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ProxyMix: Proxy-based Mixup Training with Label
Refinery for Source-Free Domain Adaptation
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Abstract—Unsupervised domain adaptation (UDA) aims to
transfer knowledge from a labeled source domain to an unlabeled
target domain. Owing to privacy concerns and heavy data
transmission, source-free UDA, exploiting the pre-trained source
models instead of the raw source data for target learning, has
been gaining popularity in recent years. Some works attempt to
recover unseen source domains with generative models, however
introducing additional network parameters. Other works propose
to fine-tune the source model by pseudo labels, while noisy
pseudo labels may misguide the decision boundary, leading to
unsatisfied results. To tackle these issues, we propose an effective
method named Proxy-based Mixup training with label refinery
(ProxyMix). First of all, to avoid additional parameters and
explore the information in the source model, ProxyMix defines
the weights of the classifier as the class prototypes and then
constructs a class-balanced proxy source domain by the nearest
neighbors of the prototypes to bridge the unseen source domain
and the target domain. To improve the reliability of pseudo
labels, we further propose the frequency-weighted aggregation
strategy to generate soft pseudo labels for unlabeled target data.
The proposed strategy exploits the internal structure of target
features, pulls target features to their semantic neighbors, and
increases the weights of low-frequency classes samples during
gradient updating. With the proxy domain and the reliable
pseudo labels, we employ two kinds of mixup regularization,
i.e., inter- and intra-domain mixup, in our framework, to align
the proxy and the target domain, enforcing the consistency of
predictions, thereby further mitigating the negative impacts of
noisy labels. Experiments on three 2D image and one 3D point
cloud object recognition benchmarks demonstrate that ProxyMix
yields state-of-the-art performance for source-free UDA tasks.
Code is available at https://github.com/YuheD/ProxyMix.

Index Terms—Source-free unsupervised domain adaptation,
Pseudo labeling, Mixup training.

I. INTRODUCTION

The standard practice in the deep learning era—Ilearning
with massively labeled data—becomes expensive and labori-
ous in many real-world scenarios. Besides, the learned models
often perform poorly in generalization to new unlabeled do-
mains due to the domain discrepancy [1]. Hence, considerable
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Fig. 1: The motivation of ProxyMix, which aligns the unseen source
domain and target domain by two aspects: 1) aligning the proxy and
target domain; and 2) refining the pseudo labels.

efforts are devoted to unsupervised domain adaptation (UDA)
[2], [31, [4], [5], which aims to transfer knowledge from
a labeled source dataset to an unlabeled target dataset. In
recent years, UDA methods have been widely explored in
various tasks such as image classification [4] and semantic
segmentation [6]. The key problem of UDA is to alleviate the
gap across different domains. Prior UDA methods mainly fall
into three paradigms. The first paradigm aims to pull the statis-
tical moments of different feature distributions closer [7], [8],
and the second paradigm introduces adversarial training with
additional discriminators [4], [9]. The last paradigm adopts
various regularizations on the target network outputs like self-
training or entropy-related objectives [10], [11]. Despite the
impressive progress, the source data is always necessary during
domain alignment, which might raise data privacy concerns
nowadays.

The practical demand directly motivates a novel UDA
setting named source-free domain adaptation (SFDA) [12],
[13], where only the well-trained source model instead of
the well-annotated source dataset is provided to the target


https://github.com/YuheD/ProxyMix

M Ours M Entropy-criterion

100

Accuracy (%)

< 3 < < 3 N < S N A
FAASEFT EO S O
¥ W [QEENC AR R R A
Tasks of Office-home

Fig. 2: The accuracies per task of proxy source domain on Office-
home.

domain. The booming efforts in the SFDA community are
either generation-based or pseudo label-based. The generation-
based methods [13], [14], [15] introduce extra generative
modules to recover the unseen source domain at image-
level or feature-level, and then address this problem from a
UDA perspective. Nevertheless, generative modules introduce
additional parameters, and the recovered virtual source domain
usually suffers from a mode collapse problem, which results
in low-quality images or features. The pseudo label-based
methods [15], [16], [17], [18] label the target samples based on
the present model’s prediction or feature structure. However,
due to the extreme domain shift, the noises are inescapable,
result in inaccurate decision boundary.

To address the issues above (additional parameters and noisy
labels), we propose a new and effective method called Proxy-
based Mixup training with label refinery (ProxyMix), to deal
with the source-free domain adaptation problem. To bridge the
gap between the unseen source domain and the target domain
while avoiding introducing extra parameters, we first select
part of source-similar samples from the target domain rather
than synthesize virtual images to construct a proxy source
domain. Specifically, we define the weights of the source
classifier as the class prototypes [19], then select the nearest
neighbors for each class prototype in angle space to construct
the proxy source domain. Priors methods with proxy source
domain primarily employ entropy-criterion [16], [20], which
select samples with lower entropy for each class from pseudo-
labeled target data. In practice, as shown in Fig. 2, we observe
that the mean accuracy of our angle-induced proxy source
domain is clearly higher than the entropy criterion. Another
significant benefit is that our pseudo labels are determined by
the corresponding prototype, rather than the predictions from
the source model, allowing us to create a class-balanced proxy
source domain.

