data reside on the client devices, and local models are directly trained by the clients. The
trained parameters are then transmitted to the server, while maintaining the confidentiality
of each client’s data. The server aggregates the received local parameters into a global model,
which inherits the predictive capabilities of the local models. As such, FL is an appealing
option for services requiring training on privacy-sensitive data, such as medical data in the
healthcare sector (Kaissis et al., 2020; Thwal et al., 2021; Yan et al., 2021) or personal data
on a smartphone (Hard et al., 2018; Ramaswamy et al., 2019).

Data heterogeneity poses a significant challenge in FL, as private data generated by each
client device differ depending on the nature of the device (Li et al., 2020; McMahan et al.,
2017; Sattler et al., 2020b; Yu et al., 2020; Zhao et al., 2018). Non-independent and non-
identically distributed (Non-IID) data generated by a large number of clients may cause
the divergence between local parameter updates, thereby slowing the convergence speed and
hurting the overall performance of the aggregated global model (Yu et al., 2020) To address
this challenge, clients can be partitioned into different clusters to train cluster-level models.
This kind of approach is often referred to as “clustered federated learning” (CFL) (Ghosh
et al., 2020; Sattler et al., 2020a, 2021b; Shlezinger et al., 2020), where multiple cluster-level
models are trained, as opposed to a single global model in conventional FL. Depending on
the clustering criteria, clients within the same cluster may share similar characteristics, such
as data distributions or the availability of training resources. Cluster models are trained
by aggregating the local parameter updates generated by clients in the same cluster. By
taking advantage of the similar learning characteristics shared by cluster members, cluster
models can deliver better personalized performance, such as higher accuracy for the local
classification task.

Clustering in an FL environment poses complex challenges as client information cannot
be directly accessed because of privacy constraints. The issue of client clustering while ad-
hering to FL constraints has attracted considerable attention recently (Briggs et al., 2020;
Duan et al., 2021; Ghosh et al., 2019, 2020; Long et al., 2023; Mansour et al., 2020; Sattler
et al., 2021b). The iterative federated clustering algorithm (IFCA) (Ghosh et al., 2020) and
HypCluster (Mansour et al., 2020) adopt a performance-based model selection approach
where clients determine the cluster identities themselves. Such an approach maintains mul-
tiple cluster models, and each client selects the model that performs best on its local data.
For instance, clients can measure the performance based on local learning loss or accuracy
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in the classification task. Clients that choose the same model are considered members of
the same cluster. Allowing clients to choose their own model is a direct and intuitive way
to improve the personalized performance, which is the main goal of CFL.

However, one problem with such an approach is that if cluster models are randomly
initialized at the start, a particular random model may outperform all others. This may
lead all clients to choose the same model, and therefore the clustering process may fail.
IFCA (Ghosh et al., 2020) assumes a good initialization where an initial cluster model θn

is close to θn∗ to prove its convergence without clustering failure. IFCA also shows that
it can succeed if the initialization requirements are relaxed with random initialization and
multiple restarts. Another potential approach is to reduce the randomness of initialized
parameters by pre-training cluster models before the CFL process. It is more practical
compared with finding a good initialization, or restarting the training with different sets of
random parameters in the case of clustering failure. However, obtaining labeled data is the
most challenging aspect of pre-training, as it involves significant expenditure to gather and
annotate the data for target tasks. In some distributed environments, such data may not
even be collectible because of privacy concerns.

On the other hand, unlabeled data with relevant characteristics and features as the target
tasks may be widely available from public sources and the Internet. Such unlabeled data
may be subject to fewer privacy regulations and can be collected at a lower cost for pre-
training. Recently, self-supervised contrastive learning algorithms (Bachman et al., 2019;
Caron et al., 2020; Chen et al., 2020; Chen and He, 2021; Grill et al., 2020; He et al., 2020;
Misra and van der Maaten, 2020; Zbontar et al., 2021) have attracted major attention for
leveraging unlabeled data to aid model training. These algorithms pre-train the encoder part
of the model to extract meaningful representations from raw data. The pre-trained encoder
increases the efficiency of labeled data when the model is fine-tuned for actual downstream
tasks. Contrastive learning assumes that two augmented instances originating from the same
data sample should share similar information. Accordingly, representations extracted from
these two instances by the encoder should also be similar. On the basis of this idea, the
encoder is trained by minimizing the distance between two output representations in the
embedding space (Bachman et al., 2019; Chen et al., 2020; Chen and He, 2021; Grill et al.,
2020; Zbontar et al., 2021).

Since contrastive encoder pre-training and client clustering can be complementary solu-
tions for providing an efficient design for practical FL systems, it is crucial that we explore
how to effectively deploy these approaches together. Therefore, in this study, we leverage
contrastive learning to pre-train an encoder in a centralized setting with unlabeled data. The
pre-trained encoder is then deployed to enhance the CFL task, where we follow the same
approach as in IFCA (Ghosh et al., 2020) for clustering the clients. The goal is to investi-
gate if and how these two prominent approaches can be effectively integrated to improve the
model performance in a heterogeneous FL environment. Our method is referred to as “con-
trastive pre-training–based clustered federated learning” (CP-CFL), and our contributions
are summarized as follows:

• We show that CP-CFL significantly improves the performance of CFL by leveraging
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contrastive encoder pre-training.

• We conduct extensive experiments using multiple pre-training datasets and down-
stream FL client datasets to evaluate the performance of CP-CFL. We explore effi-
cient ways to deploy CP-CFL in the context of the pre-trained encoder and downstream
classifier head. (More details are presented in Sections 4.4 and 4.5.) Furthermore, we
provide various ablation studies to validate its effectiveness.

• Overall, our study contributes to a better understanding of how contrastive encoder
pre-training and client clustering can jointly improve the performance of FL.

2. Related work

In this section, we briefly discuss the FL process before covering various related studies
on CFL and self-supervised contrastive learning.

2.1. Federated learning and client clustering

The core of FL is to allow distributed clients to collaboratively train a model while
considering communication and privacy constraints (Li et al., 2020; Konečnỳ et al., 2016a,b;
McMahan et al., 2017). While conventional distributed training retains control over the
training data, FL treats the data in each client device as private data. Such data cannot
be shared with different parties such as other clients or the central server. FL avoids the
transmission of private data by directly training a model on each client while sharing only
the trained model parameters with the server. The server has no control over the clients,
and a client may or may not participate in a training round and may even drop out of an
ongoing one. Usually, the client data in an FL environment are heterogeneous and follow
different distributions dependent on the nature of the client (Hard et al., 2018; Ramaswamy
et al., 2019). However, vanilla FL is not specifically designed to handle the non-IID data of
clients and trains a single global model for all clients, leading to unsatisfactory performance
in a highly heterogeneous environment (Sattler et al., 2020b; Yu et al., 2020; Zhao et al.,
2018).

One way to improve the performance in FL is to cluster the clients with similar learning
characteristics and maintain separate models for each cluster. Many approaches cluster the
local parameters received at the server side based on different strategies, such as recursive
bipartitioning (Duan et al., 2021; Sattler et al., 2021b), task relatedness (Jamali-Rad et al.,
2022), cosine distance (Tian et al., 2022), stochastic expectation maximization (Long et al.,
2023), and agglomerative clustering (Briggs et al., 2020). Li et al. (2021a) performed soft
clustering that allows clusters with overlapping clients, while Dennis et al. (2021) proposed a
one-shot scheme to perform clustering in a single FL round. In addition, some studies have
investigated the effectiveness of CFL in the presence of adversarial clients (Ghosh et al.,
2019; Sattler et al., 2020a). Other studies have used CFL for specific applications, such as
handover prediction in wireless networks (Kim et al., 2021) and human activity recognition
(Ouyang et al., 2022). In contrast to the server-side client clustering strategy, IFCA (Ghosh
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et al., 2020) and HypCluster (Mansour et al., 2020) perform clustering on the client side by
evaluating different models’ performance on local data.

