
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

AdaSAM: Boosting Sharpness-Aware Minimization
with Adaptive Learning Rate and Momentum for

Training Deep Neural Networks
Hao Sun, Li Shen, Qihuang Zhong, Liang Ding, Shixiang Chen

Jingwei Sun, Jing Li, Guangzhong Sun, and Dacheng Tao Fellow, IEEE

Abstract—Sharpness aware minimization (SAM) optimizer has
been extensively explored as it can generalize better for training
deep neural networks via introducing extra perturbation steps to
flatten the landscape of deep learning models. Integrating SAM
with adaptive learning rate and momentum acceleration, dubbed
AdaSAM, has already been explored empirically to train large-
scale deep neural networks without theoretical guarantee due to
the triple difficulties in analyzing the coupled perturbation step,
adaptive learning rate and momentum step. In this paper, we
try to analyze the convergence rate of AdaSAM in the stochastic
non-convex setting. We theoretically show that AdaSAM admits
a O(1/

√
bT) convergence rate, which achieves linear speedup

property with respect to mini-batch size b. Specifically, to decou-
ple the stochastic gradient steps with the adaptive learning rate
and perturbed gradient, we introduce the delayed second-order
momentum term to decompose them to make them independent
while taking an expectation during the analysis. Then we bound
them by showing the adaptive learning rate has a limited range,
which makes our analysis feasible. To the best of our knowledge,
we are the first to provide the non-trivial convergence rate of
SAM with an adaptive learning rate and momentum acceleration.
At last, we conduct several experiments on several NLP tasks,
which show that AdaSAM could achieve superior performance
compared with SGD, AMSGrad, and SAM optimizers.

Index Terms—Sharpness-aware minimization, Adaptive learn-
ing rate, Non-convex optimization, linear speedup.

I. INTRODUCTION

SHARPNESS-AWARE minimization (SAM) [1] is a pow-
erful optimizer for training large-scale deep learning mod-

els by explicitly minimizing the gap between the training
performance and generalization performance. It has achieved
remarkable results in training various deep neural networks,
including ResNet [1]–[3], vision transformer [4], [5], language
models [6]–[8], on extensive benchmarks.

However, SAM-type methods suffer from several issues
during training the deep neural networks, especially for huge
computation costs and heavily hyper-parameter tuning proce-
dure. In each iteration, SAM needs double gradients compu-
tation compared with classic optimizers, like SGD, Adam [9],

Hao Sun, Jingwei Sun, Jing Li and Guangzhong Sun are with School of
Computer Science and Technology, University of Science and Technology
of China, Hefei, China, 230000. (E-mail: ustcsh@mail.ustc.edu.cn,
sunjw@ustc.edu.cn, lj@ustc.edu.cn, gzsun@ustc.edu.cn.)

Qihuang Zhong is with the School of Computer Science, Wuhan University,
Hubei, 430000. (E-mail: zhongqihuang@whu.edu.cn)

Li Shen, Liang Ding, Shixiang Chen, and Dacheng Tao
are with JD Explore Academy, Beijing, 100000. (E-mail:
mathshenli@gmail.com, liangding.liam@gmail.com, chenshxi-
ang@gmail.com, dacheng.tao@gmail.com.)

AMSGrad [10], due to the extra perturbation step. Hence,
SAM requires to forward and back propagate twice for one
parameter update, resulting in one more computation cost than
the classic optimizers. Moreover, as there are two steps during
the training process, it needs double hyper-parameters, which
makes the learning rate tuning unbearable and costly.

Adaptive learning rate optimization methods [11] scale the
gradients based on the history gradient information to acceler-
ate the convergence by tuning the learning rate automatically.
These methods, such as Adagrad [12], Adam [9], and AMS-
Grad [10], have been proposed for solving the computer vision,
natural language process, and generative neural networks tasks
[11], [13]–[15]. Recently, several works have tried to ease
the learning rate tuning in SAM by inheriting the triplet
advantages of SAM, adaptive learning rate, and momentum
acceleration. For example, [16] and [17] train ViT models
and NLP models with adaptive learning rates and momentum
acceleration, respectively. Although remarkable performance
has been achieved, their convergences are still unknown since
the adaptive learning rate and momentum acceleration are used
in SAM. Directly analyzing its convergence is complicated
and difficult due to the three coupled steps of optimization,
i.e., the adaptive learning rate estimation is coupled with the
momentum step and perturbation step of SAM.

In this paper, we analyze the convergence rate of SAM with
an adaptive learning rate and momentum acceleration, dubbed
AdaSAM, in the non-convex stochastic setting. To circumvent
the difficulty in the analysis, we develop a novel technique
to decouple the three-step training of SAM from the adaptive
learning rate and momentum step. The analysis procedure is
mainly divided into three parts. The first part is to analyze
the procedure of the SAM. Then we analyze the second step
that adopts the adaptive learning rate method. We introduce
a second-order momentum term from the previous iteration,
which is related to the adaptive learning rate and independent
of SAM while taking an expectation. Then we can bound the
term composed by the SAM and the previous second-order
momentum due to the limited adaptive learning rate. In the last
part, we analysis the momentum acceleration that is combined
with the SAM and the adaptive learning rate. The momentum
acceleration lead to an extra term in convergence analysis.
Here, we introduce an auxiliary sequence to absorb it and show
that their summation over the all iterations is controllable. We
prove that AdaSAM enjoys the property of linear speedup
property with respect to the batch size, i.e. O(1/

√
bT) where

ar
X

iv
:2

30
3.

00
56

5v
1

 [
cs

.L
G

]
 1

 M
ar

 2
02

3

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

b is the mini-batch size. Empirically, we apply AdaSAM to
train RoBERTa model on the GLUE benchmark to evaluate
our theoretical findings. We show that AdaSAM achieves the
best performance in experiments, where it wins 6 tasks of 8
tasks, and the linear speedup can be clearly observed.

In the end, we summarize our contributions as follows:
• We present the first convergence guarantee of the adaptive

SAM method with momentum acceleration under the
stochastic non-convex setting. Our results suggest that
a large mini-batch can help convergence due to the
established linear speedup with respect to batch size.

• We conduct a series of experiments on various tasks. The
results show that AdaSAM outperforms most of the state-
of-art optimizers and the linear speedup is verified.

II. PRELIMINARY AND RELATED WORK

In this section, we first describe the basic problem setup
and then introduce several related works on the SAM, adaptive
learning rate and momentum steps.

A. Problem Setup

In this work, we focus on stochastic nonconvex optimization

min
x∈Rd

f(x) := Eξ∼Dfξ(x), (1)

where d is dimension of variable x, D is the unknown
distribution of the data samples, fξ(x) is a smooth and possibly
non-convex function, and fξi(x) denotes the objective function
at the sampled data point ξi according to data distribution D.
In machine learning, it covers empirical risk minimization as
a special case and f is the loss function when the dataset D
cover N data points, i.e., D = {ξi, i = 1, 2, . . . , N}. Problem
(1) reduces to the following finite-sum problem:

min
x∈Rd

f(x) :=
1

N

∑
i

fξi(x). (2)

a) Notations.: Without additional declaration, we rep-
resent fi(x) as fξi(x) for simplification, which is the i-th
loss function while x ∈ Rd is the model parameter and d
is the parameter dimension. We denote the l2 norm as ‖ · ‖2.
A Hadamard product is denoted as a � b where a,b are two
vectors. For a vector a ∈ Rd,

√
a is denoted as a vector that

the j-th value, (
√
a)(j), is equal to the square root of aj .

B. Related Work

a) Sharpness-aware minimization: Many works try to
improve the generalization ability during training the deep
learning model. Some methods such as dropout [18], weight
decay [19], and regularization methods [20], [21] provide an
explicit way to improve generalization. Previous work shows
that sharp minima may lead to poor generalization whereas
flat minima perform better [22]–[24]. Therefore, it is popular
to consider sharpness to be closely related to the general-
ization. Sharpness-aware minimization (SAM) [1] targets to
find flat minimizers explicitly by minimizing the training loss

uniformly in the entire neighborhood. Specifically, SAM aims
to solve the following minimax saddle point problem:

min
x

max
‖δ‖≤ρ

f(x+ δ) + λ‖x‖22, (3)

where ρ ≥ 0 and λ ≥ 0 are two hyperparameters. That
is, the perturbed loss function of f(x) in a neighborhood is
minimized instead of the original loss function f(x). By using
Taylor expansion of f(x+ δ) with respect to δ, the inner max
problem is approximately solved via

δ∗(x) = arg max
‖δ‖≤ρ

f(x+ δ)

≈ arg max
‖δ‖≤ρ

f(x) + δ>∇f(x)

= arg max
‖δ‖≤ρ

δ>∇f(x) = ρ
∇f(x)

‖∇f(x)‖
.

By dropping the quadratic term, (3) is simplified as the
following minimization problem

min
x
f

(
x+ ρ

∇f(x)

‖∇f(x)‖

)
. (4)

The stochastic gradient of f
(
x+ ρ ∇f(x)‖∇f(x)‖

)
on a batch data

b includes the Hessian-vector product, SAM further approxi-
mates the gradient by

∇xfb
(
x+ ρ

∇fb(x)

‖∇fb(x)‖

)
≈ ∇xfb(x)|

x+ρ
∇fb(x)

‖∇fb(x)‖
.

Then, along the negative direction −∇xfb(x)|
x+ρ

∇fb(x)

‖∇fb(x)‖
,

SGD is applied to solve the surrogate minimization problem
(4). It is easy to see that SAM requires twice gradient back-
propagation, i.e., ∇fb(x) and ∇xfb(x)|

x+ρ
∇fb(x)

‖∇fb(x)‖
. Due to

the existence of hyperparameter ρ, one needs to carefully tune
both ρ and learning rate in SAM. In practice, ρ is predefined
to control the radius of the neighborhood.

Recently, Several variants of SAM are proposed to improve
its performance. For example, [8], [16], [17] have empirically
incorporated adaptive learning rate with SAM and shown
impressive generalization accuracy, while their convergence
analysis has never been studied. ESAM [25] proposes an
efficient method by sparsifying the gradients to alleviate the
double computation cost of backpropagation. ASAM [17]
modifies SAM by adaptively scaling the neighborhood so that
the sharpness is invariant to parameters re-scaling. GSAM
[16] simultaneously minimizes the perturbed function and a
new defined surrogate gap function to further improve the
flatness of minimizers. Liu et al. [26] also study SAM in large-
batch training scenario and periodically update the perturbed
gradient. Recently, [3], [8] improve the efficiency of SAM
by adopting the sparse gradient perturbation technique. [27],
[28] extend SAM to the federated learning setting setting
with a significant performance gain. On the other hand, there
are some works analyzing the convergence of the SAM such
as [29] without considering the normalization step, i.e., the
normalization in ∇fb(x)

‖∇fb(x)‖ .

