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Abstract
The quality of MRI time-series data, which allows the study of dynamic processes, is often affected
by confounding sources of signal fluctuation, including the cardiac- and respiratory cycle. An
adaptive filter is described, reducing these signal fluctuations as long as they are repetitive and their
timing is known. The filter, applied in image domain, does not require temporal oversampling of the
artifact-related fluctuations. Performance is demonstrated for suppression of cardiac and respiratory
artifacts in 10-minute brain scans on 6 normal volunteers. Experimental parameters resemble a typical
fMRI experiment (17 slices; 1700 ms TR). A second dataset is acquired at a rate well above the
Nyquist frequency for both cardiac and respiratory cycle (single slice; 100 ms TR), allowing
identification of artifacts specific to the cardiac and respiratory cycles, aiding assessment of filtering
performance. Results show significant reduction in temporal standard deviation (SDt) in all subjects.
For all 6 datasets with 1700 ms TR combined, the filtering method resulted in an average reduction
in SDt of 9.2% in 2046 voxels substantially affected by respiratory artifacts, and 12.5% for the 864
voxels containing substantial cardiac artifacts. The maximal SDt-reduction achieved was 52.7% for
respiratory and 55.3% for cardiac filtering. Performance was found to be at least equivalent to the
previously published RETROICOR method. Furthermore, the interaction between the filter and fMRI
activity detection was investigated using Monte Carlo simulations, demonstrating that filtering
algorithms introduce a systematic error in the detected BOLD-related signal change if applied
sequentially. It is demonstrated that this can be overcome by combining physiological artifact
filtering and detection of BOLD-related signal changes simultaneously. Visual fMRI data from 6
volunteers were analyzed with and without the filter proposed here. Inclusion of the cardio-
respiratory regressors in the design matrix yielded a 4.6 % t-score increase and 4.0 % increase in the
number of significantly activated voxels.
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INTRODUCTION
In recent years, MRI has been successfully applied for the study of dynamic processes, such
as brain activation (Ogawa 1992), cardiac function (Sakuma 1993), and tissue heating during
interventional procedures (Ishihara 1995). In these studies repetitive MRI scanning is
performed to generate so-called time-series data, from which the signals related to the process
under study are extracted. One of the potential confounds in such studies is the contribution of
quasi-periodic events that are unrelated to the process being investigated, for example the
influence of the cardiac and respiratory cycles on the MRI signal amplitude during fMRI studies
of brain activation. Potential artifact mechanisms are blood flow pulsations related to the
cardiac cycle (CC) (Dagli 1999), and tissue motion and changes in local magnetic field related
to the respiratory cycle (RC) (Windischberger 2002).

In fMRI studies, CC-related artifacts tend to be localized in areas with large vessels (Dagli
1999), whereas RC-related artifacts are often found in CSF and surrounding tissue
(Windischberger 2002). Both artifacts result in a local reduction in temporal stability,
compromising the detection of brain activity. This not only reduces the statistical power of
fMRI experiments, but also causes temporal signal correlation of otherwise uncorrelated
cortical areas, affecting interpretation of fMRI studies of event-related activity (Dale 1997) or
neuronal connectivity (Biswal 1995). The need for the removal of non-white noise from fMRI
data, of which CC and RC are significant sources, has been recently shown by Lund et al.
(Lund 2006).

A number of methods for reducing artifacts related to CC and RC have been suggested.
Provided the timing of CC and RC is known, temporal signal stability can be improved by
band-rejection filtering (Biswal 1996). However, in practice, experimental design is generally
such that CC and RC are temporally undersampled, complicating the separation of desired
from undesired signals required to avoid suppression of the signal of interest. Also, relatively
wide frequency bands would have to be discarded to account for changes in the periodicity of
CC and/or RC during longer scans. Alternatively, the acquisition of navigator echoes allows
correction of k-space data (Hu 1994) to reduce shot-to-shot signal variations. However,
navigator correction is generally not very suitable for the suppression of RC-related, and
particularly CC-related, physiological noise, due to their fine-scale spatial variation (Dagli
1999). Other work, describing an adaptive filter that derives temporal noise patterns from areas
without activation, has been proposed (Buonocore 1997). This method assumes the temporal
characteristics of the artifact to be similar throughout the head, an assumption which is not
generally valid (e.g. due to varying latency and/or damping of local blood flow pulsation). Hu
et al. (Hu 1995) proposed a method that corrects data in k-space, incorporating cardiac- and
respiratory phase at the time of acquisition. A more practical alternative to this method, called
RETROICOR, was subsequently suggested by Glover et al. (Glover 2000). Their method
operates in image domain and models CC and RC by Fourier-series fitting.

In the following, a model-free variation of this approach is presented. Instead of model fitting,
it performs selective averaging to derive an estimate of CC- and RC-related artifacts. The
method is validated by evaluating its performance relative to RETROICOR.