2.2. Federated learning and contrastive learning

Contrastive learning is a form of representation learning that exploits raw unlabeled
data by training an encoder on the instance discrimination task. This enables the encoder
to learn generic representations that can be transferred to a wide variety of downstream
tasks. Unsupervised representation learning can be broadly categorized into two approaches:
generative and discriminative. Generative approaches typically learn representations by
mapping the output pixels to the input pixels, such as autoencoders (Kingma and Welling,
2013; Vincent et al., 2008). In contrast, discriminative approaches generate labels for a proxy
task from the unlabeled data, and the encoder is trained on this proxy task (Gidaris et al.,
2018; Noroozi and Favaro, 2016; Pathak et al., 2016). Contrastive learning (Chen et al., 2020;
Chen and He, 2021; Grill et al., 2020; He et al., 2020) is one state-of-the-art discriminative
approach that trains the encoder by minimizing the distance between representations of a
positive pair (e.g., two different augmented views of the same image), while maximizing that
of a negative pair (e.g., views from different images). Besides the image domain, contrastive
learning is also applied in video (Dave et al., 2022; Pan et al., 2021; Qian et al., 2021),
audio (Baevski et al., 2020; Manocha et al., 2021; Saeed et al., 2021), and natural language
processing (Gao et al., 2021; Giorgi et al., 2020; Wu et al., 2020), making it suitable for FL
environments that seek to provide a wide variety of services to clients.

Several studies have examined representation learning in the FL context, where con-
trastive learning is integrated into the client’s local training step (Li et al., 2021b; van Berlo
et al., 2020; Wu et al., 2021; Zhang et al., 2020; Zhuang et al., 2021, 2022). FedU (Zhuang
et al., 2021), FedCA (van Berlo et al., 2020), and FedSSL (Zhuang et al., 2022) assume clients’
private data are unlabeled and perform representation learning as a local training step.
RSCFed (Liang et al., 2022) and FedCy (Kassem et al., 2022) consider a semi-supervised
setting where some clients contain labeled data and others contain unlabeled data. Hetero-
SSFL (Makhija et al., 2022) allows clients to perform representation learning with different
local model architectures. FedCon (Long et al., 2021) introduces a learning paradigm where
the server contains labeled data and the clients contain unlabeled data. MOON (Li et al.,
2021b), FedCKA (Son et al., 2022), and FedIntR (Tun et al., 2023) use contrastive learning
to align the representations of global and local models. In contrast, we use contrastive learn-
ing as a centralized pre-training step to construct a base encoder for CFL. HotFed (Zhao
et al., 2021) and FedAUX (Sattler et al., 2021a) closely relate to our work since they pre-
train the model using self-supervised contrastive learning; however, HotFed (Zhao et al.,
2021) transfers the pre-trained model to a vanilla FL setup, while FedAUX (Sattler et al.,
2021a) transfers it to a federated distillation setting. The aforementioned studies shed light
on the possibility of incorporating contrastive pre-training into the CFL process, with the
potential to increase the convergence rate and improve the performance of cluster models.
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Figure 1: Overview of CP-CFL, which uses contrastive learning to pre-train the encoder θf on the unlabeled
data. The pre-trained encoder θf is then deployed in the CFL task, which aims to train cluster-level models
for different client clusters.

3. Contrastive pre-training–based CFL

We present an overview of our CP-CFL framework before delving into details in later
sections.

3.1. Overview

As illustrated in Figure 1, CP-CFL consists of two stages: the pre-training stage and
the CFL stage. In the pre-training stage, the central server uses contrastive learning to
pre-train the encoder θf on unlabeled data. To apply the pre-trained encoder θf in a useful
downstream task such as classification, we can attach a classifier head θc to obtain a complete
classification model θ = (θf , θc). For a CFL task with N clusters, the server generates a
pool of N classification models {θn}Nn=1 = {(θf , θnc )}Nn=1 by joining the pre-trained encoder
θf with N randomly initialized classifier heads {θnc }Nn=1. In each global round, the model
pool is distributed to the clients for clustering and local training. Each client evaluates
the models on its local dataset and selects the best-performing one with the lowest error.
The selected model is then trained, and updated parameters are sent back to the server.
Clients that choose the same model are identified as members of the same cluster. Local
parameter updates from the cluster members are aggregated to update the respective cluster
model (i.e., the model mutually selected by the cluster members). Each cluster model is
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tailored to the unique underlying data distribution of its respective cluster, providing better
personalized performance to the clients.

3.2. Problem formulation of CP-CFL

Contrastive pre-training : Given an unlabeled dataset D̃, the encoder θf is trained to extract

representations from each sample x̃ ∈ D̃. These extracted representations h = θf (x̃) should
capture generic information transferable to a wide variety of downstream tasks. To achieve
this, we use a typical contrastive learning step for training. Firstly, the data sample x̃ is
randomly augmented into two different instances, xi and xj. The encoder θf then extracts
representations hi = θf (xi) and hj = θf (xj) from the augmented instances. The goal is to
train θf so that it generates similar hi and hj. Hence, a form of contrastive loss ℓi,j can be
designed to minimize the distance between hi and hj in the embedding space. (Section 3.3
provides further details on how ℓi,j is computed for different contrastive learning techniques.)
Generally, the encoder θf is trained by solving

min
θf

1

|D̃|

∑
x̃∈D̃

ℓi,j. (1)

Clustered federated learning : Each FL client u ∈ U stores its own local private dataset Du,
which can be used for model training. However, a conventional FL system trains a single
global model for all the clients in the population U without considering the heterogeneous
nature of the clients. In contrast, CFL assumes that clients in the population U can be
further clustered into N different groups (i.e., G1,G2, . . . ,GN) based on their learning char-
acteristics. CFL aims to provide better personalized performance to the clients by fitting
a cluster-level model θn for each cluster Gn. To take advantage of contrastive pre-training,
each cluster model θn is constructed by combining the pre-trained encoder θf with a ran-
domly initialized classifier head θnc . We can train the cluster model θn for a cluster Gn by
solving

min
θn

1

|Gn|
∑
u∈Gn

L(θn,Du), (2)

where L is the loss calculated for each client u in the cluster Gn. Specifically, we calculate
L as

L(θ,D) =
1

|D|
∑

(x,y)∈D

ℓCE(θ, x, y), (3)

where (x, y) is the labeled data pair and ℓCE is the cross-entropy loss defined by

ℓCE(θ, x, y) = −
|y|∑

m=1

ym log θ(x)m, (4)

where y is assumed to be a one-hot encoded label vector, |y| is the number of classes, and
ym and θ(x)m are the ground truth label and softmax probability prediction for the mth
class, respectively.

7



Despite the advantages of CFL, determining the cluster structure {Gn}Nn=1 can be chal-
lenging, since we cannot access the clients’ private information; therefore, we use the model
selection strategy to determine the cluster identity nu ∈ {1, . . . N} of client u without vi-
olating the FL constraints. In this strategy, the server maintains a pool of cluster models
{θn}Nn=1 that share the same architecture but different sets of parameters. At each global
round t, the server distributes all cluster models {θn}Nn=1 to the participating clients. Each
client u evaluates {θn}Nn=1 on its local dataset Du and then selects the best-performing model
θnu for its data distribution. Specifically, clustering is achieved by solving Eq. (5) for each
client u:

nu = argminn L(θn,Du). (5)

In Eq. (5), n ∈ {1, . . . N} and nu is the index of the selected model as well as the cluster
identity of client u. Each client u locally trains the selected model θnu on dataset Du, and
then sends the updated parameters ϕu and the cluster identity nu back to the server. Local
parameter updates from the clients of the same cluster are aggregated by weighted averaging
(McMahan et al., 2017), shown in Eq. (6), to update the respective cluster model:

θn =
∑
u∈Gn

|Du|∑
u′∈Gn

|Du′|
ϕu. (6)

In Eq. (6), |Du| refers to the size of the local dataset of client u.

