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On Exploring Node-feature and Graph-structure
Diversities for Node Drop Graph Pooling

Chuang Liu, Yibing Zhan, Baosheng Yu, Liu Liu, Bo Du, Senior Member, IEEE , Wenbin Hu,

and Tongliang Liu, Senior Member, IEEE

Abstract—A pooling operation is essential for effective graph-level representation learning, where the node drop pooling has become

one mainstream graph pooling technology. However, current node drop pooling methods usually keep the top-k nodes according to

their significance scores, which ignore the graph diversity in terms of the node features and the graph structures, thus resulting in

suboptimal graph-level representations. To address the aforementioned issue, we propose a novel plug-and-play score scheme and

refer to it as MID, which consists of a Multidimensional score space with two operations, i.e., flIpscore and Dropscore. Specifically, the

multidimensional score space depicts the significance of nodes through multiple criteria; the flipscore encourages the maintenance of

dissimilar node features; and the dropscore forces the model to notice diverse graph structures instead of being stuck in significant

local structures. To evaluate the effectiveness of our proposed MID, we perform extensive experiments by applying it to a wide variety

of recent node drop pooling methods, including TopKPool, SAGPool, GSAPool, and ASAP. Specifically, the proposed MID can

efficiently and consistently achieve about 2.8% average improvements over the above four methods on seventeen real-world graph

classification datasets, including four social datasets (IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY, and COLLAB), and thirteen

biochemical datasets (D&D, PROTEINS, NCI1, MUTAG, PTC-MR, NCI109, ENZYMES, MUTAGENICITY, FRANKENSTEIN, HIV,

BBBP, TOXCAST, and TOX21). Code is available at https://github.com/whuchuang/mid.

Index Terms—Graph neural networks, graph pooling, graph classification.

✦

1 INTRODUCTION

G RAPH Neural Networks (GNNs) have achieved re-
markable performance on a wide variety of graph-

based tasks, including node classification [1], [2], [3], link
prediction [4], [5], [6], and graph classification [7], [8],
[9], [10], [11], [12], [13]. In node classification and link
prediction, GNNs propagate information between nodes
via graph convolutions, whereas in graph classification,
information of all nodes is integrated together to generate
graph-level representations through graph pooling. Early
adopted global pooling, including average pooling and max
pooling, ignores the node correlations, limiting the overall
performance [14], [15], [16]. Later, graph pooling utilizes hi-
erarchical architectures to model the node correlations [17],
[18], [19] and can be roughly classified into two types: node
clustering pooling and node drop pooling. Node clustering
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pooling requires clustering nodes into new nodes, which is
time-and space-consuming [20], [21], [22]. In contrast, node
drop pooling only preserves the representative nodes by
calculating the significance of nodes, and is more efficient
and more fit for large-scale graphs [23], [24], [25], [26].

Though the efficient and effective, current node drop
pooling methods still obtain suboptimal graph-level repre-
sentations as they ignore the diversities in graphs, including
the node-feature diversity and the graph-structure diversity,
by selecting only the top-k significant nodes. Node-feature
Diversity. Analytically, current drop node pooling methods
tend to highlight nodes with similar features, and thus
perform less satisfactorily when multiple dissimilar nodes
contribute to the graph-level representations. We leverage
the insights of [27] and design a simple graph reasoning task
that allows us to demonstrate the significance of the node-
feature diversity. As shown in the left part of Fig. 1, the task
is to count the number of colors in a graph, where a color
is a unique discrete feature. Obviously, base pooling models
would fail to predict the number of colors since the reserved
nodes are in the same color with the same score. Therefore,
it is worthwhile to consider the node-feature diversity as
the node feature plays an important role in the task. Graph-
structure Diversity. Furthermore, connected nodes would
share similar information through GNNs [28], [29]. Cur-
rent node drop pooling methods tend to be stuck into the
nodes of local structures without consideration of the rest
of representative graph structures. The experimental and
theoretical verifications of the above intuition are presented
in detail in Section 3. To demonstrate the significance of
the graph-structure diversity, we introduce a task to predict
the property of molecular. As shown in the right part of

http://arxiv.org/abs/2306.12726v1
https://github.com/whuchuang/mid
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Fig. 1. Illustration of the node-feature and the graph-structure diversities. The left part (in red block) presents the task of counting colors in a graph,
where each color represents a unique discrete feature. The right part (in blue block) presents the task of predicting the property of molecular, where
chemical groups like OH (hydroxyl group), COOH (carboxyl group), CO (ketone group) as well as benzene rings have a great impact on the property
of molecules such as solubility.

Fig. 1, base pooling models could only capture a single
structure (benzene rings), while neglecting other chemical
groups like OH (hydroxyl group), COOH (carboxyl group),
CO (ketone group), which are all indispensable to the pre-
diction of property of molecules, such as solubility [30], [31].
Therefore, it is worthwhile to consider the graph-structure
diversity as the node feature plays an important role in the
task.

To explore the diversity, we propose a novel plug-and-
play scheme, termed MID, using a Multidimensional score
space with flIpscore and Dropscore operations. Analytically,
the multidimensional score space, with each dimension
corresponding to one view of the nodes, depicts the signif-
icance of nodes by using vectors instead of scalars, which
enables a comprehensive description of the attributes of
nodes; flipscore reverses the negative confidence scores as
positive ones, encouraging the node drop pooling mod-
els to highlight nodes with dissimilar features; dropscore
randomly drops several nodes when selecting the top-k
scores, probably deleting the nodes in local structures and
thus forcing the node drop pooling to notice diverse graph
structures.

We conduct extensive experiments for MID by applying
MID to four typical node drop pooling methods (SAG-
Pool [24], TopKPool [23], GSAPool [25], and ASAP [32]).
The results on seventeen real-world graph classification
datasets, which vary in content domains and dataset sizes,
demonstrate the ability and generalizability of MID. Specif-
ically, MID consistently brings about 2.8% improvements in
average across all backbone models and datasets. Moreover,
ablation experiments further demonstrate the contribution
of individual components of MID to the exploration of
graph diversities. The main contributions of this paper are
summarized as follows:

• We propose a new modularized framework for node
drop pooling and analyze the distinctions and sim-
ilarities among twelve typical models under the
framework.

• We propose a novel play-and-plug scheme, MID,
which comprises a multidimensional score space,
flipscore operation, and dropscore operation. Our
MID could be applied in most node drop pooling

models and boost their performance with relatively
low computational cost.

• We conduct extensive experiments for four typical
drop node pooling methods with and without MID
on the graph classification task across seventeen real-
world datasets as well as two synthetic datasets. The
experimental results comprehensively demonstrate
the effectiveness of MID.

2 RELATED WORK

2.1 Graph Convolution Networks

Recently, numerous researches have been proposed based
on Graph Convolution Networks (GCNs), which generalize
the convolution operation to graph data. The basic idea
behind such methods as Graph Convolutional Network
(GCN) [33], GraphSAGE [34], Graph Attention Network
(GAT) [35], and Graph Isomorphism Network (GIN) [36],
is updating the embedding of each node with messages
from its neighbor nodes. The methods mentioned above
have achieved attractive performance on node classification
and link prediction tasks. However, with the main aim of
generating accurate node representations, these methods fail
to obtain the entire graph representations in the absence of
pooling operations.