METHODS
Filtering Method

The proposed filtering method assumes that each occurrence of the quasi-periodic disturbance
(‘event’) leads to an artifact with spatial and temporal signal perturbation characteristics that
only depend on the timing of the event relative to MRI data acquisition. This makes the method
specifically suited for filtering of MRI data obtained with a single-shot acquisition. The method
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is not suitable for filtering data whose acquisition time per image approaches or exceeds the
time scale of the event (e.g. most multi-shot data). The timing of the event is typically
asynchronous with the MRI acquisition, causing a deterioration of the MRI time series data.
If a sufficiently long time-series is acquired, a precise estimate of the temporal characteristics
of the artifact can be obtained with a temporal precision that exceeds the temporal resolution
of the MRI data by a large factor. This is achieved by sorting and averaging of MRI data based
on their acquisition time relative to the nearest ‘event’ (Figure 1). The period encompassing
each event is subdivided in a number of discrete intervals (‘bins’). All MRI data with
acquisition times that fall within the same bin (meaning that they are in the same interval of
acquisition time relative to the event) are averaged on a voxel-by-voxel basis. This selective
averaging results in a suppression of signals whose timing does not correlate with the event
(including random noise), while signals that correlate with the event are preserved. The
resulting data are referred to as the ‘artifact estimate’, which are four-dimensional (3 spatial
dimensions and one temporal dimension). Subsequently, the baseline signal is removed from
the artifact estimate on a voxel-by-voxel basis. The baseline signal is defined as the temporal
average of the artifact estimate. Removal of the artifact from the data should therefore not lead
to a net change in the signal intensity over time. As a final step, the artifact estimate is subtracted
from the MRI time series data. This is done by subtracting the bin in the artifact estimate from
all MRI data that were initially assigned to this bin based on their acquisition time relative to
the event.

An important parameter that affects performance of the method is the number of bins used for
averaging. The use of a large number of bins leads to an artifact estimate with greater temporal
accuracy. On the other hand, precision is reduced due to reduced averaging, and there is a larger
reduction of the number of degrees of freedom of the experiment. The optimal number of bins
therefore is a compromise between accuracy and precision and will depend on the experimental
conditions.

Here, the length (duration) of the artifact estimate (and corresponding bin duration) is
determined from the RC and CC timing data. First, the mean and the standard deviation of the
interval between events are computed for CC and RC separately. The maximum interval, while
excluding intervals that exceed the mean plus two standard deviations, is used as the overall
duration of the artifact estimate. Thereafter, the bin duration follows from division of the overall
artifact estimate length by the number of bins.

Discarding the outliers based on standard deviation avoids the use of an excessively large
artifact estimate length in case of a short breath hold by the volunteer or a missed event (e.g.
cardiac trigger pulse). This will potentially lead to some MRI acquisition time points being
outside of the filtering range. These time points will not be corrected. In addition, when a given
bin contains less than four volumes, the limited number of averages in this bin would potentially
cause the introduction of additional noise in the MRI time series data. These volumes are
therefore also not corrected. The number of uncorrected volumes due to these two effects is
however very limited. In the experiments described here the percentage of uncorrected volumes
did never exceed 2.5 % of all available time points.

Experimental Setup
Performance of the filter was evaluated using data acquired on a General Electric 3 T scanner
(GE Healthcare, Waukesha, WI, USA) on 6 normal volunteers (3 female, 3 male, aged 24–52
years, 31.8 years old on average). The volunteers gave informed consent to a research protocol
approved by the institutional review board (protocol number 00-N-0082, latest amendment
approved by the IRB on March 15, 2005). Two gradient-echo EPI scans were performed on
each of the volunteers, one with a TR of 1700 ms, which resembles a typical fMRI experiment
and is referred to as ‘slow’, and a second single-slice dataset with a TR of 100 ms, referred to
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as ‘fast’. The ‘slow’ dataset was acquired with the following parameters: 17 slices; 90º flip
angle; 366 volumes (622.2 s total acquisition time); 45 ms TE; 2.3×2.3×3.0 mm3 nominal
spatial resolution (96×72 acquisition matrix and 3 mm slice thickness). The single slice of the
‘fast’ dataset was spatially aligned with the center slice of the ‘slow’ dataset. The slice (and
consequently the slice stack for ‘slow’) was oblique-axial, approximately parallel to and at the
level of the calcarine fissure. Scan parameters for ‘fast’ were identical to ‘slow’, except for the
following: single slice; 100 ms TR; 15º flip angle; 6222 acquired volumes. This ‘fast’ scan was
performed to ensure the unaliased acquisition of both CC- and RC-related artifacts, which
facilitated proof of principle and performance evaluation. To assure steady state of the signal,
the data acquired during the first 8.5 seconds of scanning (5 volumes of ‘slow’ and 85 of the
‘fast’ dataset, respectively) were discarded. To boost SNR, data were acquired using a 16-
channel head coil (de Zwart 2004), which was connected to a custom-built 16-channel receiver
(Bodurka 2004). Data from the 16 coil elements were combined as described previously (de
Zwart 2002). Note that sensitivity-encoded parallel imaging was not used, so an acceleration
rate (SENSE-factor (Pruessmann 1999)) of 1 was used for reconstruction. The result is similar
to root-sum-of-squares combination of the coil signals, but the reconstruction is phase-sensitive
and additionally accounts for noise correlation between coil elements. After reconstruction,
magnitude images were registered to the last image in the time series to reduce possible effects
of bulk motion using C-based software developed by Thévenaz et al. (Thévenaz 1995).

