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Abstract

We explore different strategies to integrate prior domain knowledge into the design of a deep neural network (DNN). We focus
on graph neural networks (GNN), with a use case of estimating the potential energy of chemical systems (molecules and crystals)
represented as graphs. We integrate two elements of domain knowledge into the design of the GNN to constrain and regularise its
learning, towards higher accuracy and generalisation. First, knowledge on the existence of different types of relations (chemical
bonds) between atoms is used to modulate the interaction of nodes in the GNN. Second, knowledge of the relevance of some
physical quantities is used to constrain the learnt features towards a higher physical relevance using a simple multi-task paradigm.
We demonstrate the general applicability of our knowledge integrations by applying them to two architectures that rely on different
mechanisms to propagate information between nodes and to update node states.
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1. Introduction

We investigate the introduction of domain knowledge into
the design of a graph neural network (GNN), to constrain and
regularise its learning towards higher accuracy and generalisa-
tion. GNNs were first proposed in (Scarselli et al., 2009) to
process data represented as graph. An internal state hv is asso-
ciated to each node v of the graph, and the ensemble of internal
states serves to produce an output ŷ. Each internal state is it-
eratively updated, based on 1) input features xv associated to
the node, 2) input features xe

vw associated to the edges of the
node, and 3) actions from neighbour nodes w, represented as a
message mv =

∑
w mvw. The message mvw is generated by a

message function M(hv,hw, xe
vw)1 using the internal state hw of

the neighbouring node. The message function M is shared by
all nodes. It is typically implemented by a perceptron, e.g. as
in (Liu et al., 2021a) where a perceptron is applied to a con-
catenation of xe

vw and of hv ◦hw (◦ being element-wise multipli-
cation). The update function U(hv, xv, xe

vw,mv)2 is also shared
by all nodes. It is originally implemented by a perceptron, but
it can also benefit from a recurrent kernel such as GRU (e.g.
in (Gilmer et al., 2017)) or LSTM. Depending on the task, the
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1This is a general definition, and in some implementations M may only use

a subset of its inputs.
2Here also this is a general definition, and in some implementations U may

only use a subset of its inputs.

GNN’s output is then computed from the node states by a read-
out function, which may be implemented by a perceptron or
more complex kernels. Variants of the original GNN have been
proposed to accommodate special graph types, such as directed,
see e.g. (Wu et al., 2021; Zhou et al., 2020) for an overview.

Schlichtkrull et al. (2018) considered the case of edges repre-
senting different types of relation between nodes, and proposed
to specialise the message function M with regards to relation
type r. This was achieved with distinct perceptrons. In (Zhang
et al., 2019), Zhang et al. obtained a similar specialisation of M
to the relation type using specialised weights. In (Chen et al.,
2021), Chen et al. took a different approach to account for re-
lation type, with separate and specialised GNNs for each sub-
graph of a given edge type, before final fusion of learnt repre-
sentations.

We further explore avenues for integrating domain knowl-
edge into the design of GNNs, with the aim to constrain and
simplify the GNN’s learning to improve its generalisation and
accuracy, and to allow training on smaller datasets. We consider
two distinct aspects, namely 1) the information flow within the
GNN, and 2) the relevance of learnt node states for the appli-
cation domain. Regarding point 1), we expand and generalise
on the initial proposition of Schlichtkrull et al. (2018) through
the exploration of different pathways for specialising the infor-
mation flow within the GNN, namely by acting on the message
generation M or on the node update U. We propose a more
general formulation that applies to all GNN architectures and
their implementations of M and U. With point 2), we also ex-
ploit the knowledge that some auxiliary quantities/qualities are
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Figure 1: Graph representation of a molecule (left from (Glavatskikh et al., 2019)) for GNN estimation of potential energy and stable geometry. Nodes of states
hi are atoms and colour denotes atom type. Edges link chemically bonded atoms and colour denotes bond type. Non-bonded atoms may also share edges in fully
connected graphs, but these edges are not represented for readability. Messages mi j are exchanged across edges. The GNN outputs an energy estimate, along with
the estimates of one or several auxiliary (physical and chemical) properties in the case of multi-task learning. Energy estimates at different molecule geometries
may be used to identify stable configurations at the minimum of energy.

closely related to the studied phenomena and should play a role
in the internal representation of the DNN.

We consider the case study of estimating potential energies3

of a chemical system, either molecule or crystal, as a function of
geometry (i.e. position of atoms). Such systems are represented
as chemical graphs, with nodes denoting individual atoms, and
edges the type of bond between them, as illustrated in Fig. 1.
For out-of-equilibrium (OoE) systems, the atoms are at posi-
tions which are not at the minimum of potential energy. There
is an interest in estimating the potential energy of OoE systems,
as this allows searching for stable geometries through minimi-
sation of the energy, with a possible aim to discovering new
materials or simulating crystal growth. Such calculations typi-
cally require large amounts of resources and do not scale well
to larger system sizes (i.e. number of atoms) (Jiang et al., 2003;
Erba et al., 2017). This was addressed in the two seminal works
MPNN (Gilmer et al., 2017) and SchNet (Schütt et al., 2017b)
with two GNNs that estimate energy in a matter of millisec-
onds. Indeed, GNNs and their message passing principle are
well suited to capture the atomic interactions that underpin the
system’s chemical properties. Further recent works have built
on these early GNNs, e.g. (Liu et al., 2021b; Schütt et al., 2021)
improve on MPNN and (Unke and Meuwly, 2019; Klicpera
et al., 2020b,a; Batzner et al., 2021) improve on SchNet.

