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Characterizing the spatiotemporal behavior of the BOLD signal in

functional Magnetic Resonance Imaging (fMRI) is a central issue in

understanding brain function. While the nature of functional activation

clusters is fundamentally heterogeneous, many current analysis

approaches use spatially invariant models that can degrade anatomic

boundaries and distort the underlying spatiotemporal signal. Further-

more, few analysis approaches use true spatiotemporal continuity in

their statistical formulations. To address these issues, we present a

novel spatiotemporal wavelet procedure that uses a stimulus-convolved

hemodynamic signal plus correlated noise model. The wavelet fits,

computed by spatially constrained maximum-likelihood estimation,

provide efficient multiscale representations of heterogeneous brain

structures and give well-identified, parsimonious spatial activation

estimates that are modulated by the temporal fMRI dynamics. In a

study of both simulated data and actual fMRI memory task experi-

ments, our new method gave lower mean-squared error and seemed to

result in more localized fMRI activation maps compared to models

using standard wavelet or smoothing techniques. Our spatiotemporal

wavelet framework suggests a useful tool for the analysis of fMRI

studies.
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Introduction

Functional magnetic resonance imaging of human subjects

aims to associate region-specific brain activity arising from

stimulus-dependent neural firing—the BOLD (Blood Oxygena-

tion Level-Dependent) effect (Kwong et al., 1992; Ogawa et al.,

1992)—with sensory or cognitive stimuli. These changes in blood

flow and volume are caused by the cerebral response induced by
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the stimuli and are manifested in the form of spatially localized

fluctuations in gray-level contrast across T2*-weighted echo-

planar images (EPI). In activated regions of the cortex, the fMRI

signal is composed of spatially coherent clustered time series

(Forman et al., 1995; Mitra et al., 1997) and is often studied in a

framework consisting of spatial smoothing, temporal regression,

and hypothesis testing. Functional MRI is capable of acquiring

high-resolution images simultaneously in both space and time,

maintaining relatively good spatial detail while sampling the

experimentally induced hemodynamic and volume effects at an

adequate rate. Any spatial presmoothing within the analysis,

though potentially improving the signal to noise, will degrade

the native resolution of the experiment, increasing the likelihood

of losing or at best blurring important detail within the functional

map. The spatial activation profiles typically encountered in fMRI

range from well-localized high-amplitude features to low-ampli-

tude but relatively large connected structures. The morphology of

these functional structures is influenced both by the underlying

heterogeneity of the brain anatomy and by the task-related

response of different brain locales. To account for this intrinsic

inhomogeneity, we have developed a novel spatiotemporal wave-

let procedure capable of adapting to the spatially varying nature

of the fMRI signal. We draw on the adaptive properties of spatial

wavelets to capture this variability in the activation maps and use

a non-wavelet convolution model based on our understanding of

the BOLD signal to inform the temporal estimation. We use the

term spatiotemporal in this paper to refer to the sense in which

the spatial wavelet estimations are performed; in essence, they are

driven by the underlying temporal processes in the fMRI data.

Such an interpretation differs to a more conventional definition

where spatiotemporal wavelets typically designate families of n-

dimensional bases (e.g., tensor products), constructed and applied

in both space and time.

Wavelets have attracted recent attention from a diverse range of

fields in science and engineering. These have included applications

in signal and image processing (Chambolle et al., 1998; Coifman

et al., 1992; Devore and Lucier, 1992; Vetterli and Kovac̆ević,

1995), fractals (Abry et al.), vision (Mallat, 1996), meteorology

(Fournier, 1996), time series (Nason and von Sachs, 1999; von

Sachs, 1998), and statistics (Benjamini and Hochberg, 1995;

Donoho and Johnstone, 1995; Johnstone and Silverman, 1997).
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In the functional MRI literature, Brammer (1998) and Ruttiman et

al. (1998) have used the good spatial localization properties of

wavelets to better characterize fMRI activation maps. Temporal

applications of wavelets in fMRI have included Bullmore et al.

(2002) who utilized the decorrelating properties of wavelets to

control Type-1 error. Also, Fadili and Bullmore (2002) constructed

a temporal maximum-likelihood framework for estimating signal

in the presence of 1/f noise.

The wavelet procedure proposed in the current work effi-

ciently characterizes multiscale variability in the spatial fMRI

activations by drawing on the multiresolution properties of

wavelets. The main novelty of this technique, however, lies

in its spatiotemporal formulation and combined wavelet-regres-

sion solution. In effect, the wavelet estimation is informed both

by anatomical considerations and by the temporal behavior of

the fMRI data. The computations are carried out in four stages.

In the first stage, a temporal physiological model is solved

using a weighted least-squares approach to partially absorb the

influence of correlated noise. In the second step, refined

estimates of the noise parameters are calculated using an

Expectation–Maximisation (EM) algorithm. In the third, the

temporal BOLD signal components are wavelet smoothed using

a nonstandard wavelet procedure to generate spatiotemporal

parameterization of the activations. These steps are next repeat-

ed until the minimum of a spatiotemporal likelihood function is

reached. In the sequel, we show that modifications to standard

wavelet methods are required to maximize this likelihood

leading to a new type of wavelet estimator. We illustrate our

method on simulated and real fMRI data, and compare the

outcome with standard wavelet estimation and Gaussian

smoothing techniques.
Methods

Acronyms and notation

Throughout this paper, we shall assume that all temporal signals

x are of dyadic length n. These will be indexed as (xt)t = 0
n � 1 , i.e., with

n time points, or in the frequency domain as (x̃k)k = 0
N � 1 , where N

signifies an N-point discrete Fourier transform (DFT) and k is

frequency. We designate the DFT of a (zero-padded) signal xt as

x̃k = A0
N�1xte

�jNkt, where xk = (2pk)/(N) represents the normalized

Fourier frequencies. Also in future sections, we use the superscript

H to denote the conjugate transpose, that is, ñk
H = (ñk*)V, where (�)V

signifies the transpose operation. In the spatial domain, we assume

that each 2D (two-dimensional) slice is indexed by, p = ( p1, p2),

( pd = 1,. . .,Md), (d = 1,2). In the spatiotemporal activation analysis

that follows, yp is a 2D map used to denote the spatially unregu-

larized voxelwise BOLD signal estimate at voxel p. f̂p
(W ) is a map

used to designate the final regularized spatiotemporal BOLD

activations, where W implies that a wavelet processing has taken

place. In the wavelet domain, f̄j,t
l defines the wavelet coefficient

gained from the 2D discrete wavelet transform (DWT) at scale j,

location T = (s1,s2), and wavelet orientation l, respectively. In this

paper, all DWTs are two-dimensional, though the method can easily

be extended to higher dimensions, see Appendix C. We use f̂p
(SM) to

indicate that the signal parameters fp were recovered using conven-

tionally smoothed or presmoothed data with no wavelet treatment.

Finally, the ‘‘‘1 norm’’ of a vector x, indicates the sequence norm

NxiN1, defined as AiAxiA.
Voxelwise modeling

In the following, we assume that the gray-level fluctuations in

the acquired T2*-weighted echo-planar images are caused by

blood deoxygenation effects governed by the dynamic behavior

of the blood flow and volume within activated brain matter.

Combining these dynamics with empirical observations about the

nature and form of the fMRI noise and including a term to capture

low-frequency static magnetic field drift culminates in the follow-

ing model for the time course at each location in the brain

xt;p ¼ mp þ bpt þ st;p þ mt;p ð1Þ

Within each voxel at location p, we assume the time course to

consist of (i) a background or dc component mp, (ii) a linear trend

component, bpt, (iii) a signal term st,p, and (iv) a stochastic noise

term mt,p. The convolutional signal model st,p is constructed to

reflect experimentally induced cerebral hemodynamics and is

similar to earlier work, i.e., Friston et al. (1994), in which a

Poisson-shaped function was used to model the relationship

between stimulus and response. We assume that the response of

the cerebral cortex is proportional to small contrast changes in the

measured T2*-weighted MRI signal and we ascribe these changes

to the joint behavior of intracerebral volume- and flow-related

blood deoxygenation. Specifically, our BOLD model comprises the

product between these components. That is

st;p ¼ Hðt � DpÞðc0; p þ c1; pg
a
p; t � ct�Dp

Þ

� ðV0; p þ V1; p g
b
p; t �ct � Dp

Þ ð2Þ

where V0,p, c0,p are the baselines of the volume and flow terms,

V1,p, c1,p are the response amplitudes, Dp is the hemodynamic

delay, H(�) is the unit-step function present to impose causality

upon the system, and * denotes convolution. Also, ct represents

the experimental stimulus, gp,t
a , gp,t

b are the blood flow and blood

volume impulse response terms whose fundamental shape and

rise-decay rates were motivated by empirical work (Mandeville et

al., 1996). In response to fixed input stimuli, the hemodynamic

behavior is supposed to exhibit classic first-order system features,

including a lag time between input and response, rise time, decay

to baseline, and response undershoot. Consequently, the hemody-

namic response gp,t
a possesses a smooth biphasic form that may, in

practice, be closely characterized by a discrete gamma function,

gp,t
a = (1 � e�1/sa,p) (t + 1)e�t/sa,p. This function has its maximum

at t = sa,p + 1 and has been normalized to ensure unity gain. The

blood volume impulse response is also based on empirical studies

(Boynton et al., 1996) and has form gp,t
b = (1 � e�1/sb,p)e�t/sb,p.