Performance of the new method was evaluated by calculating the reduction in temporal
standard deviation of the signal as a result of filtering. To reduce potential contribution of slow
drifts (e.g. drift of the magnetic field), 8th-order polynomial detrending was performed prior
to filtering. Note that, in case of the ‘slow’ data, this might potentially eliminate a small fraction
of the aliased CC- or RC-related signals, depending on the frequency of the aliased artifact.

CC and RC were recorded using a pulse oximeter (placed on the index finger) and respiratory
bellows, respectively, both of which are part of the General Electric MRI scanner. The scanner
provides an interface through which transistor-transistor logic (TTL) pulses for CC can be
obtained. These pulses coincide with the top of the peak that results from the cardiac QRS-
wave complex. Secondly, the interface provides an analog output of the respiratory bellow.
Finally, the scanner can provide user-programmable TTL pulses through this interface, which
in our case were given at the time of each excitation pulse (except for the first volunteer, where
such pulses were given only every 8th TR and subsequently interpolated to obtain a timing
reference for each shot). These three signals were digitized using a National Instruments
DAQCard-AI-16E-4 (National Instruments Corp., Austin, TX, USA) and software that was
developed in-house, running on a PC using the Windows XP Professional SP2 operating
system. A sampling frequency of 1 kHz was used for each of the three channels. The acquisition
was started by the first MRI trigger pulse and ran for 640 s (18 s longer than the MRI acquisition
time). MRI trigger pulses were recorded to allow correction for slight timing differences
between the acquired physiologic signals and MR data, since the clocks of the MRI and
acquisition PC were not synchronized. The top of each respiratory wave was chosen as the
marker for each respiratory cycle.

Filtering Performance Evaluation
The filtering method was implemented in IDL (Research Systems, Inc., Boulder, CO, USA),
and processing was done on a dual AMD Athlon MP based workstation running SuSE Linux
9.3. To determine the optimal number of bins to use for filtering, the 6 (detrended) ‘slow’
datasets were filtered using values for the number of bins ranging from 4 to 99. The ‘slow’
datasets were used, since these are more representative of the kind of scan commonly performed
in the laboratory than the ‘fast’ scans. To increase sensitivity, only voxels that had a significant
artifact contribution were taken into account. The amplitude of the artifact peak in the

Deckers et al. Page 4

Neuroimage. Author manuscript; available in PMC 2007 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



magnitude frequency spectrum of the corresponding ‘fast’ dataset was used as a measure of
the severity of the artifact for each pixel. The noise estimate was based on the standard deviation
of the last 256 samples in the spectrum (the frequency range from 4.58 to 5.00 Hz).
Subsequently, the average amplitude in the magnitude of the spectrum was computed over a
frequency range of 0.15 Hz surrounding the principal artifact frequency as determined from
the timing data. This range was chosen to match the average full-width-at-half-maximum
(FWHM) of the cardiac artifact (the FWHM for the respiratory artifact was 0.10 Hz on average
over the 6 volunteers). Only pixels in which a substantial artifact was present were included
in the performance analysis. Voxels were included if the average intensity in the respective
range (either cardiac or respiratory) in the magnitude spectrum exceeded 1.7 times the spectral
baseline SD. Two separate runs were performed, one in which data were only filtered for
artifacts related to CC, the other only for RC-related artifacts. As a measure of artifact
suppression, the improvement in temporal standard deviation (SDt) compared to unfiltered data
was computed for each of the resulting datasets. Relative SDt was defined as SDt after filtering
divided by SDt before filtering, corrected for the decrease in degrees of freedom incurred by
filtering. Only data from the center slice of ‘slow’ for all six volunteers were used, since this
slice corresponds to the ‘fast’ data that were used for voxel selection. For all 6 volunteers
combined, the selections comprised of 864 voxels for cardiac and 2046 voxels for respiratory
filtering. Of these voxels, 271 were included in both the cardiac and respiratory selection. Note
that filtering was performed on all voxels. These subsets were selected only to evaluate the
performance of the method.

In order to further demonstrate performance of the method for the filtering of undersampled
data, the ‘fast’ dataset was split into 17 subsets, all of which were filtered independently. Each
subset contained 361 volumes (the first 85 volumes of ‘fast’ were discarded, see above), which
were acquired 1.7 s apart (equal to ‘slow’). The first subset contains the volumes [1, 18, 35,
…, 6121], the second subset the volumes [2, 19, 36, …, 6122], etc. After filtering, the data
were combined in the order they were originally acquired in so that the performance could be
evaluated in the same way as the ‘fast’ data filtered as a complete set.