To improve the reliability of pseudo labels, we propose a
frequency-weighted aggregation pseudo-labeling strategy (FA)
as pseudo label refinery. FA includes three operations applied
to the predictions: sharpening, re-weighting, and aggregation.
Specifically, to avoid the ambiguous, we first sharpen the
predictions of the classifier. At the same time, we take
the frequency of each class into account and re-weight the
probability of each class, to improve the contribution of
low-frequency classes and avoid bias to majority and easy

classes in the target domain during gradient updating. Then we
introduce a non-parametric neighborhood aggregation strategy
to pull the unlabeled target features close to their semantic
neighbors, aiming to reduce the impact of outlier noisy labels
and compact the semantic clusters.

With the proxy source domain, we tackle the challenging
SFDA problem using a semi-supervised style with the aid of
refined pseudo labels. To align the proxy and target domain,
while alleviating the negative consequence of noisy labels, two
mixup regularizations [21], [22], [23], [24], i.e., inter-domain
and intra-domain mixup, are incorporated into our framework,
enforcing the model to maintain consistency, thus improving
the robustness against noisy labels. As illustrated in Fig. |, the
FA strategy refines the pseudo labels and compacts the feature
clusters while the mixup training aligns the two domains,
obtaining clear decision boundaries.

To summarize, the main contributions of this work are listed
below in three-fold:

o We propose a simple yet effective method, ProxyMix, for
source-free domain adaptation, which aims to discover
a proxy source domain and utilize mixup training to
implicitly bridge the gap between the target domain and
the unseen source domain.

o To obtain a reliable proxy source domain, we exploit the
network weights of the source model and select source-
like samples from the target domain in an efficient and
accurate way.

o To refine the noisy pseudo labels during alignment, we
further propose a new frequency-weighted aggregation
strategy, compacting the target feature clusters and avoid-
ing bias to majority and easy classes.

We conduct ablation study to verify the contribution and
effectiveness of both proxy source domain construction and
pseudo label refinery. Extensive results on four datasets further
validate that ProxyMix yields comparable or superior perfor-
mance to the state-of-the-art SFDA methods.

II. RELATED WORK
A. Unsupervised Domain Adaptation (UDA)

UDA aims to transfer knowledge from a label-rich source
domain to an unlabeled target domain. UDA problems can be
classified into four cases according to the relationship between
the source and target domain, i.e., closed-set [25], partial-set
[26], open-set [27], and universal [28]. As a typical example
of transfer learning, UDA provides methods to bridge domain
gaps for various applications such as object recognition [29],
[4], [2], [30], [3], [31] and semantic segmentation [6], [10].
The most prevailing paradigm for UDA is to extract domain-
invariant features to align different domains while preserving
the category information from the labeled source domain.
Roughly speaking, existing feature-level domain alignment
could be divided into two different categories. The first line
[4], [9], [5] aligns representations by fooling a domain discrim-
inator through adversarial training, while the second line [29],
[32] directly minimizes different discrepancy metrics (e.g.,
statistical moments) to match the feature distributions. Besides,
another line [33] focuses on the image space alignment and



converts the target image into a source style image (and
visa versa). By contrast, output-level regularization methods
[11], [34] achieve implicit domain alignment by forcing the
target outputs to be diverse one-hot encodings. [35] proposes
an auxiliary classifier for target data to get the high-quality
pseudo labels and [36] introduces cycle self-training by uti-
lizing target pseudo labels to train another head and enforce
them to perform well on the source domain. [37], [38] are the
two most closely related works that introduce mixup training
into adversarial UDA. However, our method does not require
access to source data and develops a new pseudo label refinery
strategy instead of focusing on the mix manner.

B. Source-free Domain Adaptation (SFDA)

SFDA aims to tackle the domain adaptation problem without
accessing the raw source data. Before deep learning era, there
are a number of transfer learning works [39], [40], [41], [42],
[43] without source data that have been empirically success-
ful. In recent years, pioneering works [12], [13] discover
that the well-trained source model conceals sufficient source
knowledge for the following target adaptation stage, and [12]
provides a clear definition of this problem. The last two years
have witnessed an increasing number of SFDA approaches
[15], [16], [17], [18], most of which are generation based [13],
[14], [15] or self-training [12], [44] based methods. Generation
based methods [14], [15], [13], [45], [20] generate virtual high-
level features of the source domain to bridge the unseen source
and target distribution. Self-training based methods seek to
refine the source model by using self-supervised techniques,
with the pseudo label technique [12], [44] being the most
extensively employed. [17], [18] learn from target samples
by distinct variants of contrastive learning. [44] mines the
hidden structure information such as the neighbor features to
get the pseudo labels. However, generating source samples
usually introduces additional modules such as generators or
discriminators, while pseudo-labeling might lead to wrong
labels due to domain shift, both of which cause negative
effects on the adaptation procedure. Another practice [45],
[20], [16] is selecting part of the target data as a pseudo
source domain, to compensate for the unseen source domain.
A typical method is entropy-criterion [16], which constructs
the pseudo source domain by estimating a split ratio using
the target dataset’s mean and maximum entropy, and then
uses the split ratio to choose samples with lower entropy
for all pseudo-labeled target domains within each class. The
entropy-criterion provides a proxy source domain with a huge
number of samples. However, the existence of hard classes
and domain shift, causes the entropy-criterion to suffer from
a severe class-imbalance problem. Despite the fact that [20]
attempts to tackle this problem by simply choosing the same
number for each class, there is no data in some hard classes,
so the class-imbalance problem is unavoidable. Unlike the
previous works, our method builds the proxy source domain
directly from the target domain using the source classifier
weights, which is flexible and works well for SFDA. Besides,
our mixup training strategy is also different from theirs, which
transfers the label information from the proxy source to the
unlabeled target domain.