We summarise our main contributions as follows:
[C1] We leverage the existence of different edge types to

modulate the information flow within the GNN (Section 3.1).
To this end, we formulate and compare two strategies, namely
specialised message production and specialised node update.
For the specialised node update, we provide different imple-
mentations for GRU and for dense layer-based update func-
tions. While specialised message production was proposed in
some previous works and for specific architectures, our formu-
lation is more general, and our proposition of specialised node
update is novel.

[C2] We leverage a multi-task learning framework to enforce
learnt representations to be more related to quantities of inter-
est (Section 3.2). We explore the potential of this approach to

3determined at the electronic ground-state at given positions of atoms (i.e.
given geometry) for static systems

better capture the underlying mechanisms behind the studied
phenomenon.

[C3] We evaluate our domain knowledge integration strate-
gies both individually and jointly, on the case study of estimat-
ing the potential energy of chemical systems (molecules and
crystals). Our methods are applied to the very different archi-
tectures of MPNN and SchNet to demonstrate their flexibility
to GNN type (Section 4). We demonstrate that they bring an
improved accuracy and greater generalisation to graph struc-
ture and size. MPNN and SchNet are the basis for most re-
cent models within our case study. Therefore, our improved
performances for these base models suggest that our methods
may be applied to these more recent models with similar im-
provements. While our knowledge integration strategies are
demonstrated on potential energy estimation, they may be ap-
plied more generally to other application domains where graph
representations are relevant, for example circulation of goods
and people in economics (Panford-Quainoo et al., 2020), traffic
prediction (Diehl et al., 2019), or E-commerce recommenda-
tions (Liu et al., 2021a).

[C4] To support these experiments, we release three new
datasets of OoE molecules and crystals of various complexities
(Section 4.1).

2. Previous works

2.1. GNNs for estimating potential energies of chemical sys-
tems

Gilmer et al. (2017) implement with their Message Passing
Neural Network (MPNN)4 a rather classical GNN with atom
type as node feature, interatomic distance as edge feature, a
perceptron as message function, and GRU as update function.
The internal state hv is initialised as the node feature xv. Then,
messages and node states at iteration t + 1 are computed as:

mt+1
v =

∑
w∈Nv

M
(
ht

w, x
e
vw

)
(1)

ht+1
v = U

(
ht

v,m
t+1
v

)
(2)

4We use the implementation from: https://github.com/priba/nmp_

qc (MIT license).
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with Nv the set of neighbours of atom v. Three iterations are
performed, then the set of node states at all timesteps is used
to estimate the system’s potential energy as the sum of indi-
vidual nodes’ contributions, computed by perceptrons, using a
mean-squared error loss. In basic MPNN, only bonded atoms
exchange messages (Nv only contains bonded neighbours). In
a fully connected graph variant, which we denote as Extensive
MPNN (E-MPNN), all pairs of atoms exchange messages to
account for long-range interactions. Gilmer et al. (2017) also
introduced bond type (BT) information as edge input feature.
This additional feature improved energy estimates over using
interatomic distance alone. We refer to this other variant as
MPNN-BTF (MPNN with Bond Type Feature).

With SchNet5, Schütt et al. (2017a) implement another GNN
with 3 layers of interactions that do not share weights, as op-
posed to the recurrent iterations of MPNN, but weights are still
shared between nodes/atoms for each layer. The interaction lay-
ers are followed by atom-wise dense layers, non-linearities, and
a final sum pooling to obtain the energy estimate. Each inter-
action layer l considers the sum of actions of neighbours on
atom v in a fully connected graph (Eq. 3). The atoms’ actions
(i.e. messages) are element-wise multiplication ◦ of their node
states hl

w (updated by a dense layer with parameters Wl, bl)
with a radial filter Rl that depends on the distance dvw between
the two atoms. Rl is implemented by two softplus dense lay-
ers. Node states are initialised based on atom type (i.e. node
feature), then updated by a dense layer-based update function
(Eq. 4).

ml+1
v =

∑
w∈Nv

(
Wlhl

w + bl
)
◦ Rl (dvw) (3)

hl+1
v = hl

v + V l
(
hl

v,m
l+1
v

)
(4)

2.2. Domain-informed design of a deep neural network
In (Gilmer et al., 2017; Schütt et al., 2017a; Liu et al., 2021b;

Schütt et al., 2021; Unke and Meuwly, 2019; Klicpera et al.,
2020b,a; Batzner et al., 2021), the choice of a GNN architec-
ture is a well-motivated inductive bias where the internal rep-
resentation and information flow are designed to fit with the
physics of the replicated phenomenon, namely the interactions
of atoms producing the system’s potential energy. Other sim-
ilar examples of domain-informed choice of a GNN architec-
ture include (Mrowca et al., 2018) that predicts future states of
deformable objects represented by a hierarchical graph that de-
composes them into particles at various scales. Convolution op-
erations are defined on this graph to apply external forces to the
system, and to exchange information on collisions and phys-
ical state change. Similarly, (Kawahara et al., 2017) defined
convolution operations on a brain connectivity graph to predict
neurodevelopment scores. Diehl et al. (2019) found that ac-
counting for interactions between neighbouring vehicles helps
predict short-term behaviours of traffic participants. When pre-
dicting bilateral trade, Panford-Quainoo et al. (2020) hypothe-
sised that “adoption of specific domestic trade policies in one

5https://github.com/atomistic-machine-learning/

schnetpack (MIT license)

country can influence similar policies to its neighbours”, which
was realised as a graph to represent trade relationships between
countries. Liu et al. (2021a) also used a GNN architecture for
E-commerce recommendation where missing relationships are
inferred from a partially connected graph.