Comparison to RETROICOR
C-code with the RETROICOR implementation described in (12) was obtained from the Center
for Advanced MR Technology at Stanford (http://rsl.stanford.edu/research/camrt.html). Since
the implementation was designed for the analysis of short-integer data and a square image
matrix, reconstructed magnitude data were zero-filled to 96×96 matrix size and intensity was
subsequently scaled so that the maximum intensity of the data was about 10% below the
maximum value for signed 16-bit integers (32767). This was done to minimize the amount of
noise that is introduced by rounding errors while avoiding the risk of clipping. The
RETROICOR implementation was not designed to handle timing data acquired with an
external digitizer with its own clock, so there was no input for MR trigger timing. To account
for clock jitter between MRI data and the data from the physiologic monitoring computer, the
signal from the respiratory bellow for each interval between subsequent MRI pulses was
resampled based on the MR trigger pulses acquired with the physiological noise computer. The
respiratory data were subsequently downsampled to 40 Hz for this RETROICOR
implementation. The time of each cardiac trigger pulse was compared to the time of the nearest
MR trigger pulse and then corrected for the difference between the detected MR trigger time
and the MRI acquisition time derived from the scanner. After RETROICOR-filtering, the data
were scaled back to their original signal level and processed identically to the data filtered with
the method described here.
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Effect of Filtering on fMRI
Simulations were performed to investigate the effect of filtering on fMRI data analysis. A
simulated fMRI time course was generated with 366 time points and a 1.7 s TR (similar to
‘slow’). The signal-to-noise ratio was set to 100 by adding computer-generated normally
distributed noise. To simulate activation, a 30 s on, 30 s off, block stimulus was convoluted
with a truncated Gaussian hemodynamic response function with 3.5 s width and 3.5 s latency
(Waldvogel 2000), and added to the simulated baseline signal. The activation signal amplitude
was set to 1 % of the baseline signal level. Monte-Carlo simulations were performed by filtering
this time course for cardiac artifacts using heart rates ranging from 40-120 beats-per-minute
(BPM) and a number of bins ranging from 4–80, both varied in increments of 1. Noise was
added to the heart rate in the form of random jitter derived from randomly distributed noise
with a standard deviation of 1 % of the heart beat interval. For each set of parameters, 256 time
courses were generated for averaging purposes.

Note that no actual simulated cardiac artifact was added to the data, but that only the timing
of this artifact was simulated. This allowed assessment of the effect of physiological artifact
filtering on the measured fMRI signal amplitude.

The simulated data were analyzed either by applying the filter before fMRI regression analysis
(sequentially), or by combining the filter and hemodynamic response function into a single
design matrix, thereby filtering and analyzing simultaneously. Simulations with the sequential
method were performed twice, once with our method and once with RETROICOR (in cardiac-
only mode) for the filtering step. The simultaneous approach was performed with a variation
of our method only. Each bin of the cardiac filter was described by a separate regressor: a
function that was ‘1’ for each time point that was an element of that specific bin, and a ‘0’ for
all other time points. These regressors where then added to the design matrix, which also
contained the hemodynamic response function for fMRI analysis. The resulting regression
analysis yielded both fMRI signal change amplitude information as well as a measure of the
artifact level in each bin. As a result, cardiac artifacts were removed from the residual signal,
which would subsequently be used to compute the t-score.

Functional MRI data from an unrelated study were used to demonstrate the benefit of filtering
performance in an actual fMRI experiment. These data (n=6) were acquired on six normal
volunteers under the same IRB-approved protocol, with the same hardware and using similar
settings as the ‘slow’ scan. Experimental differences compared to the ‘slow’ scan were the use
of a slightly smaller FOV (210×158 mm2) and a slice thickness of 2 mm, resulting in a nominal
voxel size of 2.2×2.2×2.0 mm3. Furthermore, only 10 slices were acquired with a 1 s TR and
a 70° flip angle. A 5-minute, 30-s off/30-s on block paradigm was used (5 blocks). During on-
periods a 7.5 Hz contrast-reversing radial checkerboard stimulus was shown. The stimulus
covered approximately the central 21 degrees of the visual field. Image registration and
detrending were performed as described earlier. Six hundred volumes were acquired during
the 10-minute scan, but only volumes 31–330 were analyzed for this experiment. Analysis was
performed twice, once using only a regressor for baseline signal intensity and one for the block
paradigm stimulus convoluted with the with a truncated Gaussian hemodynamic response
function with 3.5 s width and 3.5 s latency (Waldvogel 2000) (‘unfiltered’ design matrix).
Secondly, analysis was performed using an expanded design matrix which contained the two
‘unfiltered’ regressors and to which 40 cardiac regressors and 21 respiratory regressors were
added as was described above (‘filtered’ design matrix). The IDL code used for analysis
(Waldvogel 2000) detected (Durbin 1971) and corrected (Watson 1955) serial correlation in
the regression analysis. Voxels in which the t-score was equal to or larger than 5 in either of
the two analyses were included in a selection of activated voxels.
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RESULTS AND DISCUSSION
Determining the Optimal Number of Bins