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

b) Adaptive optimizer: The adaptive optimizer can au-
tomatically adjust the learning rate based on the history
gradients methods. The first adaptive method, Adagrad [12],
can achieve a better result than other first-order methods
under the convex setting. While training the deep neural
network, Adagrad will decrease the learning rate rapidly with
a degraded performance. Adadelta [30] is proposed to change
this situation and introduces a learning rate based on the
exponential average history gradients. Adam [9] additionally
adds momentum step to stabilize the training process, and it
shows great performance in many tasks. However, Reddi et al
[10] give a counterexample that it cannot converge even when
the objective function is convex and propose an alternative
method called AMSGrad with convergence guarantee. Then,
many works [31]–[44] have been proposed to study the conver-
gence of adaptive methods and their variants in the nonconvex
setting. However, their analysis techniques can not directly
extend to establish the convergence of SAM with adaptive
learning rate due to the coupled perturbation step and adaptive
learning rate.

c) Momentum acceleration: Momentum methods such as
Polyak’s heavy ball method [45], Nestrov’s accelerated gra-
dient descent method [46] and accelerated projected method
[47] are used to optimize the parameters of the deep neural
network. In practice, they have been used to accelerated for
federated learning tasks [48], non-negative latent factor model
[49] and recommender systems [50]. There are many theoret-
ical works [51]–[53] that focus on analyzing the momentum
acceleration for optimizing non-convex problem. [54] shows
that it is important for tuning momentum while training deep
neural network. [55] first points out linear convergence results
for stochastic momentum method. [56] proposes a class of
accelerated zeroth-order and first-order momentum method to
solve mini-optimization and minimax-optimization problem.
[57] extend the momentum method by introducing an RNA
scheme and a constrained formulation RNA which has non-
linear updates. [58] propose a heuristic adaptive restart method
and [59] propose a scheduled restart momentum accelerated
SGD method named SRSGD which helps reduce the training
time. [60] adds one momentum term on to the distributed
gradient algorithm.

III. METHODOLOGY

In this section, we introduce SAM with adaptive learning
rate and momentum acceleration, dubbed AdaSAM, to sta-
bilize the training process of SAM and ease the learning rate
tuning. Then, we present the convergence results of AdaSAM.
At last, we give the proof sketch for the main theorem.

A. AdaSAM Algorithm

AdaSAM for solving Problem (1) is described in Algorithm
1. In each iteration, a mini-batch gradient estimation gt at point
x+ ε(x) with batchsize b is computed, i.e.,

gt = ∇xfb(x)|xt+ε(xt) =
1

b

∑
i∈B
∇fξi(xt + δ(xt)).

Algorithm 1: AdaSAM: SAM with adaptive learning
rate and momentum acceleration

Input: Initial parameters x0, m−1 = 0, v̂−1 = ε2(a
small positive scalar to avoid the denominator
diminishing), base learning rate γ,
neighborhood size ρ and momentum
parameters β1, β2.

Output: Optimized parameter xT+1

1 for iteration t ∈ {0, 1, 2, ..., T − 1} do
2 Sample mini-batch B = {ξt1 , ξt2 , ..., ξt|B|};
3 Compute gradient

st = ∇xfB(x)|xt
= 1

b

∑
i∈B ∇fti(xt);

4 Compute δ(xt) = ρt
st
‖st‖ ;

5 Compute SAM gradient gt = ∇xfB(x)|xt+δ(xt);
6 mt = β1mt−1 + (1− β1)gt;
7 vt = β2vt−1 + (1− β2)[gt]

2;
8 v̂t = max(v̂t−1, vt);
9 ηt = 1/

√
v̂t;

10 xt+1 = xt − γmt � ηt;
11 end

Here, δ(xt) is the extra perturbed gradient step in SAM that
is given as follows

δ(xt) = ρ
st
‖st‖

, where st = ∇xfb(x)|xt
=

1

b

∑
i∈B
∇fξi(xt).

Then, the momentum term of gt and the second-order mo-
ment term [gt]

2 is accumulatively computed as mt and vt,
respectively. AdaSAM then updates iterate along −mt with
the adaptive learning rate γηt.

Remark 1. Below, we give several comments on AdaSAM:
• When β2 = 1, the adaptive learning rate reduces to the

diminishing one as SGD. Then, AdaSAM recovers the
classic SAM optimizer.

• If we drop out the 8-th line v̂t = max(v̂t−1, vt), then
our algorithm becomes the variant of Adam. The coun-
terexample that Adam does not converge in the [10] also
holds for the SAM variant, while AdaSAM can converge.

B. Convergence Analysis

Before presenting the convergence results of the AdaSAM
algorithm, we first introduce some necessary assumptions.

Assumption 1 (L-smooth). fi and f is differentiable with
gradient Lipschitz property: ‖∇fi(x) − ∇fi(y)‖ ≤ L‖x −
y‖,‖∇f(x)−∇f(y)‖ ≤ L‖x−y‖,∀x, y ∈ Rd, i = 1, 2, ..., N,
which also implies the descent inequality, i.e., fi(y) ≤ fi(x)+
〈∇fi(x), y − x〉+ L

2 ‖y − x‖
2.

Assumption 2 (Bounded variance). The estimator of the gra-
dient is unbiased and the variance of the stochastic gradient
is bounded. i.e.,

E∇fi(x) = ∇f(x), E‖∇fi(x)−∇f(x)‖2 ≤ σ2.

When the mini-batch size b is used, we have E‖∇fb(x) −
∇f(x)‖2 ≤ σ2

b .

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Assumption 3 (Bounded stochastic gradients). The stochas-
tic gradient is uniformly bounded, i.e.,

‖∇fi(x)‖∞ ≤ G, for any i = 1, . . . , N.

Remark 2. The above assumptions are commonly used in the
proof of convergence for adaptive stochastic gradient methods
such as [31], [32], [61], [62].

Below, we briefly explain the main idea of analyzing the
convergence of the AdaSAM algorithm. First, we discuss the
difficulty of applying the adaptive learning rate on SAM. We
notice that the main step which contains adaptive learning
rate in convergence analysis is to estimate the expectation
E[xt+1 − xt] = −Emt�ηt = −E(1−β1)gt�ηt−Eβ1mt−1�
ηt, which is conditioned on the filtration σ(xt). In this part, we
consider the situation that β1 = 0 which does not include the
momentum. Then, we apply delay technology to disentangle
the dependence between gt and ηt, that is

Egt � ηt = E[gt � ηt−1] + E[gt � (ηt − ηt−1)]

= ∇f(xt)� ηt−1 + E[gt � (ηt − ηt−1)].

The second term E[gt � (ηt − ηt−1)] is dominated by the
first term ∇f(xt) � ηt−1. Then, it is not difficult to get
the convergence result of the stochastic gradient descend
with the adaptive learning rate such as AMSGrad. However,
when we apply the same strategy to AdaSAM, we find that
Egt � ηt−1 cannot be handled similarly because Egt =

E∇xfb
(
x+ ρ ∇fb(x)‖∇fb(x)‖

)
6= ∇f(xt). Inspired by [29, Lemma

16], our key observation is that

E∇xfb
(
x+ ρ

∇fb(x)

‖∇fb(x)‖

)
≈ E∇xfb

(
x+ ρ

∇f(x)

‖∇f(x)‖

)
= ∇xf

(
x+ ρ

∇f(x)

‖∇f(x)‖

)
and we prove the other terms such as
E
(
∇xfb

(
x+ ρ ∇fb(x)‖∇fb(x)‖

)
−∇xfb

(
x+ ρ ∇f(x)‖∇f(x)‖

))
� ηt−1

have small values that do not dominate the convergence rate.
On the other hand, when we apply the momentum steps, we

find that the term Emt−1�ηt cannot be ignored. By introduc-
ing an auxiliary sequence zt = xt+

β1

1−β1
(xt−xt−1), we have

E[zt+1 − zt] = −E[β1

1−β1
γmt−1 � (ηt−1 − ηt)− γgt � ηt].

The first term contains the momentum term which has a small
value due to the difference of the adaptive learning rate ηt.
Thus, it is diminishing without hurting the convergence rate.

Theorem 1. Under the assumptions 1,2,3, and γ is a fixed
number satisfying γ ≤ ε

16L , for the sequence {xt} generated
by Algorithm 1, we have the following convergence rate

1

T

T−1∑
t=0

E‖∇f(xt)‖22≤
2G(f(x0)−f∗)

γT
+

8GγL

ε

σ2

bε
+Φ (5)

where

Φ =
45GL2ρ2t

ε
+

2G3

(1− β1)T
d(

1

ε
− 1

G
) +

6γ2L2β2
1

(1− β1)2
dG3

ε3

+
2(4 + (β1

1−β1
)2)γLG3

T
d(ε−2 −G−2) +

8GγL

ε

Lρ2t
ε
, (6)

in which T is the number of iteration, f∗ is the minimal value
of the function f , γ is the base learning rate, b is the mini-
batch size, d is the dimension of paramter x. β1, G, L, ε, σ2,
d are fixed constants.

Theorem 1 characterizes the convergence rate of the se-
quence {xt} generated by AdaSAM with respect to the
stochastic gradient residual. The first two terms of the right
hand side of Inequality (5) are the terms that dominate the
convergence rate. Compared with the first two terms, Φ is a
small value while we set neighborhood size ρ and learning rate
γ as small values which are related to large iteration number
T . Then, we obtain the following corollary directly.

Corollary 1 (Mini-batch linear speedup). Under the same
conditions of Theorem 1. Furthermore, when we choose the
base learning rate γ = O(

√
b
T) and neighborhood size ρ =

O(
√

1
bT) , the following result holds:

1

T

T−1∑
t=0

E‖∇f(xt)‖22 = O

(
1√
bT

)
+O

(
1

bT

)
+O

(
1

T

)

+O

(
1

b
1
2T

3
2

)
+O

(
b

1
2

T
3
2

)
+O

(
b

T

)
.

When T is sufficiently large, we achieve the linear speedup
convergence rate with respect to mini-batch size b, i.e.,

1

T

T−1∑
t=0

E‖∇f(xt)‖22 = O

(
1√
bT

)
. (7)

Remark 3. Two comments are given about the above results:
• To reach a O(δ) stationary point, when the batch size is

1, it needs T = O(1
δ2) iterations. When the batch size is

b, we need to run T = O(1
bδ2) steps. The method with

batch size b is b times faster than batch size of 1, which
means that it has the mini-batch linear speedup property.

• According to [37], [63], [64], AdaSAM can be extended
to distributed version and achieves linear speedup prop-
erty with respect to the number of works in the Parameter-
Sever setting.

C. Proof Sketch

In this part, we give the proof sketch of the Theorem 1.
For the complete proof, please see Appendix. Below, we first
introduce an auxiliary sequence zt = xt + β1

1−β1
(xt − xt−1).

By applying L-smooth condition, we have

f(zt+1)≤f(zt)+〈∇f(zt), zt+1 − zt〉+
L

2
‖zt+1 − zt‖2. (8)

Applying it to the sequence {zt} and using the delay strategy
yield

f(zt+1)− f(zt)

≤ 〈∇f(zt),
γβ1

1− β1
mt−1 � (ηt−1 − ηt)〉+

L

2
‖zt+1 − zt‖2

+ 〈∇f(zt),
γ

b

∑
i∈B
∇fi(xt + ρt

st
‖st‖

)� (ηt−1 − ηt)〉

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

TABLE I: Evaluating SGD, SAM, AMSGrad and AdaSAM on the GLUE benchmark with β1 = 0.9

CoLA SST-2 MRPC STS-B RTE MNLI QNLI QQPModel mcc. Acc. Acc./F1 Pcor./Scor. Acc. m./mm. Acc. F1/ Acc. Avg.

