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Summary: Gamma band (30-80 Hz) oscillations arising in neuronal ensembles 

are thought to be a crucial component of the neural code. Recent studies in 

animals suggest a similar functional role for very high frequency oscillations 

(VHFO) in the range 80-200Hz. Since some intracerebral studies in humans link 

VHFO to epileptogenesis, it remains unclear if VHFO appear in the healthy 

human brain and if so which is their role. This study uses EEG recordings from 

twelve healthy volunteers, engaged in a visuo-motor reaction time task, to show 

that VHFO are not necessarily pathological but rather code information about 

upcoming movements. Oscillations within the range (30-200Hz) occurring in the 

period between stimuli presentation and the fastest hand responses allow highly 

accurate (>96%) prediction of the laterality of the responding hand in single 

trials. Our results suggest that VHFO belong in functional terms to the gamma 

band that must be considerably enlarged to better understand the role of 

oscillatory activity in brain functioning. This study has therefore important 

implications for the recording and analysis of electrophysiological data in normal 

subjects and patients. 
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Introduction 

There is mounting evidence that neural oscillations play important roles 

in processes such as attention, perception, motor action and conscious 

experience (Engel et al., 2001a; Buzsaki and Draguhn, 2004); Crone et al., 

1998), and that disruption or increases of activity in various oscillatory networks 

may be an important factor in mediating some neurological diseases (Llinas et 

al., 1999). Of particular interest are the neural oscillations in the gamma 

frequency range related among other functions to the anticipation of 

behaviorally relevant events and the contextual control of cortical information 

(Aoki et al., 1999; Engel et al., 2001b). Recent studies in rats and cats (Chrobak 

and Buzsaki, 1996; Grenier et al., 2001; Siegel and Konig, 2003) report a 

correlation between neural oscillations above 100 Hz and extending up to 200 

Hz with attentive exploration and visual processing. Intracerebral recordings in 

monkeys show that 600 Hz oscillations are modulated by somatosensory 

stimulation (Baker et al., 2003) and that this modulation reflects the timing of 

cortical spike bursts. 

All these animal studies suggest that very high frequency oscillations 

(VHFO) play functional roles similar to those reported for the classical gamma 

band (30-80 Hz). However, VHFO seems to also play a pathological role in 

epileptogenesis. Several intracranial studies in patients show that neocortical 

seizures can begin with low-amplitude high-frequency oscillations (Allen et al., 

1992; Fisher et al., 1992; Alarcon et al., 1995; Traub et al., 2001) and that high-

frequency epileptiform oscillations (HFEOs) appear in the interictal (between 
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seizures) period (Bragin et al., 1999; Traub et al., 2001), suggesting that HFEOs 

may be involved in seizure generation. 

While human electrophysiology has consistently investigated the 

functional role of gamma band oscillations, the range of frequencies above 80 

Hz remains largely unexplored. A few electrocorticographic studies in epileptic 

patients report a correlation between VHFO and cognitive functions. There is 

nonetheless the concern that high frequency activity might have in such cases a 

pathological origin. It remains therefore unclear if VHFO: 1) are a natural 

extension of a too narrowly defined gamma band; 2) do play a different 

functional role than gamma band activity (GBA), or 3) are exclusively a 

pathological phenomenon in humans. This study aims to clarify these aspects 

through the analysis of electroencephalographic data recorded from healthy 

volunteers. 

Materials and Methods 

To answer these questions we recorded scalp EEG data in a population 

of healthy volunteers performing a visuo-motor reaction time task requiring left 

or right hand responses. This is a simple experimental paradigm where 

modulation of GBA have been consistently reported (Averbeck and Lee, 2003; 

Lee, 2003) and that combines some of the behavioral situations eliciting HFO in 

animals. We started from the hypothesis that neural oscillations playing a 

functional role should: 1) be discriminative, i.e., consistently modified by stimuli 