2.2 Graph Pooling

With a crucial role in representing the entire graph, graph
pooling could be roughly divided into global pooling
and hierarchical pooling. Global pooling performs global
sum/average/max-pooling [14] or more sophisticated op-
erations [15], [16], [36], [37], [38], [39], [40] on all node
features to obtain the graph-level representations, which
causes information loss since they ignore the structures of
graphs. Later, hierarchical pooling models are proposed in
consideration of the graph structure, which can be classified
into node clustering pooling, node drop pooling, and other
pooling models. 1) Node clustering pooling considers the
graph pooling problem as a node clustering problem to
map the nodes into a set of clusters [17], [20], [21], [22],
[41], [42], [43], [44], which suffer from a limitation of time
and storage complexity caused by the computation of the
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TABLE 1
Commonly used notations and their descriptions.

Notations Descriptions Notations Descriptions

G A graph E The set of edges in a
graph

V The set of nodes in a
graph

A/Al The adjacency matrix (in
layer l)

X/Xl The matrix of node fea-
tures (in layer l)

S/Sl The matrix of scores gen-
erated by the pooling
models (in layer l)

idx/idxl The preserving node in-
dexes (in layer l)

n Number of nodes in a
graph

c The dimension of a node
feature

k The pooling ratio

ps The score dropping rate h The dimension of a score
for a node

⊙ The broadcasted elemen-
twise product

‖ Vector concatenation

‖·‖1 Manhattan norm (L1

norm)
‖·‖2 Euclidean Distance (L2

norm)

⌈·⌉ The operation of round-
ing up

|·| Absolute value

dense soft-assignment matrix. Besides, as discussed in the
recent works [45], [46], clustering-enforcing regularization
is usually innocuous. 2) Node drop pooling uses learnable
scoring functions to delete nodes with comparatively lower
significance scores [19], [23], [24], [25], [26], [32], [47], [48],
[49], [50], [51], [52], [53], [54], [55], [56], [57], [58]. Though
more efficient and more applicable to large-scale networks
than node clustering pooling, node drop pooling suffers
from an inevitable information loss (including the diver-
sity). 3) Other pooling. Apart from 1) and 2), there exist
some other graph pooling models. EdgePool [59] contracts
the high score edge between two nodes; HaarPool [60],
[61] compresses the node features in the Haar wavelet
domain; MemPool [30] proposes an efficient memory layer
to jointly learn node representations and coarsen the graph;
SOPool [18] introduces the second-order statistics into graph
coarsening; MuchPool [62] combines the node clustering
pooling and the node drop pooling to capture different
characteristics of a graph; and PAS [63] proposes to search
for adaptive pooling architectures by neural architecture
search.

3 METHOD

In this section, we first propose a framework of current node
drop pooling methods. Then, we present the details of our
MID and explain how MID advances node drop pooling.

Notation. Let G = (V , E) denote a graph with node set V
and edge set E . The node features are denoted as X ∈ R

n×c,
where n is the number of nodes and c is the dimension
of node features. The adjacency matrix is defined as A ∈
{0, 1}n×n. Notations are introduced in Table 1.

3.1 Proposed Node Drop Pooling Framework

We first summarize previous node drop pooling methods
to give an in-depth analysis. Specifically, we propose a uni-
versal and modularized framework to describe the process
of node drop pooling, see Fig. 2. We deconstruct node drop
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Fig. 2. Our modularized framework for node drop pooling.

graph pooling with three disjoint modules: 1) Score genera-
tor. Given an input graph, the score generator calculates the
significance scores for each node. 2) Node selector. Node
selector selects the nodes with the top-k significance scores.
3) Graph coarser. With the selected nodes, a new graph
coarsened from the original one is obtained by learning the
feature matrix and the adjacency matrix. The process can be
formulated as follows:

S
(l) = SCORE(X(l),A(l))

︸ ︷︷ ︸

Score generator

; idx(l+1) = TOPk(S
(l))

︸ ︷︷ ︸

Node selector

;

X
(l+1),A(l+1) = COARSOR(X(l),A(l),S(l), idx(l+1))

︸ ︷︷ ︸

Graph coarser

,

(1)
where functions SCORE, TOPk, and COARSOR are specially
designed by each method for the score generator, node se-
lector, and graph coarsor, respectively. S(l) ∈ R

n×1 indicates
the significance scores; TOPk ranks values and returns the

indices of the largest ⌈k×n⌉ values in S(l); idx(l+1) indicates
the reserved node indexes for the new graph, and l as well
as l + 1 indicates the layer numbers.

Accordingly, we present how the twelve typical node
drop pooling models fit into our proposed framework in
Table 2. It is observed that the vast majority of node drop
pooling methods focus on advancing the score generator
and graph coarsor modules, but ignore the design of the
node selector module. However, a simple node selector
highlights nodes with similar features or structures dur-
ing training without considering the node-feature and the
graph-structure diversities in graphs.

3.2 Proposed MID

In contrast to the previous node drop pooling models,
we mainly focus on the node selector module. Based on
this, we propose MID, which is a plug-and-play scheme
for improving node drop pooling. As shown in Fig. 3,
MID consists of 1) a multidimensional score space, 2) a
flipscore operation, and 3) a dropscore operation. With the
above three components appropriately integrated, MID is
enabled to mitigate the issues of ignoring node-feature and
graph-structure diversities in modern pooling models. Each
component is discussed and justified analytically in detail
in the following subsections.

3.2.1 The Multidimensional Score Space

We first extend the original one-dimensional score space
S

(l) ∈ R
n×1 to a multidimensional score space, with one

dimension for one view of the nodes, thus comprehensively
depicting node information:

S
(l)
multi = SCORE(X(l),A(l)), (2)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

A
B

C
D

E

F

G
-0.8

0.9
0.7

0.4

0.5

-0.2-0.6

A
B

C
D

E

F

G

A
B

C
D

E

F

G

0.6
0.4

0.1

-0.2

0.2

0.8…
… 0.3

… -0.2

…-0.6

…0.5 0.9 … 0.8

Input Graph

One-dimensional 

Output Graph

Flipscore: Dropscore!

Selected 

Nodes

 Score Space

A
B

C
D

E

F

G

Score Operations

Base

 Pooling

Pooling

 with MID

A

B

C

D

F

E

G

E

Multidimensional: 

B

C
D

A

C

G

(a)

0.9 0.8…

+0.8 0.7…

0!6 0.8…

+0.6 0.2…

0.4 0.3…

0.5 0.1…

+0.2 +0.2…-0.8 … 0.7

0.9 0.8…

0.8 0.7…

0!4 0.3…

0.5 0.1…

0.2 0.2…

0.0 0.0…

0.0 0.0…

-0.6 +0.6 0.6 0.0-0.6 -0.6 0.2…

F

F

E

G

(b) (c)

0.9

0.7

0.5

0.4

-0.2

-0.6

-0.8

Similar colors 

correspond to 

similar features

"#Dropped Nodes

"#Dropped Edges

Fig. 3. Architecture of our proposed method. The order of flipscore and dropscore operations does not influence the pooling results.

TABLE 2
Summary of node drop pooling models in our framework.