3.3. Contrastive encoder pre-training techniques

In our work, we explore multiple contrastive learning algorithms—namely, SimCLR (Chen
et al., 2020), BYOL (Grill et al., 2020), and SimSiam (Chen and He, 2021)—for pre-training
the encoder. We describe the common key components of these contrastive learning algo-
rithms as follows:

• Random augmentation: Augmentations are necessary to generate a pair of positive
samples from an input sample. For each sample x̃ ∈ D̃, random augmentations are
applied to generate a positive sample pair: xi = Augment(x̃) and xj = Augment(x̃).

• Encoder θf : Contrastive learning pre-trains the encoder θf to extract generic rep-
resentations h given an input x̃. The pre-trained encoder θf can be paired with a
task-specific head (in our case, we attach a classifier head θc) and fine-tuned on a
small labeled dataset to perform a useful downstream task.

• Distance metric: Many contrastive learning approaches use cosine similarity to mea-
sure the distance between two representations (Chen et al., 2020; Chen and He, 2021;
Grill et al., 2020). The cosine similarity between two representation vectors vi and vj
is calculated as

Sim(vi, vj) =
vi

∥vi∥2
· vj
∥vj∥2

, (7)

where ∥.∥2 is the ℓ2-norm.
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In the following subsections, we provide a brief overview of each of the three contrastive
learning approaches. Table 1 and Figure 2 compare the detailed characteristics of different
contrastive learning approaches, while Algorithm 1 describes the general contrastive learning
procedure.

Positive
samples

Negative
samples

Weight
sharing

Projector Predictor
Stop

gradient

SimCLR ✓ ✓ ✓ ✓ – –
BYOL ✓ – – ✓ ✓ ✓
SimSiam ✓ – ✓ ✓ ✓ ✓

Table 1: Comparison between different self-supervised contrastive learning techniques.

Minimize distance

Negative views.
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Projector Projector Projector
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Weight sharing
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Figure 2: Self-supervised contrastive learning techniques: (a) SimCLR (Chen et al., 2020); (b) BYOL (Grill
et al., 2020); (c) SimSiam (Chen and He, 2021).

3.3.1. SimCLR

For each image x̃ in an input batch B, SimCLR (Chen et al., 2020) generates two views,
xi and xj, using a random augmentation function, Augment(.). (This results in a total
of 2|B| augmented views for each input batch B.) The two augmented views xi and xj

are considered a positive pair since they originate from the same image x̃. The encoder
θf extracts representations hi = θf (xi) and hj = θf (xj) from the augmented views, while
the projection head θg transforms the extracted representations into projections zi = θg(hi)
and zj = θg(hj). If we consider xi as the anchor sample, then xj acts as the corresponding
positive counterpart, and vice versa. Using xi as the anchor, SimCLR calculates its loss
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Algorithm 1 Contrastive encoder pre-training

1: Input: encoder θf , unlabeled dataset D̃, number of epochs E, learning rate η.

2: Contrastive pre-training(θf , D̃, E, η):

3: for epoch e = 0, 1, . . . , E − 1 do
4: for each batch B ∈ D̃ do
5: for each sample x̃ ∈ B do
6: xi = Augment(x̃)
7: xj = Augment(x̃)
8: hi = θf (xi)
9: hj = θf (xj)
10: Calculate ℓi,j using hi and hj ▷ Use Eq. (8), (9), or (12).

11: L = 1
|B|

∑̃
x∈B

ℓi,j

12: Update θf with η∇L

13: Output: encoder θf

based on the InfoNCE loss (van den Oord et al., 2018) as

ℓi,j = − log
exp(Sim(zi, zj)/τ)

2|B|∑
i′=1

1[i′ ̸=i] exp(Sim(zi, zi′)/τ)

, (8)

where τ is the temperature. Every other augmented view xi′ , where i
′ = {1, . . . , 2|B|}, i′ ̸= i,

is treated as a negative counterpart to xi, with the distance between their representations
maximized. These steps are repeated by treating each augmented view in a batch as an
anchor. In SimCLR, negative samples help prevent the solution from collapsing into a
trivial constant (Chen and He, 2021).

3.3.2. BYOL

BYOL (Grill et al., 2020) uses an online network θ branch and a target network θ′ branch
for training. During training, augmented views xi and xj are fed into the online and the
target branches, respectively. The online branch extracts hi = θf (xi) and zi = θg(hi), while
the target branch uses the momentum encoder θ′f and the momentum projector θ′g to extract
h′
j = θ′f (xj) and z′j = θ′g(h

′
j). The momentum encoder θ′f and the momentum projector θ′g

have the same structure as θf and θg, but their parameters are moving-average versions of
those of θf and θg, respectively. The online branch makes a prediction pi = θq(zi) using the
predictor θq and the network is trained by minimizing the distance between pi and z′j. In a
sense, BYOL trains the encoder θf by using a view xi to predict the representation of the
other view xj. The loss between the anchor and its positive sample is computed as follows:

ℓi,j ≜ ∥pi − z′j∥
2

2
= 2− 2 · Sim(pi, z

′
j). (9)
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BYOL also swaps the inputs xj and xi for each branch and then calculates the prediction
pj and target branch output z′i to minimize the distance between them. Only the online
branch is updated with gradient backpropagation, while the target branch parameters are
updated as the moving-average versions of the online branch using Eqs. (10) and (11):

θ′f = βθ′f + (1− β)θf , (10)

θ′g = βθ′g + (1− β)θg, (11)

where β is the target branch update rate. BYOL uses the target branch and stops the
gradient flow through it to prevent the solution from collapsing to a constant (Chen and He,
2021).

3.3.3. SimSiam

SimSiam (Chen and He, 2021) shares similar properties with both SimCLR and BYOL.
SimSiam uses the weight-sharing encoder θf and projector θg as in SimCLR to extract
representations hi = θf (xi) and hj = θf (xj), as well as the projections zi = θg(hi) and
zj = θg(hj). Similarly to BYOL, the predictor θq in one branch of SimSiam makes a
prediction pi = θq(zi) to predict the output zj of the other branch. The contrastive loss
is calculated as the negative cosine similarity between the prediction pi and the projection
zj:

ℓi,j = −Sim(pi, zj). (12)

The inputs xj and xi can also be swapped for each branch, and the predictor θq can make
the prediction pj to contrast with the output zi of the other branch. The encoder is trained
by minimizing the distance between pi and zj, as well as the distance between pj and zi.
SimSiam stops the gradient flow through the branch without the predictor to prevent the
solution from collapsing to a constant.

3.4. CP-CFL algorithm

The detailed procedure of CP-CFL is presented in Algorithm 2. Initially, the server pre-
trains the encoder θf on an unlabeled dataset D̃ using contrastive learning. The pre-trained
encoder θf is then joined with a randomly initialized classifier head θnc to generate a cluster
model θn = (θf , θ

n
c ), where n = 1, 2, . . . , N . Although the encoder θf is pre-trained, random

parameters in the classifier head θnc still have the potential to damage the clustering process.
Therefore, for a few initial rounds (i.e., when t < Tc), the clients explore by selecting a model
at random rather than based on the performance. During this period, the encoder θf of each
cluster model θn is frozen, with the local training updating only the classifier head θnc . Here,
Tc is significantly smaller than the total number of rounds T (by default, we set Tc = 10
and T = 100). When t ≥ Tc, each client u determines its cluster identity nu by evaluating
the cluster models {θn}Nn=1 on the local dataset Du. Client u then trains the entire model
θnu and then sends the locally updated parameters ϕu and its cluster identity nu back to
the server. Local model updates from the clients of the same cluster Gn are aggregated to
update the corresponding cluster model θn.
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Algorithm 2 Contrastive pre-training–based clustered federated learning

1: Input: encoder θf , classifier head θc, unlabeled dataset D̃, number of contrastive epochs
Ep, contrastive learning rate ηp, number of clusters N , number of rounds T , number of
classifier head training rounds Tc, number of local epochs Eℓ, local learning rate ηℓ.