(or behavior) and thus be capable to discriminate (discriminative power) 

between different classes of stimuli (responses), and 2) be predictive, i.e., 
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indicate in a reliable manner over trials the type of stimuli (behavior) that is 

being processed (executed). Latter aspect implies being able to predict 

subject’s behavioural state (predictive power) on trials different from the ones 

used to evaluate their discriminative power. We analyzed the behavioral 

responses of subjects using the left or the right hand in separate trials and 

evaluated for the range of frequencies between 0-250 Hz the neural oscillations 

with most discriminative power between both movements. We then tried to 

decode (predict) from these oscillations and in another set of trials whether 

responses were done with the left or the right hand and compared this decoding 

with the actual manual response. Neural oscillations were considered to 

represent more than a simple epiphenomena but being of functional relevance 

when they provided accurate decoding of hand responses. 

Subjects and Recording 

Twelve healthy right-handed subjects (21-27 years, 6 women) were 

tested. Subjects were asked to fixate a central cross whose onset also served 

as a warning signal, followed after 3-4 s by a visual stimulus flashed for 60 ms 

in random order either in the left visual field (LVF) or in the right visual field 

(RVF) (4° horizontal eccentricity). Subjects were instructed to respond as fast 

as possible with one index finger to the visual stimuli. Left and right index finger 

responses were assessed in separate experimental blocks and had to be given 

independently of visual stimulus position (simple reaction time task), thus 

dissociating the manual response from visual input. Reaction times (RT) were 

measured using an external device (mean RT 268±40 ms). Each block 
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consisted of 120 trials and was preceded by a training session. The position of 

the head was stabilized by means of a head and chin rest and the hand of the 

subjects rested on the response device throughout the experiment. 

The electroencephalogram (EEG) was continuously monitored at 500 Hz 

during the whole experiment from 125 scalp electrodes (Electric Geodesic Inc. 

system, USA). Recordings were done using a cephalic reference placed at the 

vertex. Off-line processing of the data consisted of 1) Transformation of the data 

to the common average reference, 2) rigorous rejection of trials contaminated 

by ocular or movement artifacts through careful visual inspection, and 3) bad 

channel selection and interpolation. Fourteen electrodes from the lowest circle 

on the electrode array, i.e., closest to neck and eyes, were excluded a posteriori 

because of their likeliness to pick up muscular artifacts. 

To account for possible electromyographic (EMG) confound in the scalp 

recordings of the healthy subjects due to the finger movements, we also tested 

one patient AM (female, 27 years, right handed), which underwent intracranial 

EEG recordings for presurgical epilepsy evaluation (see (Blanke and Seeck, 

2003) for a detailed description of the patient). The patient performed the same 

visuo-motor reaction time task as used in the healthy subjects. In the patient, 

EEG was recorded at 200 Hz from subdural electrodes covering motor cortex 

and parietal and temporal areas of one hemisphere. The covering of motor 

areas was assessed by direct electrical cortical stimulation (ECS). 

The local ethical committee approved the experiments, and written 

informed consent was obtained in all cases. 
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EEG data analysis 

For the analysis, we selected a stimulus-locked time window of duration 

equal to the subject’s fastest response. This period was chosen because it is 

very unlikely to be contaminated by electromyographic activity due to the finger 

response, a potential confound of high-frequency EEG signals, as the period 

precedes the actual movement onset for each single trial. Note that modulation 

of gamma band oscillations at the level of the motor cortex has been reported to 

be maximal for the period preceding the actual execution of the movement 

(Donoghue et al., 1998) allowing for the accurate decoding of upcoming 

movements directions (Mehring et al., 2003; Shenoy et al., 2003) or saccades 

(Pesaran et al., 2002) in monkeys. In the simple visuo-motor reaction time task 

employed here, subjects can prepare the forthcoming action before visual 

stimulus onset, i.e., in the period between the warning signal that provides 

information about the impending event and the imperative visual signal that 

prompts the motor response (Leuthold, 2004). As a consequence, motor-related 

activity in the analyzed period after visual stimulus onset likely reflects the 

decision and the cerebral command to move rather than motor preparation 

itself. 