Models Score Generator Node Selector Graph Coarsor

TopKPool [23], [47] S = Xp/ ‖p‖2 idx = TOPk(S) X
′
= Xidx ⊙ σ(Sidx); A

′
= Aidx,idx

SAGPool [24] S = σ
(

D̃
−

1
2 ÃD̃

−
1
2 XW

)

idx = TOPk(S) X
′ = Xidx ⊙ Sidx; A

′ = Aidx,idx

AttPool [48]1 S = softmax (XW ) idx = TOPk(S) X
′ = Aidx(X ⊙ S); A

′ = AidxAA
T
idx

ASAP [32] S = LEConv(Xc,A) idx = TOPk(S) X
′ = X

c
idx ⊙ Sidx; A

′ = AidxAA
T
idx

HGP-SL [49] S =
∥

∥

(

I − D
−1

A
)

X
∥

∥

1
idx = TOPk(S)

{

X
′ = Xidx ⊙ Sidx; A

′ = Aidx,idx

A
′′

ij = sparsemax(σ(−→a [X′(i, :)‖X′(j, :)]⊤) + λ · A′

ij

VIPool [50]















P =
1

t

t
∑

h=1

(

D̃
−

1
2 ÃD̃

−
1
2

)h

W
h

MLP(X)

S = σ(MLP(MLP(X,P )))

idx = TOPk(S)

{

X
′ = Xidx ⊙ Sidx

A
′ = softmax(Aidx)Asoftmax(Aidx)

T

RepPool [51] S = σ
(

D
−1

AXp/ ‖p‖2

)

idx = SELk(S)















B = XWb(Xidx)
T

X
′ = (softmax(B ⊙ M))T (X ⊙ (S))

A
′ = (softmax(B ⊙ M))TA(softmax(B ⊙ M))

UGPool [54] S = σ(Xp/ ‖p‖2) idx = 1DPool(rank(S)) X
′ = Xidx ⊙ Sidx; A

′ = Aidx,idx + A
2
idx,idx

GSAPool [25]















S1 = σ
(

D̃
−

1
2 ÃD̃

−
1
2 XW

)

S2 = σ(MLP(X))

S = αS1 + (1 − α)S2

idx = TOPk(S) X
′ = (AXW )idx ⊙ Sidx; A

′ = Aidx,idx

CGIPool [56]



















Sr = σ
(

D̃
−

1
2 ÃD̃

−
1
2 XWr

)

Sf = σ
(

D̃
−

1
2 ÃD̃

−
1
2 XWf

)

S = σ(Sr − Sf )

idx = TOPk(S) X
′
= Xidx ⊙ Sidx; A

′
= Aidx,idx

TAPool [19]























Sl = softmax

(

1

n
((XX

T ) ⊙ (D̃−1
Ã))1n

)

Sg = softmax
(

D̃
−1

ÃXp

)

S = Sl + Sg

idx = TOPk(S) X
′
= Xidx ⊙ Sidx; A

′
= Aidx,idx

IPool [26]2 S =
∥

∥

∥

(

I − 1
t

∑

t
h=1(D̄

h)−1
Ā

h
)

X

∥

∥

∥

2
idx = TOPk(S)

{

X
′
= Xidx,

A
′

ij = λ (A + I)idx[i],idx[j] + (1 − λ)Oij

1 This manuscript only presents the global attention mechanism to generate scores, and there is also a local attention mechanism introduced in [48].
2 This manuscript only presents the greedy IPool strategy in this table, and there is also a local IPool strategy introduced in [26].

Notations: X′ ∈ R
k×c and A

′ ∈ {0, 1}k×k are the adjacency matrix and feature matrix for the new graph, respectively; Xc is the cluster representation matrix
calculated by a new variant of self-attention; Ã ∈ {0, 1}n×n is the adjacency matrix with self-connections (i.e. Ã = A + I); D̃ ∈ R

n×n is the degree matrix of
Ã; D ∈ R

n×n is the degree matrix of A; Āh ∈ R
n×n is the matrix where diagonal values corresponding to the h-hop circles have been removed; D̄h ∈ R

n×n is
the corresponding degree matrix of Āh; W ∈ R

c×1; Wr ∈ R
c×1; Wf ∈ R

c×1 and Wb ∈ R
c×c are the learnable weight matrices; p ∈ R

c and a ∈ R
1×2c are

the trainable projection vectors; I is the identity matrix; λ is a trade-off parameter; α is a user-defined hyperparameter; 1 ∈ R
n is a vector with all elements being 1;

M ∈ R
n×k is a masking matrix; O is the matrix to measure the overlap of neighbors between nodes; σ is the activation function (e.g. tanh); ⊙ is the broadcasted

elementwise product; MLP is a multi-layer perceptron; 1DPool(·) is the normal pooling on one-dimensional data; LEConv is Local Extrema Convolution which helps
capture local extremum information; SELk is the algorithm to select nodes one by one.

where S
(l)
multi ∈ R

n×h is the significance score matrix. Dif-

ferent from S
(l) ∈ R

n×1 in the base pooling models, S
(l)
multi

suggests that for each node, its significance is to be evalu-
ated by different scalars. Take TopKPool [23] as an example,
we broaden the trainable projection vector p ∈ R

c to a
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projection matrix P ∈ R
c×h, and then the score generator

would predict h different scalars (a h-dimensional vector)
for each node.

Intuition. Previous methods mainly use a scalar quantity
to represent the importance of each node. However, due
to the complexity of a graph, one scalar is not sufficient
to depict the significance of a node from different views.
Therefore, we extend the importance score for each node
from a scalar to a multidimensional vector to evaluate the
significance of nodes from multi-views.

Case Study. To investigate whether the multidimensional
score operation can assist models in evaluating the significance
of nodes from multi-views, we conduct experiments on three
benchmark datasets (MUTAG, PROTEINS, and COLLAB),
involving different graph sizes and domains (social and bio-
chemical), by using the SAGPool model [24]. Fig. 4 illus-
trates the scores predicted by the multidimensional score
operation with h = 3. We can observe that scores from
different views highlight different nodes in the graph, which
indicates our multidimensional score operation encourages
models to capture the diversity in the graph.

Analytical Verification. To validate the effectiveness
of the multidimensional score space, We further explore

MLP
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Multidimensional Multi-head Repeat-expand MLP-expand

Fig. 6. Experiments to validate the effect of the dimension of embedding
vectors. We consider a node with 2 features. The input feature matrix of
layer l is X

(l) ∈ R
1×2; the output feature matrix in (a), (c) and (d) is

X
(l+1) ∈ R

1×4; and the output feature matrix in (b) is X
(l+1) ∈ R

1×2.
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Fig. 7. Accuracy results varying with different hidden dimensions. 128/2
means that the dimension of the embedding vector c = 128, and the
dimension of score h = 2.

whether the multidimensional score evaluates the importance of
the nodes more accurately by calculating the score correct-
ness [27], [64] on four benchmark datasets (ENZYMES, MU-
TAG, PROTEINS, and NCI109) with SAGPool [24] model.
Specifically, after training a model, we remove node i from
a graph and compute an absolute difference from prediction
y for the original graph:

sGT
i =

|yi − y|
∑n

j=1 |yj − y|
, (3)

where sGT
i is the ground truth score and yi is a model’s

prediction for the graph without node i. After obtaining the
ground truth scores and calculated scores in the first pooling
layer on the test dataset, we evaluate score correctness using
area under the ROC curve (AUC) following [27], which
allows us to evaluate the ranking of scores rather than their
absolute values. As shown in Fig. 5 (a), models with a multi-
dimensional score space consistently generate more accurate
scores for nodes, which confirms that a multidimensional
vector used to depict the significance of nodes benefits the
evaluation.