Ideally, the system time constants would also require estimation

since the spatial dispersion characteristics of the respective

impulse responses might be clinically or experimentally relevant.

However, in the present work, these properties are kept fixed with

time constants sa,p = 1.5 s for the flow component and sb,p = 11 s

for the blood volume effect. For generality, the optimization

algorithms outlined in the later sections are capable, with appro-

priate extensions, of performing such time-constant computation

under the same maximum likelihood assumptions. But because

these parameters are kept fixed in this work, the signal model

terms ( gap, t * ct), ( gbp, t* ct), and ( ga
p, t* ct)( g

b
p, t* ct) are not

spatially dependent.
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Continuing, Eq. (2) can be reorganized to yield

st;p ¼ V0;pc0;pHðt � DpÞ þ xtfp ¼ Flow and Volume Baseline

þWeighted Signal Response

with

st ¼ ðg a
p; t * ctÞ ðg b

p; t *ctÞ ðg a
p;t *ctÞðgbp; t * ctÞ

h i
and

Xp ¼

ðga
p; t*ctÞ1 ðg b

p; t*ctÞ1 ðg a
p;t*ctÞðgbp; t*ctÞ1

] ] ]

ðg a
p; t*c tÞn ðg b

p; t*ctÞn ðg a
p; t*ctÞðgbp; t*c tÞn

2
6666664

3
7777775

ð3Þ

In this setup, fp = [ fp
(1), fp

(2), fp
(3)]V is the three-vector of

weighting or activation coefficients at voxel p associated with

each of the physiological model components, flow, volume, and

interaction. In its current form, this model assumes similar

response onset times for both the blood flow and volume

components, and so contains just a single delay parameter.

However, it may be desirable to decouple the response times

for each of these components, and in the estimation scheme that

follows, this is simple to accomplish if necessary.

The stochastic fMRI noise mt,p is modeled by additively

combining a serially correlated component with an independent

white noise (Purdon and Weisskoff, 1998; Solo et al., 2001;

Weisskoff et al., 1993). These two noise components primarily

arise from respective contributions of physiologic- and machine-

induced (Johnson) noise sources. Much of the serial autocorrela-

tion may be explained by the impact of cardiac pulsations or

respiratory effects on the brain though physical aspects of the

imaging process may also have a bearing upon this correlation,

e.g., machine acquisition parameters or repetition time (TR)

(Purdon and Weisskoff, 1998; Yoo et al., 2001). Shortfalls in

the signal model may also fail to fully capture experimental

variance, compounding the correlation problem further. To deal

with these issues, our noise model combines these (often low-

frequency) physiologic fluctuations within the brain with the

scanner noise. We have shown in earlier work (Solo et al.,

2001) that such mixtures of independent noises can be compactly

characterized in terms of first-order auto-regressive moving-aver-

age (ARMA(1,1)) processes vt,p similar to those first suggested

for use in fMRI by Locascio et al. (1997). Often, it is useful to

consider such models in the frequency domain, in which case the

power spectral density of vt,p is

Fk;p ¼
r2

g;p

A1� ape�jxkA2
þ r2

m;p ð4Þ

Here, rm,p
2 is the machine or background noise, rg,p

2 is the

correlated noise variance, and ap is the correlation coefficient.

Identifiability of the machine and correlated noise variances will

depend on the strength of this correlation coefficient. For exam-

ple, when ap ! 0, Eq. (4) just becomes the sum of the two

variances. ARMA(1,1) models enable powerful yet parsimonious

representations of the noise spectra in fMRI and differ from the
simpler and more widely used AR(1) models first proposed in

fMRI analysis by Bullmore et al. (1996). Assuming pure AR

processes in fMRI time series amounts to combining the two

independent noise sources into a single correlated component and

this may lead to problems in the AR estimation. Naturally, an

AR(1) model will suffice as rm,p
2 ! 0, but otherwise, AR(1) will

be a biased estimator for an ARMA(1,1) process. For equiva-

lence, one needs an arbitrarily high-order AR( p) model to

approximate an ARMA realization. Since the value of p depends

upon the behavior of the poles and zeros in the ARMA transfer

function which will itself vary across the brain, the AR order will

need to be chosen voxelwise—an unwieldy task. Detail on the

relationship between these models is given by the Wold Decom-

position Theorem (Wold, 1954). Finally, we note that more

complex long-term 1/f noise processes have been suggested for

fMRI noise, for example, Fadili and Bullmore (2002), that may

yield equally compact and perhaps more powerful representations

of brain noise. Indeed, these methods have been shown in some

cases to better constrain Type-I errors in resting data compared to

AR( p) models. The spatial wavelet framework outlined in the

following sections may be easily modified to incorporate noise

spectra derived by these or other means, if desired.

The final piece of the overall model (Eq. (1)) is the drift term bpt

that captures slow changes in image intensity caused, for example,

by low-order drift in the static magnetic field during scanning or

unresolved head motion. The profile of such drifts is generally

monotonic but may be spatially heterogeneous. In most cases, the

magnitude of these artifacts is large compared to the surrounding

signal and noise. To a reasonable degree, this trend can be modeled

using a simple linear drift term though higher order regressors, such

as families of sinusoids, may easily be interchanged in our formu-

lation, depending upon the extent of the problem (Friston, 1997). In

general, choosing the optimal number of terms in such expansions

can become problematic if the stimulus is not a simple blocked

design, raising concerns respecting proper determination of drift

from task-related activity. Other trend removal strategies such as

running-lines smoothers are equally effective, if not preferable (e.g.,

Marchini and Ripley, 2000) to these regression models but may

have similar drawbacks related to the choice of tuning or smoothing

parameter. The estimation of bpt in Eq. (1) is computed such that the

presence of both ARMA(1,1) noise and the physiologic transfer

function are accounted for.

Voxelwise estimation

In previous work (Purdon et al., 2001; Solo et al., 2001), we

estimated the model parameters in Eq. (1) by specifying and

solving the following frequency domain negative likelihood func-

tion. For completeness, its solution is given in Appendix A.

J ¼
X

p

X
k

Aðx̃k;p � mpd0;kN � bpũk � e�jxkDp ñkfpÞA2

2Fk;p

þ 1

2

X
p

X
k

logðFk;pÞ (5)

Once more, x reflects the time series at voxel p, and x̃k,p is its

Fourier transform. d0,k(= 0, k p 0, = 1 otherwise) is the dirac or

impulse function that accompanies the mean mp, singling out, in

essence the dc frequency component from the spectrum. ũk is the



Fig. 1. (a) Tiling of the time-scale plane via the wavelet transform. The

window area stays constant: the length halves (doubles) while the width

doubles (halves) between scales. In the figure, j is the scale or dilation

parameter. (b) Resolution of the time–frequency plane using the short time

Fourier transform (STFT). Note that this method can only resolve two

impulses in time if at least Dt apart and two spectral peaks if they are more

than Df apart.

C. Long et al. / NeuroImage 23 (2004) 500–516 503
DFT of a ramp function with zero mean and bp is the associated

drift coefficient. To estimate the model parameters, we iterate

between computing the signal and noise in a cyclic descent

procedure. In Purdon et al. (2001), spatial smoothing or regular-

ization of the noise parameters was shown to solve a variant of Eq.

(5) while retaining the native resolution of the activation coeffi-

cients. In the following sections, we extend the likelihood in Eq.

(5) to include a spatial component that imposes nonuniform

regularization upon the activation maps.

Spatiotemporal wavelet estimation

We aim to combine previously outlined empirical and phys-

iological observations about BOLD and the fMRI noise with a

spatially heterogeneous wavelet procedure. But to correctly in-

corporate spatial wavelets in this context, we need to revisit some

of the basic assumptions associated with wavelet estimation and

apply some reformulations. Before investigating this further, we

will first review some relevant properties of wavelets.

Wavelet analysis begins by defining a prototype or mother

wavelet (such as Daubechies, Haar or Coiflet) whose width and

position can vary but whose fundamental shape is kept fixed.