A plot of the reduction in temporal standard deviation as a function of the number of bins used
for filtering is shown in Figure 2. Data shown represent the average over the voxels that were
identified as suffering from RC- or CC-related artifacts (based on spectral analysis, see
Filtering Performance Evaluation in METHODS), respectively 2046 and 864 voxels. The data
shown in red demonstrate the average SDt reduction after cardiac filtering as a function of the
number of bins, data in blue are the result for respiratory filtering. The solid lines in Figure 2
show the result of boxcar averaging with a window size of 16 points, used to suppress high-
frequency fluctuations. The highest SDt-reduction (lowest relative SDt) found by determining
the minimum of these smoothed data, respectively 40 bins for cardiac and 21 for respiratory,
was used as the number of bins used in further analysis.

The optimal number of bins depends on a number of parameters. On one hand, bins need to be
sufficiently short, and thus the number of bins substantially large, to be able to adequately
represent the fluctuations in the MRI data that are the result of the events. On the other hand,
bins need to be sufficiently populated to average out signals not related to the event. A smaller
number of bins is therefore expected to give better filtering performance when the event does
not introduce fluctuations at a rate that is high relative to the artifact interval. This can explain
why the optimum number of bins is lower for RC than for CC. The volunteers were at rest in
the scanner, and their breathing was relaxed, causing predominantly low-frequency
fluctuations in the MRI signal that can be covered by a smaller number of longer bins. Since
CC is a fast contraction of the heart muscle followed by a short period of rest, shorter bins are
required to adequately represent the resulting perturbation of the MRI signal.

Level of Artifact Suppression
The detected respiratory and cardiac rates for the different volunteers are shown in Table 1.
Comparison of the rates found for the ‘slow’ and ‘fast’ dataset shows that both cardiac and
respiratory rate were stable from run to run, but varied substantially from volunteer to volunteer.
The bin duration for filtering was derived from these physiological data and is also shown in
Table 1.

An example of the filtering performance for CC- and RC-related artifacts is demonstrated in
Figure 3 for a pixel in a ‘fast’ dataset. It shows the magnitude frequency spectrum for a voxel
that had both a substantial cardiac and respiratory artifact. As can be seen in the top-left plot
(labeled ‘unfiltered’), CC resulted in an artifact peak at approximately 0.8 Hz (with
distinguishable harmonics at 1.6, 2.4 and 3.2 Hz). This is supported by the CC timing data
obtained from the pulse oximeter, which detected an average heart rate of 48 beats-per-minute
(BPM) (0.79 Hz) for this volunteer. A respiratory artifact peak can be distinguished at
approximately 0.25 Hz. During the acquisition of the ‘fast’ data, measured average heart rates
ranged from 0.79-1.33 Hz (average: 1.01 Hz) for the 6 volunteers. Average respiratory
frequencies for the volunteers ranged from 0.25-0.36 Hz, with a mean of 0.30 Hz. The plot in
Figure 3 labeled ‘cardiac filtered’ shows the spectrum after filtering for CC only, demonstrating
a substantial reduction of the CC artifact peak, as well as its harmonics, without quantifiable
effect on the remainder of the spectrum (e.g. the respiratory peak at 0.25 Hz). The plot labeled
‘respiratory filtered’ shows similar data for RC-only filtered data, indicated by suppression of
the peak at 0.25 Hz. Respiratory filtering applied to the cardiac-filtered data (shown in the plot
labeled ‘cardiac and respiratory filtered’) shows a cumulative effect. Changing the order,
applying cardiac filtering to respiratory-filtered data, leads to similar results (data not shown).
Note that the noise level in the frequency ranges from which peaks were removed by filtering
is similar to the noise level in surrounding areas, demonstrating that this filter does not act as
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a band-reject filter. Filtering the data in 17 downsampled subsets (see METHODS), in which
CC and RC were undersampled, resulted in similar performance, as is shown by the blue line
in Figure 3. This demonstrates that the method is as effective for undersampled artifact signals
as it is for a sufficiently sampled artifact.

The number of bins used to filter the data shown in Figure 3 was derived from the optimization
for the ‘slow’ dataset. The ‘fast’ data shown in Figure 3 contain 17 times more time points
(albeit with a lower SNR, due to lower flip angle and shorter TR, and presumably higher
temporal correlation), so they could potentially benefit from filtering with a different number
of bins. Since the ‘fast’ experiment was used to demonstrate feasibility of the method only, the
optimal number of bins for this scan was not investigated.