C. Semi-Supervised Learning (SSL)

SSL aims to combine supervised learning and unsupervised
learning, leveraging the vast amount of unlabeled data with
limited labeled data to improve the performance of classifier
and to deal with the scenarios where labeled data is scarce
[46]. As opposed to the domain adaptation problem, SSL
deals with the samples from two identical domains. SSL has
flourished in recent years [47], [48], [49], temporal ensemble
[50] introduces self-ensembling, forming a consensus predic-
tion of the unknown labels using the outputs of the network-
in-training on different epochs; MixMatch [22] proposes a
holistic approach for data-augmented unlabeled examples and
mixing labeled and unlabeled data using mixup; ReMixMatch
[23] aligns the distribution of labeled and unlabeled data.
FixMatch [51] demonstrates the strong performance of con-
sistency regularizations and pseudo labels; AdaMatch [24]
proposes a unified approach to solve the unsupervised domain
adaptation, semi-supervised learning, and semi-supervised do-
main adaptation problems. Existing methods demonstrate the
usefulness of mixup training in aligning distributions, and the
growing popularity of SSL motivates us to convert the SFDA
problem to an SSL challenge. Such methods use the true
labels, which are not available in our task, and these labels
provide strong and diverse supervision. Our data is pseudo-
labeled, with little diversity and a lot of noise, so these semi-
supervised learning approaches cannot be directly applied to
our problem.

III. METHODOLOGY

This paper mainly follows the problem definition of SHOT
[12] and focuses on a K-way visual classification task. We
aim to learn a target model f; : Xy — )4, and predict the
label yi € ), for an input target image z} € X, with only
target data X; and the well-trained source model fs : X; —
Y,. The model consists of two modules: the feature extractor
g: X — R? and the classifier h : R* — RX.

Following the standard paradigm of SFDA [12], as a prelim-
inary, we train the source model fs with the label smoothing
[52] technique:

ﬁlgi@ (fs§ Xsays) =
K (1)

— o yex.xy. O 11080k (fs (25))
k=1

where I = (1—a)q; +a/K, ¢° is the one-hot encoding of ys,
a = 0.1 is the smoothing parameter, and 0y (a) = %
is the soft-max output of the K-dimensional vector a € RE.

During adaptation, we directly initialize the target model
with the well-trained source model f; = fs, then freeze the
classifier and fine-tune the feature extractor to ensure the target
features are implicitly aligned with unseen source features via
a same hypothesis. It is worth noting that we do not adopt the
special design of normalization techniques of SHOT [12] for
simplicity and commonality.
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Fig. 3: Overview of ProxyMix on solving source-free domain adaptation. We treat the weights of the classifier as class prototypes to choose
a series of confident samples to construct a class-balanced proxy source domain. Then the proxy source samples participate in two types of

mixup training based on the proposed frequency-weighted soft label.

A. Proxy Source Domain Construction by Prototypes

Recently, semi-supervised learning approaches [22], [23]
have also shown impressive achievements on UDA problem,
and Rukhovich et al. [53] even wins the VisDA competition by
directly exploiting MixMatch [22] in 2019. Inspired by them,
we construct the proxy source domain by pseudo-labeling
portions of confident samples (source-similar samples), and
try to solve the SFDA task in a semi-supervised style. Since
the source data X5 is unavailable, we expect to mine the source
information from the model fs. Previous works [54], [55]
leverage the weights of classifier as class prototypes in other
fields, and obtain positive results. Another classical practice
[19] exposes that the classifier weight vector of a well-trained
last-layer classifier converges to a high-dimension geometry
structure, which maximally separates the pair-wise angles of
all classes in the classifier. Therefore, inspired by these works,
it is natural to select the nearest neighbors of classifiers’
weights in angle space to construct the proxy source domain.
Concretely, we first define the weights {wy, wa, ...w K}szl of
the classifier hs as the class prototypes, where K is the number
of categories. We use the class prototype wj as the cluster
centroid to search and pseudo-label N nearest samples in the
unlabeled target domain X for the purpose of forming proxy
source domain Aj,:

{Xpsvyps} = {Xpleal}u U {XpIEaKL

where X]fs = {2ps; Tps € miny ((9s(z¢), wi))},

2)

and miny(-)&_, denotes choosing N samples x; with mini-
x

mum distance for each class, N is a hyper-parameter, deciding
how many samples we select in each class. To prevent the
negative consequences caused by class imbalance, we select
the same number of samples for each class. (a,b) measures
the distance between a and b in angle space, we use the cosine
similarity by default. For these proxy source data, we directly

calculate the cross entropy loss with labeling smoothing in the
following,

»Cps (ft; Xpsayps) =

K

B ]E(wpsvyps)exps XVps Z liz)s log 6k (ft (l'ps)) ?
k=1

3)

where [7° = (1 — a)¢}” + o/ K is the smoothed label, ¢¥*
denotes the one-hot encoding of ..