Wavelet analysis represents data using a sequence of compact

weighted functions (building blocks or basis functions) into which

any finite energy signal or image can be decomposed. The respective

weightings of these wavelet basis functions are the desired wavelet

coefficients that, roughly speaking, are generated from a series of

convolutions carried out at different resolutions. If the dilation and

translation parameters of these basis functions are sampled appro-

priately and combined with certain imposed conditions upon the

mother wavelet, e.g., regularity, compactness, and vanishing

moments, families of orthonormal basis functions can be con-

structed. Any finite-energy signal or image can be efficiently

decomposed and uniquely reconstructed in these orthonormal bases

using the Discrete Wavelet Transform (DWT) and its inverse (see

Appendix C or e.g., (Daubechies, 1990; Mallat, 1989) for further

details). The DWT implements a multiresolutional analysis, com-

pactly describing (or compressing) signal information using a few

large amplitude wavelet coefficients. Fig. 1a illustrates these local-

izing properties in the time–frequency plane. The DWT analyzes

high-frequency events with good temporal resolution and low-

frequency features with good frequency resolution. In contrast,

Fig. 1b illustrates the way in which a classic analysis method, the

windowed Fourier transform, behaves in the same context. In this

case, all frequencies are analyzed with the same fixed-width win-

dow. Fig. 2 shows an example of a synthetic heterogeneous signal

consisting of a longer duration, low-frequency event in conjunction

with two higher-frequency burst-like features. With the windowed

Fourier transform, the window size may be chosen to localize

optimally on any one feature, but its invariant nature means it cannot

capture all three very efficiently. The wavelet transform, on the other

hand, is able to localize comparatively well on all three features.

Wavelet smoothing: Because of the multiresolution property of

wavelets, compact representations of signals containing irregular or

smooth structures are possible. This fundamental feature gives rise

to powerful estimation strategies for discriminating signals of

unknown smoothness in the presence of white (Donoho and John-

stone, 1994) or structured noise (Johnstone and Silverman, 1997).

Wavelet smoothing is a nonlinear operation that discards (sets to

zero or kills) wavelet coefficients representing noise (usually many

and small) while compensating for the additive effects of this noise
on the signal by shrinking those coefficients (generally few and

large) toward zero. This mechanism is known as soft thresholding.

The exact choice of surviving wavelet coefficients in a given

wavelet analysis depends upon the way in which the signal has

been coded in that particular basis, and this in turn uniquely reflects

the underlying smoothness structure of the signal in question. The

choice of threshold depends on the expected long-term behavior of

the noise process. If the noise variance is previously known or can

be reliably estimated, an appropriate thresholding rule can be

constructed. It then remains simply to filter the wavelet coefficients

globally (or across a select number of scales) by comparing each

against this (normally) fixed threshold. If Gaussian white noise is

the major corrupting force, the thresholding prescription reduces to

that of Donoho and Johnstone (1994) (D & J).

Wavelet smoothing and ‘‘‘‘‘1 penalization: Thresholding in the

wavelet domain is equivalent to solving an ‘1 penalized least-

squares problem. Such problems specify a data-fidelity term to

ensure good correspondence of candidate fits against the data and

a penalty term to impose a running cost on the overall minimi-

zation, helping preclude unlikely or degenerate solutions while

preserving transients and other irregular structures. In contrast,



Fig. 2. This figure compares the analysis of an artificial signal (a) using the continuous wavelet transform (CWT) and (b) the STFT with different choices of

window sizes (c and d). The signal shown in (a) was constructed by adding a low-frequency (80 Hz) sine wave with two higher-frequency bursts with shorter

time duration according to their frequency (120 and 450 Hz, respectively). In (b) with the CWT, one gains good frequency localization at the lower frequencies

while improved temporal resolution occurs at higher frequencies. If we try analyzing the same signal with the STFT using a relatively short-duration window

(c), discrimination of the shorter-term events is possible, but it is more difficult to localize their frequencies. In particular, it is hard to separate the 80-Hz longer

wave from the 100-Hz pulse. Moving on to (d), the frequency localization is improved by increasing the duration of the window function. This choice

efficiently localizes the longer term 80 Hz event since it is stationary over time, but the shorter events now become averaged out having sacrificed localization

power in frequency.
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non-‘1 (e.g., quadratic) penalties attempt to find a trade-off

between overfitting the data and oversmoothing potential solu-

tions. While robust, such approaches tend to degrade edges and

other potentially informative irregularities in the recovered image.

‘1 constraints can facilitate a larger range of candidate fits by

including those belonging to a minimally smooth subspace (see

Chambolle et al., 1998 of all possible functions). In the current

application, use of an ‘1 penalty enriches detail in the activation

maps while accounting for low-amplitude, smooth connected

structures. Significantly, wavelet thresholding techniques afford

a practical means of solving such problems. This relationship has

been formalized in the work of Devore and Lucier (1992) and

also in Donoho and Johnstone (1994).

Spatiotemporal wavelets for fMRI

We now construct a weighted least-squares model for fMRI

analysis with this type of spatial penalty. To generate a possible

spatiotemporal wavelet solution, we first formulate an appropriate

likelihood function with this kind of structure. Consequently, we

have incorporated physiological assumptions about the BOLD
contrast mechanisms and noise structure while placing the ‘1
constraint on the spatial variability of the BOLD signal. To

estimate the model parameters, we maximize the following

wavelet-penalized Gaussian-negative log-likelihood function.

That is

Jðf;D ;sg;sm; aÞ ¼
X

p

X
k

Aðx̃k;p � e�jxkDp ñk fpÞA2

2Fk;p

þ 1

2

X
p

X
k

logðFk;pÞ þ k
X
j;t;l

Nf̄ lj;tN1 ð6Þ

Here f̄ is the spatial wavelet transform of the unregularized

activation map. For the first f component, that is, fp
(1), f̄ is just the

2D DWT of the map f ¼ ff ð1Þp gpaZ2 . Note that the 2D wavelet

coefficients are indexed by scale j, shift T, and orientation l. For

ease of exposé, we have assumed that the baseline and drift terms

have been previously computed and subtracted off the original
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data. In practice though, all the parameters are estimated within

an iterative procedure similar to that described in Appendix A, the

difference here just involves a further spatial processing of f. The

first term in Eq. (6) enforces fidelity on the data, comparing

candidate parameterizations of the delayed BOLD signal

(effected by the term e�jNk Dp) with the measured time course.

Inclusion of the noise spectrum Fk,p recognizes serial correlation

in the errors. The final term of this likelihood kAj,T,lNf̄j,T
lN1 is the

wavelet domain ‘1 spatial constraint on the activation map f. Due

to the flexible nature of this penalty, we can adaptively accom-

modate heterogeneous spatial activations and can hope to use

wavelet thresholding to derive a computationally tractable solu-

tion. We begin by multiplying out the least-squares term in Eq.

(6) and reorganizing, i.e.,

J ¼ 1

2

X
p

ðyp � fpÞV6pðyp � fpÞ þ �
X
j;t;l

Nf̄
l

j;tN1 ð7Þ

which contains the purely spatial components:

yp ¼
X
k

s̃Hk s̃k
Fk;p

 !�1 X
k

s̃Hk x̃k;p
Fk;p

 !
ð8Þ

and

6p ¼
X
k

s̃H
k s̃ k

Fk;p
ð9Þ

The regression parameters in Eq. (8) constitute a crude version

of the desired fp parameters. Eq. (9) represents the spatial noise

variance and is based upon the normalized power of the hemody-

namic model.

The solution of Eq. (7) does not depend solely upon

information in the estimated spatial activation map, y. One

possible approach would simply involve calculating the noise

standard deviation from these spatial maps—treating them in

essence as observed static 2D images—then applying and

constructing a conventional thresholder, thus ignoring the tem-

poral basis under which the maps were derived. Instead though,

the temporal behavior of the noise processes in the functional

data are characterized through 6 and the spatial thresholding

informed by this dynamic information. 6p
�1 may be thought of

as a spatial noise covariance matrix that arises as a by-product

during the maximization of Eq. (6). Utilizing 6p
�1 in the spatial

thresholding embeds the temporal part of the problem into the

overall estimation. The resulting spatiotemporal framework is

thereby reduced to that of a more conventional ‘signal plus

noise’ recovery problem whose objective is to extract estimates

of the true activation fp from a spatially white background noise

process rp with zero mean, but in this instance, known spatially

varying variance 6p
�1. That is, y ¼ f þ n;n ¼ frpgp a Z2 ; rp

fN
ð0;6�1

p Þ . A modified spatial wavelet thresholding will now be

shown to offer an approximate solution to this problem.