Additional Dimension Analysis. We utilize scores gen-
erated by Eq. (2) to generate the pooled feature map. Let

S
(l)
multi = {s

(l)
1 ‖s

(l)
2 ‖, ..., ‖s

(l)
h }, and then the new feature map

of nodes is defined as:

{(X(l) ⊙ s
(l)
1 )‖(X(l) ⊙ s

(l)
2 )‖, ..., ‖(X(l) ⊙ s

(l)
h )}, (4)

where s
(l)
h ∈ R

n×1 is one column of S
(l)
multi, and ‖ in-

dicates the vector concatenation. As shown in Fig. 6 (a),
the above multidimensional score space operation would
enlarge the dimension of embedding vectors 1. Therefore,
this section gives an in-depth study on how the embedding
dimension affects the performance in the graph classification
task. For a fair comparison, we design three experiments,

1. The dimension of embedding vectors would be downscaled to the
standard size after the propagation of the vectors in the next GCN layer.
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see Fig. 6. 1) Multi-head (in Fig. 6 (b)). We adopt the
multi-head mechanism in GAT [35] to achieve the goal
to decrease the dimension after calculating the score. Let

X(l) = {x
(l)
1 ‖x

(l)
2 ‖..., ‖x

(l)
h
}, and then the new feature map

of nodes is defined as:

{(x
(l)
1 ⊙ s

(l)
1 )‖(x

(l)
2 ⊙ s

(l)
2 )‖, ..., ‖(x

(l)
h

⊙ s
(l)
h )}, (5)

where x(l) ∈ R
n×d, and d = ⌈c/h⌉. Besides, decreasing the

dimension, we also test what would happen if we increase
the dimension by other methods. 2) Repeat-expand (in
Fig. 6 (c)). We stack the embedding vectors to raise up the
dimension in the pooling layer, and then the new features
of the nodes are defined as:

{(X(l) ⊙ S
(l))‖(X(l) ⊙ S

(l))‖, ..., ‖(X(l) ⊙ S
(l))}. (6)

3) MLP-expand (Fig. 6 (d)). We also try to raise the embed-
ding dimension in base models by adding one layer of the
multi-layer perceptron after the gate operation (X(l)⊙S(l)).
We conduct the above three experiments on three bench-
mark datasets (MUTAG, DD, and NCI1) with the SAGPool
model as a baseline model, and the samples of these datasets
are 188, 1,178, and 4,110, respectively. The detailed results
in Fig. 7 (b) and (c) illustrate that raising the hidden di-
mensions in MUTAG, DD, and NCI1 datasets contributes
nothing to the accuracy improvement, and what’s worse, the
accuracy decades as the dimension increases. And in Fig. 7
(a), it is demonstrated that our multidimensional score space
operation contributes to the accuracy improvement even if
the hidden dimensions are not raised.

3.2.2 The Flipscore Operation

After getting a multidimensional score S
(l)
multi, we entail the

scores generated by models to extract as many diverse nodes
as possible. Specifically, the flipscore operation yields the

absolute value of each element in score S
(l)
multi:

S
(l)
flip(i, j) =

∣
∣
∣S

l
mutli(i, j)

∣
∣
∣ , (7)

where S
(l)
flip ∈ R

n×h is the resulting score matrix, and |·| is
the absolute value of the argument. Note that the flipscore
operation will not influence the node feature updating of
graph coarsor. We adopt this operation in training, valida-
tion, and test phases.

Intuition. Previous methods tend to highlight similar
and significant nodes instead of representative and signif-
icant nodes. From an information theory standpoint, sim-
ilar features do not add extra information to the feature
hierarchy, and therefore should be possibly suppressed [26].
According to the summary in Table 2, the generated scores
of most previous models range from -1 to 1 after using
Tanh [23], [24], [25]. Therefore, our flipscore operation could
highlight nodes with extremely different scores in the origi-
nal space, encouraging node drop pooling to capture nodes
with dissimilar features. Intuitively, dissimilar features lead
to more information gains which experimentally contribute
to a better graph classification [49].

Case Study. To investigate whether the flipscore opera-
tion can assist models to capture the node-feature diversity, we
conduct experiments on two synthetic graphs (Commu-
nity graph and David sensor network) from the PyGSP
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Fig. 8. Illustration of the flipscore mechanism. Reconstruction results of
two synthetic graphs, compared to base node drop pooling methods.

library [65], by using the SAGPool model [24]. The ex-
perimental settings follow the proposals in the previous
works [21], [44]. Fig. 8 reports the original graph feature
map (the node features are the 2-D coordinates of the nodes)
and the reconstruction by the base pooling method (SAG-
Pool) and pooling method with flipscore. We can observe
that SAGPool fails to recover the original graph signal, while
SAGPool with flipscore yields better results in both cases,
which indicates our flipscore encourages models to capture
the node-feature diversity in the graph.

Analytical Verification. We further give a verification
in terms of information gain. Specifically, we compute in-
formation gained from surrounding after one aggregation
and pooling operation by Kullback–Leibler divergence [66],
following the previous study [67]:

DKL (U‖C) =

∫

X
U(x) · log

U(x)

C(x)
dx, (8)

where X is the normalized feature space, C is the prob-
ability density function (PDF) estimated by the term c̆v,
which is the ground-truth vector of node v, U is the
probability density function (PDF) estimated by the term
∑

vj∈Nvi
aij · c̆v , Nvi is the set of neighbors of node vi, and

aij is the coefficient of node vj to node vi. According to the
proof (the detailed proof can be found in [55], [67]), DKL is
positively correlated to :

∥
∥
∥
∑

v∈V

(∑

v′∈Nv
(xv − xv′)

)2
∥
∥
∥
1

|E| · c
. (9)

Therefore, we calculate the pooling information gain of
selected nodes by :

λSEL =

∥
∥
∥
∑

v∈VSEL

(∑

v′∈Nv
(xv − xv′ )

)2
∥
∥
∥
1

|E| · c
, (10)

where VSEL is the set of selected nodes, and λSEL is the
information gain during one-time pooling operation. We
conduct our experiments on the MUTAG dataset by ap-
plying SAGPool and GSAPool models with or without the
flipscore operation. As shown in Fig. 5 (b), our flipscore
operation significantly improves the information gain in all
cases, which confirms that the flipscore operation promotes
models to maintain more diverse node features.
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Fig. 9. Illustration of the dropscore mechanism. Visualization of node
selection results with (Drop) and without (Base) the dropscore opera-
tion. Reserved nodes are highlighted in red.

3.2.3 The Dropscore Operation

The dropscore operation is proposed to force node drop
pooling models to notice as many substructures of graphs as
possible. Specifically, dropscore operation randomly drops
out several nodes with a certain rate in the graph during
training only when selecting the top-k scores:

S
(l)
drop = I⌈ps×n⌉S

(l)
multi, (11)

where Sl
drop ∈ R

n×h is the resulting score matrix, I⌈ps×n⌉ ∈

R
n×n is a matrix generated by randomly dropping ⌈ps × n⌉

none-zero elements of a unit matrix with n dimensions, ⌈·⌉
is the operation of rounding up, and ps is the score dropping
rate. We adopt this operation in the training phase.

Intuition. Note that through GNNs, nodes that are di-
rectly connected tend to share similar information [28], [29].
Therefore, models generate similar scores for nearby nodes,
which is also observed in the previous study [27]. Under this
condition, models may be stuck into significant local struc-
tures and select redundant nodes, thus ignoring significant
nodes from other substructures and losing structure infor-
mation. Therefore, we devise dropscore operation, which
randomly drops out a certain rate of nodes during training,
expecting that models do not focus on one local substructure
by removing several nodes in the local substructure.