B. Pseudo-labeling by Frequency-weighted Aggregation (FA)

Pseudo-labeling is a heuristic approach to semi-supervised
learning, which progressively treats the predictions on unla-
beled data as true labels, and often employs cross-entropy
loss during training. However, in an unsupervised learning
setting, the class distribution is unknown, and the model is
biased towards easy classes. To mitigate the imbalance and
sensitivity of pseudo labels, inspired by several classical works
[35], [56], we propose a new pseudo label refinery strategy to
get reliable soft pseudo labels in the presence of domain shift.
In specific, we adjust the class distribution of the prediction
to alleviate the class imbalance, and then we use the center of
semantic neighbors as the pseudo label, rather than depending
on a single prediction. This compacts the cluster by pulling the
unlabeled target features closer to their semantic neighbors,
resulting in a clear classification boundary. Note that hard
labels reinforce the confidence of the current model, while
losing some information. Hence we use the soft predictions
rather than the one-hot vectors as the pseudo labels, which are
able to provide more distribution information and decrease the
negative effect of corrupted one-hot labels.

Neighborhood Aggregation. To leverage the local data struc-
ture, we employ the neighborhood aggregation strategy, which
is based on the idea of message passing via neighbors, to
adjust the predictions of the input target data. Concretely,
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Fig. 4: Illustration of the frequency-weighted strategy as label refin-
ery. We first sharpen the predictions to the second power, and then
normalize the predictions by the frequency per class.

we construct a large memory bank to store both the features
and the predictions of target data. During pseudo-labeling, we
retrieve m nearest neighbors from the memory bank for each
sample in the current mini-batch according to their features
ge(z?), and calculate the soft label ¢; of data point xi by
aggregating these predictions of feature-level neighbors:

i=— 3 @
J#i,IEN;
where N; is the neighbor index set of the data xi p; are
the frequency-weighted predictions of neighbors stored in the
bank, then we explain how these predictions are obtained.
Frequency-weighted prediction. As illustrated in Fig. 4, to
avoid ambiguity, we first sharpen the calculated output pre-
dictions p;. Besides, the network will be empirically skewed
towards these majority classes due to the class imbalance.
Then, we further multiply the predictions by a weight based
on the frequency of the class. In specific, given the soft-max
output predictions p; = &(f;(xi)), the frequency-weighted
predictions can be obtained through

vyl :
Kk _ ) Pilli
{le}le { Zj,(pfj//fj/) }j—l 7 ”

where f; =Y. p;; are soft cluster frequencies calculated by
the current batch of samples. Through the operation above,
we expect to achieve class-balance in the predictions. At each
iteration, we update the features and predictions associated
with the data in the corresponding location in the memory
bank.

C. Domain Alignment by Mixup Training

Two mixup training procedures are incorporated in our
method. In essence, mixup trains a neural network on con-
vex combinations of pairs of examples and their labels to
regularize the network to support linear behavior in-between
training samples. Pioneers have proved the effectiveness of
mixup training on UDA and SSL tasks [21], [22], [23], [53].
Such a simple regularization can improve the generalization
and the robustness to some noisy labels, so it is suitable
for pseudo label-based unsupervised learning tasks. Inspired
by these methods, with the prototype-induced pseudo source

domain {X,s,YV,s} and target domain X;, we introduce two
different regularizations via mixup training.

Inter-domain Mixup. To align the proxy source domain and
the target domain, we employ inter-domain mixup regulariza-
tion. [22] mixes the labeled data with both unlabeled data and
labeled data itself. However, the “labeled” data in our case is
not completely trustworthy. As a result, we do not add any
mixup training between the proxy source samples, but only
between the pseudo source domain and the target domain only,
constructing in virtual training samples below:

Ty = PLps + (1 - p)xtv

Gr = paps + (1 = p)d,
where ¢, denotes the one-hot encoding of y,,,, and § is the
soft label of x; calculated by Eq. (4), p is the mixup coefficient
sampled from a random Beta distribution.

Then we adopt the KL divergence to calculate the soft label
classification loss:

Ligte" = KL(@G10(f(2,)))- (6)

Algorithm 1 Algorithm of the proposed ProxyMix.

Input: Target dataset X;; well-trained source model f = g-h,
where g : X — R? is the feature extractor and h : R —
RX is the classifier;

1: Build the proxy source domain {X), V,s} by Eq. (2);

2: Initialize the feature memory bank By and prediction

memory bank Bj;

3: repeat
Randomly sample a batch of target data x; from &} and
proxy source data x,, from X;

5:  Obtain the soft label ¢ of z; by Eq. (4);

: Update g by Eq. (8);
Update the corresponding features and predictions of x
in feature bank B and prediction bank Bj;

8: until Iterations are exhausted.

QOutput: New model f =g - h.

Intra-domain Mixup. To mine the inner structure of the
target domain, we also adopt the mixup regularization between
different target data. As it is typical in many SSL methods,
we use data augmentation on target data. In specific, for
each mini-batch of target data x;, we concatenate it with
its augmented version Z; to construct a vector notated as
xq = cat(as, &¢). Then we mixup z, and its shuffled version
x, to construct the virtual training samples below:

To = pro+ (1 —p)g,
da = pda + (1 - P)QZ’
where z; is the shuffled version of z,, g, and ¢’ are the soft

label of x, and x calculated by Eq. (4), respectively. Then
we formulate the intra-domain mixup regression loss as:

Ligi™ = |fe(a) = dall3. (7

Note here we use square Lo loss. Unlike the cross entropy
loss used in Eq. (0), it is bounded and more robust due to the
insensitivity to corrupted labels.