For each individual subject, the power spectral density (PSD) was 

computed for all electrodes and single trials during this window using a 

multitaper method with seven sleepian data tapers. All computations were done 

in Matlab. For the healthy subjects, the whole analysis covered the frequency 

range from 0 to 250 Hz, i.e. half of the frequency sampling, while for patients it 
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was limited to the 0 to 100 Hz range, defined by the frequency sampling set to 

200 Hz. 

Discriminative Power (DP) of neural oscillations 

If a certain range of neural oscillations carry relevant information about 

the subject’s functional state (preceding the left or right hand movements in our 

experiment), then the distribution of PSD values should have minimal overlap 

between tasks. Importantly, most statistical tests can indicate highly significant 

differences between probability distributions that considerably overlap. Thus, to 

select neural oscillations producing significant differences and minimal overlap 

between hand responses we use here a measure termed the discriminative 

power (DP). The DP reflects the separation between the left and right hand 

responses in terms of their power spectral density (PSD) for each individual 

frequency. It is graded between 0 and 100, with zero representing complete 

overlap between both PSD distributions (no discrimination between movements 

is possible) and 100 representing the perfect separation between them. The DP 

provides an estimate per frequency of the minimum number of trials that can be 

unambiguously classified as pertaining to right or left movements based on a 

single electrode. It should not be interpreted as a classifier by itself but rather as 

a feature selection method. The formal mathematical definition is given in the 

Appendix. 

Figure 1 helps to understand the difference between statistical tests 

based on measures of central tendency and the DP. Different insets are shown 

representing the histograms of two gaussian distributions with increasing 
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overlaps. The significance levels for two standard statistical tests (two tailed t-

test, equal means; Wilcoxon rank sum test, distributions with equal medians) 

and the DP value are given for each case in the inset title. It is easily seen that 

both statistical tests continue to detect significant differences between both 

distributions despite their enormous overlap. The level of overlap is however 

correctly indexed by the discriminative power measure. 

For each subject we computed the DP for all electrodes and frequencies 

over the single trials that belonged to the first block of trials. Candidate 

frequencies that might code movement intentions were selected from the first 

block of trials only because the final intention was to evaluate the predictive 

power (PP) of every brain rhythm as an encoder of behavior in the second, 

independent half of the data set. To complement our study, we did also carry 

out a standard statistical comparison between the two PSD distributions (left 

and right hand responses) based on a non-parametric test: the Wilcoxon rank 

sum test. The Wilcoxon test (Gibbons and Chakraborti, 1992) is a non-

parametric test (independent of the distribution of the data) that tests the 

hypothesis that two independent samples come from distributions with equal 

medians. A relevant question in our experimental protocol is whether VHFO 

reflect true neural responses or simply appears as a consequence of 

electromyographic activity linked to actual finger movements. Even if 

experimental design, careful EEG inspection, and the selected analysis 

windows make it very unlikely that the results are due to electromyographic 

contamination, we decided to carry out additional analyses to further rule out 

this possibility. We applied exactly the same analysis to intracranial EEG 
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recordings obtained from one patient evaluated in our presurgical epilepsy unit 

while performing the abovementioned visuo-motor task. 

Predictive Power of Neural Oscillations 

To evaluate the predictive power of neural oscillations, i.e. to know if 

oscillations detected as relevant over the first experimental block are stable as 

to allow prediction of the responding hand over the second block, we used a 

multivariate statistical pattern recognition method known as linear Support 

Vector machine (Hastie et al., 2001). Statistical pattern recognition algorithms 

are designed to learn and later classify multivariate data points based on 

statistical regularities in the data set. 

Learning is based in selecting some patterns (features) over the first 

block of trials and giving this pattern to the classifier along with a label that 

identifies the responding hand. The classifier then learns a mapping between 

patterns of brain activity and response laterality. In our analysis we selected two 

different types of patterns (features) in order to compare if a single frequency 

was better able to code the intentions of forthcoming movements than a broad 

frequency band: F1) The PSD at all electrodes for the most relevant frequency 

as identified by the DP (a topographic map for a single frequency); and F2) The 

PSD at the five most discriminative electrodes (according to the DP) combining 

all frequencies in the range 0-250 Hz. 