Case Study. To investigate whether the dropscore operation
can assist models to cover more significant substructures, we
conduct experiments on five benchmark datasets (NCI1,
ENZYMES, PROTEINS, IMDB-BINARY, and COLLAB), in-
volving different graph sizes and domains (social and bio-
chemical), with the SAGPool model [24]. 40% nodes are
selected in the first pooling layer and are highlighted in red.
As shown in Fig. 9, SAGPool (Base) is likely to select nodes
concentrated in the same area, which supports our above

intuition. Therefore, important information of other parts
might be neglected. With our dropscore operation (Drop),
selected nodes are distributed in different substructures cov-
ering the whole graph, confirming that our method encour-
ages models to maintain more diverse structure information.

3.3 Discussion of MID

In this subsection, we first present an in-depth analysis re-
garding the propositions of the trapped scores and the graph
permutation equivariance, and then demonstrate that our
proposed MID could enable the backbone pooling models
to be more powerful in expressiveness.

3.3.1 Trapped Scores

Remark 1. The scores generated by based pooling models tend to
be stuck in the local structure, and they are referred to as trapped
scores.

As shown in Fig. 9, the selected nodes (highlighted in
red) predicted by pooling models tend to be stuck in the
local structure. To illustrate the above phenomenon, we take
the TopKPool [23], [47] model as an example. TopKPool
predicts the scores through:

S = X
p

‖p‖2
, (12)

where p ∈ R
n×1 is a learnable vector, and S ∈ R

n×1 is the
predicted scores for nodes. Given two feature vectors x1 and
x2 for nodes u and v respectively, the scores of two nodes
are:

s1 = x1
pT

‖p‖2
, s2 = x2

pT

‖p‖2
. (13)

Then, to evaluate the distance between the two scores, we
have:

|s1 − s2| =

∣
∣
∣
∣
x1

pT

‖p‖2
− x2

pT

‖p‖2

∣
∣
∣
∣
≤ ‖x1 − x2‖2. (14)

Assume that linked nodes in the same local structure have
similar features. Such an assumption is common in most
real-world networks [28]. Therefore, if nodes u and v are in
the same local structure, that is, ‖x1 − x2‖ → 0, then we
get:

|s1 − s2| → 0. (15)

The above analysis demonstrates that the selected nodes
(correspond to trapped scores) of TopKPool models are
stuck in the local structure. Moreover, this finding could be
applied to other cases, e.g., SAGPool [24], GASPool [25], and
ASAP [32].

3.3.2 Graph Permutation Equivariance

Remark 2. Suppose that the backbone graph pooling model is
graph permutation equivariant, and then the model combined with
our MID is still graph permutation equivariant.

Graph pooling generates isomorphic pooled graphs after
graph permutation, which is defined as graph permutation
equivariance [32]. As formulated in Eq. (2), (7), and (11), our
method MID only makes changes in selecting top ⌈k × n⌉
nodes and is not affected by the input order. Therefore,
our proposed MID would not break the graph permutation
equivariant property of backbone models, such as Top-
KPool [23], SAGPool [24], GSAPool [25], and ASAP [32].
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Fig. 10. Several example graphs which show that MID increases the
expressiveness of base node drop pooling models in different cases.

3.3.3 Expressiveness Power

Remark 3. MID increases the expressiveness of base node drop
pooling models.

Motivated by the analyses of [44], [68], we begin with
several example graphs, which are not distinguishable in
the regular node drop pooling models but can be separated
by pooling models combined with MID.

Example 1. Fig. 10 (a) shows a fundamental example of
two graphs that cannot be distinguished by a Weisfeiler-
Lehman (WL) test [69], and obviously cannot be distin-
guished by a node drop pooling model since the set of the
reserved nodes of two graphs (Spool-1 , Spool-2 ) predicted by
pooling models would be the same. However, it is not hard
to distinguish the two graphs with the dropscore operation
of MID. On the condition that Spool-1 ∩ Sdropscore 6= Spool-2 ∩
Sdropscore, where Sdropscore is the set of nodes (correspond to
scores) dropped by the dropscore operation, our MID can
distinguish the two graphs. For example, node C is dropped
in the left graph of Fig. 10 (a), while node A is dropped in
the right graph.

Example 2. Fig. 10 (b) shows an example of two graphs
that can be separated by a regular GCN but cannot be dis-
tinguished by a node drop pooling model since the set of the
reserved nodes of two graphs predicted by pooling models
would be the same. Under this sense, we show that MID
could also increase the expressive power of base pooling
models. As long as the set of nodes Sdropscore (correspond to
scores) dropped by the dropscore operation in one graph
contains the reserved nodes predicted by the base node
drop pooling models, Spool-1 ∩ Sdropscore 6= ∅, our MID can
distinguish the two graphs. For example, even if two graphs
both drop the same node C by the dropscore operation,
the pooling models would generate two distinguishable
embeddings for two graphs.

3.4 Summary of MID

Fig. 3 illustrates the architecture of MID. Specifically, we first
predict a multidimensional score for each node by Eq. (2)
so that the significance of nodes can be evaluated from
multi-views. Then, we apply two operations, flipscore and
dropscore, to the generated score matrix with the aim of cap-
turing the node-feature and graph-structure diversities by
Eq. (7) and (11), respectively. We discuss and experimentally
validate the above three operations that, when appropriately
combined with a baseline node drop pooling model such as
SAGPool, can encourage the model to maintain the diversity

Fig. 11. PyTorch implementation of MID.

of graph. We also give an in-depth analysis regarding the
propositions of the trapped scores and the graph permuta-
tion equivariance, and then demonstrate that our proposed
MID could increase the expressive power of base node drop
pooling models.

Finally, we present the code of MID in Fig. 11 with the
SAGPool as a backbone model. Due to the simple form, MID
can be implemented in PyTorch [70] with less than 10 lines
of code. And the core of MID is highlighted in red.

4 EXPERIMENT

We validate our method, mainly focusing on the task of
graph classification, and the results illustrate the advantages
of MID in terms of performance, robustness, generalization,
and efficiency.

• Performance. MID achieves improvements over
all 4 node drop pooling models (averaged across
datasets): 3.96% (SAGPool), 3.97% (TopKPool), 0.94%
(ASAP), and 3.46% (GSAPool).

• Robustness. As the perturbation rate increases, Top-
KPool with MID shows a weak accuracy-declining
trend, while the decline of base TopKPool is quite
sharp.

• Generalization. The accuracy of TopKPool model
with MID on COLORS-3 dataset does not de-
grade significantly when the model is generalized to
graphs with larger sizes during the test.

• Efficiency. Our MID is highly efficient in terms of
time and memory compared with pooling baselines.

To fully exploit the expressive power of our method, we
also conduct our method on graph reconstruction task.