2: Server executes:
3: θf = Contrastive pre-training(θf , D̃, Ep, ηp) using Algorithm 1
4: for n = 1, 2, . . . , N do ▷ Generate a pool of N cluster models.
5: θnc = randomly initialize θc
6: Join θf and θnc to obtain cluster model θn = (θf , θ

n
c )

7: for round t = 0, 1, . . . , T − 1 do
8: Initialize empty clusters Gn = {}, where n = {1, . . . , N}
9: Get participating client population U

10: for each client u ∈ U in parallel do
11: (ϕu, nu) = Local update(u, t, {θn}Nn=1)
12: Append u to Gnu

13: for each cluster Gn, where n = 1, 2, . . . , N do,
14: θn =

∑
u∈Gn

|Du|∑
u′∈Gn

|Du′ |
ϕu

15: Clients execute: Local update(u, t, {θn}Nn=1):

16: if t < Tc then ▷ Explore with a random model.
17: nu = select randomly from {1, 2, . . . , N}
18: Freeze the encoder part θf of θnu

19: else ▷ Exploit the best model.
20: nu = argminn L(θn,Du), where n = 1, 2, . . . , N

21: Synchronize local model ϕu = θnu

22: for epoch e = 0, 1, . . . , Eℓ − 1 do
23: for each batch B ∈ Du do
24: L = 1

|B|
∑

(x,y)∈B
ℓCE(ϕu, x, y)

25: ϕu = ϕu − ηℓ∇L
26: return (ϕu, nu) to server

27: Output: cluster models {θn}Nn=1, clusters {Gn}Nn=1
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3.5. Characteristics of CP-CFL

To provide a clear insight into CP-CFL, we compare the characteristics of CP-CFL with
other baseline approaches in Table 2 . In contrast to vanilla FedAvg (McMahan et al., 2017),
which trains a single global model, IFCA (Ghosh et al., 2020) and CP-CFL train multiple
cluster models. Models in FedAvg and IFCA are randomly initialized, whereas CP-CFL pre-
trains the encoder part with self-supervised contrastive learning. IFCA relaxes the random
initialization with multiple restarts to handle the clustering failure, while CP-CFL relies on
the pre-trained encoder and Tc. CP-CFL performs the pre-training on the server without
extra computational burden on client devices. Moreover, Tc in CP-CFL is usually small
and can be integrated into the total number of rounds T , requiring no extra communication
cost than IFCA. Generally, the communication cost C for an FL client can be calculated as
follows (Qu et al., 2022):

C = T × (Csc + Ccs), (13)

where T is the number of rounds, and Csc and Ccs denote the server-to-client and client-to-
server costs, where both can be derived as number of transmitted models×model size. We
use the same model architecture in all approaches and denote the model size as S. Based
on above formulation, we calculate the cost for FedAvg (McMahan et al., 2017) as

CFedAvg = T × (1× S + 1× S) = 2ST (14)

and the cost for CFL approaches as

CCFL = T × (N × S + 1× S) = (N + 1)ST . (15)

In general, CFL approaches are N+1
2

times more expensive than FedAvg in terms of commu-
nication cost. For instance, recalling that N is the number of cluster models, we find that
CFL approaches are twice as expensive than FedAvg when N = 3.

Number of
models

Model
initialization

Handling
clustering failure

Communication
cost

FedAvg Single Random – 2ST

IFCA Multiple Random
Multiple
restarts

(N + 1)ST

CP-CFL Multiple
Contrastive
pre-training

Pre-trained
encoder

+ Tc (N + 1)ST

Table 2: Characteristics of CP-CFL.

4. Experiments

In this section, we present the evaluation results of CP-CFL on various experimental
settings. We first describe the common experimental settings, before delving into the details
of our studies.
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4.1. Experimental settings

Unless otherwise stated, we use the following settings in all of our experiments.

Dataset : For our experiments, we mainly use the STL-10 dataset (Coates et al., 2011), which
contains both unlabeled and labeled images with a shape of 96 × 96. The unlabeled data
portion contains 100,000 images, whereas the labeled training and testing portions contain
5000 and 8000 image-label pairs for 10 different classes, respectively.

Model : The encoder θf contains four 3 × 3 convolutional layers followed by a dense layer.
The convolutional layers contain 64, 128, 192, and 256 filters, respectively. All layers in
θf are ReLU activated. The encoder θf accepts an input image size of 96 × 96, and the
dimension of the output representation is 256. The classifier head θc is a single dense layer
with 10 output neurons and softmax activation. A complete classification model θ can be
obtained by directly joining θf and θc together.

Contrastive pre-training : To generate positive samples for contrastive pre-training, we rely
on a combination of data augmentations, including horizontal flip, random cropping, and
color transformations including jitters, brightness, and channel manipulations (Chen et al.,
2020). We train θf for 300 epochs with a batch size of 500 on an unlabeled dataset using
the Adam optimizer and an initial learning rate of 0.001. SimCLR (Chen et al., 2020),
BYOL (Grill et al., 2020), and SimSiam (Chen and He, 2021) incorporate different archi-
tectural configurations for training; therefore, we lightly tune the hyperparameters for each
method. Specifically, for the projection head θg, we tune the number of neurons in the
dense layers, setting it to either 256 or 512. We pre-train multiple encoders with different
hyperparameters and then select the best one through linear evaluation (Chen et al., 2020;
Grill et al., 2020). Linear evaluation involves training and testing a classifier head on top
of the frozen encoder using a proxy dataset, and the proxy test accuracy can be used to
select the best encoder, which we transfer to the downstream task. (We mainly use the
STL-10 unlabeled portion for contrastive pre-training in our experiments and simply use
the STL-10 training and testing portions as the proxy dataset for linear evaluation. It is
worth mentioning again that the encoder is trained only on the unlabeled portion.) Our
pre-training configurations are described below:

• SimCLR: The projection head θg contains two dense layers with 256 neurons each.
ReLU activation is applied to the first layer. We set the value of temperature τ as 0.1.

• BYOL: Each of the two dense layers in θg contains 512 neurons. Both layers are batch
normalized, although only the first layer is ReLU activated. The predictor θq contains
a bottleneck dense layer with 64 neurons followed by an output dense layer with 512
neurons. The bottleneck layer is batch normalized and ReLU activated. We set the
target branch update rate β as 0.9.

• SimSiam: The projection head θg and the predictor θq are configured similarly to the
settings in BYOL.
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Clustered federated learning : For the federated setting, we construct the local data of 60
clients by sampling from the training portion of a labeled dataset. To obtain a clear cluster
structure, the clients are divided into three groups with different underlying data distri-
butions. An example with the STL-10 training portion is shown in Figure 3. Each client
contains data from four different classes, and clients within the same cluster share the same
classes. Specifically, for a dataset with 10 available classes, a group of clients may contain
classes 1–4, another group may contain classes 4–7, and the third group may contain classes
7–10. Since each client contains four classes, we randomly allocate 20 images for two of the
classes and five images for the remaining two (i.e., a total of 50 images per client) to reflect
the non-IID settings of FL. We also construct local testing sets that follow each client’s data
distribution by sampling from the testing portion of the dataset. We set the number of
clusters N to 3, the number of global rounds T to 100, and the number of classifier head
training rounds Tc to 10. Each client trains its selected model for three local epochs using
a batch size of 32 and the Adam optimizer with a learning rate of 0.001.