TABLE I: Classification accuracies (%) of state-of-the-art methods on Office-home [57] (ResNet-50). SF denotes source-free. We use Bold
to highlight the best and underline to highlight the second best among source-free methods.

SF Method Ar—Cl Ar—Pr Ar—Re Cl—Ar Cl—Pr Cl—+Re Pr—Ar Pr—Cl Pr—Re Re—Ar Re—Cl Re—Pr Avg.

No Adapt. 46.1 67.0 74.3 52.0 62.7 64.3 53.8 42.1 73.7 67.0 477 782 60.7
x  MCD [58] 48.9 68.3 74.6 61.3 67.6 68.8 57.0 47.1 75.1 69.1 522 79.6  64.1
x  CDAN [5] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 71.3 70.9 56.7 81.6 658
X SAFN [59] 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 815 673
X SymNets [60] 47.7 72.9 78.5 64.2 713 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6
x MDD [61] 54.9 73.7 77.8 60.0 714 71.8 61.2 53.6 78.1 72.5 60.2 823 68.1
x  TADA [62] 53.1 723 772 59.1 712 72.1 59.7 53.1 78.4 72.4 60.0 829 67.6
x  BNM [11] 52.3 73.9 80.0 63.3 729 74.9 61.7 49.5 79.7 70.5 53.6 822 679
x  BDG [63] 51.5 73.4 78.7 65.3 715 73.7 65.1 49.7 81.1 74.6 55.1 84.8  68.7
X SRDC [64] 523 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 850 713
x RSDA-MSTN [65] 53.2 7117 81.3 66.4 74.0 76.5 67.9 53.0 82.0 75.8 57.8 854 70.9
x  ATDOC [35] 60.2 77.8 82.2 68.5 78.6 719 68.4 58.4 83.1 74.8 61.5 872 732
V' SSFT-SSD [45] 51.7 76.0 79.9 66.8 75.8 77.2 63.9 52.1 80.6 73.5 57.1 83.0 6938
v" VDM-DA [14] 59.3 75.3 78.3 67.6 76.0 75.9 68.8 57.7 79.6 74.0 61.1 83.6 714
v CPGA [15] 59.3 78.1 79.8 65.4 75.5 76.4 65.7 58.0 81.0 72.0 64.4 833 716
V' SHOT [12] 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 843 718
v’ PS [20] 57.8 77.3 81.2 68.4 76.9 78.1 67.8 57.3 82.1 75.2 59.1 834 721
v NRC [44] 57.7 80.3 82.0 68.1 79.8 8.6 65.3 56.4 83.0 71.0 58.6 85.6 722
v A2Net [17] 58.4 79.0 824 67.5 79.3 78.9 68.0 56.2 82.9 74.1 60.5 850 1728
V' ProxyMix 59.3 81.0 81.6 65.8 79.7 78.1 67.0 575 82.7 73.1 61.7 85.6 72.8

TABLE II: Classification accuracies (%) on Office-31 [66] (ResNet-50). [*: mean values except D<>W.]

SF Method A-D A=W D—oA D—=W W—oA W—D Ave. Ave*

No Adapt. 773 73.8 59.9 96.5 60.7 984 778 679
x  MCD [58] 92.2 88.6 69.5 98.5 69.7 100.0 865  80.0
x  CDAN [5] 92.9 94.1 71.0 98.6 69.3 1000 877 818
x MDD [61] 90.4 90.4 75.0 98.7 737 999 880 824
x  BNM [l1] 90.3 91.5 70.9 98.5 71.6 100.0 871  81.1
x  DMRL [38] 93.4 90.8 73.0 99.0 71.2 1000 879  82.1
x  BDG [63] 93.6 93.6 732 99.0 72.0 1000 885  83.1
x  MCC [34] 95.6 95.4 72.6 98.6 73.9 1000 894 844
x  SRDC [64] 95.8 95.7 76.7 99.2 77.1 100.0  90.8  86.3
x  RWOT [67] 94.5 95.1 715 99.5 77.9 100.0 908  86.3
x  RSDA-MSTN [65]  95.8 96.1 774 99.3 78.9 1000 91.1  87.1
x  ATDOC [35] 95.4 94.6 775 98.1 77.0 997 904  86.1
v SHOT [12] 94.0 90.1 74.7 98.4 743 999 886 833
v SSFT-SSD [45] 95.2 95.0 727 98.7 73.5 1000 892 841
v NRC [44] 96.0 90.8 75.3 99.0 75.0 100.0 894 843
v HCL[18] 94.7 925 75.9 98.2 717 1000 898 852
v CPGA [15] 94.4 94.1 76.0 98.4 76.6 998 899 853
v ProxyMix 95.4 96.7 75.1 98.5 754 998 901  85.6

D. Overall Objective

Combining the proxy source classification loss and two
types of mixup loss, our overall objective is formulated as:

ﬁtotal - £ps + AﬁiZfET + nﬁi?ngra (8)

where A and 7 are trade-off parameters to balance losses. The
overall pipeline of ProxyMix is illustrated in Algorithm