Other works have adapted the training of deep neural net-
works (DNN) based upon prior physics knowledge. Raissi et al.
(2018) constrained a dense-layer DNN that estimates physical
quantities (e.g. velocity, pressure) by a loss term obtained from
partial differential equations of fluid dynamics. These equations
are implemented using automatic differentiation, and their pa-
rameters are learnable. Schütt et al. (2017a) used a similar ap-
proach to improve SchNet’s predictions of both energies and
their derivatives w.r.t. atom positions, using a loss term based
on computed interaction forces. In the present work, we do not
employ equations of atomic interactions, as they become in-
tractable for larger systems. Instead, we focus on the domain-
informed architecture avenue, i.e. how a GNN’s design may
further account for the known properties (e.g. known physics
in our case study) of the problem.

3. Proposed domain knowledge integration

3.1. Specialising interactions based on edge type
The types of relation between nodes of a graph are an im-

portant factor when considering the nodes’ interactions towards
the GNN’s inference. As an illustration, in our case study, the
types of bonds between atoms determine atomic interactions
and their contribution to the system’s energy. Therefore, when
estimating the potential energy of a system as a function of ge-
ometry, it may be beneficial to account for the contribution of
different bond types (BT). MPNN-BTF provide a clue towards
confirming this assertion. By introducing BT information as
edge input feature in their GNN, Gilmer et al. (2017) improved
energy estimates over using distance alone. We take this do-
main knowledge integration principle further, and we propose
to design the information exchange within the GNN to reflect
the relations between nodes. In our case study, this results in
the nodes’ information exchange better reflecting the physics
of atomic interactions.

Similar to (Schlichtkrull et al., 2018), we introduce spe-
cialised interactions based on relation type, with relation type
being BT6 in our case study. While (Schlichtkrull et al., 2018)
focused on the production of messages that are specialised to
the relation, we explore two strategies of specialising either the
message production, or the node update. These two processes
operate based on their own and separate unit types (e.g. per-
ceptron, GRU...) and learnt parameters. Thus, our two strate-
gies act on different learning elements within the GNN. Fur-
thermore, while (Schlichtkrull et al., 2018) focused on a single
GNN type (GCN), we provide more general formulations that
are adapted to different architectures.

6BT is predetermined using RDKit, https://www.rdkit.org/ (BSD 3-
Clause license), and Antechamber (Wang et al., 2001) (GPL-3 license), for
molecules with Canonical SMILES representation and for others, respectively.
BT is provided as an input and it is not determined by the GNN.
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3.1.1. Specialised message production
Separate messages mr

vw for each relation type r between
nodes are produced by a relation-specialised message function
Mr. In the specific case of a perceptron-based Mr, this is equiv-
alent to (Schlichtkrull et al., 2018). For other implementations
of the message function, the r-specialised version is simply ob-
tained by having a separate set of learnt parameters per relation
type r. For our two example GNNs, the r-specialised message
function is denoted Mr (MPNN, see Eq. 1) or Rl

r (SchNet, see
Eq. 3) and become respectively:

mt+1
v = α

∑
w∈Nv

M
(
ht

w, x
e
vw

)
+ (1 − α)

∑
r∈R

∑
w∈N r

v

Mr

(
ht

w, x
e
vw

)
(5)

ml+1
v = α

∑
w∈Nv

hl
w ◦ Rl (dvw) + (1− α)

∑
r∈R

∑
w∈N r

v

hl
w ◦ Rl

r (dvw) (6)

with α modulating the strength of the relation-specialised mes-
sage production with regards to the original generic message
production. R is the set of relation types. In our application sce-
nario, it is the set of bond types, that may include a ‘no bond’
element to consider a fully connected graph as in SchNet. N r

v
is the set of neighbour nodes that share a relation of type r with
node v.

3.1.2. Specialised node update
Specialised interaction may also use generic messages mvw,

but handling them in a relation-specialised manner when updat-
ing node states. We explore the following different implemen-
tations:

Specialised weighting of the messages. Messages coming from
nodes of different relation types are weighted by a relation-
specialised and learnable (scalar or vector) weight λr:

mv = α
∑

w∈Nv

mvw + (1 − α)
∑
r∈R

λr

∑
w∈N r

v

mvw (7)

In the specific case of a perceptron-based message function M,
this approach is equivalent to the basis-decomposition regular-
isation proposed in (Schlichtkrull et al., 2018) as a mean to
reduce the number of learnable parameters associated to spe-
cialised message production.

Specialised update functions. This approach implements sepa-
rate relation-specialised update functions and sums their contri-
butions. As for Mr, r-specialised update functions of any type
may be obtained through specialised sets of learnt parameters.
Node update for MPNN and SchNet become respectively:

ht+1
v = αU

(
ht

v,m
t+1
v

)
+ (1 − α)

∑
r∈R

Ur

ht
v,

∑
w∈N r

v

mt+1
vw

 (8)

hl+1
v = hl

v + αV l
(
hl

v,m
l+1
v

)
+ (1 − α)

∑
r∈R

V l
r

hl
v,

∑
w∈N r

v

ml+1
vw

 (9)

In the case of MPNN (Eq. 8), where the update function is
implemented by a GRU unit, we experiment with three different
levels of weight sharing when specialising Ur in order to limit
the amount of added model complexity. A similar strategy may
be employed for other types of update function.

Implementation 1) We use separate GRU cells, one per
relation type, to implement the different Ur.

Implementation 2) We use a single GRU cell, so that all
relation channels share the GRU’s internal state. The GRU’s
Wz, Wr and Wh weight matrices contain weights that are spe-
cialised for the different relation types. In practice, this amounts
to concatenating the different messages from each relation
type

[∑
w∈N1

v
mvw . . .

∑
w∈N |R|v

mvw
]T

before providing them to the
GRU cell.