The spatial distribution of the CC- and RC-related artifact, as well as the level of artifact
suppression, is shown in Figure 4. Maps of CC- and RC-related artifact level both before and
after filtering are shown for the ‘fast’ dataset acquired on one of the volunteers. Artifact level
is computed as was discussed above, by averaging spectral intensity in the magnitude frequency
spectrum over a range of 0.15 Hz surrounding the primary artifact frequency (for this volunteer
respectively 0.28-0.43 Hz for respiratory and 1.26-1.41 Hz for cardiac). The average intensity
is shown in units of noise level (defined as the standard deviation derived from the frequency
range 4.58-5.00 Hz). The right-most column shows the artifact map after filtering the data in
17 subsets, showing similar (albeit somewhat inferior) filtering performance as the data filtered
as a whole (center column).

Filtering performance was similar for all six volunteers, as is shown in Figures 5 and 6 for all
voxels with respectively CC- and RC-related artifacts. The reduction of the average spectral
intensity surrounding the principal cardiac artifact peak resulting from filtering using the
method proposed here is shown in Figure 5A for all 864 voxels that had a substantial cardiac
artifact. Data are sorted based on pre-filtering artifact intensity (dashed line) and shown as the
average intensity in units of noise level standard deviation (derived from the spectral range
4.58-5.00 Hz). The artifact intensity after filtering is shown as a solid line. Ideally, when the
artifact is completely removed, the expected value for the average spectral intensity is 1,
assuming that no other signals are present in that frequency band. Similar results for the 2046
voxels with a substantial respiratory artifact are shown in Figure 6A. These data demonstrate
that the artifact is approximately suppressed to noise level in the majority of the cardiac voxels
and a substantial number of the respiratory voxels. In several cases filtering leads to only minor
improvements. This is more commonly the case for respiratory filtering than cardiac filtering
(see Figures 5 and 6). One possible contributor to this effect is the more limited number of
respiratory events than cardiac events (187 versus 646 events on average during the 640 sec
physiologic data were sampled). In addition, respiratory artifacts are present in a lower range
of spectral frequencies than cardiac artifacts. This spectral region that is more likely to be
affected by scanner drift and functionally-related low frequency signal fluctuations (Biswal
1995), signals that are unaffected by the filter since they are asynchronous with respiration.
The presence of such low-frequency signals, as well as the fact that they are not removed by
the filter, can be seen in Figure 3. Presence of such signals would mimic reduced filtering
performance the way this performance is expressed in Figure 5 and 6 since the residual signal
level in that part of the spectrum would deviate substantially from noise level. The similarity
of these and the RETROICOR results (see below) supports this proposition.

Finally, the average reduction in SDt was computed for the selected voxels, both in the ‘fast’
datasets and the ‘slow’ datasets. SDt after filtering was computed and corrected for the reduced
number of degrees of freedom, and compared to SDt of the unfiltered data. The average SDt
reduction over the 864 voxels with a significant CC-related artifact was 12.5 % for
‘slow’ (maximal improvement found was 55.3 %) and 11.3 % for ‘fast’ (maximal improvement
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65.1 %). For the 2046 voxels with a RC-related artifact, the average SDt improvement was 9.2
% for ‘slow’ (up to 52.7 % improvement) and 7.3 % for ‘fast’ (43.1 % maximum). Data filtered
for both cardiac and respiratory artifacts showed an average improvement of 13.1 % for ‘slow’
and 12.0 % for ‘fast’ in the 271 voxels that suffered from both artifacts.

Performance of the method described here was compared to RETROICOR (Glover 2000). All
data filtered with RETROICOR were otherwise processed in the same way, as described earlier.
Filtering performance for all 6 volunteers is presented in the Figures 5B and 6B, using the same
voxels shown in Figures 5A and 6A. The results obtained with the novel method are very
similar to RETROICOR, albeit marginally better. There is a high degree of correlation between
the data in Figures 5A and 5B, and Figure 6A and 6B, respectively. Pixels that perform poorly
in the method described here typically also perform poorly in RETROICOR, further supporting
the notion that the remaining spectral intensity is in all likelihood unrelated to CC or RC.
Filtering using RETROICOR resulted in an 8.2 % improvement for ‘slow’ and 10.8 % for ‘fast’
when filtering for both cardiac and respiratory artifacts (averaged over the same 271 voxels
used earlier). When only cardiac artifacts were filtered, the average SDt reduction was 6.3 %
for ‘slow’ and 9.2 % for ‘fast’. Respiratory-only filtering resulted in an average 8.0 % and 6.2
% decrease in SDt for respectively ‘slow’ and ‘fast’. Note that in this RETROICOR
implementation only first and second order terms were removed (as was described in (Glover
2000)), and the 2nd and 3rd harmonic of the cardiac artifact were therefore not removed. Even
though the amplitude of these harmonics is only a fraction of the primary peak, they are
distinguishable in the frequency spectrum of the voxel shown in Figure 3. Therefore, these
harmonics could contribute to the residual artifact after RETROICOR filtering, which would
hinder RETROICOR performance. This is the exact RETROICOR implementation described
by Glover et al. (Glover 2000), and no attempt was made to optimize it.