0 5 10 15 20 25 30 35 40 45 50 55 60
Client u

airplane
bird
car
cat

deer
dog

horse
monkey

ship
truck

Cl
as

s

Figure 3: The amount of private data in clients for different classes, sampled from the training portion of
the STL-10 dataset. Small dots and large dots represent 5 and 20 images, respectively.

4.2. Encoder pre-training with contrastive learning

To validate the effectiveness of contrastive pre-training for the downstream CFL task,
we pre-train the encoder using SimCLR (Chen et al., 2020), BYOL (Grill et al., 2020), and

Pre-
training

Accuracy (%)
T = 25 T = 50 T = 75 T = 100

FedAvg
None 32.73 39.83 41.20 44.13
SimCLR 46.40 53.33 53.97 59.33

IFCA
None 57.60 63.30 65.60 67.80
FedAvg 69.93 71.77 70.40 70.90

CP-CFL
SimCLR 72.30 75.80 76.30 76.80
BYOL 67.37 72.83 74.03 74.87
SimSiam 56.90 64.23 66.80 68.23

Table 3: Test accuracy (%) for the STL-10-to-STL-10 (denoting pre-training data to client data) task. The
results are obtained by averaging the local test accuracies of all the clients.
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Pre-
training

F1 score AUROC

Macro Weighted
OvR
Macro

OvR
Weighted

OvO
Macro

OvO
Weighted

FedAvg
None 0.3708 0.3953 0.8342 0.8333 0.8374 0.8349
SimCLR 0.5564 0.5699 0.9036 0.9045 0.9068 0.9052

IFCA
None 0.6842 0.6769 0.9562 0.9491 0.9595 0.9542
FedAvg 0.7131 0.7075 0.9641 0.9584 0.9669 0.9626

CP-CFL
SimCLR 0.7700 0.7657 0.9752 0.9717 0.9774 0.9745
BYOL 0.7494 0.7455 0.9733 0.9692 0.9755 0.9722
SimSiam 0.6870 0.6827 0.9578 0.9511 0.9609 0.9559

Table 4: F1 score and AUROC for the STL-10-to-STL-10 task (T = 100). OvR, one-vs-rest. OvO, one-vs-
one.
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Figure 4: Test accuracy curves for the STL-10-to-STL-10 task.

SimSiam (Chen and He, 2021). We use the STL-10 unlabeled portion for pre-training, while
the labeled training and testing portions are used to set up the clients’ data as mentioned in
Section 4.1. Figure 3 illustrates the distribution of private data across the clients. Although
the data distribution of the STL-10 unlabeled portion is similar to that of the labeled portion,
it is not identical. This appropriately reflects the practical scenarios in which the central
server may not be able to gather pre-training data that exactly match the clients’ data
distribution.

Table 3 compares the performance of CP-CFL with that of different baselines, including
vanilla FedAvg (McMahan et al., 2017), and IFCA (Ghosh et al., 2020) with and without
a pre-trained encoder. We denote the pre-training approaches in italics in parentheses after
the abbreviations for the different methods. IFCA (FedAvg) uses the encoder obtained from
the FedAvg training as the pre-trained encoder. (Using the encoder from the FL global
model is one option for getting a pre-trained encoder for the CFL task. However, this can
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be considered as pre-training on the clients, which would impose additional communication
and computational burden on the clients.) In the event that clustering fails for IFCA, we
restart the process with a different set of randomly initialized parameters. For the evaluation
results, we average the local test accuracies from all clients, obtained by their respective
cluster models. From Table 3 and Figure 4, we can observe that CP-CFL (SimCLR) and
CP-CFL (BYOL) significantly outperform all the baselines at T = 100. CP-CFL (SimSiam)
outperforms IFCA (None) by a small margin but performs worse than IFCA (FedAvg).
However, recall that IFCA (FedAvg) uses the encoder directly trained on the clients’ labeled
data, whereas SimCLR, BYOL, and SimSiam pre-train on unlabeled data. The inefficiency
of vanilla FedAvg in aggregating heterogeneous parameters degrades the resulting encoder
quality, leading to lower downstream task performance for IFCA (FedAvg) compared with
CP-CFL (SimCLR) and CP-CFL (BYOL). Despite having a higher communication cost,
CP-CFL can significantly outperform FedAvg even with a small number of global rounds T ,
as shown in Figure 4.

We report additional evaluation metrics—i.e., F1 score and area under the receiver op-
erating characteristic (AUROC)—in Table 4. Figure 5 shows how the cluster identity nu

of each client u changes at different rounds for CP-CFL (SimCLR). From Figure 5, we can
observe that correct client clusters are identified almost immediately when the clients start
selecting models.

Each client starts selecting the model
based on local evaluation.

Cluster identity
Cluster model 1

Cluster model 2

Cluster model 3

C
lie

nt

Round

Figure 5: Cluster identity of clients at each communication round for CP-CFL (SimCLR).

4.3. Influence of pre-training and downstream client data similarity

In practice, the pre-training data collected by the central server may not perfectly match
the private data generated by the clients. The distribution shift and differences in character-
istics between the pre-training and downstream datasets could influence the model perfor-
mance. To investigate this, we pre-train the encoder using SimCLR on the STL-10 unlabeled
portion and then transfer it to three different downstream CFL tasks, where clients’ private
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Pre-training data to client data

Pre-
training

STL-10
to

STL-10
(0.7346)

STL-10
to

CIFAR-10
(0.7306)

STL-10
to

MNIST
(0.6108)

EMNIST
to

MNIST
(0.6714)

FedAvg
None 44.13 40.10 95.47 95.47
SimCLR 59.33 48.20 93.03 94.83

IFCA
None 67.80 65.40 98.37 98.37
FedAvg 70.90 70.03 98.90 98.90

CP-CFL SimCLR 76.80 75.00 98.40 99.27

Centralized (all clients) SimCLR 64.37 63.03 – –
Centralized (by cluster) SimCLR 77.47 76.00 – –

Table 5: Test accuracy (%) of CP-CFL (SimCLR) with different pre-training and downstream client datasets
at T = 100. Note that pre-training data are unlabeled. The measure of the pre-training dataset’s relevance
to the downstream client dataset is shown in parentheses for each task.

and testing data are sampled from the STL-10, CIFAR-10 (Krizhevsky et al., 2009), and
MNIST (LeCun et al., 1998) datasets, respectively. We also pre-train the encoder using
the EMNIST dataset (Cohen et al., 2017) without using labels and then transfer it to the
MNIST task. Table 5 shows the evaluation results as well as a measure of the pre-training
dataset’s relevance to the downstream client data in parentheses.

To quantify the relevance between the pre-training and downstream datasets for each
task, we randomly sample 300 images from each dataset and extract their representations
using the corresponding pre-trained encoder. We then measure their cross similarities using
the cosine similarity, Eq. (7), and report the average score. The results, shown in Table 5,
indicate that the pre-training data and downstream client data share relevant characteristics
for STL-10-to-STL-10, STL-10-to-CIFAR-10, and EMNIST-to-MNIST tasks, as evidenced
by their relatively higher measurement scores compared with the score for the STL-10-to-
MNIST task, where the pre-training data and downstream client data do not share relevant
characteristics.