Implementation 3) We also use a single GRU cell with
concatenated messages from different relation types, but we
reduce the number of free GRU parameters in Wz, Wr and
Wh by sharing them between relation channels: Wz/r/h =[
Qz/r/h . . .Qz/r/h

]T
with Qz, Qr and Qh being matrices.

3.2. Relating learnt features to relevant physical quantities
Multi-task learning (MTL) may be seen as a way to introduce

an inductive bias, where one or several auxiliary tasks further
constrain the model and its learnt features (see e.g. (Ruder,
2017; Zhang and Yang, 2018) for a review, and Fig. 1 for illus-
tration). We use this paradigm to encourage the GNN’s node
states to relate more to relevant (physical) properties for our
problem. Drawing motivation from the fact that BT is charac-
terised by the valence property of atoms, we hypothesise that
a more physically relevant node state may better support BT-
specialised interactions. We explore the potential of MTL for
better relating learnt features to physical parameters that are rel-
evant to a final task, and the effect on this task. Our exploration
encompasses different GNN architectures and auxiliary tasks.
We also evaluate separately the effects of individual tasks.

We experiment with the auxiliary estimation of low- and
high-level system-wise properties: 1) the number of atoms of
each type present in the system. This composition is directly
relevant to the value of potential energy, therefore it may be
beneficial to draw the attention of the DNN on composition.
2) the number of orbitals associated with each atom type. In
addition to being physically relevant to the definition of poten-
tial energy, this is also particularly relevant to determine the BT
between two atoms, in support for specialised interaction. 3)
a probability distribution for the scaling to the stable geome-
try, estimated as a Gaussian function as in (Timoshenko et al.,
2018). This quantity is less directly related to the physical prop-
erties of the chemical system, while still being related to po-
tential energy. A chemical system at equilibrium being at its
minimum of potential energy, the task of estimating how far the
system is to equilibrium (or to minimum potential energy) is an
interesting task that considers the whole chemical system and
how it relates to its potential energy. In future works, we may
investigate auxiliary quantities linked to the physics of individ-
ual nodes/atoms, such as atomic forces or the medium-level
descriptor atom-centred symmetry functions (ACSFs) used in
(Liu et al., 2021b). In other case studies, a purpose-designed set
of relevant properties would need to be designed, using knowl-
edge of the problem. While we focus on properties that are
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relevant to the whole graph, node-wise properties may also be
considered in the future.

In practice, for each auxiliary estimation, a new output layer
is added and a mean-squared error loss term is minimised dur-
ing training. This is identical to the energy output estimation,
and the type of output layer depends on the GNN architecture
(see Section 2.1 for details on the two GNNs used in our exper-
iments). Each auxiliary loss term is weighted by an empirical
β = 0.3 hyper-parameter while the original potential energy loss
keeps a weight of 1 to emphasis the main task more:

Ltotal = LMS E(y, ŷ) + β
∑
a∈A

LMS E(a, â) (10)

with y and ŷ the ground-truth and predicted potential energies,
andA the set of auxiliary quantities a being used.

4. Experiments

We evaluate the impact of our knowledge integration on the
two GNNs of MPNN and SchNet. They are the two bases to
current state-of-the-art (SoTA) models for estimating potential
energies e.g. (Liu et al., 2021b; Schütt et al., 2021; Unke and
Meuwly, 2019; Klicpera et al., 2020b,a; Batzner et al., 2021),
thus our methods may also be applied to current and future
SoTA, likely with similar results. In addition, the fact that these
two architectures are very different suggests that similar im-
provements may be obtained on other GNN types too.

Neither models are used in the same conditions as in their
original papers. In (Gilmer et al., 2017), MPNN was only
evaluated on stable configurations of molecules from the QM9
dataset (Blum and Reymond, 2009; Montavon et al., 2013), that
contains a diverse set of 134k molecules using 5 atom types.
We further evaluate it on new datasets of OoE molecules and
crystals (Section 4.1). Similarly, for higher accuracy, SchNet
was trained in (Schütt et al., 2017a) either on single molecules
at a time (from the MD17 dataset (Chmiela et al., 2017; Schütt
et al., 2017b; Chmiela et al., 2018) of 8 small organic molecules
with independent perturbations of their atoms’ positions) or on
isomers (i.e. molecules of same size and atomic composition,
from the ISO17 dataset (Schütt et al., 2017a,b; Ramakrishnan
et al., 2014) of 129 isomers of C7O2H10). We apply SchNet
to our harder scenario of jointly modelling multiple molecules
and crystals of various sizes and atomic compositions. We also
apply both GNNs to unseen sizes and compositions.

A comparison of MPNN and E-MPNN is provided in the
sup. materials, where MPNN does as well as E-MPNN on one
dataset, and outperforms it on all others. Thus, we only work
with MPNN. We do not use MPNN-BTF because we aim to
demonstrate the effectiveness of accounting for physics knowl-
edge in the design of the GNN, rather than merely in the in-
put features. Results of the augmented MPNN-BTF are still
provided in the sup. materials. We use the base models’ de-
fault hyper-parameters for both original and augmented ver-
sions. For (base and augmented) MPNN, we experimented with
different numbers of iterations (see sup. materials). MPNN’s
default of 3 worked best. New hyper-parameters α are learnable

Figure 2: FCC Bravais crystal lattice (left) and growing crystal structures (cen-
tre: seed, right: intermediate).

and optimised during training of the DNN. The sup. materials
provide a list of the number of additional parameters brought
by our methods. Early stopping at 50 stable epochs ensures
that each DNN trains for a suitable time. The datasets are split
between training, testing, and validation in proportions appro-
priate for the data complexity as detailed in the sup. materials.

4.1. Datasets

Extended QM9 (E-QM9) includes diverse sizes (i.e. num-
ber of atoms) and compositions of OoE molecules, through
extending a subset of QM9 with OoE versions of 10k of its
molecules.