Strictly speaking, the optimization of Eq. (7) does not in fact

admit a true thresholding solution and this will be pursued

elsewhere. But we can still proceed if several reasonable approx-

imations are made. The most important of these treats each

{fp
( q)}q = 1

3 component separately rather than as a full vector
optimization, i.e., for any choice of q the voxelwise signal plus

noise model may just be written

yp ¼ fp þ vp ð10Þ

Taking 2D wavelet transforms of y and 6 (denoted by ( �̄ )) and
ignoring cross-scale correlations gives

ȳlj;t ¼ f̄ lj;t þ v̄lj;t where var ðv̄lj;tÞc
1

X̄l
j;t

¼
X
j;t; l

wðlÞ2
j;t

1

Xp

For 2D wavelets, 1 V l < 22 � 1 and w is the wavelet basis

function (see Appendix C for more detail). Eq. (7) can then be

rewritten in the wavelet domain as

J ¼ 1

2

X
j;t;l

ðȳlj;t � f̄ lj;tÞ
2X̄l

j;t þ k
X
j;t;l

Af̄ lj;tA ð11Þ

This expression has the following spatially varying thresholder

as its minimizer (see Appendix B for proof) and yields estimates f̂̄

of the desired wavelet-domain activation coefficients f̄

f̄
ˆ ðW Þl
j;s ¼ sgnðȳlj;tÞ Aȳj;t

lA� kffiffiffiffiffiffiffiffi
X̄l

j;s

q
0
B@

1
CA

þ

ð12Þ

In other words, if the value of jȳj,slj is greater than kffiffiffiffiffiffi
X̄ l

j;s

p , then ȳj,T
l

shrinks toward zero by this amount. Otherwise, set jȳj,Tl j = 0.

ȳ is the 2D map of discrete wavelet-transformed regression

coefficients derived from Eq. (8) and f̂̄(W) are the recovered

(thresholded) wavelet coefficients representing the spatiotemporal

map of signal parameters. These are inverse wavelet transformed

to yield the final signal estimate f̂, which as a consequence of the

spatial penalty will have retained inherent spatial detail and

variability. k is a (normally positive) parameter that controls the

degree to which the data fidelity and penalty terms interact with

one another. Intuitively, we can see that a high value of k will

cause a low energy in the penalty, leading in turn to smoother fits.

Conversely, small k will lead to larger energy in the wavelet

coefficients permitting more flexibility in the reconstruction but

potentially overfitting the data. In this work, we use the universal

thresholder that sets k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logeðM1M2Þ

p
, where M1M2 is the

number of voxels in the brain. This choice quantifies an upper

bound on the risk of the wavelet threshold estimator (see e.g.,

Mallat, 1998 for more detail).

Computational Steps

Ignoring drift and baseline terms for the moment, the parameters

remaining to be estimated at each pixel p are (fp, Dp, rg,p, rm,p, ap),

i.e., the BOLD model estimates, the hemodynamic delay, and the

noise components (white & correlated variances and the corre-

lation coefficient), respectively. The overall minimizer of Eq. (6)

consists of the following eight steps (shown graphically in

Fig. 3):

(1) Obtain initial estimates for the noise and construct the power

spectrum, Fk,p.



Fig. 3. Graphical schema of the algorithm described below. The example used for illustration was taken from an experiment where the subject was asked to

alternately tap their index finger and view a flickering checkerboard. Significant activation is therefore expected in the motor strip and visual cortex. In the

figure, DWT and IWT correspond to the forward and inverse wavelet transforms, respectively.
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(2) Compute voxelwise estimates of the hemodynamic delay, that

is,

D̂p ¼ arg:max

Re
X
k

e�jxkDp ñHk x̃k;p
Fk;p

 !
V X

k

ñHk ñk
Fk;p

 !�1

Re
X
k

e�jxkDp ñHk x̃k;p
Fk;p

 !
0
BBBBB@

1
CCCCCA
ð13Þ

(3) Perform weighted regression to obtain raw estimates of the

signal parameters yp, that is,

yp ¼
X
k

ñHk ñk
Fk;p

 !�1 X
k

e�jxk D̂p ñHk x̃k;p
Fk;p

 !
ð14Þ

(4) Take 2D DWTs of maps y and 6 to obtain ȳ and 6̄.

(5) Wavelet threshold the activation maps using the modified

procedure, Eq. (12) to obtain f̂̄p
(W).
(6) Reconstruct f̂̄p
(W) back into the spatial domain by taking the

inverse wavelet transform, yielding f̂̄ p
(W), and compute the new

residuals.

(7) Return to step (1) and repeat until convergence.

(8) Compute activation maps using the following approximate

frequency domain F-statistic, with m and n � q degrees of

freedom and overlay.

Spðm; n� qÞ ¼
�

f̂p
ðW ÞV

s̃VðRSSÞ�1
diagðFpÞ�1s̃fp

ðW Þ�
=m ð15Þ

where RSS is the sum of squares of the whitened residuals.

Under the null hypothesis of no significant activation, m = q,

where q is the rank of X̃ and n is the number of time points in the

experiment. We derive the power spectral density of the temporal

ARMA(1,1) noise using an EM algorithm (see Solo et al., 2001 for

further details), which is incorporated into the complex reweighted

least-squares computations that generate Dp and yp. The predictor X̃

is constructed off-line by convolution of the input stimulus c(t) with

the impulse response terms representing the blood flow and volume

components of the BOLD response. Once Dp is calculated, X̃k is

shifted to X̃k�Dp
and the yp estimates obtained from Eq. (14). The

delay computations are based on a simple correlation analysis
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between X̃k�Dp
and each time course, possessing a structure that

reflects the presence of ARMA(1,1) noise and potentially, signal

drift (e.g., replace x̃k,p by x̃k,p
0 in Eq. (13), see Appendix A, step (iv)).

This quantity is also determined in the frequency domain utilizing

the Fourier Shift Theorem tomodulate the phase of each time course.

Because of the duality property of the FST, this procedure is

equivalent to applying the same latency in continuous time. The

Dp calculation can be summarized as a line search, comprising

repeated correlation computations applied across a range of candi-

date delays at arbitrarily fine resolutions.

Finally, the wavelet thresholding rule of Eq. (12) is applied to

the temporal maps, an improved estimate of the noise is obtained,

and the procedure iterated until convergence.

p value interpretation of wavelet thresholding

To digress slightly, we will describe the relationship between

wavelet thresholding and significant testing. Although this partic-

ular interpretation of wavelet thresholding is not drawn upon in this

paper, we feel it is worth including given its potential for

combining estimation and inference in functional MRI.

Not only can wavelets recover functions of unknown smooth-

ness from corrupted sets of observations, but in most cases are near-

optimal estimators in situations where the signal is nonuniform or

heterogeneous. In terms of minimum mean-square error, wavelets

generally outperform or at worst match conventional denoising or

estimation techniques depending on the local smoothness properties

of the underlying signal. Donoho (1995) noted that with ‘‘over-

whelming probability’’, one can hope to recover a function that is at

least as smooth as the true function, and that this observation holds

across a wide range of smoothness classes. In the wavelet domain,

this is equivalent to stating that noise has a high likelihood of

disappearing from the recovered signal, which in turn leads us to

have high confidence in the zeroed wavelet coefficients. Abramo-

vich and Benjamini have used this observation in the context of

simultaneous inference. They noted that thresholding by the uni-

versal thresholder
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logðnÞ

p
was close to a Bonferroni correction

over a range of probabilities a. As n !l, the tail of the quantile

z(1/n) approaches
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logðnÞ

p
. If dk is an iid Gaussian process

with zero mean and variance r2, then the probability level

an ¼ Pðmax
1VkVn

AdkA >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logðnÞ

p
Þ V nPðAdkA >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logðnÞ

p
Þ . This

yields the asymptotic relationship

anV

ffiffiffiffi
2

p

r
nffiffiffiffiffiffiffiffiffiffiffi
2logn

p e�logðnÞ
� �

¼ ðplogðnÞÞ�
1
2 ð16Þ

as n gets large.

Data description and experimental paradigms

Simulated data

1.5 T Siemens Sonata, 3.0 T Siemens Allegra, and 3.0 T

Siemens Trio: Data were acquired from five normal volunteers

(two at 1.5 T and three at 3.0 T) who were scanned while lying

quietly with their eyes closed for 6 min (1.5 T) and 5 min (3.0 T).

Images were contiguously acquired at a repetition rate of 2 s (1.5

T) and 5 s (3.0 T) for the duration of each session, yielding a total

of 180 (1.5 T), 60 (3.0 T), T2*-weighted 3D images each

containing 21 (1.5 T) or 3 (3.0 T) noncontiguous, axially acquired

slices. The data were acquired on the systems at the MGH
Martinos Center, Charlestown, MA, with time-to-echo (TE) =

40 ms, TR = 2 s (1.5 T), = 5 s (3.0 T), in-plane resolution = 3.13

mm (1.5 T), = 1.9 mm (3.0 T), and slice thickness = 6 mm (1.5

T), = 4 mm (3.0 T).