The percentage of correctly decoded trials was computed using a leave-

one-out cross-validation. Leave-one-out (LOO) cross-validation is a method to 
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estimate the predictive accuracy of the classifier. Given n trials available in a 

dataset, a classifier is trained on (n-1) trials, and then is tested on the trial that 

was left out. This process is repeated n times until every trial in the dataset has 

been included once as a cross-validation instance. The results are averaged 

across the n trials to estimate the classifier's prediction performance. Notably, 

the LOO estimate is an almost unbiased estimate of the expected 

generalization error (Chapelle et al., 2002). 

Results 

Neural Oscillations with high DP. 

The maximum DP over all electrodes is plotted as a function of frequency 

in Figure 2. Figure 3 shows the p-values obtained from the comparisons 

between PSDs of left and right hand responses using the Wilcoxon rank sum 

test. To facilitate comparison with Figure 2, we plot in Figure 3 the 1-p values. 

Order of the subjects is identical for both figures. The third column of Table I 

shows the most discriminative frequency for each subject irrespective of the 

electrode where it was observed. 

Both the DP plot and the table indicate that a large interindividual 

variability is observed in terms of the oscillations showing the best DP between 

both responses. The Wilcoxon test results show little interindividual variability, a 

result expected from the small sensitivity of the test to the PSD distributions’ 

overlap (see above). All measures (DP and p-values) do however coincide in 

one aspect, i.e. oscillatory activity differentiating between hand response 
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laterality is restricted to rhythms above 30 Hz for all subjects. Besides, the best 

discriminative frequencies can reach values for some subjects that are far 

beyond the classical definition of the gamma band (30-80 Hz) considered 

relevant in electrophysiological studies. Notably, the alpha or beta bands 

conventionally used in EEG-based neuroprosthetic control (Millán et al., 2004; 

Wolpaw and McFarland, 2004), provide little discrimination in this task. 

Generally, the discriminative power augmented from approximately 30 Hz and 

remained elevated for some subjects up to 220 Hz where a drop was observed. 

This general tendency was confirmed by the Wilcoxon test results. 

Results for the DP in the intracranial recordings of the patient are 

presented in Figure 4. This patient shows a maximum of DP for frequencies 

above 80 Hz with an apparent tendency to imply frequencies higher than 100 

Hz in encoding laterality of the upcoming movement. Intracranial recordings 

from this patient were performed before results of the analysis of healthy 

subjects were available. Thus, frequency sampling was set to 200 Hz, which is 

traditional in clinical settings but precludes the analysis of oscillations above 

100 Hz. Nevertheless, this result obtained in intracranial recordings where no 

electromyographic contamination is possible, rules out the possibility that 

observed differences are due to this effect. 

Predictive Power (PP) of Different Neural Oscillations 

The percentage of correctly decoded trials for each subject, computed 

using a leave-one-out cross-validation, is presented in the last two columns of 

Table I for features F1 (fourth column) and F2 (fifth column). 
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PP varied from perfect classification (values of 100% for four subjects) to 

a minimum of 75 % of the trials. Mean classification over subjects reached 90% 

of trials when using a single best rhythm for each subject and a very high rate of 

96% when using the whole frequency range. As a rule, decoding of imminent 

movement laterality was best when based on a broad frequency band rather 

than when based on the most discriminative frequency. All decoding results are 

well above the 50% chance level expected in a two-class classification problem. 

Spatial Distribution of Neural Oscillations with high DP 

Figure 5 shows the averages of the individual DP values (Figure 5a) and 

its spatial distribution (5b and 5c) for the intervals of frequencies surrounding 

the two dominant peaks. Individual DP values were transformed into z-scores 

before averaging. Insets 5b and 5c show the spatial distribution of the DP for all 

frequencies in the intervals. The average maps over the corresponding 

frequency ranges are depicted in the lowermost insets. A right and left view of 

the map (facing each other) is given for each case. We display the maps of the 

individual frequencies over the considered range to highlight the spatial stability 

of the scalp maps around the DP peaks. 