IV. EXPERIMENT

Datasets. We conduct the experiments on four popular bench-
mark datasets: (1) Office-31 [66] is a standard domain adapta-
tion dataset consisting of three distinct domains, i.e., Amazon
(A), DSLR (D) and Webcam (W), and 31 categories in the
shared label space. The specific numbers of images for each
domain are 2,817 (A), 498 (D) and 795 (W), therefore the
dataset suffers from severe data imbalance. (2) Office-home

[57] is a medium-sized domain adaptation dataset with 15,500
images collected from four domains Art (Ar), Clipart (Cl),
Product (Pr), and Real-World (Re). There are 65 categories
per domain, which is much more than Office-31. (3) VisDA
[68] is a large-scale challenging dataset which consists of a
12-class synthesize-to-real object recognition task. The source
domain involves 152k synthetic images which are produced
by 3D rendering model under various conditions. The target
domain contains 55k images collected from the real-world
scene. (4) PointDA-10 [74] is a common-used 3D cloud-point
dataset extracted from three popular 3D object/scene datasets,
i.e, modelnet (M) shapenet (S), and scannet (S*) for cross-
domain 3D object recognization. Each domain contains its own
training and testing sets. We train our models by source and
target domain’s training set, and show the test resutls on the
target domain’s test set.

Baselines. We compare ProxyMix with the state-of-the-art



TABLE III: Classification accuracies (%) on the large-scale synthesized-to-real dataset VisDA [68] (ResNet-101).

SF  Method plane bicycle bus car horse knife mcycl person plant sktbrd train truck Per-class
No Adapt. 63.2 104  47.6 73.0 469 4.5 66.4 15.6 62.1 177 885 1712 41.9
x  ADR [69] 94.2 48.5 84.0 729 901 742 926 72.5 80.8 61.8 822 288 73.5
x  CDAN [5] 85.2 66.9 83.0 508 842 749 88.1 74.5 834 760 819 38.0 73.9
x  CDAN+BSP [70] 924 61.0 81.0 575 89.0 80.6 90.1 71.0 842 779 821 384 75.9
X SAFN [59] 93.6 61.3 84.1 706 941 790 918 79.6 899 556 89.0 244 76.1
x  SWD [71] 90.8 82.5 81.7 705 91.7 695 863 71.5 874 63.6 856 292 76.4
x MDD [61] - - - - - - - - - - - - 74.6
x  DMRL [38] - - - - - - - - - - - - 75.5
x  MCC [34] 88.7 80.3 80.5 715 90.1 932 850 71.6 89.4 738 850 369 78.8
x  STAR [72] 95.0 840 846 730 916 918 859 78.4 944 847 870 422 82.7
X RWOT [67] 95.1 80.3 837 90.0 924 68.0 925 82.2 879 784 904 682 84.0
x  ATDOC [35] 93.0 77.4 834 623 915 884 OL8 77.1 909 864 858 482 81.4
v' SSFT-SSD [45] 95.4 86.5 79.3 515 929 945 821 79.7 900 87.1 878 579 82.1
v SHOT [12] 94.3 88.5 80.1 573 931 949 807 80.3 915 8.1 863 582 82.9
v" HCL [18] 93.3 85.4 80.7 685 91.0 88.1 86.0 78.6 86.6 838 80.0 747 83.5
v' PS[20] 95.3 86.2 823 616 933 957 86.7 80.4 916 909 860 595 84.1
v A2Net [17] 94.0 87.8 856 668 937 951 85.8 81.2 916 882 865 56.0 84.3
v' VDM-DA [14] 96.9 8.1 79.1 665 957 968 854 83.3 96 86.6 895 563 85.1
V" NRC [44] 96.8 91.3 824 624 962 959 86.1 80.6 948 941 904 597 85.9
v' CPGA [15] 95.6 8.0 754 649 917 975 897 838 939 934 877 69.0 86.0
v ProxyMix 95.4 817 872 799 956 968 921 85.1 934 903 89.1 422 85.7

TABLE IV: Classification accuracies (%) on the 3D point cloud dataset PointDA-10 [73] (PointNet [74]). The results except ours are from

NRC [44] and PointDAN [74].

SF  Method M-S M—=>S S—-M S-S S*—>M S*—=S Avg

No Adapt. 21.5 21.7 18.5 29.5 18.8 25.8 22.6
X MMD [75] 57.5 27.9 40.7 26.7 47.3 54.8 42.5
X DANN [4] 58.7 29.4 423 30.5 48.1 56.7 442
x  ADDA [9] 61.0 30.5 40.4 29.3 48.9 51.1 43.5
x  MCD [58] 62.0 31.0 41.4 313 46.8 59.3 453
X PointDAN [74] 64.2 33.0 47.6 33.9 49.1 64.1 48.7
v' VDM-DA [14] 58.4 30.9 61.0 40.8 453 61.8 49.7
v NRC [44] 64.8 25.8 59.8 26.9 70.1 68.1 52.6
v' ProxyMix 65.2 224 60.8 30.8 81.2 64.2 54.1

source-free domain adaptation methods: SHOT [12], CPGA
[15], A®Net [17], HCL [18], NRC [44], SSFT-SSD [45],
PS [20]. Moreover, to illustrate the effectiveness of Prox-
yMix, we further compare our method with the state-of-the-art
UDA methods: SymNets [60], TADA [62], BNM [11], BDG
[63], SRDC [64], RSDA-MSTN [65], ADR [69], CDAN [5],
CDAN+BSP [70], SAFN [59], SWD [71], MDD [61], DMRL
[38], MCC [34], STAR [72], RWOT [67], ATDOC [35], MMD
[75], DANN [4], ADDA [9], MCD [58], PointDAN [74]. We
use bold to highlight the best results and underline to highlight
the second best results among source-free methods.