Periodic crystals (PC) allows learning regular bonding
patterns that arise in periodic structures by repeating the base
crystal lattice. We use the Face-Centred Cubic (fcc) Bravais
lattice (Fig. 2 left) for aluminium (Al) and copper (Cu) crystals.

Crystal Growth (CG) contains growing crystals of in-
creasing size and complexity. Starting from a basic fcc crys-
tal seed of 14 atoms (Fig. 2 centre), new systems are generated
by iteratively placing atoms at a random location on the sur-
face of the growing crystal following its lattice pattern (Fig. 2
right), with sizes ranging from 15 to 114 atoms. We use 20
random seeds for each atom type, thus creating 40 varied Al
and Cu crystal growths and 4,000 stable systems. As a result,
for a given crystal size and composition (atom type), there are
20 samples with differently located atoms. CG enables experi-
menting with large scale atomic interactions in non-regular sys-
tems, and enables evaluation of an ML method’s ability to learn
how each atom contributes to the final potential energy.

In all datasets, OoE systems are obtained by compress-
ing/dilating all interatomic distances (i.e. isometrically) at reg-
ular intervals within 90-150% of stable geometry, which we re-
fer to as ‘scaling’. In other words, scaling is applied to the
coordinates of all atoms within the system: x̂ = λx. At each
geometry, the ground-truth potential energy is calculated using
CP2K7’s DFT.

We generate two subsets of CG: Stable Crystal Growth
(SCG) with only stable geometries, and Unstable Crystal
Growth (UCG) with scaling. Both contain Al and Cu crys-
tals. SCG aims to evaluate an ML model at varying system

7https://www.cp2k.org/ (under the GPL-2.0 license)
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Table 1: Impact of each domain knowledge integration strategy on MPNN (top) and SchNet (bottom) for E-QM9. Results are in the format: mean (std). The
specialised interaction methods that optimise at best energy and geometry are highlighted in bold for each GNN. We also show in the last column the added number
of parameters in percentage of original model size.

Strategy AE RE DSG +% parameters

1 MPNN base model with no BT information 0.242 (1.318) 0.0029 (0.015) 0.034 (0.074) –
2 MPNN-BTF 0.091 (0.476) 0.0012 (0.005) 0.039 (0.056) –
3

r-
specialised
interactions

Specialised message Eq. 5 (α = 0.624) 0.272 (1.293) 0.0034 (0.014) 0.051 (0.080) 398.20
4

Specialised
node
updates

Eq. 7 scalar λr (α = 0.628) 0.122 (0.431) 0.0016 (0.005) 0.032 (0.057) 5.28e−4

5 Eq. 7 vector λr (α = 0.627) 0.105 (0.502) 0.0013 (0.005) 0.050 (0.049) 3.85e−2

6 Eq. 8 impl. 1) (α = 0.615) 0.106 (0.253) 0.0014 (0.003) 0.023 (0.048) 17.11
7 Eq. 8 impl. 2) (α = 0.635) 0.073 (0.170) 0.0010 (0.002) 0.030 (0.048) 10.18
8 Eq. 8 impl. 3) (α = 0.618) 0.131 (0.436) 0.0017 (0.005) 0.025 (0.055) 3.42
9 Auxiliary

estimates
of

# atoms of each type 0.171 (0.986) 0.0021 (0.011) 0.031 (0.046) 3.43
10 # orbitals 0.195 (0.545) 0.0025 (0.006) 0.033 (0.046) 3.43
11 distance to stable geometry 0.119 (0.698) 0.0015 (0.008) 0.033 (0.046) 3.40

12 SchNet base model 0.038 (0.037) 0.0005 (0.0005) 0.020 (0.031) –
13

r-
specialised
interactions

Specialised message Eq. 6 (α = 0.734) 0.036 (0.035) 0.0005 (0.0005) 0.022 (0.032) 220.43
14 Specialised

node
updates

Eq. 7 scalar λr (α = 0.529) 0.020 (0.018) 0.0003 (0.0002) 0.025 (0.032) 8.01e−3

15 Eq. 7 vector λr (α = 0.570) 0.024 (0.028) 0.0003 (0.0003) 0.034 (0.034) 0.51
16 Eq. 9 (α = 0.727) 0.031 (0.032) 0.0004 (0.0004) 0.015 (0.028) 220.43
17 Auxiliary

estimates
of

# atoms of each type 0.038 (0.036) 0.0005 (0.0005) 0.032 (0.033) 0.39
18 # orbitals 0.036 (0.035) 0.0005 (0.0005) 0.022 (0.032) 0.39
19 distance to stable geometry 0.049 (0.044) 0.0007 (0.0006) 0.037 (0.033) 0.36

sizes (i.e. number of atoms) without the added complexity
of varying scale. For UCG, we select 5 of the random crys-
tal growth seeds for each atom type to consider 1,000 stable
geometries to be scaled. Statistics on all datasets are in the
sup. materials. The datasets are publicly available at https:
//doi.org/10.6084/m9.figshare.12360620.

4.2. Evaluations of the individual domain knowledge integra-
tion strategies

We evaluate the individual effects of the different knowl-
edge integration methods in comparison to non-augmented base
GNNs, on E-QM9. Table 1 reports absolute error (AE) and rel-
ative error (RE =

|ŷ−y|
|y| ) between true y and predicted ŷ energies

in a.u. unit. Squared errors are provided in the sup. materials.
We also report the Distance to Stable Geometry (DSG) which
is the absolute difference between the scaling where the pre-
dicted energy is minimal (optimised by multiple DNN queries
for various scalings), and the ground-truth at-equilibrium scal-
ing (i.e. 100%): DSG = |λ − 1|. Mean and std are computed
over chemical systems, with std indicating the ability to handle
a large variety of systems.