One key difference between the method proposed here and RETROICOR is that RETROICOR
computes the phase of the cardiac and respiratory cycle at which each data point was acquired,
thereby assuming that the artifacts scale with the cardiac and respiratory interval. This approach
is not necessarily correct, e.g. during the cardiac cycle a contraction of the heart muscle is
followed by a period of relative rest. If the heart rate changes it is predominantly the length of
this interval that changes. Even the respiratory cycle, which is more sinusoidal in character,
shows periods of relative rest in between breathing action. The method described here therefore
looks at the MR acquisition time relative to the nearest physiological event for averaging
purposes, so that the artifact characteristics for each voxel can be determined. Scaling the bin
size with changes in heart or respiratory rate would result in blurring of the artifact estimate.
The acquisition time of the MR data relative to the nearest event was computed instead of using
the nearest preceding event because the latency between the heart beat and its detection is
unknown. It would be a trivial modification however to compute the correction relative to the
nearest preceding event if so desired, for example if the heart rate is measured using ECG (in
which case there is no significant detection latency). Ideally, the true latency should be
determined and the window should be accordingly placed asymmetrically instead of centered
on the time of detection of the artifact event.

Note that the SDt reduction percentages found for ‘slow’ and ‘fast’ are not directly comparable,
since the severity of the artifact in a given voxel is significantly affected by both flip angle and
TR, which are substantially different for these two scans. Also, the relative contribution of
intrinsic (image) noise to the overall temporal stability, as well as the degree of temporal
correlation, is expected to differ for ‘fast’ and ‘slow’. As was discussed in Filtering Method,
a limited number of time points was not corrected. Volumes remained uncorrected if the
acquisition time of the MRI volume was outside of the correction range, or if the volume
belonged to a bin that contained less than 4 MRI time points. If the number of uncorrected time
points is significant, it will reduce the performance of the filter. However, on average the
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percentage of time points that was uncorrected was 1.3 % and 1.4 % for CC- and RC-filtering
of ‘slow’, respectively, and less than 0.2 % for both CC- and RC-filtering of ‘fast’. In
RETROICOR all volumes were corrected. Possibly an intermediate method could be
implemented, where modeling or fitting is applied to the artifact estimate. This could have
performance benefits, e.g. allowing the correction of data assigned to under-populated bins,
which remain uncorrected in the current approach, and would diminish the reduction of the
number of degrees of freedom resulting from filtering.

Effect of Filtering on fMRI Performance
Applying the filter proposed here, as well as any other filtering method, affects the number of
degrees of freedom, and therefore the performance of further analysis of the same data.
Reducing the number of degrees of freedom will affect the noise distribution and therefore
reduce the t-score. This penalty is typically low if the number of samples is sufficient. For
example, for a p-threshold of 0.05 the loss will be less than 1 % if there are more than 85
degrees of freedom remaining.

There is however a more serious potential confound. If the cardiac and/or respiratory artifact
occurrences (events) are not equally distributed between the ‘active’ and ‘rest’ state of the
fMRI experiment there will be some degree of correlation between the fMRI analysis and the
filtering. This correlation is typically small, but not necessarily non-zero. Note that this
correlation can be the result of some physiological effect (e.g. arousal) or a truly random effect.
If filtering is performed before fMRI analysis, the filter will remove a fraction of the BOLD
signal. This is demonstrated by Figure 7, which shows the result of the Monte Carlo
simulations. The broken line shows the fraction of the BOLD signal change that is measured
as a function of the number of degrees of freedom used by the filter. The plot shows that the
amount of activation that is detected is consistently below the true BOLD-related signal change
when the filter is applied before fMRI analysis (broken line). This effect was found to be similar
for all heart rates (results not shown), so the curves plotted here are averaged over the different
heart rates used in the simulation. The measured activation amplitude is reduced for an
increasing number of degrees of freedom used by the filter.

For a given number of degrees of freedom used, this effect is independent of the actual filtering
algorithm used. Therefore, a similar penalty was found for RETROICOR, which uses 4 degrees
of freedom in cardiac-only mode, shown by the symbol × in Figure 7. On the other hand,
measuring activation amplitude before filtering would similarly introduce a bias in the fMRI
results, so this is not a valid alternative. The correct approach is to apply the filter in the form
of additional regressors, simultaneous with BOLD signal change amplitude detection, as was
described as the ‘simultaneous approach’ in the MATERIALS AND METHODS subsection
Effect of Filtering on fMRI. This eliminates the bias, as is shown by the solid line in Figure 7,
which demonstrates that the true fMRI signal amplitude is measured, independent of the
number of bins used for cardiac and/or respiratory filtering.

Analysis of the fMRI datasets resulted in 8152 selected voxels for all 6 volunteers combined.
Figure 8 shows a plot of the t-score found in these voxels using the filtered design matrix as a
function of the t-score in the same voxels found using the unfiltered design matrix. Data show
that removal of physiological noise on average improved the t-score. The average improvement
in t-score was 4.6 % and 4.0 % more voxels met the (arbitrary) selection criterion (t ≥ 5).