Implementation Details. We implement our method based
on PyTorch. For network architecture, we adopt ResNet [76],
pretrained on the ImageNet as the backbone, and replace the
original fully connected layer with a bottleneck layer followed
by a task-specific linear layer. In the source model training
stage, we exploit SGD optimizer with learning rate 1e=3 for
backbone and le~2 for the bottleneck and classifier. In the
target adaptation stage, we use SGD optimizer with learning
rate le=> for the backbone and freeze the fully connected
classification layer. The numbers of epoch are set to 30, 50,
5 in training stage and 50, 50, 1 in adaptation stage for

Office-31, Office-home and VisDA, respectively. Specially,
for PointDA-10, we follow the open source code of NRC
[44], use PointNet [73] as our backbone network, learning rate
le=% and Adam optimizer with 100 epochs each stage. For
the hyper-parameters, considering the confidence of pseudo
labels, we set A\ 1, n = 100, and we alter A and 7
linearly by multiplying a ratio that varies linearly from O to
1 based on the number of the current iteration. Besides, we
set m = 5, beta distribution parameter 5 = 0.75 in mixup
and N = 5,10, 10,50 for Office-31, Office-home, PointDA -
10 and VisDA. All results are the averages of three random
runs with seed € {0, 1, 2}.

A. Comparison Results

2D image datasets. We first compare our method with the
state-of-the-art methods on 2D image datasets in Table I, II,
and [II. Note that the results of other methods are from the
original papers, except ours. On Office-home, we achieve the
best results on three tasks, and the highest mean accuracy,
demonstrating the effectiveness of ProxyMix to deal with
the multi-class classification problem on the medium-size



TABLE V: Analysis of different soft pseudo labels.

Choices of soft label Office-31 Office-home VisDA
MixMatch [22] 88.4 72.4 83.0
ReMixMatch [23] 88.1 71.3 80.2
ATDOC [35] 88.5 72.2 84.7
Ours 90.1 72.8 85.7

TABLE VI: Analysis of aggregation strategy.

Variants Office-31 Office-home VisDA
w/o aggregation 88.4 71.3 82.4
w/ aggregation (Ours) 90.1 72.8 85.7

dataset. On Office-31, we also achieve the highest mean
accuracy among SFDA methods, validating the efficacy of
ProxyMix handling with small datasets with fewer categories.
On VisDA, we achieve the best results on four single tasks
and a comparable mean accuracy with the state-of-the-art
methods. The reason why the performance on VisDA is not
as good as the first two may be that the scale of the proxy
source domain is too small relative to the entire dataset, which
causes the network to have a certain bias towards the proxy
source domain. In summary, our method ProxyMix achieves
competitive accuracy across three benchmarks when compared
with others, which demonstrates the effectiveness in dealing
with the standard 2D image domain adaptation benchmarks.
We achieve similar results compared with the state-of-the-
art SFDA methods A*Net [17] (ICCV-21) and NRC [44]
(NeurIPS-21), and UDA method ATDOC [35] (CVPR-21).
The presented results clearly demonstrate the efficacy of the
proposed method in dealing with domain-imbalanced, multi-
class and large-scale challenges.

3D point cloud dataset. To explore the generalization per-
formance of ProxyMix on 3D data, we also report the results
for the PointDA-10 dataset in Table IV. Without any extra
modules, our method achieves the highest average accuracy
on the benchmark, even compared with UDA methods and the
3D cloud point domain adaptation method PointDAN [74].

TABLE VII: Analysis of different selection methods of proxy source
samples.

Method Office-31 Office-home VisDA
Random-selected 83.9 69.0 81.9
Entropy-guided 86.3 70.5 72.6
Ours 90.1 72.8 85.7

TABLE VIII: Ablation study on the loss functions.

Lps Linter  rintra  Office-31  Office-home  VisDA
v 835 66.3 69.6
v 89.1 72.4 78.5
v 86.7 65.8 84.9
v v 89.3 723 78.4
v v 89.9 71.3 84.7
v v v 90.1 72.8 85.7
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Fig. 5: The accuracy curve of the task Ar—Cl on Office-home.

B. Empirical Analysis

To explore the effectiveness of the proposed pseudo-labeling
strategy, the aggregation strategy, the construction method of
proxy source domain, we conduct a series of ablation analysis
on the three common-used 2D image classification datasets
Office-31, Office-home and VisDA. Then we explore the
influence of three loss functions in our method, the training
stability, and the sensitivity of the important hyper-parameters.
We also show the t-SNE visualization results of task Ar—Cl
to clearly validate the altering of features.

Effectiveness of the proposed frequency-weighted aggrega-
tion soft pseudo label. Our frequency-weighted aggregation
strategy (FA) is a soft pseudo label generation method. To
verify the influence, we compare our method with three
label refinery strategies. 1) MixMatch [22] calculates the soft
pseudo label by sharpening and normalizing the predictions
directly. 2) ReMixMatch [23] sharpens the predictions first,
then multiplies a distribution alignment ratio calculated by
the current batch of samples. 3) ATDOC [35] only uses the
highest possibilities that are multiplied by a balanced ratio,
causing the sums to not be equal to 1, which is not conducive
to the calculation of KL divergence. Therefore, we normalize
the predictions of ATDOC in our experiments. The results
shown in Table V demonstrate that the proposed frequency-
weighted aggregation module effectively improves the soft
label’s reliability.