Results of (non-augmented) base models are provided in
rows 1,12 of Table 1. When compared against these base mod-
els, and considering only the best performing methods for r-
specialised interactions, all integrations of domain knowledge
tend to improve energy estimation and/or finding stable geome-
tries. Since all the base and augmented models are trained on
the exact same data (no data augmentation), these improve-
ments over base models cannot come from training on an exten-
sion of QM9 that contains OoE molecules. Instead, improve-

ments reflect the effect of integrating domain knowledge into
the design of the augmented GNNs.

The impact of BT information is the strongest for both ar-
chitecture types (rows 2,6,7,14). This confirms Gilmer et al.
(2017)’s observation that BT is relevant for estimating energy.
Furthermore, accounting for BT in the design of r-specialised
interactions in MPNN (rows 6,7) has a stronger positive impact
than merely using it as an input edge feature as in (Gilmer et al.,
2017) (row 2). This suggests that r-specialised interactions bet-
ter capture the physics of atomic interactions.

When examining the effects of the different r-specialised in-
teraction methods in parallel to the additional model complexity
that they bring (last column of Table 1, see also sup. materials
for more numbers of parameters), we notice that the very sim-
ple r-specialised weighting of the messages (Eq. 7) performs
generally well while bringing a very limited number of extra
parameters. On the other hand, r-specialised message produc-
tion (Eqs. 5 and 6) brings a very large number of new parame-
ters (+220% and +398%), which may explain its lower perfor-
mance. The same observation applies to r-specialised update
functions for SchNet (Eq. 9, +220%). However, in the case of
MPNN, r-specialised update functions (Eq. 8) provide a lower
number of new parameters (+3% to 17%), and remain within a
manageable complexity that is exploited to bring the best per-
formance improvement. In fact, the two implementations that
bring the highest increase in complexity (+10-17%) provide the
best performance. Considering that MPNN and SchNet were
originally proposed with different sizes of node states (73 vs.
128), it is also a possible explanation for MPNN benefiting
more than SchNet from an added model complexity.
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Table 2: Ablation study and effect on handling different atom types in crystals of UCG

Al Cu

Method AE DSG AE DSG

MPNN 0.643 (0.495) 0.096 (0.135) 6.250 (4.772) 0.214 (0.192)
Augm.-MPNN 0.150 (0.120) 0.031 (0.037) 1.160 (0.878) 0.108 (0.122)

Augm.-MPNN w/o r-spec. interactions 0.180 (0.144) 0.050 (0.036) 0.638 (0.582) 0.071 (0.071)
Augm.-MPNN w/o aux. # atoms 0.179 (0.129) 0.011 (0.026) 0.928 (0.760) 0.098 (0.125)

Augm.-MPNN w/o aux. # orbitals 0.190 (0.141) 0.020 (0.034) 0.906 (0.724) 0.080 (0.073)
Augm.-MPNN w/o aux. DSG 0.177 (0.151) 0.035 (0.038) 0.834 (0.680) 0.082 (0.102)

SchNet 6.357 (3.159) 0.117 (0.047) 5.355 (5.278) 0.066 (0.088)
Augm.-SchNet 0.333 (0.247) 0.069 (0.071) 0.368 (0.259) 0.002 (0.008)

Augm.-SchNet w/o r-spec. interactions 0.444 (0.358) 0.080 (0.073) 1.424 (1.490) 0.034 (0.060)
Augm.-SchNet w/o aux. # atoms 0.395 (0.169) 0.102 (0.025) 0.304 (0.238) 0.001 (0.009)

Augm.-SchNet w/o aux. # orbitals 0.241 (0.146) 0.006 (0.019) 0.286 (0.176) 0.054 (0.031)
Augm.-SchNet w/o aux. DSG 0.296 (0.203) 0.035 (0.049) 0.328 (0.220) 0.000 (0.000)

Table 3: Evaluation of the base (left) and augmented (right) GNNs. For each architecture type, best results between base and augmented GNNs are highlighted in
bold.

Base Augmented

Model Dataset AE DSG AE DSG

MPNN

E-QM9 0.242 (1.318) 0.034 (0.074) 0.065 (0.161) 0.030 (0.045)
Periodic Crystals 0.041 (0.032) 0.073 (0.079) 0.039 (0.035) 0.074 (0.079)

Stable CG 2.796 (3.797) – 2.105 (2.624) –
Unstable CG 2.892 (3.820) 0.344 (0.083) 0.655 (0.805) 0.069 (0.098)

SchNet

E-QM9 0.038 (0.037) 0.020 (0.031) 0.026 (0.025) 0.016 (0.028)
Periodic Crystals 13.444 (15.984) 0.054 (0.012) 15.961 (19.424) 0.039 (0.053)

Stable CG 2.021 (1.829) – 1.217 (1.586) –
Unstable CG 5.866 (4.377) 0.091 (0.075) 0.351 (0.254) 0.035 (0.060)

The auxiliary estimation of physical properties (rows 9-11)
also improves on base MPNN, but less so than BT information.
On SchNet, estimating the number of orbitals also provides a
slight improvement (row 18). These improvements may come
from the models implicitly discovering and encoding useful
physics representations required for accurate predictions. In-
deed, as discussed in Section 3.2, these quantities are chosen
based on knowledge of the domain to help focus the GNN’s
attention on important aspects of the learning problem. In par-
ticular, the distance to stable geometry is related to a high level
system optimisation and its improved performance may indi-
cate that the GNN’s features better capture the dependency of
energy on geometry. In future works, we may investigate auxil-
iary quantities linked to the physics of individual atoms/nodes.