Data construction: Clusters of temporal signals were synthe-

sized by constructing multiple realizations of the physiological

model st,p (Eq. (3)), while keeping fp spatially constant within each

of three different regions. Spatiotemporal activations were created

by adding these clusters onto the three areas in respective slices

from the T2*-weighted EPIs (see Fig. 4, column (i)). Average

SNRs were calculated voxelwise from SNR ¼ 1
n

P
t s

2
t;p=r

2
B across

each region, for each choice of f. The measure of SNR was used to

ascertain detectability of the embedded signal as opposed to, say,

using the power of st,p. rB
2 is the temporal variance of the

background fMRI data. As shown in Fig. 4, the signal regions

consisted of two relatively localized heterogeneous features with

high SNR and a single larger and smoother region with an average

SNR f60% lower than in regions 1 or 2. The overall goal of this

simulation was to recover an estimate f̂ of f through the wavelet

thresholder (Eq. (12)), such that the penalized likelihood (Eq. (11))

was solved. In this way, the relative performance of the proposed

variable thresholder could be measured. In all of the simulations, a

simple check of algorithm performance was computed from the

mapwise mean-squared error, that is,

MSEðf̂Þ ¼
X

p

X
k
ðsk;pfp � sk;pf̂pÞ ð17Þ

Sternberg item recognition memory task (3.0 T, event-related)

A single healthy subject performed a numerical Sternberg item

recognition paradigm (SIRP) that had been adapted for rapid

presentation, event-related fMRI. This version of the SIRP required

subjects to encode a set of target digits, maintain them in working

memory (WM) over a fixed period, and to respond to a probe digit

by indicating whether it was a target. Further details of the data

acquisition can be found in Manoach et al. (2003).

Each working memory (WM) trial began with a central fixation

cross for 500 ms followed by the presentation of a set of five digits

(targets) to be learned (3500 ms). This constituted the encode phase

that was directly followed by the Delay (or holding) epoch during

which time the screen was blank. During the Probe epoch, subjects

were presented with a single digit (probe) for 2000 ms. In half the

trials, the probe was a target (a member of the memorized set) and

in half the trials the probe was a foil (not a member of the

memorized set). Subjects responded by pressing a button box with

their right thumb for targets and their left thumb for foils. The three

trial types differed only in the length of the delay period that lasted

0, 2, or 4 s. The three trial types randomly alternated with a fixation

baseline condition within each run. During the baseline condition,

subjects fixated on an asterisk that appeared in the center of the

screen. The duration of fixation was randomly varied in increments

of 2 s up to a maximum of 12 s. Subjects performed six runs of 4

min 48 s each. Each run contained nine trials of each WM

condition and 72 s of fixation.

Functional images were collected on the 3.0 T Allegra system

using BOLD contrast and a gradient-echo T2*-weighted sequence

(TR/TE/Flip = 2000 ms/30 ms/90j) to measure variations in blood

flow and oxygenation. Twenty contiguous horizontal 6-mm slices

parallel to the intercommissural plane (voxel size 3.13 � 3.13 � 6

mm) were acquired interleaved. Four images at the beginning of

each scan were acquired and discarded to allow longitudinal



Fig. 4. Simulated data set showing relative MSE performances among various estimation strategies. In column (i), we constructed a synthetic signal by adding

spatially constant realizations of the temporal signal described by Eq. (2) to a resting data set. Shown is the relative SNR in the appropriate areas. Shown

furthermore in each of columns (ii), (iii), (iv), and (v) are the results of estimating the underlying (known) signal using (ii) no spatial treatment, (iii) Gaussian

presmoothing, (iv) Donoho and Johnson wavelet thresholding, and (v) the variable wavelet thresholding procedure proposed in this paper. Also shown in each

panel is the MSE measuring the recovery performance of each method (see Eq. (17)). Note that the Gaussian smoothing is applied as a preprocessing step in

line with common strategies, whereas both spatial wavelet techniques are invoked within the estimation procedure.
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magnetization to reach equilibrium. Regions known to be reliably

activated by blocked versions of SIRP include the dorsolateral

prefrontal cortex (DLPFC), intraparietal sulcus, lateral premotor

cortex, supplementary motor area, and the insula (e.g., Manoach et

al., 1997; Rypma and D’Esposito, 1999). This experiment was

designed with the intent of investigating the neural circuitry

underlying each epoch (encode, delay, probe) of the working

memory task (Manoach et al., 2003).

Spatial working memory task (3.0 T, blocked-periodic)

Subjects were presented with a set of target stimuli consisting of

either two or three shapes (irregular polygons) that appeared in

particular locations on the right and left side of the screen. Subjects

were asked to hold in WM either the locations or shapes of the

targets. The targets then disappeared and subjects then responded to

the appearance of individual probe shapes by indicating whether

they appeared in one of the memorized locations regardless of its

shape (spatial) or whether the probe was one of the memorized

shapes regardless of its location (shape). The control condition used
identical stimuli to both the spatial and the shape tasks, but there

was no display of targets and subjects responded to probes by

indicating whether they appeared on the right or left side of the

screen. This required a visually guided rather than a WM guided

response. In the WM conditions, half of the probes were targets (a

member of the memorized set) and half were foils (not a member of

the memorized set). In all conditions, half of the probes appeared on

the right and half appeared on the left. Subjects responded by

pressing a button box with their right thumb for targets and their left

thumb for foils. Response time (RT) and side (right or left) were

recorded. Each run of the task contained two blocks of the low- and

high-load WM conditions (consisting of two and three targets),

three blocks of the control condition (c), and three periods of

fixation (*). The fixation baseline condition consisted of an asterisk

that flashed at 2-s intervals to maintain the subjects’ visual attention

and gaze (see Manoach et al., 2004 for further details).

Images were collected on the 3.0 T Allegra system. Functional

images were collected using Blood Oxygen Level Dependent

(BOLD) contrast and a gradient-echo T2*-weighted sequence



Table 1

Average MSEs across five subjects from simulations performed on data

acquired at 1.5 and 3.0 T

SNR (Average) N P D & J VW

0.18 735.08 291.17 74.865 18.637

0.73 735.43 293.97 76.008 20.237

1.67 736.01 298.81 77.207 21.578

3.00 736.68 305.6 78.463 22.989

4.73 737.43 314.48 79.681 24.692
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(TR/TE/Flip = 2000 ms/30 ms/90j) to measure variations in blood

flow and oxygenation. Twenty contiguous horizontal 5-mm slices

parallel to the intercommissural plane (voxel size: 3.13, 3.13, 5

mm) were acquired interleaved. Four images at the beginning of

each scan were acquired and discarded to allow longitudinal

magnetization to reach equilibrium. This experiment was designed

to investigate whether spatial WM is associated with functional

specialization of the right prefrontal cortex (PFC) relative to WM

for shapes.

6.84 738.37 325.49 81.061 26.189

N = no spatial treatment, P = presmoothing with a Gaussian kernel, D & J is

the Donoho and Johnson wavelet thresholding, and VW is the variable

wavelet thresholding procedure described in this paper.

Results

Simulated data

To isolate the effect of the proposed spatially varying wavelet

thresholder, four variations of the algorithm were contrasted. The

first and simplest aimed to recover the spatiotemporal signals using

the purely voxel-based procedure described in Appendix A. After

noise estimation, each time course was corrected for the effect of

drift at each location in the brain followed by construction and

regression of the delayed physiological model Eq. (3) against each

time course, thus generating the spatially unregularized maps y. This

process was iterated until the estimate for each model term had

settled down to within a predefined tolerance limit. This procedure

corresponded to a spatially unregularized version of the technique

described in Solo et al. (2001) and Purdon et al. (2001). Fig. 4,

column (ii) illustrates the recovered voxelwise signal parameters

over a range of SNRs on data from one of the subjects acquired at 1.5

T. The mean-squared error of the recovered signal was calculated

from Eq. (17) and is shown on each panel. Fig. 4, column (iii) shows

the result of imposing spatial regularization upon the activation

parameters by presmoothing the data using a Gaussian kernel with

FWHM = 2.6 mm. This choice of kernel size represented a

reasonable compromise between the disparate sizes of the synthe-

sized features, maintaining some structure in the detail while

capturing to some extent the implicit smoothness of the larger-scale

features. As before, a voxelwise cyclic-descent strategy was applied

to each time course recovering the corresponding f̂ (SM) maps (shown

in the respective rows) at each level of SNR. Fig. 4, column (iv)

incorporates the D& J spatial wavelet thresholdingmethod (Donoho

and Johnstone, 1994) in place of the variable thresholder to estimate

f. Due to the nature of the D & J thresholder, this amounts to treating

the parameter maps y as purely spatial entities not accounting for the

temporal aspects of the data. However, an intuitive invocation of

wavelets in this manner could still be considered quite reasonable.