SGD 9.25 50.92 68.38/ 81.22 3.22/ 1.9 55.6 84.94/ 84.87 63.61 85.6/ 80.14 55.8
SAM(ρ =0.01) 4.64 95.87 70.58/ 81.98 84.74/ 85.57 52.71 90.5/ 90.19 94.44 84.7/ 87.88 76.98
SAM(ρ =0.005) 66.76 95.76 68.38/ 81.22 2/ 2 52.71 90.42/ 89.74 94.6 86.72/ 89.94 68.35
SAM(best) 66.76 95.87 70.58/ 81.98 84.74/ 85.57 52.71 90.5/ 90.19 94.6 86.72/ 89.94 82.51
AMSGrad 68.0 96.33 90.2/ 92.72 91.72/ 91.48 87.73 90.67/ 90.41 94.82 88.7/ 91.41 89.52

AdaSAM(ρ =0.01) 65.29 96.33 91.18/ 93.64 90.13/ 90.36 84.84 90.97/ 90.42 94.65 88.55/ 91.23 88.97
AdaSAM(ρ =0.005) 68.74 96.67 90.93/ 93.36 91.64/ 91.38 87.73 90.88/ 90.4 94.56 88.69/ 91.33 89.69
AdaSAM(ρ =0.001) 67.3 96.1 90.2/ 92.96 91.9/ 91.62 85.92 90.45/ 90.4 94.56 88.64/ 91.27 89.28
AdaSAM(best) 68.74 96.67 91.18/ 93.64 91.9/ 91.62 87.73 90.97/ 90.42 94.65 88.69/ 91.33 89.8

+ 〈∇f(zt)−∇f(xt),−
γ

b

∑
i∈B
∇fi(xt + ρt

st
‖st‖

)� ηt−1〉

+ 〈∇f(xt),−
γ

b

∑
i∈B
∇fi(xt + ρt

∇f(xt)

‖∇f(xt)‖
)� ηt−1〉

+ 〈∇f(xt),
γ

b

∑
i∈B
∇fi(xt + ρt

∇f(xt)

‖∇f(xt)‖
)� ηt−1

− γ

b

∑
i∈B
∇fi(xt + ρt

st
‖st‖

)� ηt−1〉. (9)

From the Lemma 5, Lemma 6, Lemma 7 in appendix, we can
bound the above terms in (9) as follows

〈∇f(zt),
γ

b

∑
i∈B
∇fi(xt + ρt

st
‖st‖

)� (ηt−1 − ηt)〉

≤ γG2‖ηt−1 − ηt‖1, (10)

〈∇f(zt),
γβ1

1− β1
mt−1 � (ηt−1 − ηt)〉

≤ γβ1
1− β1

G2‖ηt−1 − ηt‖1, (11)

〈∇f(xt),
γ

b

∑
i∈B
∇fi(xt + ρt

∇f(xt)

‖∇f(xt)‖
)� ηt−1

− γ

b

∑
i∈B
∇fi(xt + ρt

st
‖st‖

)� ηt−1〉

≤ γ

2µ2
‖∇f(xt)�

√
ηt−1‖2 +

2µ2γL2ρ2t
ε

. (12)

Then we substitute them into the (9), and take the conditional
expectation to get

Ef(zt+1)− f(zt)

≤ E〈∇f(xt),−
γ

b

∑
i∈B
∇fi(xt + ρt

∇f(xt)

‖∇f(xt)‖
)� ηt−1〉

+
γ

2µ2
‖∇f(xt)�

√
ηt−1‖2 +

γ

1− β1
G2‖ηt−1 − ηt‖1

+ E〈∇f(zt)−∇f(xt),−
γ

b

∑
i∈B
∇fi(xt + ρt

st
‖st‖

)� ηt−1〉

+
2µ2γL2ρ2t

ε
+
L

2
E‖zt+1 − zt‖2, (13)

where µ > 0 is a constant to be determined. Next, from the
Lemma 8, Lemma 10 and Lemma 9 in Appendix, we have

E〈∇f(xt),−
γ

b

∑
i∈B
∇fi(xt + ρt

∇f(xt)

‖∇f(xt)‖
)� ηt−1〉

≤ −γ‖∇f(xt)�
√
ηt−1‖2 + E

γ

2α2
‖∇f(xt)�

√
ηt−1‖2

+
γα2L2ρ2t

2ε
, (14)

L

2
E‖zt+1 − zt‖2 ≤

LG2γ2β2
1

(1− β1)2
E‖ηt − ηt−1‖2

+ γ2L(3
1 + β

βε
(
Lρ2t
ε

+
σ2

bε
+ E‖∇f(xt)�

√
ηt−1‖2)

+ (1 + β)G2E‖ηt − ηt−1‖2), (15)

E〈∇f(zt)−∇f(xt),−
γ

b

∑
i∈B
∇fi(xt + ρt

st
‖st‖

)� ηt−1〉

≤ γ3L2β2
1

2ε(1− β1)2
(

1

λ21
+

1

λ22
+

1

λ23
)
dG2
∞

ε2
+
γL2ρ2t

2ε
(λ22 + 4λ23)

+
γλ21
2
‖∇f(xt)�

√
ηt−1‖2. (16)

Next, we substitute it into the (13). Taking the expectation
over all history information yields

Ef(xt+1)− Ef(xt)

≤−γ(1− 1

2µ2
− 1

2α2
− 3γL(1+β)

βε
− λ

2
1

2
)E‖∇f(xt)�

√
ηt−1‖2

+
2µ2γL2ρ2t

ε
+

γ

1− β1
G2E‖ηt−1 − ηt‖1 +

γα2L2ρ2

2ε

+
γ3L2β2

1

2ε(1− β1)2
(

1

λ21
+

1

λ22
+

1

λ23
)
dG2
∞

ε2
+
γL2ρ2t

2ε
(λ22 + 4λ23)

+ γ2LG2((
β1

1− β1
)2 + 1 + β)E‖ηt − ηt−1‖2

+
3γ2L(1 + β)

βε
(
Lρ2t
ε

+
σ2

bε
). (17)

We set µ2 = α2 = 8, β = 3, λ21 = 1
4 , λ22 = λ23 = 1 and we

choose 2γL
ε ≤

1
8 . Note that ηt is bounded. We have

γ

2G
E‖∇f(xt)‖2 ≤

γ

2
E‖∇f(xt)�

√
ηt−1‖2 (18)

≤ −Ef(xt+1) + Ef(xt) +
45γL2ρ2t

2ε
+

4γ2L

ε
(
Lρ2t
ε

+
σ2

bε
)

+
γ

1− β1
G2E‖ηt−1 − ηt‖1 +

3γ3L2β2
1

(1− β1)2
dG2
∞

ε3

+ (4 + (
β1

1− β1
)2)γ2LG2E‖ηt − ηt−1‖2. (19)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

0 100 200 300 400 500 600
Steps

0.10

0.25

0.40

0.55

0.70

0.85

1.00

1.15

T
ra

in
in

g
lo

ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

AdaSAM(0.001)

(a) MRPC

0 100 200 300 400 500 600
Steps

0.10

0.25

0.40

0.55

0.70

0.85

1.00

1.15

T
ra

in
in

g
lo

ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

AdaSAM(0.001)

(b) RTE

0 200 400 600 800 1000 1200 1400
Steps

0.10

0.25

0.40

0.55

0.70

0.85

1.00

1.15

T
ra

in
in

g
lo

ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

AdaSAM(0.001)

(c) CoLA

0 1000 2000 3000 4000 5000
Steps

0.10

0.25

0.40

0.55

0.70

0.85

1.00

1.15

T
ra

in
in

g
lo

ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

AdaSAM(0.001)

(d) SST-2

0 100 200 300 400 500 600
Steps

65

70

75

80

85

90

95

a
cc SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

AdaSAM(0.001)

(e) MRPC

0 100 200 300 400 500
Steps

40

45

50

55

60

65

70

75

80

85

a
cc SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

AdaSAM(0.001)

(f) RTE

0 200 400 600 800 1000 1200 1400
Steps

65

70

75

80

85

90

m
cc SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

AdaSAM(0.001)

(g) CoLA

0 1000 2000 3000 4000 5000
Steps

80

84

88

92

96

a
cc SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

AdaSAM(0.001)

(h) SST-2

0 200 400 600 800 1000
Steps

0.00

0.05

0.10

0.15

0.20

0.25

T
ra

in
in

g
lo

ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

AdaSAM(0.001)

(i) STS-B

0 2500 5000 75001000012500150001750020000
Steps

0.10
0.25
0.40
0.55
0.70
0.85
1.00
1.15

T
ra

in
in

g
lo

ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

AdaSAM(0.001)

(j) MNLI

0 2000 4000 6000 8000 10000
Steps

0.10

0.25

0.40

0.55

0.70

0.85

1.00

1.15

T
ra

in
in

g
lo

ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

AdaSAM(0.001)

(k) QQP

0 1000 2000 3000 4000 5000 6000
Steps

0.10

0.25

0.40

0.55

0.70

0.85

1.00

1.15

T
ra

in
in

g
lo

ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

AdaSAM(0.001)

(l) QNLI

0 200 400 600 800
Steps

0.00

0.05

0.10

0.15

0.20

0.25

T
e
st

L
o
ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

AdaSAM(0.001)

(m) STS-B

0 5000 10000 15000 20000
Steps

80

82

84

86

88

90

a
cc SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

AdaSAM(0.001)

(n) MNLI

0 2000 4000 6000 8000 10000
Steps

80

82

84

86

88

90

a
cc SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

AdaSAM(0.001)

(o) QQP

0 1000 2000 3000 4000 5000 6000
Steps

80

84

88

92

96

a
cc SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

AdaSAM(0.001)

(p) QNLI

Fig. 1: The loss and evaluation metric v.s. steps on MRPC, RTE, CoLA, SST-2, STS-B, MNLI, QQP, and QNLI.(β1 = 0.9)

Then, telescoping it from t = 0 to t = T − 1, and assuming
γ is a constant, it follows that

1

T

T−1∑
t=0

E‖∇f(xt)‖2 ≤
2G(f(x0)− f∗)

γT
+

8GγL

ε

σ2

bε

+
45GL2ρ2t

ε
+

2G3

(1− β1)T
d(

1

ε
− 1

G
) +

6γ2L2β2
1

(1− β1)2
dG3

ε3

+
8GγL

ε

Lρ2t
ε

+
2(4 + (β1

1−β1
)2)γLG3

T
d(ε−2 −G−2), (20)

which completes the proof.

IV. EXPERIMENTS

In this section, we apply AdaSAM to train language models
and compare it with SGD, AMSGrad, and SAM to show its
effectiveness. Due to space limitations, more experiments, in-
cluding visualization, task description, implementation details
and results description, are placed in the Appendix.