We further explore the effect of the best method for r-
specialised interactions (Eq. 8 impl. 2 for MPNN and Eq. 7 with
scalar λr for SchNet) and of each auxiliary estimation in an ab-
lation study using UCG (results are reported in Table 2). As pre-
viously, the two GNN architectures don’t benefit equally from
a same augmentation, with auxiliary estimates being mostly
beneficial to MPNN. Furthermore, there are a few occurrences
where some augmentations, which did help individually, were
better removed from fully augmented models. This suggests

that 1) the weighting of the auxiliary tasks may need to be op-
timised, and 2) some augmentations may interact and result in
a more complex behaviour. Total model complexity may also
need to be accounted for to explain these behaviours. Future
work will further explore the cause for these varying behaviours
and avenues to better balance the contributions of auxiliary esti-
mations for example based on (Long et al., 2017; Cipolla et al.,
2018) instead of the fixed β = 0.3. For the rest of the paper,
since the combined four augmentations still outperform base
models by a significant margin, we use this simple configura-
tion to assess the properties of fully augmented GNNs.

4.3. Evaluation of the fully augmented models on OoE
molecule and crystal data

We combine all our domain integration methods (i.e. the
best performing method for r-specialised interactions and all
auxiliary estimates) into Augmented-MPNN and Augmented-
SchNet. For r-specialised interactions, we retain Eq. 8 impl.
2 for MPNN and Eq. 7 with scalar λr for SchNet. Given the
complexity discussion of the previous section, we will also
present some results using the simpler (and still reasonably
well performing) Eq. 7 with scalar λr for MPNN. Although r-
specialised message production and r-specialised node update
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Figure 3: Energy estimations at different scalings of two examples of molecules
for base (left) and augmented (right) GNNs.

are not mutually exclusive, their combination will be explored
in future work. For CG, we consider system sizes of 15 to 75
atoms instead of the available 114 due to memory restrictions.
Results are reported in Table 3 and with more details and met-
rics in the sup. materials. We further illustrate the performance
of the fully augmented GNNs by plotting their energy estimates
for all scaled versions of randomly picked systems of E-QM9
in Fig. 3, and of CG in Fig. 4.

We first note that it is beneficial to combine r-specialised in-
teractions and auxiliary estimations, with AE and/or DSG re-
sults being further improved in Table 3 as compared to individ-
ual augmentations in Table 1. The fact that some auxiliary esti-
mations are chosen to support r-specialised interactions may be
a reason for these further improvements.

Both GNN types benefit from our domain knowledge integra-
tion, with overall more accurate energy estimates and better per-
formance at finding stable geometries (DSG). The latter point
is also illustrated in the example energy plots of Figs. 3 and 4
where the augmented GNNs produce curves with a correct min-
imum while base GNNs sometimes had physically-unrealistic
curves with incorrect minimum. The improvement is partic-
ularly strong on CG, hinting that our augmented models can
generalise better to new geometries, that are a particularity of
this dataset. Consequently, on Periodic Crystals, which con-
tains only two mono-atomic crystals (with various scalings), we
expect to see further improvements in future works by consid-
ering structures outside of the fcc lattice and a wider variety of
atom types.

4.4. Interpretation of the nodes’ hidden states

We examine the node states through visualising the contribu-
tion of each node to the final estimate. In MPNN, perceptrons
combine the states of a node at all timesteps. In SchNet, the last
atom-wise layer has output size of 1. In both networks, these
reduced values are summed across nodes to obtain the energy
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Figure 4: Example energy estimations at different scalings for a small (15
atoms, top) and large (75 atoms, bottom) crystalline system. Left: base models,
right: augmented models
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Figure 5: Contribution of a moving atom (left red curve) and mean contribution
of static atoms (right red curve) toward the energy estimate of a crystal (black
curves) by Augmented-SchNet

estimate. After normalising across all nodes, they may be con-
sidered as the atoms’ contributions to the energy estimate.

After training the GNNs on UCG, we consider an atom that
is newly added to a (stable) crystal seed of 14 atoms. When
scaling the distance of this single atom to the rest of the crystal,
we examine its contribution and that of the rest of the (static)
atoms. This scenario differs from the training scenario of whole
system scaling, but Augm.-SchNet in Fig. 5 still produces plau-
sible energy estimates with correct minimum (although some
offsets in energy sometimes happen and will be investigated in
future work).

As shown in the sup. materials, base GNNs were not success-
ful, including SchNet although this ‘freely’ moving atom setup
is closer to its original experimental setup (Schütt et al., 2017a),
possibly due to not being able to learn on scaled systems and
many sizes at once. Thus, our augmentations increased the
generalisation ability of SchNet through a better capture of the
atomic interactions.

Augm.-MPNN could not obtain a plausible energy curve
with correctly located minimum either. We tested both the best
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Figure 6: Impact of system size on accuracy when trained on systems of up to 75 (top) and 25 (bottom) atoms from UCG.

performing specialised interaction method of Eq. 8, that intro-
duces a higher model complexity, and the simpler specialised
interaction method of Eq. 7 with scalar λr, used in Augm.-
SchNet. Neither methods succeeded in handling the single
moving atom, which indicates that the lower generalisation to
new scenarios does not come from the higher complexity in-
troduced by Eq. 8, but rather would be inherent to the MPNN
model, and could not be overcome by our augmentations as in
SchNet.

In Augm.-SchNet, the moving atom’s contribution (left red
curve) is minimal at its stable location (i.e. minimum of energy,
black curve in Fig. 5). At the same time, static atoms (right red
curve) contribute maximally, in line with the crystal being at its
minimum energy driven by its regular structure. As the atom is
moved closer or pulled away, its contribution increases simul-
taneously with energy. At the same time, the relative contribu-
tions of static atoms decrease to give way to the perturbation of
the moving atom. This strongly suggests that the GNN learnt
to pay attention to the location of individual atoms, although it
was trained on systems that are isometrically scaled.