The spatial distribution of the most discriminative electrodes for the 

epileptic patient data is shown in Figure 6. We split the DP spatial results for the 

two DP peaks at 73 Hz (6c) and 100 Hz (6d). To facilitate interpretation, we 

have incorporated in the topmost left and right panels the electrical cortical 

stimulation (ECS) results for this patient. The left upper panel (6a) depicts sites 

where ECS elicited somato-sensations in arm or fingers and the rightmost panel 
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(6b) the sites where the stimulation induced movements of the hand (light blue), 

face (middle blue) or eyes (dark blue). Dissimilar spatial distributions of DP 

were observed for the two different DP peaks but with an overlap over frontal 

sites partially covering the motor strip (as indicated by ECS). 

Discussion 

Our results indicate that the strength of neural oscillations in the 30-200 

Hz frequency-range computed over the period between visual stimuli onset and 

fastest subject response allows for the accurate prediction of upcoming hand 

movement laterality. It confirms therefore the existence of a close correlation 

between oscillations above 30 Hz and the coding of behavioral responses. 

Consequently, both classically defined gamma band oscillations and VHFO play 

a functional role in the healthy human brain and are not necessarily of 

pathological origin. 

The experimental design and the analysis procedure allowed us to 

separate the oscillations associated with lateral manual responses from those 

associated with lateral visual stimulus processing. The two motor response 

classes were by design independent of the laterality of visual presentation, as 

ipsi- and contralateral visual stimuli were equally distributed and thus 

confounded within each analyzed class. Therefore, there is no way to explain a 

successful prediction of upcoming hand movements based on visual processes 

evoked by the preceding visual stimuli. Consequently, it is most probable that 

the high gamma band oscillation effects observed here are linked to motor-

related processes. 
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The spatial distribution of the most discriminative electrodes for the case 

of healthy subjects suggests a difference between the map associated to the 

classical gamma band peak (centered at 45 Hz) and the VHFO peak. Most 

discriminative electrodes for the 45 Hz peak cluster at occipital and frontal areas 

while the VHFO peak is restricted to frontal electrodes with a clear lateralization 

to the right hemisphere. This topographical difference might be the reflection of 

different functional roles for classical gamma band oscillations and VHFO. 

While classical gamma band might underlie visuo-motor integration processes, 

the VHFO might reflect the later stages of motor processing including the 

decision to move. Nonetheless, neither the individual DP plots (Figure 2) nor the 

Wilcoxon test results (Figure 3) or the classification results (Table I) provide 

additional support for the hypothesis of a different functional role of gamma and 

VHFO. They however point into the direction of a too narrowly defined gamma 

band and a large interindividual variability. The existence of such large 

interindividual variability remains hidden when the analysis is based on 

standard parametric or non-parametric tests based on measures of central 

tendency. The reasons for such a large variability between individuals in terms 

of the most discriminative frequencies are not clear and will require more 

specific studies. It is however intriguing to observe that the (three) fastest 

subjects show the best discrimination for very fast oscillations (see Table I). We 

were however not able to detect a consistent relationship between mean 

reaction times and most discriminative oscillations. 

Probably more significant than the large interindividual variability is the 

observation that half of the subjects of our study show the best decoding in the 
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VHFO-range which is far above the one considered relevant for human 

electrophysiology. In contrast to animal studies, human electrophysiology 

systematically dismisses oscillations above 80 Hz. This may obey to the fact 

that oscillations with frequencies above 30 Hz are relatively low in amplitude 

and are obscured by lower frequency activity. Additionally, some commercial 

EEG systems employ low-pass filters with cut-off frequencies from 70 to 100 Hz. 

Both facts explain why high-frequency oscillations are under-recognized in 

human EEG studies and their functional role largely ignored. This simple 

methodological problem might explain why relating gamma band oscillations to 

behavior has remained elusive and lacks reproducibility between studies and 

laboratories. 