CONCLUSION
A model-free, flexible, adaptive filter for MRI time series data has been demonstrated in an
fMRI-like setting. In the majority of voxels it provides artifact suppression to noise level with
no significant effect on signals unrelated to the cardiac and respiratory cycle, even when these
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artifacts are undersampled in the MRI data acquisition. Under the current experimental
conditions and for the level of variation in CC and RC encountered during these experiments
the performance of this method is at least equivalent to the RETROICOR method. It has also
been demonstrated that filtering should not be applied independently of fMRI activity
detection, but concurrently, to avoid systematic underestimation of the BOLD-related signal
change.
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Figure 1.
Schematic representation of the filtering method. Both the cardiac cycle (CC) and respiratory
cycle (RC) are subdivided into bins. In the example shown here, 8 bins are used for both cardiac
and respiratory filtering. Information about CC and RC timing is derived from physiological
monitoring data, acquired using a pulse oximeter and respiratory bellow, respectively. Filtering
for CC and RC is performed independently. MRI data are assigned to a bin based on their
acquisition time relative to the nearest event.
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Figure 2.
Plot of the relative temporal standard deviation (SDt) as a function of the number of bins used
for filtering of the ‘slow’ data. The red symbols represent the result obtained for filtering cardiac
artifacts, the blue symbols and line the result for filtering of respiratory artifacts. The average
for all volunteers over all voxels suffering from a substantial artifact is shown (864 voxels for
cardiac and 2046 for respiratory in total, see results). Symbols are the computed relative SDt
values as a function of the number of bins, the solid line is the result of smoothing these data
16-fold. Based on these data, 40 bins were used for filtering cardiac artifacts, and 21 for filtering
respiratory artifacts.
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Figure 3.
Single-pixel frequency spectra for a ‘fast’ scan, obtained before and after cardiac or respiratory
filtering, or both. The top-left plot shows the frequency spectrum for a pixel in the unfiltered
dataset. The top-right plot shows the spectrum for the same pixel after application of the cardiac
filter only. The lower-left plot shows similar data for respiratory-only filtered data, whereas
the lower-right plot shows the frequency spectrum after application of both filters. The blue
line in the lower-right plot, offset 0.15 units along the y-axis for figure clarity, is the result of
filtering for cardiac and respiratory artifacts after splitting the data in 17 subsets (see text for
details).
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Figure 4.
Maps of the artifact intensity before and after filtering for the ‘fast’ scan from one of the
volunteers. The maps show the average intensity in a frequency band surrounding the principal
artifact frequency in the magnitude spectrum before (left column) and after (center and right
column) filtering. The top row shows the intensity, expressed in units of baseline standard
deviation, for the cardiac frequency range (1.18–1.48 Hz for this volunteer), the bottom row
for the respiratory frequency range (0.20–0.50 Hz for this volunteer). The center column shows
the artifact level map after filtering of all data simultaneously, the right column the result
obtained when analyzing the data in 17 undersampled sets (see text for details).
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Figure 5.
Plots of the achieved artifact reduction for all voxels with a significant cardiac artifact in all
of the 6 volunteers. Data are based on the decrease in average spectral intensity in a 0.15 Hz
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band encompassing the principal cardiac artifact frequency. The dotted line represents the
artifact level before filtering. It is a decreasing curve since voxels were sorted on pre-filtering
artifact intensity. The horizontal line at 1 SD indicates noise level. The solid line shows the
artifact intensity in the same frequency band after filtering. Figure 5A shows the result of
filtering with the method described here, Figure 5B the result obtained using the RETROICOR
method (Glover 2000).
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Figure 6.
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Data similar to Figure 5, showing filtering performance for voxels with a significant respiratory
artifact. Figure 6A shows the result obtained with the filter described here, Figure 6B the result
obtained with the RETROICOR method (Glover 2000).
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Figure 7.
Plot of the relative measured activation amplitude as a function of the number of degrees of
freedom used by the filtering algorithm. These data are the average result of simulations for
various cardiac rates, ranging from 40 to 120 beats-per-minute. Results demonstrate that when
filtering is applied independently from and preceding the fMRI analysis, the measured
activation amplitude is lower than the actual activation amplitude (dashed line). This is inherent
to preprocessing, independent of the algorithm. RETROICOR shows a similar effect (×). This
can be overcome by combining the filter and fMRI analysis into a single set of regressors for
concurrent processing (solid line). Note that these plots show the detected percentage BOLD
change, not significance. An increase in the number of degrees of freedom used by the filtering
algorithm will negatively affect the t-score if the number of samples (acquired time points) is
small.
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Figure 8.
Plot of the t-score in 8152 voxels, derived from functional data acquired on 6 volunteers. The
x-axis shows the t-score computed when not accounting for cardiac and respiratory noise (no
cardiac and respiratory filter (CRF) regressors), whereas the y-axis shows the t-score in the
same voxels when analysis accounted for physiological noise through the inclusion of
regressors for cardio- and respiratory artifacts in the design matrix. The solid line, encompassed
by white dashes to ensure visibility in densely populated regions of the plot, represents
equivalence (y = x).
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