The same experiment, when performed after training on
SCG, is not as successful, with Augm.-SchNet producing an
implausible energy curve with no minimum. This indicates that
the different geometries provided by the 20 varied locations of
atoms for each crystal size were not enough to learn the im-
portance of fine location of individual atoms. When training
on UCG, the (global) scaling was complementary to the varied
occupations of atom sites in learning the importance of precise
location of individual atoms.

It is worth noting that the same training did not allow original
SchNet to learn this principle and to produce plausible energy
curves. Thus, it is the combination of our augmentations and of
a sufficiently diverse training data that achieved this result.

4.5. Generalisation to larger graphs
Fig. 6 presents energy AE on UCG as a function of system

size for base and augmented GNNs when trained on all sys-
tem sizes (up to 75 atoms) or on small systems only (up to 25
atoms), keeping the testing set equal. For Augm.-SchNet, the
better accuracy from the augmentations maintains the AE in
the best achieved range when training on small systems only.
For Augm.-MPNN, when training on small systems only, the
range of AE is also improved by a factor ∼100 compared to
base MPNN. Furthermore, accuracy correlates with system size
only marginally stronger than when training on all sizes (Pear-
son coef. 0.200 against 0.193). This is an improvement from
base MPNN, where Pearson correlation increases from 0.171
to 0.364. Therefore, our augmentations allow MPNN for learn-
ing of some basic principles about the atomic interactions that
are applicable to larger, unfamiliar systems. When using the
specialised interaction method of Eq. 7 with scalar λr, Pearson
correlation is similar at 0.224, and the range of AE is improved
by a factor ∼400. We explain this better AE by the different
complexities of Eqs. 8 and 7, which make the model more or
less robust to smaller training sets.

4.6. Generalisation to smaller training sets
We test whether the domain knowledge integration brings a

higher robustness to small training sets through a better gen-
eralisation, by reducing progressively the size of the training
set (keeping the testing set equal). Figs. 7, 8, and 9 present
results respectively on E-QM9 when decreasing the variety of
molecules and when decreasing the variety of scalings, and on
SCG (full details of the experimental setup are in the sup. ma-
terials).

When considering extremely small training sets, there are a
few cases where the augmented GNNs obtain worse results than
base GNNs. This might be explained by the increased model
complexity due to additional learnt parameters and auxiliary
tasks, requiring a minimal amount of data to train effectively.
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Figure 7: Robustness of base and augmented GNNs to smaller training sets (i.e.
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More generally, on E-QM9, while augmented GNNs tend to
outperform their base counterparts, they are not more robust to
decreasing the number of molecules to be trained on as per-
formances decrease with similar rates (Fig. 7). Thus, the aug-
mentations could not compensate for the loss of composition
diversity.

However, both augmented GNNs are quite stable to varying
numbers of scalings, and more so than their base counterparts
(Fig. 8). This indicates that they are better able to account for
the effect of varying geometries.

The most dramatic improvement is on SCG, where both aug-
mented GNNs see a more stable, then a later rise in mean AE
when decreasing the dataset size and the associated diversity in
crystal geometries (Fig. 9). We conclude that the augmentations
provided insights on geometry and scaling that did not need to
be learnt from data, hence reducing the need for exhaustively
covering these aspects in training samples.

5. Conclusion

We integrate domain knowledge into GNNs to improve accu-
racy and generalisation, with two proposed strategies: (1) spe-
cialised information flow within the GNN to better account for
relation types between nodes, and (2) further relating the learnt
representations to the studied phenomenon through MTL. We
explore the different means for specialising information flow
by acting on either message production or node update, and we
provide general formulations that are adapted to different archi-
tectures. We demonstrate them on two architectures: MPNN
and SchNet.

Our proposed domain knowledge integration is tested on a
quantum chemistry case study where potential energy of chem-
ical systems (molecules or crystals) is estimated as a function of
geometry. For this application, the elements of domain knowl-
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edge that we use are specifically related to atomic interaction
and underlying physics of potential energy.

The added model complexity varies widely with the augmen-
tation methods, and a too high complexity for a given GNN and
application may be detrimental. However, in many cases, the
added complexity proved helpful in learning complex and more
general concepts. It allowed the GNNs to better learn princi-
ples of atomic interactions, with improved handling of unseen
geometries in graphs, including unseen sizes of graphs and un-
seen perturbations of their nodes’ locations, and the ability to
train on smaller datasets.

Our domain knowledge integration methods add to the tool-
box of GNN augmentation strategies. They are generally ap-
plicable to non-physics domains, such as economics (Panford-
Quainoo et al., 2020), traffic prediction (Diehl et al., 2019),
or predicting relationships for E-commerce recommendation
(Zhang et al., 2019), where problems are naturally represented
as graphs. These new applications of our augmentations would
require an expert-based identification of relations and auxiliary
tasks of interest, following the example of our case study.

From the viewpoint of our case study, our augmentations
may enhance current and future state-of-the-art (SoTA) in es-
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timating potential energies and stable geometries of chemical
systems. Indeed, current SoTA are based on the two semi-
nal GNNs used in our case study, and we expect similar re-
sults may be obtained from augmenting their more recent vari-
ations. Furthermore, our results on two very different GNN
architectures suggest that similar improvements may also be
obtained on other GNN types, including future GNN-based So-
TAs. However, it is well-known that DNNs cannot offer guar-
antees on results and suffer from well documented problems
such as adversarial examples. Therefore, although our methods
improve their accuracy and robustness, numerical simulations
remain necessary for a final verification of an optimal geometry
found through a DNN’s predictions.
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