Table 5 confirms that contrastive pre-training can significantly improve the downstream
CFL performance if the unlabeled pre-training data share relevant characteristics with
the downstream client data. This is evident in STL-10-to-STL-10, STL-10-to-CIFAR-10,
and EMNIST-to-MNIST tasks, where CP-CFL (SimCLR) outperforms IFCA (FedAvg) by
5.90%, 4.97%, and 0.37%, respectively. In contrast, when the STL-10 pre-trained encoder
is transferred to MNIST client data, there is no improvement over the baseline IFCA (Fe-
dAvg) (decreases by 0.5%). It is worth noting that the unlabeled portion of the STL-10
dataset contains extra image classes that are not in the labeled portion. In addition, the
CIFAR-10 dataset includes the “frog” class, as opposed to the “monkey” class present in
the STL-10 dataset. The significant performance gains observed in STL-10-to-STL-10 and
STL-10-to-CIFAR-10 tasks suggest that self-supervised contrastive pre-training can be ben-
eficial even if the pre-training data are not identical to the downstream data. However, it
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is ineffective when the encoder is transferred between vastly dissimilar data, such as in the
STL-10-to-MNIST task.

Table 5 also presents the evaluation results for two centralized settings. In the first
setting, we gather and consolidate the private data of all clients into a single dataset and
train a model in the centralized manner. We evaluate the model on the testing dataset
created in the same manner. In the second setting, we gather and group the clients’ data
into three separate datasets based on their true underlying cluster structures; therefore,
this setting comprises three pairs of training and testing datasets. We train and evaluate a
model for each pair and report the average results. Notably, the performance of CP-CFL
is comparable to that of the second centralized setting, which can be regarded as the upper
bound.

4.4. Learning capacity of the classifier head

The classifier head θc plays an important role in the downstream CFL performance as it
primarily generates final class probabilities from the extracted representations. The learning
capacity of θc can significantly affect the performance of a classification model θ = (θf , θc).
To investigate this, we study four different classifier heads: θc, θc-1, θc-2, and θc-3, which differ
in the number of layers and neurons. Here θc is our default classifier head, which contains a
single output layer. The other classifier heads, θc-1, θc-2, and θc-3, contain one, two, and three
additional dense layers with ReLU activation, respectively. The details of different classifier
head structures are illustrated in Figure 6.

Table 6 shows the performance of CP-CFL (SimCLR) with different classifier heads.
Compared with θc, having extra hidden layers in the classifier head (i.e., θc-1, θc-2, and
θc-3) can result in better performance when the number of global rounds is limited. For
instance, in the STL-10-to-STL-10 task, θc-3 at T = 25 achieves similar performance as θc
at T = 100. Such an observation can be particularly useful for cases when client devices
have limited communication resources, and we can trade off the computational cost of a few
extra layers to obtain an acceptable performance with fewer global rounds. The performance

1064128256

Hidden Layers

Representation

Input

Prediction
Output

Number of Neurons

Figure 6: Detailed structure of classifier heads: θc, θc-1, θc-2, and θc-3. The default classifier head θc contains
an output layer with 10 neurons. θc-1 contains one more dense layer, in addition to the output layer. θc-2
contains two more dense layers, and so on.
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STL-10-to-STL-10 STL-10-to-CIFAR-10 EMNIST-to-MNIST
T = 25 T = 75 T = 100 T = 25 T = 75 T = 100 T = 25 T = 75 T = 100

θc 72.30 76.30 76.80 67.20 74.63 75.00 96.20 99.20 99.27
θc-1 74.47 77.77 78.23 70.23 74.40 75.70 96.87 98.87 98.93
θc-2 75.43 78.57 77.60 69.77 74.57 75.10 97.67 99.03 98.93
θc-3 76.37 78.43 77.90 70.00 74.83 74.67 97.73 98.90 98.83

Table 6: Test accuracy (%) of CP-CFL (SimCLR) with different classifier head structures.

gap between θc and other, larger classifier heads slowly diminishes as the number of rounds
increases. (The results for the STL-10-to-MNIST task are provided in Appendix A.)

4.5. Encoder in the local training step

In CP-CFL, clients train the entire model (both the encoder θf and the classifier head
θc) at each global round t > Tc. However, it might be possible to freeze the pre-trained
encoder θf in all training rounds without a significant impact on downstream CFL perfor-
mance. Since θf has already been pre-trained on the unlabeled data, we can lighten the
computational load on the clients by reducing the frequency of local training for θf . There-
fore, we study three different settings in which the encoder θf is trained for zero, one, and
three (default) local epochs. The classifier head θc is still trained for three local epochs in
all settings. The experiments are conducted on the STL-10-to-STL-10 task with different
classifier head structures.

From the results in Table 7, it is clear that training the encoder θf for three local epochs
(Eℓ,f = 3) generally achieves the best performance or performance comparable to that of
other settings. When used together with large classifier heads such as θc-1, θc-2, and θc-3,
freezing the encoder (Eℓ,f = 0) still performs comparably to Eℓ,f = 3 (with only minor
accuracy drops of 1.06%, 0.03%, and 1.13%, respectively). This suggests that it may be
possible to reduce the computational cost on the clients by freezing the encoder while using
a large classifier head, with minimal accuracy reduction. (It is worth noting that the number
of trainable parameters in a large classifier head, θc-3 ≈ 0.1 M, is still significantly lower than
that of the entire CNN encoder, θf ≈ 2.4 M.) Interestingly, training the encoder for a single
local epoch (Eℓ,f = 1) results in worse performance than the frozen encoder (Eℓ,f = 0) for

Local training
frequency of θf

Classifier head structure
θc θc-1 θc-2 θc-3

Eℓ,f = 3 (default) 76.80 78.23 77.60 77.90
Eℓ,f = 1 76.90 74.93 74.80 73.97
Eℓ,f = 0 (frozen) 73.67 77.17 77.57 76.77

Eℓ,f = 3 (global) 76.27 79.10 77.50 78.03

Table 7: Test accuracy (%) of CP-CFL (SimCLR) for the STL-10-to-STL-10 task (T = 100). Eℓ,f is the
number of local epochs for training the encoder θf .
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Pre-training
Accuracy (%)

T = 25 T = 50 T = 75 T = 100

Contrastive 70.13 76.50 77.17 77.33
Supervised 72.83 76.80 77.13 77.13

Table 8: Test accuracy (%) for the CIFAR-100-to-CIFAR-10 task using supervised and contrastive encoder
pre-training settings.

θc-1, θc-2, and θc-3. We believe that inadequate training disrupts the pre-trained parameters
in the encoder, hurting the compatibility between the encoder and the classifier head.

Furthermore, we study the global encoder setting, where all encoders from different client
clusters are aggregated into a single global encoder. In this setting, all cluster models share
the common global encoder, and only the classifier head is cluster specific. As shown in
Table 7, the global encoder setting achieves promising results and presents an alternative to
conventional CFL techniques where cluster models do not share the parameters.

4.6. Supervised versus contrastive pre-training

CP-CFL pre-trains the encoder θf on unlabeled data using contrastive learning. It is
crucial to determine the potential performance drop caused by use of unlabeled data instead
of labeled data for pre-training. To this end, we pre-train θf using both supervised and
contrastive settings and compare their performance in the downstream CFL task. We use
the CIFAR-100 dataset (Krizhevsky et al., 2009) for centralized pre-training and the CIFAR-
10 dataset to construct the private data of clients. In the supervised pre-training setting, a
classification model θ = (θf , θc) is trained with cross-entropy loss on the CIFAR-100 dataset,
and then we keep only the encoder θf . In the contrastive learning setting, we use SimCLR
to pre-train the encoder on the CIFAR-100 dataset without using the labels.

Table 8 compares the downstream CFL performance between different encoder pre-
training settings. Supervised pre-training outperforms contrastive pre-training when T is
small (i.e., T ≈ 25). However, with a higher number of global rounds (i.e., T ≥ 50), the
performance gap between the two pre-training methods becomes negligible. Therefore, we
can conclude that the encoder pre-trained with contrastive learning performs effectively in
the downstream CFL task.

4.7. Number of clusters

CP-CFL does not explicitly compute the number of clusters N , since it is primarily
determined by available system resources in practice. Although we set the number of clusters
N to 3 by default in our experiments, it would be interesting to see how N affects the
performance of CP-CFL. Therefore, we conduct experiments by adjusting the value of N
between 1 and 5 on the STL-10-to-STL-10 task.