When interpreting the obtained results it is important to keep in mind that 

EEG spectral analysis depends upon the reference (Nunez et al., 1997). The 

results described in this study were obtained after transforming the data to the 

common average reference. While there are alternatives to transform the EEG 

data into reference independent measures of neural activity, e.g. the Laplacian 

(Le et al., 1994; Babiloni et al., 1996), we preferred not to use such 

transformation. First, the laplacian (as other derivatives) acts as an amplifier of 

high (spatial) frequency noise, which is a serious concern for the inherently 

noisy single trial data analyzed here. Second, such transformation will 

considerably complicate a direct comparison of our results with animal local 

field potential (LFP) recordings or intracranial recordings. Nevertheless, there is 

no reason to expect that high frequency oscillations will be more affected by our 

reference selection than classical gamma oscillations. For this reason we 
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believe that the main conclusion of this paper, namely that VHFO have a 

functional relevance, holds no matter what reference electrode were selected. 

One question that derives from our results is whether VHFO about 100 

Hz may reflect a general encoding mechanism observed across all sensory 

modalities or whether VHFO are restricted to the motor system. Very recently, 

three studies have been published that provide converging evidences on the 

functional role of VHFO in humans and monkeys. One study report LFP 

modulations within monkeys V1 over a broad band of frequencies in the 30-240 

Hz frequency-range with graded visual stimulus contrast (Henrie and Shapley, 

2005). The range of frequencies observed in this study and the broadband 

extension of the observed modulation coincides well with our findings in 

humans. Another study using intracranial recordings over premotor cortex in 

one epileptic patient has reported that only the high gamma oscillations 

between 60-200 Hz were able to dissociate attention memory from motor 

intention (Brovelli et al., 2005). Finally, LFP recordings in the monkey motor 

cortex identified the range of frequencies from 80-200 Hz as relevant for 

discriminating between four possible directions of hand movements (Rickert et 

al., 2005). Accordingly, task related modulation of neural oscillations seems to 

occur over different species and sensory modalities for a broadband range of 

frequencies that extend from classical gamma values below 80 Hz up to nearly 

200 Hz. Such modulation is observable at all spatial scales using field potential 

measurements, i.e. LFPs, intracranial recordings and scalp EEG. 
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In summary, our results have several important implications. First, 

electrophysiological studies in human and animals should be technically 

adapted to make recordings and analysis of oscillatory activity above 100 Hz 

possible while avoiding aliasing. Second, the prevalent view linking gamma 

oscillations to 40 Hz activity needs to be modified to encompass the broad 

frequency range that seems to be of functional relevance. Third, scalp EEG 

recordings convey information about VHFO that is disregarded by standard 

analysis procedures based on averaging over trials (e.g., ERPs). Finally, neural 

models of brain function require adaptation to cope with the constraints imposed 

for such interindividual variability, enlarged frequency range and inclusion of 

very fast oscillations. 
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Table 1: Percentage of correct classifications of laterality of upcoming 

movements. Classification is obtained for a time window of duration equal to the 

subject’s fastest response using spectral features for a single frequency (F1) or 

the best five electrodes for all frequencies (F2). 

Subject Mean RT Min Best Freq. F1 (best) F2 (all) 

S1 264 ms 33.1 92.5% 100% 

S2 299 ms 42.3 93.2% 95.2% 

S3 352 ms 47.5 87.2% 100% 

S4 236 ms 178.1 83.7% 93.5% 

S5 211 ms 145.1 83.2% 85.5% 

S6 250 ms 31.5 86.9% 97.5% 

S7 273 ms 39.1 92.0% 98.8% 

S8 214 ms 94.7 100% 100% 

S9 288 ms 199 75.3% 91.3% 

S10 274 ms 185.8 93.9% 97.6% 

S11 276 ms 67.7 98.2% 100% 

S12 266 ms 111.8 94.7% 94.5% 

Mean 267 ms 97.97 90.1% 96.1% 
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Figure 1: DP vs. Central tendency based statistical tests: Each inset 

represents the histograms of two gaussian distributions that differ only in their 