A. Experimental Setup

Tasks and Datasets. We evaluate AdaSAM on a popular
benchmark, i.e. General Language Understanding Evaluation
(GLUE) [65], which consists of several language understand-
ing tasks including sentiment analysis, question answering and
textual entailment. For a fair comparison, we report the results
based on single-task, without multi-task or ensemble training.
We evaluate the performance with Accuracy (“Acc”) metric
for most tasks, except the F1 scores for QQP and MRPC, the
Pearson-Spearman correlations (“Pcor/Scor”) for STS-B and
the Matthew correlations (“Mcc”) for CoLA. The performance
is better as the metric is higher.

Implementations. We conduct our experiments using a
widely-used pre-trained language model, RoBERTa-large1 in
the open-source toolkit fairseq2, with 24 transformer layers,
a hidden size of 1024. For fine-tuning on each task, we
use different combinations of hyper-parameters, including the

1https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.tar.gz
2https://github.com/facebookresearch/fairseq

https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.tar.gz
https://github.com/facebookresearch/fairseq

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

0 200 400 600 800 1000
Steps

0.125

0.250

0.375

0.500

0.625

0.750

0.875

1.000

1.125
T

ra
in

in
g

lo
ss

4

8

16

32

(a) MRPC

0 200 400 600 800 1000 1200
Steps

0.10

0.25

0.40

0.55

0.70

0.85

1.00

1.15

T
ra

in
in

g
lo

ss

4

8

16

32

(b) RTE

0 250 500 750 1000 1250 1500 1750 2000
Steps

0.10

0.25

0.40

0.55

0.70

0.85

1.00

1.15

T
ra

in
in

g
lo

ss

4

8

16

32

(c) CoLA

Fig. 2: The linear speedup verification of AdaSAM with the number of batch size of 4, 8, 16, 32.

TABLE II: Results of SGD, SAM, AMSGrad and AdaSAM on the GLUE benchmark without momentum, i.e., β1 = 0

CoLA SST-2 MRPC STS-B RTE MNLI QNLI QQPModel mcc. Acc. Acc./F1 Pcor./Scor. Acc. m./mm. Acc. F1/ Acc. Avg.

SGD 0 51.722 68.38/ 81.22 5.55/ 7.2 51.27 32.51/ 32.42 53.32 0/ 63.18 37.23
SAM(ρ =0.01) 41.91 95.3 68.38/ 81.22 9.21/ 10.38 53.07 87.99/ 87.8 51.24 83.44/ 87.27 63.1
SAM(ρ =0.005) 58.79 81.54 68.38/ 81.22 13.52/ 16.6 53.79 88.42/ 88.15 92.95 83.84/ 87.7 67.91
SAM(best) 58.79 95.3 68.38/ 81.22 13.52/ 16.6 53.79 88.42/ 88.15 92.95 83.84/ 87.7 69.06
AMSGrad 63.78 96.44 89.71/ 92.44 89.98/ 90.35 87.36 90.65/ 90.35 94.53 88.59/ 91.27 88.79

AdaSAM(ρ =0.01) 69.23 96.22 89.96/ 92.84 88.83/ 89.07 87 90.83/ 90.41 94.8 88.67/ 91.38 89.1
AdaSAM(ρ =0.005) 68.47 96.22 89.96/ 92.82 91.59/ 91.22 73.65 90.75/ 90.42 94.73 88.72/ 91.46 88.33
AdaSAM(best) 69.23 96.22 89.96/ 92.84 91.59/ 91.22 87 90.83/ 90.42 94.8 88.72/ 91.46 89.52

learning rate, the number of epochs, the batch size, etc 3. In
particular, for RTE, STS-B and MRPC of GLUE benchmark,
we first fine-tune the pre-trained RoBERTa-large model on
the MNLI dataset and continue fine-tuning the RoBERTa-
large-MNLI model on the corresponding single-task corpus
for better performance, as many prior works did [7], [66]. All
models are trained on NVIDIA DGX SuperPOD cluster, in
which each machine contains 8×40GB A100 GPUs.

B. Results on GLUE Benchmark

Table I shows the performance of SGD, SAM, AMSGrad,
and AdaSAM. For the AdaSAM, we tune the neighborhood
size of the perturbation parameter from 0.01, 0.005, and 0.001.
The result shows that AdaSAM outperforms AMSGrad on 6
tasks of 8 tasks except for QNLI and QQP. Overall, it improves
the 0.28 average score than AMSGrad. On the other hand,
Table I indicates that SAM is better than SGD on 7 tasks of
8 tasks except for RTE. And SAM can significantly improve
performance. Comparing the results of Table I, we can find
that the adaptive learning rate method is better than SGD
tuned with handicraft learning rate. AdaSAM achieves the best
metric on 6 tasks which is CoLA, SST-2, MRPC, STS-B, RTE,
QNLI, and MNLI. In general, AdaSAM is better than the other
methods.

In addition, Figure 3 shows the convergence speed of the
detailed loss and evaluation metrics vs. the number of steps
during training, respectively. The loss curve of AdaSAM
decreases faster than SAM and SGD in all tasks, and it has a

3Due to the space limitation, we show the details of the dataset and training
setting in Appendix A.

similar decreasing speed as the AMSGrad. The evaluation met-
ric curve of AdaSAM and AMSGrad show that the AdaSAM
is better than SGD and SAM and decreases the loss value as
faster as the AMSGrad in all tasks.

C. Mini-batch Speedup

In this part, we test the performance with different batch
sizes to validate the linear speedup property. The experiments
are conducted on the MRPC, RTE, and CoLA tasks. The batch
size is set as 4, 8, 16, 32, respectively. We scale the learning
rate as

√
N , which is similar as [67], where N is the batch

size. The results show that the training loss decreases faster
as the batchsize increases, and the loss curve with the batch
size of 32 achieves nearly half iterations as the curve with the
batch size of 16.

D. Ablation Study

In this subsection, we conduct the experiments the momen-
tum hyper-parameter β1 is set to 0 to evaluate the influence
of the momentum acceleration and the adaptive learning rate.
Table II shows that AdaSAM outperforms AMSGrad on 6
tasks of 8 tasks except for SST-2 and RTE. In Table II, we also
compare SGD and SAM, and without the momentum, SAM
outperforms SGD on all tasks. Under this situation, AdaSAM
without the momentum acceleration method is better than the
other methods.

When comparing the result of Table I and Table II, we find
that both the adaptive learning rate method and the momentum
acceleration are helpful for the model’s generalization ability.
When there is no momentum term, SAM with an adaptive

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

learning rate improves the 0.74 average score to AMSGrad.
With a momentum term, AdaSAM improves the 0.28 average
score to AMSGrad. It shows that the adaptive method can
improve the performance with or without momentum accel-
eration and it achieves the best performance with momentum
acceleration. And we can find that momentum acceleration
improves the performance of SAM, AMSGrad and AdaSAM.

V. CONCLUSION

In this work, we study the convergence rate of Sharp-
ness aware minimization optimizer with an adaptive learning
rate and momentum acceleration, dubbed AdaSAM in the
stochastic non-convex setting. To the best of our knowledge,
we are the first to provide the non-trivial O(1/

√
bT) con-

vergence rate of AdaSAM, which achieves a linear speedup
property with respect to mini-batch size b. We have conducted
extensive experiments on several NLP tasks, which verifies
that AdaSAM could achieve superior performance compared
with AMSGrad and SAM optimizers. Future works include
extending AdaSAM to the distributed setting and reducing the
twice gradient back-propagation cost.

REFERENCES

[1] P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur, “Sharpness-aware
minimization for efficiently improving generalization,” in International
Conference on Learning Representations, 2021. 1, 2

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778. 1

[3] P. Mi, L. Shen, T. Ren, Y. Zhou, X. Sun, R. Ji, and D. Tao, “Make
sharpness-aware minimization stronger: A sparsified perturbation ap-
proach,” in Advances in Neural Information Processing Systems. 1,
2

[4] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Trans-
formers for image recognition at scale,” in International Conference on
Learning Representations, 2021. 1

[5] X. Chen, C.-J. Hsieh, and B. Gong, “When vision transformers out-
perform resnets without pre-training or strong data augmentations,” in
International Conference on Learning Representation, 2022. 1

[6] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018. 1

[7] P. He, X. Liu, J. Gao, and W. Chen, “Deberta: Decoding-enhanced bert
with disentangled attention,” in ICLR, 2020. 1, 7

[8] Q. Zhong, L. Ding, L. Shen, P. Mi, J. Liu, B. Du, and D. Tao, “Improving
sharpness-aware minimization with fisher mask for better generalization
on language models,” arXiv preprint arXiv:2210.05497, 2022. 1, 2

[9] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in ICLR (Poster), 2015. [Online]. Available: http:
//arxiv.org/abs/1412.6980 1, 3

[10] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam
and beyond,” in International Conference on Learning Representations,
2018. 1, 3

[11] H. Iiduka, “Appropriate learning rates of adaptive learning rate optimiza-
tion algorithms for training deep neural networks,” IEEE Trans. Cybern.,
vol. 52, no. 12, pp. 13 250–13 261, 2022. 1

[12] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization.” Journal of machine
learning research, vol. 12, no. 7, 2011. 1, 3

[13] S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv preprint arXiv:1609.04747, 2016. 1

[14] L. Liao, L. Shen, J. Duan, M. Kolar, and D. Tao, “Local adagrad-
type algorithm for stochastic convex-concave optimization,” Machine
Learning, pp. 1–20, 2022. 1

[15] J. Zhang, S. P. Karimireddy, A. Veit, S. Kim, S. Reddi, S. Kumar, and
S. Sra, “Why are adaptive methods good for attention models?” Ad-
vances in Neural Information Processing Systems, vol. 33, pp. 15 383–
15 393, 2020. 1

[16] J. Zhuang, B. Gong, L. Yuan, Y. Cui, H. Adam, N. C. Dvornek,
sekhar tatikonda, J. s Duncan, and T. Liu, “Surrogate gap minimization
improves sharpness-aware training,” in International Conference on
Learning Representations, 2022. 1, 2

[17] J. Kwon, J. Kim, H. Park, and I. K. Choi, “Asam: Adaptive sharpness-
aware minimization for scale-invariant learning of deep neural net-
works,” in International Conference on Machine Learning. PMLR,
2021, pp. 5905–5914. 1, 2

[18] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014. 2

[19] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
arXiv preprint arXiv:1711.05101, 2017. 2

[20] Z. Li, H. Zhao, Y. Guo, Z. Yang, and S. Xie, “Accelerated log-regularized
convolutional transform learning and its convergence guarantee,” IEEE
Trans. Cybern., vol. 52, no. 10, pp. 10 785–10 799, 2022. 2

[21] Y. Lu, Z. Zhang, G. Lu, Y. Zhou, J. Li, and D. Zhang, “Addi-reg:
A better generalization-optimization tradeoff regularization method for
convolutional neural networks,” IEEE Trans. Cybern., vol. 52, no. 10,
pp. 10 827–10 842, 2022. 2

[22] Y. Jiang, B. Neyshabur, H. Mobahi, D. Krishnan, and S. Bengio, “Fan-
tastic generalization measures and where to find them,” in International
Conference on Learning Representations, 2020. 2

[23] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P.
Tang, “On large-batch training for deep learning: Generalization gap and
sharp minima,” in 5th International Conference on Learning Represen-
tations, ICLR 2017. OpenReview.net, 2017. 2