4.1 Graph Classification

4.1.1 Experimental Settings

Datasets. We choose 13 datasets from TU datasets [71],
including 9 datasets from the Biochemical domain and 4
datasets from the Social domain. We also select 4 publicly
available and relatively large datasets from the Open Graph
Benchmark (OGB) datasets [72]. The above seventeen real-
world datasets vary in content domains and dataset sizes.
The dataset statistics are summarized in Table 3.
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TABLE 3
Statistics and properties of benchmark datasets

# datasets # graphs # classes Avg # nodes Avg # edges

TUDataset1

D&D 1,178 2 284.32 715.66

PROTEINS 1,113 2 39.06 72.82

NCI1 4,110 2 29.87 32.30

MUTAG 188 2 17.93 19.79

PTC-MR 344 2 14.30 14.69

NCI109 4,127 2 29.68 32.13

ENZYMES 600 6 32.63 124.20

MUTAGENICITY 4,337 2 30.32 30.77

FRANKENSTEIN 4,337 2 16.90 17.88

REDDIT-BINARY 2,000 2 429.63 497.75

IMDB-BINARY 1,000 2 19.77 96.53

IMDB-MULTI 1,500 3 13.00 65.94

COLLAB 5,000 3 74.49 2457.78

OGB2

HIV 41,127 2 25.51 27.52

TOX21 7,831 12 18.57 19.3

TOXCAST 8,576 617 18.78 19.3

BBBP 2,039 2 24.06 26.0

Synthetic3 COLORS-3 5,500 11 61.31 91.03

TRIANGLES 45,000 10 20.85 32.74

1 https://chrsmrrs.github.io/datasets/docs/datasets/
2 https://ogb.stanford.edu/docs/graphprop/
3 https://github.com/bknyaz/graph attention pool/tree/master/data

Models. Four representative node drop graph pooling
methods are selected as backbone models, including Top-
KPool [23], SAGPool [24], ASAP [32], and GSAPool [25].
Our MID can be applied to these methods to further im-
prove their performance. Besides, we further present eight
graph pooling methods as baseline models for comparision,
including Set2set [15], SortPool [16], DiffPool [20], Edge-
Pool [59], MinCutPool [21], HaarPool [60], MemPool [30],
and GMT [44]. The detailed descriptions of these models
are provided in the supplemental material.

Implementation Details. We use the same experimen-
tal settings following [36], [44]. Specifically, we employ
Adam [73] to optimize parameters and adopt early stopping
to control the training epochs based on validation loss with
patience set as 50. For a fair comparison, we fix the pooling
ratio to 0.5 for TU datasets and to 0.25 for OGB datasets in
each pooling layer for all models. In addition, we follow the
parameter settings (except for the pooling ratio) for some
comparing models if the settings are provided in the corre-
sponding papers. Otherwise, we tune the model parameters
for better performance. We evaluate the model performance
on TU datasets with 10-fold cross validation [16], [36], [44],
using accuracy for evaluation, and evaluate the performance
on OGB datasets with their original data split settings [72],
using ROC-AUC for evaluation. More experimental and
hyperparameter details are described in the supplemental
material.

Source Code. We use the source codes provided by
authors for HaarPool 1 and GMT 2 models, and the codes
from PyTorch Geometric library 3 [74] for the rest of models.

Environments. 1) Software. All models are implemented
with Python 3.7, PyTorch 1.9.0 or above (which further
requires CUDA 10.2 or above), and PyTorch-Geometric 1.7.3
or above. 2) Hardware. Each experiment was run on a

1. https://github.com/YuGuangWang/HaarPool
2. https://github.com/JinheonBaek/GMT
3. https://github.com/pyg-team/pytorch geometric
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Fig. 12. The improvements by MID across backbone models including
SAGPool, TopKPool, GSAPool, and ASAP. We separate the figure into
three parts according to the type of datasets by the red dashed lines.
From the left to the right: Biochemical domain in TU datasets, Biochem-
ical domain in OGB datasets, and Social domain in TU datasets.
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Fig. 13. The robustness of our method against edge perturbations using
graph classification results of different drop edge ratios. Solid lines
denote the mean, and shaded areas denote the variance.

single GPU (NVIDIA V100 with a 16 GB memory size), and
experiments were run on the server at any given time.

4.1.2 Overall Performance

The accuracy results of all methods summarized in Ta-
ble 4 are averaged over 100 runs with random weight
initializations (10 different seeds through the 10-fold cross
validation). We highlight the best performance in bold per
backbone model and dataset, the best performance in red
per dataset, and the second best performance in blue per
dataset.

In Table 4, we can observe that MID consistently achieves
large-margin enhancement over all backbone models in
terms of the average rank across all datasets. The detailed
improvements are more clearly illustrated in Fig. 4.1.2,
where we show the improvement achieved by MID on each
backbone model and each dataset. From left to right, we
split the figure into three parts by the red dashed lines
according to the category of datasets. We have the following
findings: 1) Clearly, MID consistently improves the accuracy
of node drop pooling models on all datasets, with a single
exception of TopKPool on REDDIT-BINARY. 2) MID obtains
more significant enhancement on biochemical datasets. In-
tuitively, this is because the biochemical datasets contain
high-quality node features, which are essential for the mul-
tidimensional score space and the flipscore operations. 3)
MID achieves improvements over all 4 node drop pooling
models (averaged across datasets): 3.96% (SAGPool), 3.97%
(TopKPool), 0.94% (ASAP) and 3.46% (GSAPool). MID espe-
cially improves SAGPool and TopKPool performance, since
several attentions of the two models have been paid to
considering the diversity of a graph when they predict the
node scores.

4.1.3 Robustness Analysis

We validate the robustness of our method against edge
perturbations, which perturb the structure by randomly

https://chrsmrrs.github.io/datasets/docs/datasets/
https://ogb.stanford.edu/docs/graphprop/
https://github.com/bknyaz/graph_attention_pool/tree/master/data
https://github.com/YuGuangWang/HaarPool
https://github.com/JinheonBaek/GMT
https://github.com/pyg-team/pytorch_geometric
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TABLE 4
MID performance across four backbone models and seventeen datasets in graph classification task. The reported results are mean and standard

deviation over 100 different runs. Bold: best performance per backbone model and dataset. Red: the best performance per dataset. Blue: the
second best performance per dataset. Hyphen(-) denotes out-of-resources, i.e., either we could not fit a batch size of 16 graphs on an Nvidia V100

GPU or it took more than 7 days to complete training. The Avg. rank column indicates the average ranking of the methods across all datasets.

Biochemical Domain in TU Datasets (9)

D&D PROTEINS NCI1 MUTAG PTC-MR NCI109 ENZYMES MUTAGEN. FRAN.

Set2set 72.65±0.47 73.14±0.97 71.70±0.73 70.50±1.99 54.53±1.69 69.78±0.43 42.92±2.05 79.86±0.43 61.79±0.23

SortPool 77.50±0.50 74.16±0.53 72.88±0.93 70.56±2.73 52.62±2.11 71.77±0.67 36.17±2.58 77.03±0.51 62.42±0.57

DiffPool 67.95±2.44 72.86±1.00 77.04±0.73 82.50±2.54 55.26±3.84 75.38±0.66 51.27±2.89 79.80±0.24 63.95±0.81

EdgePool 76.97±0.44 74.82±0.56 76.53±0.50 73.00±0.87 58.09±2.04 75.58±0.50 31.18±1.99 80.78±0.17 58.09±2.04

MinCutPool 74.69±0.52 74.28±0.76 71.15±0.98 85.17±1.41 54.68±2.45 71.68±0.46 25.33±1.47 75.39±0.39 62.32±0.55

HaarPool – – – 74.89±0.69 55.97±1.26 – 20.57±1.05 – –
MemPool 72.96±0.84 71.99±0.65 67.65±0.67 69.17±2.04 53.26±2.67 65.50±1.16 44.73±2.21 74.96±0.22 62.05±0.45

GMT 78.48±0.48 75.08±0.85 76.23±0.49 83.04±1.01 55.41±1.30 74.49±0.52 37.38±1.52 79.94±0.35 63.15±0.25

SAGPool 76.15±0.73 73.42±0.93 70.89±0.80 67.67±3.56 54.38±1.96 70.26±0.99 36.30±2.51 74.20±0.75 60.62±0.66