The maps in Fig. 4, column (iv) clearly show the ‘‘zeroing’’ property

of wavelet estimation. This is a consequence of the nonlinear

smoothing characteristics of wavelet threshold estimators that shrink

or kill the coefficients. Fig. 4, column (v) illustrates the effect of

recovering the synthesized signal by the full-blown spatiotemporal

wavelet technique. The wavelet thresholding in this instance guar-

antees a minimum in the likelihood function Eq. (6). This process

was repeated on data from a further four subjects acquired at 1.5- and

3.0-T field strengths across a wider range of SNR. Their average

MSEs are summarized in Table 1.

SIRP task

In this example, we analyzed the combined effect of the three

trial types. Fig. 5a illustrates the statistical maps and their
subsequent anatomical overlay after applying four different

analysis procedures with the same temporal modeling structure,

but in each case different choices of spatial treatment, namely

Gaussian or wavelet smoothing. The slices shown were chosen

to transect motor areas and the prefrontal cortex. Before analysis,

the data were subjected to rigid-body motion correction to align

the scans across time (Cox and Jesmanowicz, 1999). In Fig. 5a,

columns (i) and (ii), spatial smoothing was applied using

Gaussian kernels of size 4 and 12 mm, respectively, F-statistics

and p values computed, and respective Bonferroni corrections

applied. To render the standardized maps comparable with the

proposed wavelet method, we smoothed the signal maps f, the

noise parameters rg
2, rm

2, and the correlation coefficient a within

the estimation procedure rather than as a prior step. Had we

been concerned with direct comparisons between the respective f

maps from the different methods (as in the simulations),

smoothing in this way or presmoothing would have little

affected the final result. However, because of its denoising

aspect, presmoothing inflates the test statistic (Eq. (15)) at the

expense of spatial resolution, confounding direct comparison

with the proposed wavelet thresholder that does not involve

preprocessing. To gain insight into the effect of the spatially

varying component of our technique on these data, we analyzed

the experiment by substituting the spatially varying thresholder

with the D & J wavelet thresholder. Column (iii) illustrates the

maps gained from this analysis, and column (iv) shows the result

of applying the spatially varying thresholding (Appendix B). For

overlay onto the corresponding T1-weighted structural images

(top eight panels), the maps were thresholded at the level

indicated ( p < 1e � 3).

In the first row of Fig. 5a, each analysis seems to show

activation in several frontal and parietal regions including the

supplementary motor area and lateral motor and premotor areas.

In the second row, all analyses exhibit activity in the intraparietal

sulcus, the cingulate, and lateral prefrontal regions including

premotor areas and the dorsolateral prefrontal cortex. The third

and fourth rows illustrate the corresponding p value maps before

overlay.

SWM task

In this experiment, we examined the response of the subject to the

spatial location of each probe versus the control condition. In Fig. 6a,

two representative slices are shown after analysis with the same four

variations of spatial treatment as those described above. Once again,

the data were motion corrected and subjected to identical analyses as

outlined in the previous example. p values were once again com-



Fig. 5. (a) SIRP task; columns (i) and (ii) show the effect of smoothing the parameters with Gaussian filters, FWHM = 4 and 12 mm, respectively.

Illustrated in the bottom two rows are p values derived from the smoothed regression parameters f̂p
(SM), normalized by the spatially smoothed noise spectra

such that Sp(m, T � k) = (f̂p
(SM)VX̃V(RSS)�1diag(Fp)

�1X̃f̂ p
(SM))/m. In columns (iii) and (iv), the bottom two rows represent p values obtained in a similar way

with the exception that the recovered parameters f̂p
(W), were incorporated. The top two rows show the result of overlaying and thresholding these maps at

p < 1e � 3. Note that at FWHM = 4 mm, the activations are well localized but the images are noisy. At FWHM = 12 mm, the images appear cleaner but

the activations are less distinct. In both the wavelet approaches, the images are cleaner apparently without sacrificing spatial resolution. The variable

thresholder activations appear better localized than the D & J thresholder. (b) These figures show the underlying temporal variance structure 6 employed by

the wavelet thresholder. Differences between the two wavelet methods in (a) are largely due to the added uncertainty these maps provide.
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puted (bottom eight panels), thresholded, and overlaid onto the

structural T1-weighted scan at ( p < 1e � 5). As expected for this

task, lateral, medial frontal, and parietal regions all showed in-

creased activation relative to baseline.
Discussion

In this paper, we have developed a new spatiotemporal model

for analyzing functional MRI. Our approach begins by defining a

spatially constrained maximum likelihood function that character-

izes fMRI activation by combining a model of the BOLD effect

into a modified spatial wavelet procedure. The use of spatial

wavelets in this context appears to better enable adaptation to the

inherent spatial variability of the functional signal. Wavelets are

natural candidates for situations involving spatial heterogeneity,

but in their standard form may not be appropriate for solving

spatiotemporal problems. To overcome this issue, we have shown
the rationale behind the use of a modified wavelet thresholding

rule that minimizes a spatiotemporal likelihood function. The

results of this approach indicate that smoothing procedures and

their associated drawbacks may potentially be avoided in fMRI

analyses. The suggested framework should be transparent to the

specifics of underlying temporal signal and noise models, en-

abling experimentation with different and perhaps more complex

choices for either component. The resulting spatially varying

wavelet thresholding solution is simple and fast to apply, requir-

ing little computational effort beyond that of a standard D & J

wavelet estimator.

We comparatively evaluated the performance of the new regime

on the simulated data illustrated in Fig. 4 with (1) no spatial

treatment, (2) Gaussian presmoothing, (3) standard D & J wavelet

thresholding, and (4) the proposed variable wavelet thresholder. In

these simulations, we constructed spatiotemporal signals of vary-

ing strengths and added them to functional data acquired from five

resting subjects. Across a range of SNRs, both wavelet estimators



Fig. 6. (a) SWM task; columns (i) and (ii) show the effect of smoothing the parameters with Gaussian filters, FWHM = 4 and 12 mm, respectively. Illustrated

in the bottom two rows are p values derived from the smoothed regression parameters f̂p
(SM) normalized by the spatially smoothed noise spectra such that

Sp(m, T � k) = (f̂ðSMÞV
p X̃V(RSS)�1diag(Fp)

�1X̃ f̂p
(SM))/m. In columns (iii) and (iv), the bottom two rows represent the p values obtained using the recovered

parameters f̂p
(W) after respective use of the D & J wavelet thresholding and the new variable thresholder. The top two rows show the result of overlaying and

thresholding these maps at p < 1e � 5. These images show a similar response to the different analysis methods as the previous example. (b) SWM task; these

figures show the underlying temporal variance structure 6 employed by the variable wavelet thresholder. Differences between the two wavelet methods in (a)

can be mostly ascribed to the added uncertainty offered by these maps.
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showed quite distinct demarcation of the activated regions com-

pared to maps derived from the Gaussian-smoothed analyses. In

regions containing lower SNR (around .15), some erosion was

exhibited after wavelet thresholding, but these areas fared no better

under the Gaussian presmoothed or purely voxelwise analyses. In

all cases involving presmoothing, discrimination between neigh-

boring features proved challenging with regions (1) & (2) becom-

ing fused together. Also, some loss of detail in region (3) was

observed at these SNRs. Table 1 shows the averaged MSEs for

each case across the five subjects who had been scanned on either

1.5- or 3.0-T systems. The difference between the competing

wavelet approaches became marked across these systems—at

higher field strength performance of the D & J wavelet thresh-

olding deteriorated quite significantly, increasing its average MSE.

The MSE of the variable thresholder remained, however, relatively

stable at these field strengths indicating comparative robustness of

the proposed method. Such behavior seems to strengthen the

validity of utilizing spatiotemporal assumptions in the variable

thresholding model compared to the purely spatial D & J thresh-

olding. While both wavelet approaches are based on universal
thresholding, the D & J estimator employs a single variance

gathered from the estimated noise distribution of the derived

BOLD parameter map, y. In contrast, the variable thresholder uses

a different noise variance for each voxel to inform its estimation.

The D & J approach still, however, appears preferable to smooth-

ing the maps with a fixed-width Gaussian kernel. Like analyses

employing Gaussian smoothing, the D & J estimator is also wholly

spatial, implicitly ignoring the temporal basis under which the y

coefficients were derived. Recognizing unified spatiotemporal

structure in the data allows inclusion of a richer source of variance

into the variable wavelet estimation, resulting in this comparative

MSE improvement.