[24] H. He, G. Huang, and Y. Yuan, “Asymmetric valleys: Beyond sharp and
flat local minima,” Advances in neural information processing systems,
vol. 32, 2019. 2

[25] J. Du, H. Yan, J. Feng, J. T. Zhou, L. Zhen, R. S. M. Goh, and V. Tan,
“Efficient sharpness-aware minimization for improved training of neural
networks,” in International Conference on Learning Representations,
2022. 2

[26] Y. Liu, S. Mai, X. Chen, C.-J. Hsieh, and Y. You, “Towards efficient
and scalable sharpness-aware minimization,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2022, pp. 12 360–12 370. 2

[27] Z. Qu, X. Li, R. Duan, Y. Liu, B. Tang, and Z. Lu, “Generalized
federated learning via sharpness aware minimization,” in International
Conference on Machine Learning. PMLR, 2022, pp. 18 250–18 280. 2

[28] Y. Sun, L. Shen, T. Huang, L. Ding, and D. Tao, “Fedspeed: Larger local
interval, less communication round, and higher generalization accuracy,”
in International Conference on Learning Representations. 2

[29] M. Andriushchenko and N. Flammarion, “Towards understanding
sharpness-aware minimization,” in International Conference on Machine
Learning. PMLR, 2022, pp. 639–668. 2, 4

[30] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv
preprint arXiv:1212.5701, 2012. 3

[31] D. Zhou, J. Chen, Y. Cao, Y. Tang, Z. Yang, and Q. Gu, “On the
convergence of adaptive gradient methods for nonconvex optimization,”
arXiv preprint arXiv:1808.05671, 2018. 3, 4

[32] X. Chen, S. Liu, R. Sun, and M. Hong, “On the convergence of a class
of adam-type algorithms for non-convex optimization,” in International
Conference on Learning Representations, 2019. 3, 4

[33] M. Zaheer, S. Reddi, D. Sachan, S. Kale, and S. Kumar, “Adaptive
methods for nonconvex optimization,” Advances in neural information
processing systems, vol. 31, 2018. 3

[34] R. Ward, X. Wu, and L. Bottou, “Adagrad stepsizes: Sharp convergence
over nonconvex landscapes,” in International Conference on Machine
Learning. PMLR, 2019, pp. 6677–6686. 3

[35] A. Défossez, L. Bottou, F. Bach, and N. Usunier, “On the convergence
of adam and adagrad,” CoRR, vol. abs/2003.02395, 2020. [Online].
Available: https://arxiv.org/abs/2003.02395 3

[36] F. Zou, L. Shen, Z. Jie, W. Zhang, and W. Liu, “A sufficient condition for
convergences of adam and rmsprop,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
11 127–11 135. 3

[37] C. Chen, L. Shen, F. Zou, and W. Liu, “Towards practical adam:
Non-convexity, convergence theory, and mini-batch acceleration,” arXiv
preprint arXiv:2101.05471, 2021. 3, 4

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2003.02395

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

[38] C. Chen, L. Shen, H. Huang, and W. Liu, “Quantized adam with error
feedback,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 12, no. 5, pp. 1–26, 2021. 3

[39] C. Chen, L. Shen, F. Zou, and W. Liu, “Towards practical adam: Non-
convexity, convergence theory, and mini-batch acceleration,” Journal of
Machine Learning Research, vol. 23, pp. 1–47, 2022. 3

[40] C. Chen, L. Shen, W. Liu, and Z.-Q. Luo, “Efficient-adam:
Communication-efficient distributed adam with complexity analysis,”
arXiv preprint arXiv:2205.14473, 2022. 3

[41] F. Zou, L. Shen, Z. Jie, J. Sun, and W. Liu, “Weighted adagrad with
unified momentum,” arXiv preprint arXiv:1808.03408, 2018. 3

[42] H. Iiduka, “Appropriate learning rates of adaptive learning rate optimiza-
tion algorithms for training deep neural networks,” IEEE Transactions
on Cybernetics, vol. 52, no. 12, pp. 13 250–13 261, 2021. 3

[43] S. Sun, Z. Cao, H. Zhu, and J. Zhao, “A survey of optimization methods
from a machine learning perspective,” IEEE transactions on cybernetics,
vol. 50, no. 8, pp. 3668–3681, 2019. 3

[44] H. Sakai and H. Iiduka, “Riemannian adaptive optimization algorithm
and its application to natural language processing,” IEEE Transactions
on Cybernetics, vol. 52, no. 8, pp. 7328–7339, 2021. 3

[45] B. T. Polyak, “Some methods of speeding up the convergence of iteration
methods,” Ussr computational mathematics and mathematical physics,
vol. 4, no. 5, pp. 1–17, 1964. 3

[46] Y. Nesterov, Introductory lectures on convex optimization: A basic
course. Springer Science & Business Media, 2003, vol. 87. 3

[47] B. O’Donoghue and E. J. Candès, “Adaptive restart for accelerated
gradient schemes,” Found. Comput. Math., vol. 15, no. 3, pp. 715–732,
2015. 3

[48] W. Liu, L. Chen, Y. Chen, and W. Zhang, “Accelerating federated learn-
ing via momentum gradient descent,” IEEE Transactions on Parallel and
Distributed Systems, vol. 31, no. 8, pp. 1754–1766, 2020. 3

[49] X. Luo, Z. Liu, S. Li, M. Shang, and Z. Wang, “A fast non-negative
latent factor model based on generalized momentum method,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 1,
pp. 610–620, 2018. 3

[50] M. Shang, Y. Yuan, X. Luo, and M. Zhou, “An α–β-divergence-
generalized recommender for highly accurate predictions of missing user
preferences,” IEEE transactions on cybernetics, vol. 52, no. 8, pp. 8006–
8018, 2021. 3

[51] T. Yang, Q. Lin, and Z. Li, “Unified convergence analysis of stochastic
momentum methods for convex and non-convex optimization,” arXiv
preprint arXiv:1604.03257, 2016. 3

[52] S. S. Mannelli and P. Urbani, “Analytical study of momentum-based
acceleration methods in paradigmatic high-dimensional non-convex
problems,” in Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, M. Ranzato, A. Beygelz-
imer, Y. N. Dauphin, P. Liang, and J. W. Vaughan, Eds., 2021, pp.
187–199. 3

[53] X. Gao, M. Gürbüzbalaban, and L. Zhu, “Global convergence of
stochastic gradient hamiltonian monte carlo for nonconvex stochastic
optimization: Nonasymptotic performance bounds and momentum-based
acceleration,” Operations Research, vol. 70, no. 5, pp. 2931–2947, 2022.
3

[54] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance
of initialization and momentum in deep learning,” in International
conference on machine learning. PMLR, 2013, pp. 1139–1147. 3

[55] B. Can, M. Gürbüzbalaban, and L. Zhu, “Accelerated linear convergence
of stochastic momentum methods in wasserstein distances,” in Proceed-
ings of the 36th International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA, ser. Proceedings of
Machine Learning Research, K. Chaudhuri and R. Salakhutdinov, Eds.,
vol. 97. PMLR, 2019, pp. 891–901. 3

[56] F. Huang, S. Gao, J. Pei, and H. Huang, “Accelerated zeroth-order and
first-order momentum methods from mini to minimax optimization,” J.
Mach. Learn. Res., vol. 23, pp. 36:1–36:70, 2022. 3

[57] R. Bollapragada, D. Scieur, and A. d’Aspremont, “Nonlinear accelera-
tion of momentum and primal-dual algorithms,” Mathematical Program-
ming, pp. 1–38, 2022. 3

[58] B. O’donoghue and E. Candes, “Adaptive restart for accelerated gradient
schemes,” Foundations of computational mathematics, vol. 15, pp. 715–
732, 2015. 3

[59] B. Wang, T. M. Nguyen, T. Sun, A. L. Bertozzi, R. G. Baraniuk, and S. J.
Osher, “Scheduled restart momentum for accelerated stochastic gradient
descent,” SIAM J. Imaging Sci., vol. 15, no. 2, pp. 738–761, 2022. 3

[60] B. Liu, L. Chai, and J. Yi, “Convergence analysis of distributed gra-
dient descent algorithms with one and two momentum terms,” IEEE
Transactions on Cybernetics, 2022. 3

[61] A. Cutkosky and F. Orabona, “Momentum-based variance reduction in
non-convex sgd,” Advances in neural information processing systems,
vol. 32, 2019. 4

[62] F. Huang, J. Li, and H. Huang, “Super-adam: faster and universal
framework of adaptive gradients,” Advances in Neural Information
Processing Systems, vol. 34, 2021. 4

[63] M. Li, D. G. Andersen, A. J. Smola, and K. Yu, “Communication effi-
cient distributed machine learning with the parameter server,” Advances
in Neural Information Processing Systems, vol. 27, 2014. 4

[64] M. Li, T. Zhang, Y. Chen, and A. J. Smola, “Efficient mini-batch
training for stochastic optimization,” in Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data
mining, 2014, pp. 661–670. 4

[65] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. Bowman, “Glue:
A multi-task benchmark and analysis platform for natural language
understanding,” in EMNLP, 2018. 6

[66] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv, 2019. 7

[67] X. Li, B. Karimi, and P. Li, “On distributed adaptive optimization
with gradient compression,” in International Conference on Learning
Representations, 2021. 7

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

In this supplementary material, we give additional discussion on this paper. In Appendix A, detailed experimental settings
such as some hyper-parameters are listed. In Appendix B, we first give the proof, then we give some useful lemmas to help
proving the main theorem. In Appendix C, we provide additional experiment illustration.

APPENDIX A
EXPERIMENTAL SETTINGS

TABLE III: Experimental settings and data divisions upon different downstream tasks. Notably, for each tasks in GLUE
benchmark, we provide the number of classes (“classes”), the learning rate (“lr”), the batch size (“bsz”), the total number
of updates (“total”), the number of warmup updates (“warmup”) and the number of GPUs (“GPUs”) during fine-tuning,
respectively.

MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B
experimental settings upon different downstream tasks

–classes 3 2 2 2 2 2 2 1
–lr 1e-5 1e-5 1e-5 2e-5 1e-5 1e-5 1e-5 2e-5

–bsz 256 128 256 32 64 32 32 32
–total 15,484 8,278 14,453 1,018 10,467 1,148 2,668 1,799

–warmup 929 496 867 61 628 68 160 107
–GPUs 4 4 8 2 2 2 2 2

data divisions for each dataset
train 392,720 104,743 363,870 2,491 67,350 5,801 8,551 5,749
dev 9,815 5,463 40,431 277 873 4,076 1,043 1,500
test 9,796 5,461 390,956 3,000 1,821 1,725 1,063 1,379

The GLUE benchmark contains 8 tasks, they are RTE, STS-B, CoLA, SST-2, MNLI, MRPC, QNLI and QQP. CoLA is a
single sentence task. Each sentence has a label 1 and -1. 1 represents that it is a grammatical sentence, while -1 represents that
it is illegal. Matthews correlation coefficient, dubbed mcc is used as our evaluation metric. STS-B is a similarity and paraphrase
task. Each sample has a pair of a paragraph. People annotated the sample from 1 to 5 based on the similarity between the two
paragraphs. The metric is Pearson and Spearman, dubbed p/s correlation coefficients. RTE is an inference task. Each sample
has two sentences. If two sentences have a relation of entailment, we view them as a positive sample. If not, they compose
of a negative sample. In the RTE task, the metric is the accuracy, dubbed acc. SST-2 is a single sentence task and its metric
is the accuracy. MNLI is a sentence-level task that has 3 classes. They are entailment, contradiction and neutral. MRPC is a
task to classify whether the sentences in the pair are equivalent. QNLI is a question-answering task. If the sentence contains
the answer to the question, then it is a positive sample. QQP is a social question-answering task that consists of question pairs
from Quora. It determines whether the questions are equivalent. The metric of MNLI, MRPC, QNLI, QQP is accuracy.