Effectiveness of the aggregation strategy. Our aggregation
technique pulls unlabeled target data to semantic neighbors,
allowing us to investigate the target domain’s structure in-
formation and mitigate the detrimental effects of noisy la-
bels. Table shows the variant of ProxyMix without the
aggregation approach to demonstrate the usefulness of the
aggregation strategy. The accuracy of standard ProxyMix is
higher than that of variants without aggregation, demonstrating
that leveraging the semantic neighbors’ center as the pseudo
label is effective and reliable.

Analysis of the construction method of proxy source
domain. To study the influence of the proposed construc-
tion method of the class-balanced proxy source domain, we
compare ProxyMix with a common-used method, i.e., ie.,
randomly-selected criterion, entropy-guided criterion, and the
baseline method. 1) Randomly-selected: to ensure fairness, we
randomly select N samples for each class from the target data
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(red points) before and after adaptation, respectively. (c) and (d): the target features before and after adaptation, respectively. For clarity, we

select first 10 classes in the 65 classes on Office-home.

to generate a class-balanced proxy source domain based on the
classification results of the source model. Because we cannot
discover N examples for some difficult classes, we choose the
remaining numbers of samples from other classes at random as
compensation. 2) Entropy-guided: as commonly used in other
works [16], we compare our method with the entropy-guided
method. In specific, we calculate the mean entropy e of the
source model’s prediction on the full target dataset, then obtain
a split ratio £ = N(H(f;’é(wgt))ef,fj)”ext), where N(¢) denotes
the size of the subset formed by samples which satisfy the
condition ¢, H(-) is the entropy function. Then we compute

the class distribution {n*}% | according to the predictions

given by the source model, and select n* - & samples with
the lowest entropy for each class. The results are shown in
Table VII. Random-selected perform unsatisfactory due to the
poor confidence of the source model before adaption. Although
the entropy-criterion reflects the confidence of the prediction,
it exacerbates the class imbalance problem and leads the
model bias to the easier classes, which is not satisfactory in
comparison to ours. The proposed prototype-induced method
achieves the highest accuracy. We take both confidence and
class-balance into consideration, and as illustrated in Fig. 2,
we observed that the accuracy of the proxy source domain is
higher than the entropy-criterion.



Ablation studies on the proposed loss functions. To in-
vestigate the proposed loss functions, we show the results
of variants with different combinations of loss functions in
Table As shown, without the proxy source domain
classification loss L,,, the accuracy of Office-31 has the
biggest drop. The accuracy of Office-home is more likely to be
influenced by the inter-domain mixup loss £§/Z§e". As for the
large-scale dataset VisDA, the intra-domain mixup loss Ei’glfm
contributes a lot. The effectiveness of £;7{*" and L{7}"* also
illustrate the reliability of the proposed frequency-weighted
soft labels from another perspective.

Training stability. We show the accuracy curve of task
Ar—Cl on Office-home in Fig. 5, the accuracy during training
grows up quickly and then converges as we expected. There-
fore, the training procedure of ProxyMix is stable and reliable.
Sensitivity of hyper-parameters. To better understand the
effects of the hyper-parameters A\, 7 and N, we explore their
performance sensitivity in a single task Ar—Cl on Office-
home in Fig. 6. The accuracies around A = 1 and n = 100
fluctuate very softly in (a) and (b). The results on the proxy
source domain scale are provided in (c), shows that the
accuracies change slightly around N = 20. Generally, in our
method ProxyMix, the hyper-parameters are not sensitive.
t-SNE visualization. To evaluate the effectiveness of Prox-
yMix, We show the t-SNE visualization' of target features on
task Ar—Cl in Fig. 7. To validate the effectiveness of domain
alignment, we show the features of the unseen source domain
(blue points) and the target domain (red points) in (a) and
(b). The distribution of target features is closer to the source
feature after adaptation as we expected. We also show the
target feature distribution of the first 10 classes of Office-
home in (c) and (d). Benefiting from our frequency-weighted
aggregation strategy, the feature clusters after adaptation are
compact, and the classification boundary is clear.

V. CONCLUSION

In this paper, we focus on the source-free domain adaptation
problem, and propose a simple yet effective method named
Proxy-based Mixup training with label refinery (ProxyMix). In
specific, we treat weights of the fully-connected layer as class
prototypes to choose a series of confident samples to construct
a class-balanced proxy source domain. Then label information
is expected to flow from the pseudo source domain to the
unlabeled target domain via mixup training. To enhance mixup
training, we further introduce a new pseudo label refinery
strategy, which combines frequency-weighted sharpening and
neighborhood aggregation to obtain reliable soft predictions
of unlabeled target data. Experiments on four popular bench-
marks prove the effectiveness of ProxyMix without access to
source data. Although our method outperforms several UDA
methods that are based on source data, we should recognize
that removing all noisy labels in an unsupervised manner is
still tough. We believe that our work is an attempt in that
direction, with the intention of inspiring others in the UDA
community.
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