The results of CP-CFL (SimCLR) with different numbers of clusters are reported in
Table 9. Setting the number of clusters N to 3 gives the highest performance, since it
matches the underlying cluster structure. However, use of a higher number of clusters, such
as four or five, still yields better results than a lower number of clusters, such as one or
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Number of
clusters (N)

Accuracy (%)

1 59.33
2 65.10
3 76.80
4 72.80
5 72.97

Table 9: Test accuracy (%) of CP-CFL (SimCLR) with different numbers of clusters for the STL-10-to-
STL-10 task (T = 100). The best result is shown in bold.

two. In general, increasing the number of clusters N means improving the personalized
performance at the expense of more system resources. Therefore, we can adjust N to strike
a balance between performance gain and resource expense.

4.8. Number of clients

In this section, we investigate the impact of the number of clients on CP-CFL using the
STL-10-to-STL-10 task. Specifically, we consider four different settings, where the number
of clients is set to 15, 30, 60 (default), and 90, respectively. In each setting, the clients are
equally divided into three groups with different underlying data distributions, as described
in Section 4.1. We use the default hyperparameters, with the exception of setting T = 40
and T = 60 for the 15-client and 30-client settings, respectively.

Since the number of samples per client is fixed (i.e., 50), increasing the number of
clients results in more training data. As presented in Table 10, the performance of CP-
CFL (SimCLR) improves as the number of clients increases, a trend that is also observed in
other approaches. While there is no significant difference in the final performance between
IFCA (None) and IFCA (FedAvg) in Table 10, Figure 7 reveals that IFCA (FedAvg) exhibits
a performance boost in early training rounds. This trend holds for all approaches involving
pre-training, i.e., FedAvg (SimCLR), IFCA (FedAvg), and CP-CFL (SimCLR).

Pre-
training

Number of clients
15 30 60 90

T = 40 Best T = 60 Best T = 100 Best T = 100 Best

FedAvg
None 34.27 36.13 36.93 37.07 44.13 50.73 46.58 46.78
SimCLR 47.47 47.47 54.00 54.20 59.33 59.83 57.71 59.04

IFCA
None 57.60 58.53 62.67 62.67 67.80 67.80 70.80 70.93
FedAvg 56.67 59.87 62.60 64.33 70.90 72.07 68.95 70.36

CP-CFL SimCLR 70.67 70.67 73.87 74.93 76.80 78.33 79.80 80.27

Table 10: Test accuracy (%) of CP-CFL (SimCLR) with different numbers of clients for the STL-10-to-STL-
10 task. We report both the final results and the best results.
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(c) 60 clients
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Figure 7: Test accuracy curves obtained with different numbers of clients on the STL-10-to-STL-10 task.

4.9. Statistical significance testing

To ensure the statistical significance of our study, we conduct five independent exper-
iments on the STL-10-to-STL-10 task. For each experiment, we resample the private and
testing data of clients according to the settings described in Section 4.1. Table 11 reports
the evaluation results of all five experiments, as well as their mean and standard deviation.
Our comparison with baseline approaches demonstrates that CP-CFL (SimCLR) maintains
good results across all trials, and outperforms IFCA (None) by 10.90% and IFCA (FedAvg)
by 8.35% on average. Additional metrics are provided in Appendix B.

4.10. ResNet-18 encoder

In addition to our default CNN encoder, we also evaluate the performance of CP-CFL
using the ResNet-18 encoder (He et al., 2016) on the STL-10-to-STL-10 task. This experi-
ment aims to examine the generalization ability of CP-CFL with regrad to different encoder
architectures other than our default CNN encoder, and not necessarily to obtain the best
performance. Therefore, we use default values for most hyperparameters except for a few
that we specify below. The number of epochs for contrastive pre-training is set to 500 with a
batch size of 250. The output dimension of the ResNet-18 encoder is 512, and we use θc-1 as
the classifier head. (We empirically found that while using the ResNet-18 encoder with our
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Pre-
training

Accuracy (%)
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Mean ± SD

FedAvg
None 42.73 41.53 43.67 43.03 42.67 42.73± 0.69
SimCLR 58.30 52.60 56.10 55.40 57.50 55.98± 1.97

IFCA
None 66.17 64.37 66.43 66.17 65.80 65.79± 0.74
FedAvg 69.57 66.53 69.30 68.20 69.43 68.61± 1.14

CP-CFL SimCLR 76.13 76.47 77.43 76.40 77.00 76.69± 0.47

Table 11: Test accuracy (%) on multiple trials of the STL-10-to-STL-10 task (T = 100). SD, standard
deviation.

default classifier head θc, which contains a single output layer, FedAvg (SimCLR) often gets
stuck in local optima, resulting in low performance; herefore, we use θc-1 for all approaches.)
We conduct five independent experiments, and Table 12 reports the best results achieved
by each approach. We report the best results in Table 12 since the performance of FedAvg
baselines can fluctuate. Additional results for T = 100 are provided in Table C.20 in Ap-
pendix C. We also conduct a single experiment using the ResNet-50 encoder (He et al.,
2016); the results are shown in Table D.21 in Appendix D. While the ResNet-50 encoder
is commonly used for many image processing tasks, the ResNet-18 encoder can be more
practical for FL environments, where client devices often have limited computing resources
for locally training the ResNet-50 encoder.

5. Discussion and future work

The influence of the amount of unlabeled pre-training data on the performance of the
encoder could be a topic of interest. In practice, it is often the responsibility of the service
provider or the server to gather an adequate amount of unlabeled data for pre-training the
encoder. The server needs to determine the quantity of pre-training data based on various
factors, such as the type of service being provided and the size of the model deployed. The
server may also keep a small set of proxy test data to evaluate the performance of the pre-
trained encoder and determine if the collected unlabeled data are sufficient in terms of both
quality and size. While a larger quantity of pre-training data would generally result in a

Pre-
training

Accuracy (%)
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Mean ± SD

FedAvg
None 37.37 38.40 37.77 34.83 39.40 37.55± 1.52
SimCLR 45.77 39.77 44.97 39.33 39.70 41.91± 2.84

IFCA
None 64.10 64.67 64.80 65.53 63.93 64.61± 0.57
FedAvg 65.03 65.27 64.87 64.00 65.40 64.91± 0.49

CP-CFL SimCLR 67.90 68.57 68.30 68.90 66.53 68.04± 0.82

Table 12: Test accuracy (%) obtained with the ResNet-18 encoder on the STL-10-to-STL-10 task (best).
SD, standard deviation.
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higher-quality encoder, it would also require a longer training time and more computing
resources. Therefore, we leave the investigation of the trilemma between the amount of pre-
training data, the required training resources, and the resulting encoder quality to future
studies.

6. Conclusions

FL is essential for incorporating edge-generated data into intelligent systems without
violating privacy regulations. However, non-IID data at the edge pose a fundamental chal-
lenge that limits FL from achieving the same level of performance as centralized training. To
address this issue, we proposed CP-CFL, which combines contrastive encoder pre-training
and client clustering to alleviate the performance drop caused by non-IID data in a het-
erogeneous FL environment. We conducted extensive experiments on CP-CFL in various
settings to demonstrate its superior performance over the baseline approaches. Furthermore,
we explored efficient ways to deploy CP-CFL, while also providing various ablation studies
to validate its effectiveness. Overall, our study contributes to a better understanding of how
contrastive encoder pre-training and client clustering can jointly improve the performance
of FL on non-IID data.
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Appendix A. Learning capacity of the classifier head

The results for CP-CFL (SimCLR) with different classifier head structures on the STL-
10-to-MNIST task are given in Table A.13.