APPENDIX B
PROOF OF THE MAIN RESULTS

We set zt = xt + β1

1−β1
(xt − xt−1) for t ≥ 0 and we assume x−1 = 0 and m−1 = 0.

We have that

zt+1 − zt = xt+1 +
β1

1− β1
(xt+1 − xt)− xt −

β1
1− β1

(xt − xt−1) (21)

=
1

1− β1
(xt+1 − xt)−

β1
1− β1

(xt − xt−1) (22)

= − 1

1− β1
γmt � ηt +

β1
1− β1

(xt − xt−1)γmt−1 � ηt−1 (23)

= − 1

1− β1
γ(β1mt−1 + (1− β1)gt)� ηt +

β1
1− β1

(xt − xt−1)γmt−1 � ηt−1 (24)

=
β1

1− β1
γmt−1 � (ηt−1 − ηt)− γgt � ηt (25)

By applying L-smooth, we have

f(zt+1) ≤ f(zt) + 〈∇f(zt), zt+1 − zt〉+
L

2
‖zt+1 − zt‖2 (26)

We re-organize it, and we have

f(zt+1)− f(zt)

≤ 〈∇f(zt), zt+1 − zt〉+
L

2
‖zt+1 − zt‖2 (27)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

= 〈∇f(zt),
γβ1

1− β1
mt−1 � (ηt−1 − ηt)〉+ 〈∇f(zt),−γgt � ηt〉+

L

2
‖zt+1 − zt‖2 (28)

= 〈∇f(zt),
γβ1

1− β1
mt−1 � (ηt−1 − ηt)〉+

L

2
‖zt+1 − zt‖2

+ 〈∇f(zt),
γt
b

∑
i∈B
∇fi(xt + ρt

st
‖st‖

)� (ηt−1 − ηt)〉

+ 〈∇f(zt),−
γt
b

∑
i∈B
∇fi(xt + ρt

st
‖st‖

)� ηt−1〉 (29)

= 〈∇f(zt),
γβ1

1− β1
mt−1 � (ηt−1 − ηt)〉+

L

2
‖zt+1 − zt‖2

+ 〈∇f(zt),
γt
b

∑
i∈B
∇fi(xt + ρt

st
‖st‖

)� (ηt−1 − ηt)〉

+ 〈∇f(zt)−∇f(xt),−
γt
b

∑
i∈B
∇fi(xt + ρt

st
‖st‖

)� ηt−1〉

+ 〈∇f(xt),−
γt
b

∑
i∈B
∇fi(xt + ρt

st
‖st‖

)� ηt−1〉 (30)

= 〈∇f(zt),
γβ1

1− β1
mt−1 � (ηt−1 − ηt)〉+

L

2
‖zt+1 − zt‖2

+ 〈∇f(zt),
γt
b

∑
i∈B
∇fi(xt + ρt

st
‖st‖

)� (ηt−1 − ηt)〉

+ 〈∇f(zt)−∇f(xt),−
γt
b

∑
i∈B
∇fi(xt + ρt

∑
∇fi(xt)

‖
∑
∇fi(xt)‖

)� ηt−1〉

+ 〈∇f(xt),
γt
b

∑
i∈B
∇fi(xt + ρt

∇f(xt)

‖∇f(xt)‖
)� ηt−1 −

γt
b

∑
i∈B
∇fi(xt + ρt

st
‖st‖

)� ηt−1〉

+ 〈∇f(xt),−
γt
b

∑
i∈B
∇fi(xt + ρt

∇f(xt)

‖∇f(xt)‖
)� ηt−1〉. (31)

From the Lemma 5, Lemma 6, Lemma 7, we have

〈∇f(zt),
γt
b

∑
i∈B
∇fi(xt + ρt

st
‖st‖

)� (ηt−1 − ηt)〉 ≤ γtG2‖ηt−1 − ηt‖1, (32)

〈∇f(zt),
γβ1

1− β1
mt−1 � (ηt−1 − ηt)〉 ≤

γβ1
1− β1

G2‖ηt−1 − ηt‖1, (33)

〈∇f(xt),
ηt
b

∑
i∈B
∇fi(xt + ρt

∇f(xt)

‖∇f(xt)‖
)� ηt−1 −

γt
b

∑
i∈B
∇fi(xt + ρt

st
‖st‖

)� ηt−1〉

≤ γt
2µ2
‖∇f(xt)�

√
ηt−1‖2 +

2µ2γtL
2ρ2t

ε
. (34)

Taking conditional expectation, we have

Ef(zt+1)− f(zt) (35)

≤ E〈∇f(xt),−
γt
b

∑
i∈B
∇fi(xt + ρt

∇f(xt)

‖∇f(xt)‖
)� ηt−1〉+

L

2
E‖zt+1 − zt‖2

+
γt

2µ2
‖∇f(xt)�

√
ηt−1‖2 +

2µ2γtL
2ρ2t

ε
+

γ

1− β1
G2‖ηt−1 − ηt‖1

+ E〈∇f(zt)−∇f(xt),−
γt
b

∑
i∈B
∇fi(xt + ρt

st
‖st‖

)� ηt−1〉 (36)

where µ > 0 is to be determined.
For the term

E〈∇f(xt),−
γt
b

∑
i∈B
∇fi(xt + ρt

∇f(xt)

‖∇f(xt)‖
)� ηt−1〉, (37)

the term
L

2
E‖zt+1 − zt‖2, (38)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

and the term

E〈∇f(zt)−∇f(xt),−
γt
b

∑
i∈B
∇fi(xt + ρt

st
‖st‖

)� ηt−1〉, (39)

we introduce the Lemma 8, the Lemma 10 and the Lemma 9. We take the expectation over the whole processing and we have

Ef(zt+1)− Ef(zt)

≤ γt
2µ2

E‖∇f(xt)�
√
ηt−1‖2 +

2µ2γtL
2ρ2t

ε
+

γ

1− β1
G2E‖ηt−1 − ηt‖1

− γtE‖∇f(xt)�
√
ηt−1‖2 + E

γt
2α2

E‖∇f(xt)�
√
ηt−1‖2 +

γtα
2L2ρ2

2ε
+
LG2γ2β2

1

(1− β1)2
E‖ηt − ηt−1‖2

+ γ2tL(3
1 + β

βε
(E‖∇f(xt)�

√
ηt−1‖2 +

Lρ2t
ε

+
σ2

bε
) + (1 + β)G2E‖ηt − ηt−1‖2)

+
γ3L2β2

1

2ε(1− β1)2
(

1

λ21
+

1

λ22
+

1

λ23
)
dG2
∞

ε2
+
γλ21
2
‖∇f(xt)�

√
ηt−1‖2 +

γL2ρ2t
2ε

(λ22 + 4λ23) (40)

= −γt(1−
1

2µ2
− 1

2α2
− 3γL(1 + β)

βε
− λ21

2
)E‖∇f(xt)�

√
ηt−1‖2 +

2µ2γtL
2ρ2t

ε
+

γ

1− β1
G2E‖ηt−1 − ηt‖1

+
γtα

2L2ρ2

2ε
+

3γ2tL(1 + β)

βε
(
Lρ2t
ε

+
σ2

bε
) + γ2tLG

2((
β1

1− β1
)2 + 1 + β)E‖ηt − ηt−1‖2

+
γ3L2β2

1

2ε(1− β1)2
(

1

λ21
+

1

λ22
+

1

λ23
)
dG2
∞

ε2
+
γL2ρ2t

2ε
(λ22 + 4λ23). (41)

We set µ2 = α2 = 8, β = 3, λ21 = 1
4 , λ22 = λ23 = 1 and we choose 2γtL

ε ≤ 1
8 . So we have

Ef(xt+1)− Ef(xt)

≤ −γt
2
E‖∇f(xt)�

√
ηt−1‖2 +

16γtL
2ρ2t

ε
+

γ

1− β1
G2E‖ηt−1 − ηt‖1

+
4γtL

2ρ2

ε
+

4γ2tL

ε
(
Lρ2t
ε

+
σ2

bε
) + (4 + (

β1
1− β1

)2)γ2tLG
2E‖ηt − ηt−1‖2

+
3γ3L2β2

1

ε(1− β1)2
dG2
∞

ε2
+

5γL2ρ2t
2ε

(42)

We re-arrange it and ηt is bounded. We have
γt
2G

E‖∇f(xt)‖2 ≤
γt
2
E‖∇f(xt)�

√
ηt−1‖2 (43)

≤ −Ef(xt+1) + Ef(xt) +
45γtL

2ρ2t
2ε

+
γ

1− β1
G2E‖ηt−1 − ηt‖1

+
4γ2tL

ε
(
Lρ2t
ε

+
σ2

bε
) + (4 + (

β1
1− β1

)2)γ2tLG
2E‖ηt − ηt−1‖2 +

3γ3L2β2
1

(1− β1)2
dG2
∞

ε3
. (44)

We summary it from t = 0 to t = T − 1, and we assume γt is a constant, and we have

1

T

T−1∑
t=0

E‖∇f(xt)‖2 ≤ 2G
Ef(x0)− Ef(xt+1)

γtT
+

45GL2ρ2t
ε

+
2G3

(1− β1)T
E
T−1∑
t=0

‖ηt−1 − ηt‖1

+
8GγtL

ε
(
Lρ2t
ε

+
σ2

bε
) +

2(4 + (β1

1−β1
)2)γtLG

3

T
E
T−1∑
t=0

‖ηt − ηt−1‖2 +
6γ2L2β2

1

(1− β1)2
dG3

ε3
(45)

≤ 2G(f(x0)− f∗)
γtT

+
45GL2ρ2t

ε
+

2G3

(1− β1)T
d(

1

ε
− 1

G
) +

8GγtL

ε
(
Lρ2t
ε

+
σ2

bε
)

+
2(4 + (β1

1−β1
)2)γtLG

3

T
d(ε−2 −G−2) +

6γ2L2β2
1

(1− β1)2
dG3

ε3
(46)

=
2G(f(x0)− f∗)

γtT
+

8GγtL

ε

σ2

bε
+

45GL2ρ2t
ε

+
2G3

(1− β1)T
d(

1

ε
− 1

G
) +

8GγtL

ε

Lρ2t
ε

+
2(4 + (β1

1−β1
)2)γtLG

3

T
d(ε−2 −G−2) +

6γ2L2β2
1

(1− β1)2
dG3

ε3
. (47)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

A. Technical Lemma

Lemma 1. Given two vectors a, b ∈ Rd, we have 〈a, b〉 ≤ λ2

2 ‖a‖
2 + 1

2λ2 ‖b‖2 for parameter λ, ∀λ ∈ (1,+∞).