SAGPool + MID 76.97±0.72 74.52±0.52 74.08±0.40 72.72±1.96 56.24±1.22 75.21±0.66 39.88±1.93 79.75±0.17 61.33±0.28

TopKPool 72.12±1.22 72.72±1.16 73.82±0.65 77.06±2.25 55.59±2.43 72.94±0.67 29.77±1.74 76.51±1.13 64.63±0.67

TopKPool + MID 74.65±1.68 73.07±0.80 78.50±0.50 80.38±2.26 56.76±1.76 77.55±0.49 30.37±1.94 81.39±0.35 66.30±0.55

ASAP 75.91±1.01 71.25±0.79 73.86±0.74 79.33±4.02 55.68±1.45 73.15±0.70 20.10±1.13 77.31±0.62 60.57±0.62

ASAP + MID 77.57±0.79 72.14±0.67 75.30±0.43 82.33±3.40 56.76±1.88 75.60±0.63 21.67±1.25 78.94±0.50 61.55±0.95

GSAPool 75.91±0.77 73.64±0.89 71.33±0.92 68.83±1.54 53.59±2.69 70.01±1.60 34.93±2.04 76.56±0.77 60.41±0.53

GSAPool + MID 76.70±0.56 75.04±0.42 75.72±0.92 71.72±1.04 55.47±2.25 75.34±0.37 42.48±2.52 79.88±0.20 61.26±0.37

Social Domain in TU Datasets (4) OGB Datasets (4)

IMDB-B IMDB-M REDDIT-B COLLAB HIV BBPB TOX21 TOXCAST
Avg. rank

Set2set 73.10±0.48 50.15±0.58 90.03±0.45 79.88±0.50 73.42±2.34 64.43±2.16 73.42±0.67 59.76±0.65 7.9
SortPool 72.49±0.78 49.62±0.36 87.00±1.03 80.21±0.35 71.88±1.83 64.33±3.10 68.90±0.78 59.28±0.99 9.6
DiffPool 72.99±0.65 51.03±0.48 – 79.24±0.57 75.05±1.71 64.77±2.43 75.82±0.69 65.79±0.87 5.6
EdgePool 72.13±0.72 51.05±0.53 89.12±1.22 81.22±0.94 72.15±1.56 68.56±1.43 74.54±0.79 62.57±1.36 5.1
MinCutPool 73.05±0.80 50.22±0.81 86.69±0.48 78.78±0.61 73.91±1.10 66.47±1.90 78.78±0.61 63.66±1.56 7.9
HaarPool 73.46±0.55 50.37±0.55 – – – – – – 7.6
MemPool 71.20±0.82 49.91±0.76 – – 73.75±1.90 66.47±1.90 72.05±0.93 61.85±0.36 10.9
GMT 73.10±0.44 50.50±0.54 88.88±0.44 80.74±0.54 76.41±2.32 66.88±1.59 76.56±0.90 64.53±0.92 3.5

SAGPool 71.87±0.59 50.42±0.45 87.42±0.62 79.07±0.28 70.19±3.66 64.29±2.96 69.39±1.88 59.09±1.38 11.4
SAGPool + MID 73.08±0.30 51.05±0.69 91.62±0.30 79.93±0.65 74.51±1.31 66.54±2.33 73.06±0.66 60.23±0.64 5.5

TopKPool 71.47±0.71 49.55±0.58 85.37±1.04 77.45±0.56 71.24±2.97 65.93±2.60 68.69±2.02 58.63±1.56 10.9
TopKPool + MID 72.55±0.73 50.38±0.51 83.20±0.96 78.86±0.52 75.11±2.42 66.64±2.33 71.24±2.14 60.50±1.47 6.1

ASAP 72.25±0.83 48.55±0.64 – – 71.60±1.71 61.93±3.18 70.00±1.50 60.32±1.34 10.9
ASAP + MID 73.12±0.56 49.47±0.48 – – 72.50±2.16 64.03±1.86 71.04±0.92 61.04±0.42 7.9

GSAPool 72.41±0.57 50.72±0.57 87.46±0.77 78.97±0.33 71.47±2.43 64.49±3.31 69.18±2.05 59.60±1.17 10.6
GSAPool + MID 73.06±0.20 50.93±0.20 88.88±0.42 79.44±0.30 74.49±1.42 67.27±1.86 72.61±1.14 61.90±0.80 5.6

removing the edges in the pooling layer. In Fig. 13, we
present the classification accuracy of TopKPool model w/wo
MID with respect to different perturbation rates on four
benchmark datasets. We observe that our method consis-
tently outperforms backbone models across all perturbation
rates and all datasets. Especially on D&D and PROTEINS
datasets whose numbers of edges are large, the performance
of our method does not degrade significantly with the
increase of the perturbation rate compared to the backbone
models, which suggests that MID improves the robustness

of backbone pooling models.

4.1.4 Generalization Improvement

Concerned about MID’s ability to be generalized to larger
and more complex graphs, we test MID on graphs whose
sizes are larger than the graph sizes during training fol-
lowing the previous study [27]. We conduct experiments on
two synthetic datasets, COLORS-3 and TRIANGLES, intro-
duced by Knyazev et al. [27]. We evaluate MID by applying
it to TopKPool and SAGPool models, and strictly follow
the experimental settings suggested by [27]. The results in
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TABLE 5
Generalization study results.

COLORS-3 TRIANGLES

test-origin test-large test-origin test-large

# nodes train1 4-25 4-25 4-25 4-25
# nodes val 4-25 4-25 4-25 4-25
# nodes test 4-25 25-200 4-25 25-100

SAG.-base 58.98±3.43 9.68±0.60 44.73±0.63 19.44±1.18

SAG.-MID 72.19±1.59 11.24±2.51 59.28±2.05 22.36±0.97

TopK.-base 70.38±5.22 30.24±22.75 45.00±1.06 17.88±1.75

TopK.-MID 99.96±0.03 82.64±15.21 47.30±2.16 23.85±1.14

1 The number of nodes in the training set.

TABLE 6
Training time per epoch. The reported values are the average
per-epoch training time on all 13 datasets from TU datasets.

SAGPool TopKPool GSAPool

Base 0.8358s (1x) 0.7985s (1x) 1.0542s (1x)
MID-1 0.8487s (1.01x) 0.8005s (1.00x) 1.0674s (1.01x)
MID-5 0.9881s (1.18x) 0.9688s (1.21x) 1.2251s (1.16x)
MID-9 1.2020s (1.44x) 1.2052s (1.51x) 1.4957s (1.42x)

Table 5 demonstrate that MID significantly improves the
performance across all cases and datasets, and the averaged
improvements are about 42.47%. Furthermore, the accuracy
of the TopKPool model combined with MID does not de-
grade significantly as the model is generalized to graphs
with larger sizes during the test, which demonstrates that
MID significantly improves the generalization capability of
pooling models. Moreover, the significant improvements
under the test-origin case somehow confirms that MID en-
courages base pooling models to capture the node-feature
diversity since the node features play a significant role in
the task of counting colors (COLORS-3 datasets).