STL-10-to-MNIST
T = 25 T = 75 T = 100

θc 93.70 97.63 98.40
θc-1 94.20 98.27 98.13
θc-2 93.53 98.53 98.63
θc-3 94.20 98.13 98.20

Table A.13: Test accuracy (%) of CP-CFL (SimCLR) with different classifier head structures on the STL-
10-to-MNIST task.

Appendix B. Additional metrics

F1 score and AUROC for statistical significance testing reported in Section 4.9 are given
in Tables B.14–B.19.
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Pre-
training

F1 score (macro)
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Mean ± SD

FedAvg
None 0.3570 0.3451 0.3566 0.3315 0.3415 0.3463± 0.0096
SimCLR 0.5484 0.4746 0.5177 0.5118 0.5304 0.5166± 0.0245

IFCA
None 0.6701 0.6479 0.6684 0.6685 0.6668 0.6643± 0.0083
FedAvg 0.7002 0.6681 0.6984 0.6876 0.7006 0.6910± 0.0124

CP-CFL SimCLR 0.7640 0.7593 0.7757 0.7630 0.7698 0.7664± 0.0057

Table B.14: F1 score (macro) on multiple trials of the STL-10-to-STL-10 task (T = 100). SD, standard
deviation.

Pre-
training

F1 score (weighted)
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Mean ± SD

FedAvg
None 0.3817 0.3662 0.3859 0.3633 0.3692 0.3733± 0.0089
SimCLR 0.5641 0.4933 0.5311 0.5306 0.5440 0.5326± 0.0231

IFCA
None 0.6606 0.6404 0.6638 0.6602 0.6577 0.6565± 0.0083
FedAvg 0.6942 0.6624 0.6922 0.6807 0.6925 0.6844± 0.0120

CP-CFL SimCLR 0.7575 0.7560 0.7714 0.7601 0.7655 0.7621± 0.0056

Table B.15: F1 score (weighted) on multiple trials of the STL-10-to-STL-10 task (T = 100). SD, standard
deviation.

Pre-
training

AUROC (OvR macro)
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Mean ± SD

FedAvg
None 0.8321 0.8278 0.8355 0.8379 0.8306 0.8328± 0.0036
SimCLR 0.9033 0.8928 0.8990 0.9019 0.9080 0.9010± 0.0050

IFCA
None 0.9544 0.9550 0.9553 0.9573 0.9542 0.9552± 0.0011
FedAvg 0.9614 0.9571 0.9592 0.9593 0.9597 0.9593± 0.0014

CP-CFL SimCLR 0.9756 0.9753 0.9766 0.9761 0.9759 0.9759± 0.0004

Table B.16: AUROC (OvR macro) on multiple trials of the STL-10-to-STL-10 task (T = 100). OvR, one-
vs-rest. SD, standard deviation.

Pre-
training

AUROC (OvR weighted)
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Mean ± SD

FedAvg
None 0.8291 0.8269 0.8341 0.8366 0.8300 0.8313± 0.0035
SimCLR 0.9040 0.8930 0.8987 0.9020 0.9079 0.9011± 0.0050

IFCA
None 0.9465 0.9472 0.9481 0.9501 0.9461 0.9476± 0.0014
FedAvg 0.9549 0.9500 0.9521 0.9525 0.9526 0.9524± 0.0015

CP-CFL SimCLR 0.9718 0.9720 0.9734 0.9732 0.9723 0.9725± 0.0006

Table B.17: AUROC (OvR weighted) on multiple trials of the STL-10-to-STL-10 task (T = 100). OvR,
one-vs-rest. SD, standard deviation.
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Pre-
training

AUROC (OvO macro)
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Mean ± SD

FedAvg
None 0.8361 0.8308 0.8395 0.8409 0.8339 0.8363± 0.0037
SimCLR 0.9062 0.8937 0.9022 0.9037 0.9097 0.9031± 0.0054

IFCA
None 0.9584 0.9586 0.9585 0.9605 0.9578 0.9587± 0.0009
FedAvg 0.9646 0.9605 0.9624 0.9625 0.9631 0.9626± 0.0013

CP-CFL SimCLR 0.9778 0.9774 0.9786 0.9782 0.9779 0.9780± 0.0004

Table B.18: AUROC (OvO macro) on multiple trials of the STL-10-to-STL-10 task (T = 100). OvO, one-
vs-one. SD, standard deviation.

Pre-
training

AUROC (OvO weighted)
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Mean ± SD

FedAvg
None 0.8325 0.8285 0.8364 0.8384 0.8316 0.8335± 0.0035
SimCLR 0.9046 0.8929 0.9000 0.9025 0.9084 0.9017± 0.0052

IFCA
None 0.9524 0.9529 0.9531 0.9552 0.9520 0.9531± 0.0011
FedAvg 0.9598 0.9553 0.9572 0.9575 0.9580 0.9576± 0.0014

CP-CFL SimCLR 0.9747 0.9746 0.9758 0.9755 0.9750 0.9751± 0.0005

Table B.19: AUROC (OvO weighted) on multiple trials of the STL-10-to-STL-10 task (T = 100). OvO,
one-vs-one. SD, standard deviation.

Appendix C. ResNet-18 encoder

Table C.20 presents the evaluation results for the STL-10-to-STL-10 task obtained with
the ResNet-18 encoder at T = 100.

Pre-
training

Accuracy (%)
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Mean ± SD

FedAvg
None 24.67 34.00 25.10 27.53 35.70 29.40± 4.59
SimCLR 34.83 29.40 33.83 30.73 29.67 31.69± 2.22

IFCA
None 63.73 61.90 62.50 65.53 63.27 63.39± 1.24
FedAvg 63.63 63.17 64.80 62.90 61.70 63.24± 1.01

CP-CFL SimCLR 67.90 66.90 68.30 66.30 66.43 67.17± 0.80

Table C.20: Test accuracy (%) obtained with the ResNet-18 encoder on the STL-10-to-STL-10 task
(T = 100). SD, standard deviation.

Appendix D. ResNet-50 encoder

Table D.21 presents the evaluation results obtained with the ResNet-50 (He et al., 2016)
encoder on the STL-10-to-STL-10 task. For the contrastive pre-training step, we set the
number of epochs to 500 and the batch size to 250. We use a projection head θg containing
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a ReLU-activated dense layer with 1024 neurons, followed by an another dense layer with
2048 neurons. The output dimension of the ResNet-50 encoder is 2048, and we use θc-2 as
the classifier head. Using the ResNet-50 encoder, CP-CFL can still outperform the baseline
approaches as shown in Table D.21.

Pre-
training

Accuracy (%)
T=100 Best

FedAvg
None 45.10 45.80
SimCLR 39.07 46.13

IFCA None 67.93 67.93
FedAvg 69.57 71.10

CP-CFL SimCLR 72.93 72.93

Table D.21: Test accuracy (%) obtained with the ResNet-50 encoder on the STL-10-to-STL-10 task.

Appendix E. Pre-training time

We performed all of our experiments on a single RTX 3080 GPU with 10 GB of memory.
Table E.22 compares the training time per epoch for SimCLR pre-training using different
encoder architectures on the STL-10 unlabeled portion. We also calculate the computational
cost of each encoder in flops using the keras-flops (Tokusumi, 2020) package. According
to Table E.22, pre-training with the CNN encoder takes approximately 2 h for 300 epochs,
while pre-training with the ResNet-18 and ResNet-50 encoders takes around 8 and 18 h,
respectively, for 500 epochs on our hardware.

Encoder Time per epoch (s) Flops (G)

CNN ≈ 23 0.17
ResNet-18 ≈ 60 0.67
ResNet-50 ≈ 134 1.42

Table E.22: Training time per epoch for SimCLR pre-training on the unlabeled data portion of the STL-10
dataset. We also report the computational cost of each encoder in flops.
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