Proof.

RHS =
λ2

2

d∑
j=1

(a)2j +
1

2λ2

d∑
j=1

(b)2j ≥
d∑
j=1

2

√
λ2

2
(a)2j ×

1

2λ2
(b)2j =

d∑
j=1

|(a)j | × |(b)j | ≥ LHS. (48)

Lemma 2. For any vector x,y ∈ Rd, we have

‖x� y‖2 ≤ ‖x‖2 × ‖y‖2∞ ≤ ‖x‖2 × ‖y‖2. (49)

Proof. The first inequality can be derived from that
∑d
i=1(x2i y

2
i) ≤

∑d
i=1(x2i ‖y‖2∞). The second inequality follows from that

‖y‖2∞ ≤ ‖y‖2.

Lemma 3. η is bounded, i.e., 1
G∞
≤ (ηt)j ≤ 1

ε .

Proof. As the gradient is bounded by G and (ηt)j = 1√
(v̂t)j

. Follow the update rule, we have 1
G∞
≤ (ηt)j ≤ 1

ε .

Lemma 4. For the term defined in the algorithm, we have

1

T
E
T−1∑
t=0

‖ηt−1 − ηt‖1 ≤
d

T
(
1

ε
− 1

G
) (50)

Proof. (ηt)i, the i-th dimension of ηt deceases as t increases. So we have

1

T
E
T−1∑
t=0

‖ηt−1 − ηt‖1 = E
1

T

d∑
i=1

T−1∑
t=0

|(ηt−1)i − (ηt)i|

≤ E
1

T

d∑
i=1

((η−1)i − (ηT−1)i) ≤ E
1

T

d∑
i=1

(
1

ε
− 1

G
) =

d

T
(
1

ε
− 1

G
) (51)

Lemma 5. For the term defined in the algorithm, we have

〈∇f(zt),
γt
b

∑
i∈B
∇fi(xt + ρt

st
‖st‖

)� (ηt−1 − ηt)〉 ≤ γtG2‖ηt−1 − ηt‖1 (52)

Proof.

〈∇f(zt),
γt
b

∑
i∈B
∇fi(xt + ρt

st
‖st‖

)� (ηt−1 − ηt)〉

≤ γt
d∑
j=1

|(∇f(zt))(j)| × |(
1

b

∑
i∈B
∇fi(xt + ρt

∑
∇fi(xt)

‖
∑
∇fi(xt)‖

)� (ηt−1 − ηt))(j)| (53)

≤ γtG
d∑
j=1

|((1

b

∑
i∈B
∇fi(xt + ρt

∑
∇fi(xt)

‖
∑
∇fi(xt)‖

)� (ηt−1 − ηt))(j)| (54)

≤ γtG

b

d∑
j=1

∑
i∈B
|((∇fi(xt + ρt

∑
∇fi(xt)

‖
∑
∇fi(xt)‖

)� (ηt−1 − ηt))(j)| (55)

=
γtG

b

d∑
j=1

∑
i∈B
|(∇fi(xt + ρt

∑
∇fi(xt)

‖
∑
∇fi(xt)‖

)(j) × (ηt−1 − ηt)(j)| (56)

≤ γtG
2

b

d∑
j=1

∑
i∈B
|(ηt−1 − ηt)(j)| (57)

= γtG
2‖ηt−1 − ηt‖1 (58)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

Lemma 6. For the term defined in the algorithm, we have

〈∇f(zt),
γβ1

1− β1
mt−1 � (ηt−1 − ηt)〉 ≤

γβ1
1− β1

G2‖ηt−1 − ηt‖1 (59)

Proof.

〈∇f(zt),
γβ1

1− β1
mt−1 � (ηt−1 − ηt)〉

≤ γβ1
1− β1

d∑
j=1

|(∇f(zt))(j)| × |(mt−1 � (ηt−1 − ηt))(j)| (60)

≤ γβ1
1− β1

G

d∑
j=1

|(mt−1 � (ηt−1 − ηt))(j)| (61)

=
γβ1

1− β1

d∑
j=1

|(mt−1)(j) × (ηt−1 − ηt)(j)| (62)

≤ γβ1
1− β1

G2
d∑
j=1

|(ηt−1 − ηt)(j)| (63)

=
γβ1

1− β1
G2‖ηt−1 − ηt‖1 (64)

Lemma 7. For the term defined in the algorithm, we have

〈∇f(xt),
γt
b

∑
i∈B
∇fi(xt + ρt

∇f(xt)

‖∇f(xt)‖
)� ηt−1 −

γt
b

∑
i∈B
∇fi(xt + ρt

st
‖st‖

)� ηt−1〉

≤ γt
2µ2
‖∇f(xt)�

√
ηt−1‖2 +

2µ2γtL
2ρ2t

ε
. (65)

Proof.

〈∇f(xt),
γt
b

∑
i∈B
∇fi(xt + ρt

∇f(xt)

‖∇f(xt)‖
)� ηt−1 −

γt
b

∑
i∈B
∇fi(xt + ρt

st
‖st‖

)� ηt−1〉

= 〈∇f(xt)�
√
ηt−1,

γt
b

∑
i∈B

(∇fi(xt + ρt
∇f(xt)

‖∇f(xt)‖
)−∇fi(xt + ρt

∑
i∈B ∇fi(xt)

‖
∑
i∈B ∇fi(xt)‖

))�√ηt−1〉 (66)

≤ µ2γt
2b2
‖
∑

(∇fi(xt + ρt
∇f(xt)

‖∇f(xt)‖
)−∇fi(xt + ρt

∑
i∈B ∇fi(xt)

‖
∑
i∈B ∇fi(xt)‖

))�√ηt−1‖2

+
γt

2µ2
‖∇f(xt)�

√
ηt−1‖2 (67)

≤ +
µ2γt
2b

∑
‖∇fi(xt + ρt

∇f(xt)

‖∇f(xt)‖
)−∇fi(xt + ρt

∑
i∈B ∇fi(xt)

‖
∑
i∈B ∇fi(xt)‖

)�√ηt−1‖2

+
γt

2µ2
‖∇f(xt)�

√
ηt−1‖2 (68)

≤ +
µ2γt
2b

∑
‖∇fi(xt + ρt

∇f(xt)

‖∇f(xt)‖
)−∇fi(xt + ρt

∑
i∈B ∇fi(xt)

‖
∑
i∈B ∇fi(xt)‖

)‖2 × ‖√ηt−1‖2∞

+
γt

2µ2
‖∇f(xt)�

√
ηt−1‖2 (69)

≤ γt
2µ2
‖∇f(xt)�

√
ηt−1‖2 +

µ2γtL
2ρ2t

2bε

∑
‖ ∇f(xt)

‖∇f(xt)‖
−

∑
i∈B ∇fi(xt)

‖
∑
i∈B ∇fi(xt)‖

‖2 (70)

≤ γt
2µ2
‖∇f(xt)�

√
ηt−1‖2 +

2µ2γtL
2ρ2t

ε
. (71)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

Lemma 8. For the term defined in the algorithm, we have

E〈∇f(xt),−
γt
b

∑
i∈B
∇fi(xt + ρt

∇f(xt)

‖∇f(xt)‖
)� ηt−1〉

≤ −γt‖∇f(xt)�
√
ηt−1‖2 + E

γt
2α2
‖∇f(xt)�

√
ηt−1‖2 +

γtα
2L2ρ2t
2ε

(72)

Proof.

E〈∇f(xt),−
γt
b

∑
i∈B
∇fi(xt + ρt

∇f(xt)

‖∇f(xt)‖
)� ηt−1〉

= −γt‖∇f(xt)�
√
ηt−1‖2 + E〈∇f(xt),

γt
b

∑
i∈B

(∇f(xt)−∇fi(xt + ρt
∇f(xt)

‖∇f(xt)‖
))� ηt−1〉 (73)

= −γt‖∇f(xt)�
√
ηt−1‖2 + E〈∇f(xt),

γt
b

∑
i∈B

(∇fi(xt)−∇fi(xt + ρt
∇f(xt)

‖∇f(xt)‖
))� ηt−1〉 (74)

≤ −γt‖∇f(xt)�
√
ηt−1‖2 + E

γt
2α2
‖∇f(xt)�

√
ηt−1‖2

+
γtα

2

2
E‖1

b

∑
i∈B

(∇fi(xt)−∇fi(xt + ρt
∇f(xt)

‖∇f(xt)‖
))�√ηt−1‖2 (75)

≤ −γt‖∇f(xt)�
√
ηt−1‖2 + E

γt
2α2
‖∇f(xt)�

√
ηt−1‖2

+
γtα

2

2ε
E‖1

b

∑
i∈B

(∇fi(xt)−∇fi(xt + ρt
∇f(xt)

‖∇f(xt)‖
))‖2 (76)

≤ −γt‖∇f(xt)�
√
ηt−1‖2 + E

γt
2α2
‖∇f(xt)�

√
ηt−1‖2

+
γtα

2

2bε
E
∑
i∈B
‖(∇fi(xt)−∇fi(xt + ρt

∇f(xt)

‖∇f(xt)‖
))‖2 (77)

≤ −γt‖∇f(xt)�
√
ηt−1‖2 + E

γt
2α2
‖∇f(xt)�

√
ηt−1‖2 +

γtα
2L2ρ2t
2bε

E
∑
i∈B
‖ ∇f(xt)

‖∇f(xt)‖
‖2 (78)

= −γt‖∇f(xt)�
√
ηt−1‖2 + E

γt
2α2
‖∇f(xt)�

√
ηt−1‖2 +

γtα
2L2ρ2t
2ε

(79)

Lemma 9. For the term defined in the algorithm, we have

E〈∇f(zt)−∇f(xt),−
γt
b

∑
i∈B
∇fi(xt + ρt

st
‖st‖

)� ηt−1〉

≤ γ3L2β2
1

2ε(1− β1)2
(

1

λ21
+

1

λ22
+

1

λ23
)
dG2
∞

ε2
+
γλ21
2
‖∇f(xt)�

√
ηt−1‖2 +

γL2ρ2t
2ε

(λ22 + 4λ23). (80)

Proof.