level of overlaps. Overlap increase from one inset to the next one. The title of 

each inset reports the significance levels for two standard statistical tests: 1) the 

standard t-test (pt) and 2) the Wilcoxon rank sum test (pr) equal medians). The 

DP values (DP) are also given in the title. Note how both statistical tests (pr and 

pt) indicate significant differences (p<<0.01) for the distributions in the first three 

insets despite their huge overlap. The discriminative power measure (DP) is 

however sensitive to this parameter as seen from its monotonical decrease with 

increasing overlap. 
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Figure 2: Discriminative Power (DP) vs Frequency (Scalp EEG 

recordings). Each panel represents the plot of maximum DP (Electrode 

providing the best discrimination between left and right hand movements) as a 

function of frequency for each of the 12 healthy subjects. Subjects are ordered 

into panels numbered left to right. Frequency oscillations above 80 Hz allow us 

to differentiate whether upcoming movements will be executed with the left or 

the right hand in a large proportion of subjects. 



 

24 

 

Figure 3: Oscillatory activity differing between left and right hand 

movements. Figure shows the 1-p-values obtained from the comparisons 

between left and right hand responses’ PSD using the Wilcoxon rank sum test 

Order of the subjects is identical to Figure 2. 
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Figure 4: Discriminative Power (DP) vs Frequency (Intracranial 

Recordings). Plot of maximum DP as a function of frequency for the intracranial 

recordings in a patient. A first peak in DP is observed at 75 Hz with a second 

equally discriminative peak at 100 Hz. Experimental filter settings (freq. 

sampling 200 Hz) preclude analysis of oscillations above 100 Hz. 
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Figure 5: Spatial distributions of most discriminative electrodes. Figure 

5a shows the averages of the individual DP values and Figure 5b and 5c their 

spatial distribution. Two frequency intervals are shown to reflect the two 

dominant peaks. Small insets in 5b and 5c show the spatial distribution of the 

DP for all frequencies in the intervals. The average maps over the 

corresponding frequency ranges are depicted in the lowermost insets. A right 

and left view of the map (facing each other) is given for each case. 
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Figure 6: Spatial distribution of most discriminative electrodes for the 

intracranial recordings. Upper panels show the electrical cortical stimulation 

results for this patient. Panel 6a depicts sites where somato-sensations in the 

contralateral arm or fingers were elicited by electrical cortical stimulation. Panel 

6b shows the sites where the stimulation induced motor responses of the hand 

(light blue), face (middle blue) or eyes (dark blue). Lower panels show the most 

discriminative intracranial sensors for the two DP peaks at 73 Hz (6c) and 100 

Hz (6d). 
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Appendix: 

Discriminative Power Definition 

Assume that we have observed/measured or computed one variable in two 

different conditions A and B. Denote with a (b) the vector containing the values 

corresponding to condition A (B). Without loss of generality, we can assume 

that: 

amin={min of a}<=bmin={min of b} 

otherwise we swap vectors a and b. 

Then the capacity of this variable to distinguish the two conditions is defined as: 

DP=0 if bmax=max{b}<=amax={max of a} 

otherwise 
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where card{.} stands for the number of elements in a set. 

In our case, a denotes the vector formed by the PSD over all trials for a single 

frequency in condition A, and b denotes the equivalent vector for the second 

condition. The discriminative power denotes then the percentage of times that 

the conditions A and B will be correctly identified using as a separator the lines 

at the minimum value of PSD for class b and the maximum for class a. All the 

values lower than bmin obviously belong to class A. Similarly all values greater 

than amax belongs to class B. If the two min or max values coincide then 

obviously one class contains the other. 
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Note that the DP is based on the extreme observed values and thus sensitive to 

outliers. The use of statistics based on extreme values is common in non-

parametric methods as the Kolmogorov-Smirnov test or the Tuckey-Duckworth 

test. In similarity to non-parametric methods, the DP makes no explicit 

assumptions about the distribution of the data. However, this is a measure 

designed to evaluate finite distribution of neurophysiologically meaningful 

spectral data that are normally of compact support. 