In the SIRP and SWM tasks, both wavelet procedures seemed

to provide well-localized, physiologically plausible descriptions

of the task-related activation (Figs. 5 and 6a, columns (iii) and

(iv)) compared to those employing Gaussian smoothing (columns

(i) and (ii)). In the two smoothing analyses, the first choice of

kernel (FWHM = 4 mm) retained good localization of the

activations but yielded noisy images. The second smoothing

choice (FWHM = 12 mm) resulted in cleaner maps at the
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expense of resolution. In contrast, the wavelet methods in

columns (iii) and (iv) were better able to localize on the

activations while efficiently preserving larger-connected areas.

The variable wavelet thresholding appeared to yield sparser maps,

but in the absence of ground truth and from these limited data

sets, it is perhaps difficult to definitively choose a preferred

technique. Given, however, that the maps obtained through the

variable thresholding appeared consistently more conservative

than those derived using D & J thresholding (which also showed

upward bias in the simulations), it is feasible that D & J may be

an under-conservative estimator for fMRI analysis since the

temporal covariance structure is ignored. It will be the subject

of further work to develop confidence bounds and other diag-

nostics that accurately quantify the performance of these spatial

and spatiotemporal estimators.

Inspection of the variance maps in Figs. 5 and 6b suggests that

the temporal process underlying the thresholding is distinctly

neurophysiological, with much of the power appearing concentrat-

ed in the cortical areas of the brain. This is particularly noticeable

in Fig. 5b. The wavelet transform of these variance maps con-

stitutes the added information used in the spatiotemporal wavelet

thresholder compared to the D & J thresholder. It is also possible to

witness a certain correspondence between areas of high power in

the 6 maps and significant regions of activation. Such behavior

might either evidence some misspecification in our temporal

BOLD model leading to strongly correlated residuals, or simply

indicate increased physiological noise activity in these areas.

Choice of wavelet: In the simulations, a Daubechies wavelet

with two vanishing moments (the Haar) was chosen to capture the

blocky nature of the added signal. In addition to its discontinuous

nature, the Haar wavelet seemed appropriate here due to its linear

phase. This property improves the spatial localization of the

activation clusters compared with asymmetric bases, of which

higher-order (>2) Daubechies wavelets are one example. The

frequency domain behavior of Haar wavelets is, however, fraught

with side lobes that die off gradually. These lead to relatively high

inter-scale correlation between the wavelet coefficients, an effect

contrary to the assumptions of coordinate-wise thresholding. At

the other extreme, use of a sinc-type function in the spatial

domain (i.e., a main lobe with oscillations that die out slowly

across space or time) would result in almost no interference

between frequency channels (being approximately discontinuous

over there). But this desirable phenomenon would cost us spatial

localization. In the simulations, we tried reducing crosstalk

between scales by increasing the wavelet smoothness, but perhaps

surprisingly, little difference was observed in the overall MSEs. In

this case, the benefit of using discontinuous basis functions for

inherently blocky data apparently outweighed any deterioration in

performance caused by inter-scale correlations. In the real fMRI

experiments, a Symmlet wavelet with four vanishing moments

was used. These wavelets are symmetrical and fairly smooth, and

seemed to provide reasonable trade-off between spatial localiza-

tion and small inter-scale correlation. In the activation maps at

least, little positive effect was observed on increasing wavelet

smoothness beyond this level.

Our approach can be most closely compared to the work of

Ruttiman et al. (1998) who developed thresholding methods for

fMRI based on hypothesis testing. The wavelet expansion coef-

ficients were classified according to the validity of the null-

hypothesis for each, and on this basis either selected for use in

the reconstructed activation map or discarded. Also, Brammer
(1998) developed a spatiotemporal wavelet method (using tensor

products of wavelets in both space and time) for analyzing fMRI

data. This technique performed a linear spatial smoothing on the

wavelet domain data by zeroing out prechosen (higher frequency)

spatial scales. A temporal wavelet denoising was subsequently

performed on the spatial presmoothed data that included prior

knowledge about the frequency structure of the experimental

response. Temporal applications of wavelets in fMRI have includ-

ed Bullmore et al. (2002), Fadili and Bullmore (2002), and Long

et al. (2001). In Bullmore et al. (2002), temporal wavelets were

used to serially decorrelate the data, enabling the use of resam-

pling schemes to accurately ascertain null distributions of activa-

tion statistics, and better control Type-I error. In Fadili and

Bullmore (2002), a least-squares likelihood function was opti-

mized in the wavelet domain under 1/f assumptions about the

noise. In earlier work, we (Long et al., 2001) developed wavelet

packet time-series analysis in a correlated noise setting that

constructed basis expansions using time–frequency properties of

the experimental stimulus.

The major difference between these approaches and that of the

current work lies in our recognition and explicit modeling of the

transfer function component within fMRI data and the way in

which this information is combined in the spatial wavelet thresh-

older. In the present study, we have formulated a hybrid spatio-

temporal formulation of wavelets, taking advantage of their

adaptive spatial properties and informing the spatial estimation

through the temporal covariance structure.

Other non-wavelet techniques have been developed in the past

to address the same questions as those considered here. One

major class of spatial (or spatiotemporal) procedure that have

been applied to fMRI data are Markov Random Fields (or MRFs)

that are largely based upon the original work of Besag (1986)

from the spatial statistical literature. These approaches also aim to

preserve heterogeneous spatial activation patterns, see, for exam-

ple, Descombes et al. (1998a,b). Originally designed in the light

of contemporary image processing problems, e.g., image recovery

or denoising (see Geman and Geman, 1984), MRFs have a

natural ability to retain anatomical or functional detail in a similar

manner to wavelets. An important difference between MRFs and

the method proposed here relates to the fact that in Descombes et

al. (1998a,b), MRFs are invoked as a preprocessing step and as

such can be considered as a spatially adaptive denoising utility. In

contrast, our spatial wavelet component is embedded within an

estimation procedure that operates directly on signal parameter-

izations rather than on raw data. A further difficulty relating to

the kind of product-form combinations of spatial and temporal

covariance functions implied by the use of MRFs in this manner

involves their extension from spatial to temporal dimensions. This

does not seem to follow naturally for fMRI data or indeed any

spatiotemporal data containing transfer function dynamics. In

fMRI data, the assumptions required for each dimension suggest

to us that a nonproduct form spatiotemporal model such as

described in the current work may be fundamentally more

appropriate.

In summary, we note that the proposed method possesses a

data-based/mechanistic or ‘grey box’ structure, distinguishing it

from other fMRI signal processing strategies. These usually fall

into either category but rarely combine both, as we have done here.

We impart interpretability to the parameters by a physiological

transfer function model of the BOLD signal and apply spatial

regularization by drawing on underlying characterizations of the
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noise component. Because of the data-dependence of the wavelet

thresholding, the process may be also considered partly data-driven

based to some degree on the statistical properties of a particular

experiment.
Conclusions

We conclude that the spatiotemporal model outlined in this

paper provides a useful alternative to standard smoothing methods.

The structure of our mathematical formulation is intuitively ap-

pealing since wavelet smoothing is constructed to guarantee a

minimum in a spatiotemporal likelihood function. It is likely that

this approach could be further improved by generalizing the

standard discrete wavelet transform (DWT) to the spatial wavelet

packet transform (WPT) that is yet more adaptive. It is also likely

that the complex spatial correlations in fMRI might be better

captured using more general thresholding rules than the current

universal thresholding approach.
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Appendix A. Voxelwise estimation

The fitting of the overall model Eq. (1) is nonlinear in some of

the parameters, but a frequency domain optimization can be

achieved by minimizing the following negative likelihood function

J ¼
X

p

X
k

Aðx̃k;p � mpd0;kN � bpuk � e�jxkDp ñkypÞA2

2Fk;p

þ 1

2

X
p

X
k

logðFk;pÞ

As before (see Eq. (2)), x reflects the time series at voxel p and

x̃k,p = A0
N�1xt,pe

�jNkt. uk ¼ N
1�e�jxk

; k p 0;¼ 0 otherwise. uk is the

DFT of a ramp function with zero mean. Also, d is the dirac

function, d0,k = 1, k = 0; = 0 otherwise. Details of a closely related

spatially regularized strategy can be found in Solo et al., 2001, but

here we consider just the temporal aspect.

The overall minimization strategy proceeds as follows:

(i) Initialize ŷ (the spatially unregularized map of the true signal

parameters f. Perform an Expectation–Maximization (EM)
computation (see Solo et al., 2001 for details) to gain estimates

of the three noise parameters, rg,p
2 , rm,p

2 , ap.

(ii) Given these noise estimates, compute the drift b̂p, the signal

delay D̂p, the spatially unregularized signal parameters ŷp,

and the baseline component m̂p.

(iii) Given these four parameters, construct updated residuals and

re-estimate the noise components (Eq. (4)).

(iv) Go to (ii) and repeat until convergence.