4.1.5 Efficiency Analysis

Efficiency Compared with Backbone Models. As our
method is a plug-in one, it is essential to take efficiency into
account. The flipscore and dropscore operations introduce
negligible overhead, and the efficiency of our method is
mainly influenced by the dimension of score h. Table 6 re-
ports the average per-epoch training time on all 13 datasets
from the TU dataset. We fix the training epochs to 10
with 10 different random seeds and refer to MID with
h-dimensional score as MID−h. It is observed that the
additional time consumption keeps relatively low with the
increase of the score dimension h, which validates that our
MID is practically efficient. In addition, Fig. 16 illustrates
that increasing h can significantly improve the classification
accuracy on biochemical datasets at the cost of its training
efficiency. In practice, we can adjust the values of h to
balance the trade-off between performance and efficiency.

Efficiency Compared with Baseline Models. While sev-
eral node clustering methods achieve decent performances
in the graph classification task shown in Table 4, they suffer
from large memory cost due to the usage of a dense soft-

0 2 4
# Nodes

0.5

1.0

M
em
or
y 
(M
ib
) 1e4

1e4

(a) Me  or( Efficienc(

0 2 4
# Nodes

10−1

100

101

Ti
 
e 
(s
ec
)

1e3

(b) Ti e Efficienc(

SAG.
SAG.*

To#K.
To#K.*

GSA.
GSA.*

ASAP
ASAP*

Edge.
Me .

MinCut.
Diff.

GMT

Fig. 14. Memory and time efficiency of our method compared with base-
line models. x indicates out-of-memory error. SAG. refers to SAGPool
and SAG.* refers to SAGPool with MID.

TABLE 7
Ablation study results. Bold: the best performance per backbone

model and dataset.

NCI1 IMDB-BINARY

SAGPool TopKPool SAGPool TopKPool

Base 70.89 73.82 71.87 71.47
MID 76.06 78.78 76.10 73.90

w/o flipscore 74.76 77.22 75.90 73.80
w/o dropscore 74.96 78.39 74.92 72.22
w/o multiscore 71.97 76.15 74.51 73.50

assignment matrix. To validate the GPU memory efficiency
and time efficiency, we conduct experiments on the Erdos-
Renyi graphs [75]. Specifically, we generate random Erdos-
Renyi graphs by varying the number of nodes n, where
the edge size m is twice as large as the number of nodes:
m = 2n, and random 128-dimensional node features. Fig. 14
(a) demonstrates that node drop pooling models are highly
efficient in terms of memory compared with memory-heavy
pooling baselines such as DiffPool, MinCutPool, and GMT,
and our method MID has little impact on backbone mod-
els. In addition, Fig. 14 (b) demonstrates that node drop
pooling models (with or without MID) take less than (or
nearly about) a second per epoch even for large graphs,
compared to the slowly working models such as MemPool
and EdgePool. The above results indicate that node drop
pooling models are more practical and promising on larger
real-world datasets.

4.1.6 Ablation Study

We conduct ablation studies to verify that each component
of our method contributes to the improvement of per-
formance. For convenience, we name the models without
multidimensional score space, flipscore, and dropscore as
w/o multiscore, w/o flipscore, and w/o dropscore, respec-
tively. Note that except for the selected component, the rest
remain the same as the complete model. We can observe
in Table 7 that all variants with some components removed
exhibit clear performance drops compared to the complete
model, indicating that each component contributes to the
improvements. Furthermore, MID without the dropscore
operation performs worse on the IMDB-BINARY dataset,
demonstrating the significance of the proposed dropscore
technique for datasets without node features.
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Fig. 16. Parameter sensitivity of score drop ratio ps and score dimension
h on four datasets.

4.1.7 Parameter Analysis

Inherent Parameter Sensitivity. We further study how
the graph pooling ratio k and the number of pooling layers
L would affect the graph classification performance on D&D
and MUTAG datasets with the SAGPool model. As shown
in Fig. 15 (a), MID performs better in all cases. In addition,
the accuracy range of MID is relatively smaller, suggesting
that our method selects the nodes that are essential for
graph-level representation learning regardless of the pool-
ing ratio. Then, in Fig. 15 (b), we can observe that MID
consistently outperforms backbone models when layers go
deeper.

Introduced Parameter Sensitivity. We investigate the
effects of two new parameters, the dimension of the score
h and the score dropping rate ps, introduced by MID with
the SAGPool model. In this parameter sensitivity study, h is
searched within the range of {4, 8, 12, 16, 20}, while in the
experiments, the search space is only {5, 9}. ps is searched
within the range of {0.1, 0.2, ..., 0.9}, while in all other ex-
periments, the search space is only {0.1, 0.2} for all datasets.
As shown in Fig. 16, biochemical datasets (subfigures a,
b, and c) prefer a relatively high score dimension and a
relatively low score drop ratio, while social datasets (sub-
figure d) are at the opposite ends. We conjecture that this
is because 1) social datasets do not carry node features, the
multidimensional score operation would generate h similar
scores for each node, and 2) the social datasets generally
have more edges, which indicates that they are more robust
to the drop operation.

4.2 Graph Reconstruction

We further validate MID on the graph reconstruction task,
which reveals how much meaningful information is re-
served during pooling.

Datasets. We conduct experiments on a real-world
dataset, ZINC [76], which contains 12K molecular graphs.

Models. We evaluate MID by applying it to the Top-
KPool and SAGPool models. Following MinCutPool [21]
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Fig. 17. Reconstruction results on the ZINC dataset with different pool-
ing ratios. Solid lines denote the mean, and the shaded areas denote
the variance.

and GMT [44], we use two graph convolution layers before
both the pooling operation and the unpooling operation.
The pooling operations are TopKPool and SAGPool, and the
unpooling operation is proposed in graph U-Net [23].

Experimental Settings. We perform all experiments 10
times with 10 random seeds, and then report the average
results with the standard deviation. We strictly follow the
dataset splitting provided by [77] and adopt early stopping
with the patience set as 50 on the validation loss. We set
the maximum number of epochs as 500, the batch size as
128, the hidden dimension as 32, and the pooling ratio of
all models as 10%, 20%, 30%, 40%, and 50%. The rest of
hyperparameters remain the same as those of the above
graph classification task.

Performance Measure. We use three metrics suggested
by [31], [44] as follows: 1) Classification accuracy refers to
the classification accuracy of atom types of all nodes. 2) Ex-
act match indicates the number of reconstructed molecules
that are the same as the original molecules. 3) Validity means
the number of reconstructed molecules that are chemically
valid.

Overall Results. Fig. 17 demonstrates that MID signif-
icantly enhances the performance of backbone models in
terms of the validity metric, suggesting that MID enables
backbone models to capture more meaningful nodes in the
original molecules. Besides, our method improves the per-
formance of backbone models in the classification accuracy
and exact match metrics. In a nutshell, MID enhances the
expressive power of backbone pooling models in terms of
capturing significant semantic information for the recon-
struction of the original graph.

5 CONCLUSION

In this work, we propose an efficient scheme, MID, which
improves node drop pooling by exploring the node-feature
and graph-structure diversities. Specifically, we first build a
multidimensional score space to depict more comprehensive
semantic information. Then, two operations on the mul-
tidimensional scores, flipscore and dropscore, are devised
to reserve the feature diversity by highlighting dissimilar
features and to maintain the structure diversity by cover-
ing more substructures, respectively. Extensive experiments
on seventeen benchmark datasets involving different do-
mains, samples, and graph sizes have verified that MID
can generally and consistently improve the performance of
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current node drop pooling models (e.g., TopKPool, SAG-
Pool, GSAPool, and ASAP). Furthermore, the experimental
results indicate that backbone models with MID are much
more powerful from the perspective of robustness and gen-
eralization.
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