E〈∇f(zt)−∇f(xt),−
γt
b

∑
i∈B
∇fi(xt + ρt

st
‖st‖

)� ηt−1〉 (81)

= γE〈(∇f(xt)−∇f(zt))�
√
ηt−1,

1

b

∑
i∈B
∇fi(xt + ρt

∑
i∈B ∇fi(xt)

‖
∑
i∈B ∇fi(xt)‖

)�√ηt−1〉 (82)

= γE〈(∇f(xt)−∇f(zt))�
√
ηt−1,∇f(xt)�

√
ηt−1〉

+ γE〈(∇f(xt)−∇f(zt))�
√
ηt−1,

1

b

∑
i∈B

(∇fi(xt + ρt
∇f(xt)

‖∇f(xt)‖
)−∇fi(xt))�

√
ηt−1〉

+ γE〈(∇f(xt)−∇f(zt))�
√
ηt−1,

1

b

∑
i∈B

(∇fi(xt + ρt

∑
i∈B ∇fi(xt)

‖
∑
i∈B ∇fi(xt)‖

)−∇fi(xt + ρt
∇f(xt)

‖∇f(xt)‖
)�√ηt−1〉 (83)

≤ γ

2
(

1

λ21
+

1

λ22
+

1

λ23
)E‖(∇f(xt)−∇f(zt))�

√
ηt−1‖2 +

γλ21
2
‖∇f(xt)�

√
ηt−1‖2

+
γλ22
2

E‖1

b

∑
i∈B

(∇fi(xt + ρt
∇f(xt)

‖∇f(xt)‖
)−∇fi(xt))�

√
ηt−1‖2

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

+
γλ23
2

E‖1

b

∑
i∈B

(∇fi(xt + ρt

∑
i∈B ∇fi(xt)

‖
∑
i∈B ∇fi(xt)‖

)−∇fi(xt + ρt
∇f(xt)

‖∇f(xt)‖
)�√ηt−1‖2 (84)

≤ γ

2
(

1

λ21
+

1

λ22
+

1

λ23
)E‖(∇f(xt)−∇f(zt))�

√
ηt−1‖2 +

γλ21
2
‖∇f(xt)�

√
ηt−1‖2

+
γλ22L

2ρ2t
2ε

+
2λ23γL

2ρ2t
ε

(85)

≤ γL2

2ε
(

1

λ21
+

1

λ22
+

1

λ23
)E‖zt − xt‖2 +

γλ21
2
‖∇f(xt)�

√
ηt−1‖2

+
γλ22L

2ρ2t
2ε

+
2λ23γL

2ρ2t
ε

(86)

=
γ3L2β2

1

2ε(1− β1)2
(

1

λ21
+

1

λ22
+

1

λ23
)‖mt−1 � ηt− 1‖2 +

γλ21
2
‖∇f(xt)�

√
ηt−1‖2

+
γλ22L

2ρ2t
2ε

+
2λ23γL

2ρ2t
ε

(87)

≤ γ3L2β2
1

2ε(1− β1)2
(

1

λ21
+

1

λ22
+

1

λ23
)
dG2
∞

ε2
+
γλ21
2
‖∇f(xt)�

√
ηt−1‖2 +

γL2ρ2t
2ε

(λ22 + 4λ23). (88)

Lemma 10. For the term defined in the algorithm, we have

L

2
E‖zt+1 − zt‖2 ≤

LG2γ2β2
1

(1− β1)2
E‖ηt − ηt−1‖2

+ γ2tL(3
1 + β

βε
(E‖∇f(xt)�

√
ηt−1‖2 +

Lρ2t
ε

+
σ2

bε
) + (1 + β)G2E‖ηt − ηt−1‖2) (89)

Proof.

L

2
E‖zt+1 − zt‖2

=
L

2
E‖ γβ1

1− β1
mt−1 � (ηt − ηt−1)− γgt � ηt‖2 (90)

≤ Lγ2β2
1

(1− β1)2
E‖mt−1 � (ηt − ηt−1)‖2 + LE‖γt

b

∑
(∇fi(xt + ρt

st
‖st‖

))� ηt‖2 (91)

≤ LG2γ2β2
1

(1− β1)2
E‖ηt − ηt−1‖2 + LE‖γt

b

∑
(∇fi(xt + ρt

st
‖st‖

))� ηt‖2 (92)

= γ2tLE‖
1

b

∑
(∇fi(xt + ρt

st
‖st‖

))� ηt−1 +
1

b

∑
(∇fi(xt + ρt

st
‖st‖

))� (ηt − ηt−1)‖2

+
LG2γ2β2

1

(1− β1)2
E‖ηt − ηt−1‖2 (93)

≤ LG2γ2β2
1

(1− β1)2
E‖ηt − ηt−1‖2 + γ2tL((1 +

1

β
)E‖1

b

∑
(∇fi(xt + ρt

st
‖st‖

))� ηt−1‖2

+ (1 + β)E‖1

b

∑
(∇fi(xt + ρt

st
‖st‖

))� (ηt − ηt−1)‖2) (94)

≤ γ2tL((1 +
1

β
)E‖1

b

∑
(∇fi(xt + ρt

st
‖st‖

))� ηt−1‖2 + (1 + β)G2E‖ηt − ηt−1‖2)

+
LG2γ2β2

1

(1− β1)2
E‖ηt − ηt−1‖2 (95)

≤ γ2tL((1 +
1

β
)E‖1

b

∑
(∇fi(xt + ρt

st
‖st‖

))�√ηt−1‖2 × ‖
√
ηt−1‖2∞

+ (1 + β)G2E‖ηt − ηt−1‖2) +
LG2γ2β2

1

(1− β1)2
E‖ηt − ηt−1‖2 (96)

≤ γ2tL(
1 + β

βε
E‖1

b

∑
(∇fi(xt + ρt

st
‖st‖

))�√ηt−1‖2 + (1 + β)G2E‖ηt − ηt−1‖2)

+
LG2γ2β2

1

(1− β1)2
E‖ηt − ηt−1‖2 (97)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

≤ γ2tL(3
1 + β

βε
E(‖∇f(xt)�

√
ηt−1‖2 + ‖(1

b

∑
∇fi(xt)−∇f(xt))�

√
ηt−1‖2

+ ‖1

b

∑
(∇fi(xt + ρt

∑
i∈B ∇fi(xt)

‖
∑
i∈B ∇fi(xt)‖

)−∇fi(xt))�
√
ηt−1‖2) + (1 + β)G2E‖ηt − ηt−1‖2)

+
LG2γ2β2

1

(1− β1)2
E‖ηt − ηt−1‖2 (98)

≤ γ2tL(3
1 + β

βε
(E‖∇f(xt)�

√
ηt−1‖2 + E‖1

b

∑
(∇fi(xt + ρt

∑
i∈B ∇fi(xt)

‖
∑
i∈B ∇fi(xt)‖

)−∇fi(xt))�
√
ηt−1‖2

+
σ2

bε
) + (1 + β)G2E‖ηt − ηt−1‖2) +

LG2γ2β2
1

(1− β1)2
E‖ηt − ηt−1‖2 (99)

≤ γ2tL(3
1 + β

βε
(E‖∇f(xt)�

√
ηt−1‖2 +

1

ε
E‖1

b

∑
(∇fi(xt + ρt

∑
i∈B ∇fi(xt)

‖
∑
i∈B ∇fi(xt)‖

)−∇fi(xt))‖2

+
σ2

bε
) + (1 + β)G2E‖ηt − ηt−1‖2) +

LG2γ2β2
1

(1− β1)2
E‖ηt − ηt−1‖2 (100)

≤ γ2tL(3
1 + β

βε
(E‖∇f(xt)�

√
ηt−1‖2 +

1

εb
E
∑
‖∇fi(xt + ρt

∑
i∈B ∇fi(xt)

‖
∑
i∈B ∇fi(xt)‖

)−∇fi(xt)‖2

+
σ2

bε
) + (1 + β)G2E‖ηt − ηt−1‖2) +

LG2γ2β2
1

(1− β1)2
E‖ηt − ηt−1‖2 (101)

≤ γ2tL(3
1 + β

βε
(E‖∇f(xt)�

√
ηt−1‖2 +

Lρ2t
ε

+
σ2

bε
) + (1 + β)G2E‖ηt − ηt−1‖2)

+
LG2γ2β2

1

(1− β1)2
E‖ηt − ηt−1‖2. (102)

APPENDIX C
ADDITIONAL EXPERIMENT ILLUSTRATIONS

A. Experiment Illustrations

In the ablation study, we conduct the experiments on the GLUE benchmark with AdaSAM, AMSGrad, SAM and SGD,
respectively. The optimizers do not have the momentum part (β1 = 0). As a supplement to Table II, Figure 3 show the detailed
loss and evaluation metrics versus number of steps curves during training. The loss curve of AdaSAM decreases faster than
SAM and SGD in all tasks, and it has a similar decreasing speed as the AMSGrad. The metric curve of AdaSAM and AMSGrad
show that the adaptive learning rate method is better than SGD and SAM. And AdaSAM decrease as faster as the AMSGrad
in all tasks.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 18

0 100 200 300 400 500 600
Steps

0.10

0.25

0.40

0.55

0.70

0.85

1.00

1.15

T
ra

in
in

g
lo

ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

(a) MRPC

0 100 200 300 400 500 600
Steps

0.10

0.25

0.40

0.55

0.70

0.85

1.00

1.15
T

ra
in

in
g

lo
ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

(b) RTE

0 200 400 600 800 1000 1200 1400
Steps

0.10

0.25

0.40

0.55

0.70

0.85

1.00

1.15

T
ra

in
in

g
lo

ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

(c) CoLA

0 1000 2000 3000 4000 5000
Steps

0.10

0.25

0.40

0.55

0.70

0.85

1.00

1.15

T
ra

in
in

g
lo

ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

(d) SST-2

0 100 200 300 400 500 600
Steps

40

45

50

55

60

65

70

75

80

85

a
cc

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

(e) MRPC

0 100 200 300 400 500
Steps

40

45

50

55

60

65

70

75

80

85

a
cc

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

(f) RTE

0 200 400 600 800 1000 1200 1400
Steps

65

70

75

80

85

90

m
cc

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

(g) CoLA

0 1000 2000 3000 4000 5000
Steps

80

84

88

92

96

a
cc

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

(h) SST-2

0 200 400 600 800 1000
Steps

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

T
ra

in
in

g
lo

ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

(i) STS-B

0 2500 5000 75001000012500150001750020000
Steps

0.10
0.25
0.40
0.55
0.70
0.85
1.00
1.15

T
ra

in
in

g
lo

ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

(j) MNLI

0 2000 4000 6000 8000 10000
Steps

0.10

0.25

0.40

0.55

0.70

0.85

1.00

1.15

T
ra

in
in

g
lo

ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

(k) QQP

0 1000 2000 3000 4000 5000 6000
Steps

0.10

0.25

0.40

0.55

0.70

0.85

1.00

1.15

T
ra

in
in

g
lo

ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

(l) QNLI

0 200 400 600 800
Steps

0.00

0.05

0.10

0.15

0.20

0.25

T
e
st

L
o
ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

(m) STS-B

0 5000 10000 15000 20000
Steps

80

82

84

86

88

90

a
cc

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

(n) MNLI

0 2000 4000 6000 8000 10000
Steps

80

82

84

86

88

90

a
cc

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

(o) QQP

0 1000 2000 3000 4000 5000 6000
Steps

80

84

88

92

96

a
cc

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

(p) QNLI

Fig. 3: The loss and evaluation metric v.s. steps on MRPC, RTE, CoLA, SST-2, STS-B, MNLI, QQP and QNLI.(β1 = 0)

	I Introduction
	II Preliminary and Related Work
	II-A Problem Setup
	II-B Related Work

	III Methodology
	III-A AdaSAM Algorithm
	III-B Convergence Analysis
	III-C Proof Sketch

	IV Experiments
	IV-A Experimental Setup
	IV-B Results on GLUE Benchmark
	IV-C Mini-batch Speedup
	IV-D Ablation Study

	V Conclusion
	References
	Appendix A: Experimental Settings
	Appendix B: Proof of the Main Results
	B-A Technical Lemma

	Appendix C: Additional Experiment Illustrations
	C-A Experiment Illustrations