Step (ii) is divided up into several pieces:

(a) Initialize the drift b̂p and subtract this off the raw signal x̃k,p.

Call this new time course x̃k,p
0 .

(b) Compute the delay using a line search Eq. (13), that is, choose

Dp such as to maximize the correlation between the drift-

corrected signal and the physiological model over a suitable

range of D.

(c) ŷp is computed at the point where Eq. (13) is at its maximum

(=D̂p), i.e., from Eq. (14)

(d) Apply delay to the reconstructed model and subtract this

signal off x̃k,p. Call this new quantity x̃k,p
u

then b̂p ¼
X
k

ũHk ũk

Fk;p

 !�1 X
k

ũHk x̃k;p
u

Fk;p

 !

Finally, Step (iii) is calculated using an EM algorithm. The

mean m̂p is generated from the difference between the frequency

domain dc components of the signal and the reconstructed model,

that is, m̂p = Re(x̃0,p � n0ŷp)/N.
Computations are done in the frequency domain, mainly for

reasons of efficiency. But also, since the colored noise term

m̃k,p = A0
N�1mt,pe

�jNkt is a stationary process, its ordinates m̃k,p, m̃l,p
almost decouple for k p l. This means that the associated

covariance matrix is approximately diagonalized in the frequen-

cy domain, partitioning the noise from the other model compo-

nents during convergence.
Appendix B. Spatiotemporal wavelet estimation

The approximate solution to the optimisation of

Jðf ;D; rg; rm; aÞ ¼
X

p

X
k

Aðx̃k;p � e�jxkDp ñk fpÞA2

2Fk;p
þ 1

2
logðFk;pÞ

þ k
X
j;t;l

Nf̄ lj;tN1

is given by the following thresholding rule

f̄̂ j;t
l
¼ sgnðȳj;tl Þ Aȳj;tl A� kffiffiffiffiffiffiffiffi

X̄l

j;s

q
0
B@

1
CA

þ

PROOF: We start by considering two cases for the solution f̂̄.

Ignoring the wavelet indices for the moment, then either

(1) f̂̄ = 0 Z J(0) = ȳ 2/2X̄

 http:\\www-stat.stanford.edu\~wavelab\ 
 http:\\www.math.mcgill.ca\~keith\fmristat\ 
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(2) f̂̄ p 0. In this case, one can differentiate to find the minimum:

BðJðf̄ ÞÞ
Bf̄

¼ �ðȳ� f̄ ÞX̄ þ ksgnðf̄ Þ ¼ 0;

ZX̄ȳ ¼ Xf þ ksgnðf̄ Þ

ZX̄sgnðȳÞAȳA ¼ X̄sgnðf̄ Þ
�
Af̄ Aþ k

X̄

�
ZsgnðȳÞ ¼ sgnðf̄ Þ

And j f̄ j = (jȳj � k/X̄) and since j f̄ j = f̄/sgn ( f̄ )

¯̂
f ¼ sgnðȳÞ AȳA� k

X̄

� �
ðiÞ

In practice, one would initially compute this soft estimate of f̄.

Step 2 then involves ascertaining whether f̂̄ = 0, a step that is

achieved in practice by comparing the costs for the two cases, that is,

( J(0)) < ( J(sgn( ȳ)(jȳj � k/X̄))) is the condition that would constitute

case (1). In this case, a hard thresholding should occur when

AȳA <
k

X̄
ðiiÞ

Combining Eqs. (i) and (ii) yields

¯̂
f ¼ sgnðȳÞ AȳA� k

X̄

� �
þ

ð18Þ

where t+ = max (jtj,0).
This thresholded quantity is applied separately to each of the

three components in Eq. (3), before the inverse wavelet

transform is applied and the regularized spatiotemporal maps

obtained.
Appendix C

C.1. Wavelet computations in higher dimensions

C.1.1. One-dimensional case
We begin with a brief description of 1D wavelets. The basic

form of the wavelet functions is wj,s(t) = 2�j/2w(2�jt � s), j,s a Z,

where s is the temporal or spatial shift component, j is the scale

component governing the dilation or contraction of the wavelet

basis function wj,s. These wavelet functions are themselves

derived from a low-pass generating function /j,s(t) = 2�j/2/
(2�jt � s) j,s a Z2. Dilations of / enable traversals from one

scale to the next. This process can alternatively be considered in

terms of the sequence of subspaces or signal spaces which they

generate (Mallat, 1989).

f0go . . .oVjoV2oV1oV0oV�1oV�2o . . .oL2fRg

Resolution increasing !

The basis {uj,s}j = J,s and all its translated versions are

orthonormal at any scale (or resolution) J and span the

subspace VJ. When the resolution becomes arbitrarily fine, j !
�l, and V�l converges toward the original or native signal

space L2fRg.
Conversely, when the resolution becomes very coarse, all detail

about the signal is ultimately lost Vj i {0}. The detail absent at a

particular level VJ is contained by the wavelet collection {wj,s}j = J,s,

i.e., the orthogonal complement of {/j,s}j = J,s. The wavelets define a

separate, orthogonal subspace WJ. Progression up the resolution

ladder can be attained by adding the missing detail at the jth level.

Vj�1 ¼ VjPWj ð20Þ

A fine-to-coarse progression, in contrast, would just require

the iteration {uj,s}j = j + 1,s. The wavelet basis like the scaling

function {wj,s}j = J,s is also orthonormal at scale J. However,

across all scales and shifts, {wj,s} j,s a Z2 forms an orthonormal

basis of L2{R}. Because Vj, WjoVj � 1, there must be level-wise

connections between / and w.

/ðxÞ ¼
ffiffiffi
2

p XL�1

l¼0

hl/ð2x� lÞ ð21Þ

and for the wavelet

wðxÞ ¼
ffiffiffi
2

p XL�1

l¼0

gl/ð2x� lÞ: ð22Þ

These equations provide the link between the scaling

function at the next finest scale and its integer translates with

the filter hl. In a similar fashion, the wavelet spanning the

detail space at the higher resolution is generated from the same

scaling function, except the connection is effected with a

different filter sequence gl. These filter sequences, H =

{hl}0 V l V L � 1 and G = { gl}0 V l V L � 1, also called

analysis filters are time-reversed, modulated versions of one

another, gl = (�1)lhL � l � 1, 0 V l V L � 1, and for most

wavelet bases also satisfy conditions that render them perfect

reconstruction, or quadrature mirror filters.

C.1.2. Higher dimensions
Wavelet filters can also be generated for higher dimensions

from the fundamental 1D case. If we define the domain x =

(x1,x2,. . .xd) a Rd.

Then for 2D, the basis consists of the following three wavelets

wð1Þ
j;s ðxÞ ¼ wðx1Þ/ðx2Þ;wð2Þ

j;s ðxÞ ¼ /ðx1Þwðx2Þ;

wð3Þ
j;s ðxÞ ¼ wðx1Þwðx2Þ ð23Þ

that is, 1 V l < 2d = 2 � 1 and so on for higher dimensions (see

Mallat, 1998).

wðlÞ
j;s ðx1; x2; x3Þ ¼ 2�dðj=2Þwlð2�jx1 � s; 2�jx2 � s; 2�jx3 � sÞ ð24Þ

Subsequently, W = {w(l),w(2),w(3)} is an orthonormal basis of

L2(R2), and the wavelet expansion coefficients of the 2D image

U(x) are

c ¼
Z
R2

UðxÞWdx ð25Þ
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that is,

U ¼
X
saZ2

j;laZ

cj;s;lw
ð1Þ
j;s

Because we are dealing with finite domains, namely bounded

images, s is constrained to those shifts occurring only in the span of
the image. Also, in practical situations, the following restrictions on

the scale should be imposed; (1) an upper bound on j = K; (2) K < 0;

(3) J b K, i.e., 2J = n. The wavelet coefficients are normally

computed (Eq. (25)) in the context of the efficient dual channel filter

banks described by Mallat (1989). The procedure is a realization of

Eq. (25) effecting at each scale two filtering steps, one low,

associated with H, and one high, associated with G. These filtering

steps precede a subsampling stage that captures the resolution-

dependent aspect of the transformation. At each stage, the wavelet

coefficients are retained and the scaling coefficients are passed on to

the next level. This process is repeated until the coarsest scale L is

reached wherein both vectors of expansion coefficients are retained.

Thus

U ¼
X

clj;sw
l
j;s þ

X
dL;s/L;s ð26Þ
jVL;saZ2

laZ
saZ2
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Vetterli, M., Kovačević, J., 1995. Wavelets and Subband Coding. Prentice

Hall, New Jersey.

von Sachs, R., 1998. Nonparametric wavelet methods for nonstationary

time series. Tech. Rep. 98/19, Institut de Statistique, Univesité Catho-
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