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Abstract
This paper describes the application of large deformation diffeomorphic metric mapping to
cortical surfaces based on the shape and geometric properties of subregions of the superior
temporal gyrus in the human brain. The anatomical surfaces of the cortex are represented as
triangulated meshes. The diffeomorphic matching algorithm is implemented by defining a norm
between the triangulated meshes, based on the algorithms of Vaillant and Glaunès. The
diffeomorphic correspondence is defined as a flow of the extrinsic three dimensional coordinates
containing the cortical surface that registers the initial and target geometry by minimizing the
norm. The methods are demonstrated in 40 high resolution MRI cortical surfaces of planum
temporale (PT) constructed from subsets of the superior temporal gyrus (STG). The effectiveness
of the algorithm is demonstrated via the Euclidean positional distance, distance of normal vectors,
and curvature before and after the surface matching as well as the comparison with a landmark
matching algorithm. The results demonstrate that both the positional and shape variability of the
anatomical configurations are being represented by the diffeomorphic maps.
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1 Introduction
Diffeomorphic mapping is now being used by various investigators in the field of
Computational Anatomy to study the geometric variation of human anatomy (Grenander and
Miller, 1998; Gee and Bajcsy, 1999; Miller, Trouvé, and Younes, 2002; Twining, Marsland,
and Taylor, 2002; Beg et al., 2005; Joshi et al., 2004; Avants and Gee, 2004). Over the past
several years we have been using large deformation diffeomorphic metric mapping
(LDDMM) (Joshi and Miller, 2000b; Camion and Younes, 2001; Beg et al., 2005) for
studying the mapping of 3D volume coordinates in the brain as well as in the heart (Helm et
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al., 2006). This method not only provides a diffeomorphic correspondence between
anatomical configurations, but as well defines a metric distance. In all of these cases,
LDDMM constructs a flow of diffeomorphic transformations on the extrinsic 3D
coordinates of the entire volume, based on a correspondence cost between measurements
made in anatomical configurations. Thus far, most of our work has been either based on
anatomical landmarks or the MRI image intensities for defining the correspondence
function. More recently this has been extended to include multi-valued vector matching and
tensor matching arising from DTI studies (Cao et al., 2005b; Cao et al., 2005a). In this paper
we examine the extension of these ideas to the understanding of anatomical configurations
which are cortical surfaces arising in the parcellation of the human cortex. For this, it is our
goal to define registration or correspondences based on the shape of the cortical surface
itself, so that the matching is performed not just on the Euclidean positions of the measured
surfaces in the extrinsic volume coordinates, but as well based on normal vectors of
surfaces. The basic paradigm is to represent surfaces as mathematical objects that encode
normal vectors of surfaces (the first order differential geometric structure), which are
elements of a vector space equipped with a computable normed distance (Vaillant and
Glaunès, 2005). “Closeness” between two surfaces is then given by the norm-square
distance between their associated representations. The diffeomorphic transformation is
generated on the coordinate system minimizing the norm-squared distance between the
mapped surface and the template. The theoretical development of the approach can be found
in (Vaillant and Glaunès, 2005). We demonstrate the application of this method in the
human cortex on the superior temporal gyrus. We term this method as LDDMM-surface.
This method provides powerful information into the matching procedure for correspondence
that should be defined by the normal vectors of the cortical surfaces themselves.

Compared to the spherical brain mapping approaches (Fischl et al., 1999; Van Essen and
Drury, 1997; Van Essen et al., 2001; Tosun, Rettmann, and Prince, 2004; Van Essen, 2004;
Tosun et al., 2004; Thompson et al., 2004; Van Essen, 2005), our approach does not require
an intermediate spherical representation of the brain. This intermediate step would introduce
large distortion of the brain structure, which does not appear consistently across subjects. As
a consequence, matchings would begin with such a distortion error. However, our approach
directly works on cortical surfaces and does not require surfaces with correct topology.
Furthermore, our matching approach can map two open surfaces from one to the other and
the boundaries of two surfaces need not match if the geometries near the boundary are quite
different from one another. This is particularly attractive because it allows us to study more
local variation of anatomies due to effects of diseases in cortical substructures.

In this paper, we use the planum temporale (PT) to validate our LDDMM-surface matching
approach in a population of twenty healthy subjects. Located on the superior temporal plane
posterior to the Heschls gyrus (HG) and extending to the posterior ramus, PT is believed to
be responsible for speech and language processing (Harasty et al., 2003; Seldon, 2005;
Beasley et al., 2005). As an example, shown in Figure 1 is the definition of the PT in the
superior temporal gyrus. Building deformation maps on the cortical surface that extrinsically
associate corresponding cortical regions across subjects becomes a crucial step in study and
comparison on the laminar structure and function of PT across clinical populations to
understand the characteristics and symptoms of neurodegenerative diseases and
neuropsychiatric disorders, e.g. schizophrenia, bipolar, central auditory processing deficits
(Hirayasu et al., 2000; Kasai et al., 2003; Chance et al., 2004; Beasley et al., 2005).
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2 LDDMM-Surface
2.1 LDDMM

Exact Matching Formulation—The basic diffeomorphic metric mapping approach taken
for understanding the structure of anatomical shapes is to place the set of anatomical shapes
into a metric space. This is modeled by assuming that the shapes can be generated one from
the other via a flow of diffeomorphisms, solutions of ordinary differential equations

 with ϕ0 = id the identity map, and associated vector fields vt, t ∈ [0, 1].
We compute pairs S, T, such that there exists a diffeomorphism ϕ transforming one to the
other ϕ · S = T. The metric distance between shapes is the length of the geodesic curves ϕt ·
S, t ∈ [0, 1] through the shape space generated from S connecting to T in the sense that ϕ1 · S
= T. These curves ϕt · S, t ∈ [0, 1] are generalizations of simple finite dimensional curves.
The metric between two shape S, T takes the form

(1)

where vt ∈ V, a smooth Hilbert space with norm ∥ · ∥V. To ensure that the solutions to this
equation are diffeomorphisms, V must be a space of smooth vector fields (see (Trouvé,
1995; Dupuis, Grenander, and Miller, 1998) for specific requirements).

Inexact Matching Formulation—In practice the metric ρ and the diffeomorphic
correspondence ϕ = ϕ1 between the pair (S, T) is calculated via a variational formulation of
the “inexact matching problem”. Associate for each pair (S, T), a norm-squared cost D(S, T);
then the variational problem requires minimization of the functional

(2)

General results in (Trouvé, 1995; Dupuis, Grenander, and Miller, 1998; Glaunès, 2005)
guarantee existence and uniqueness of the solution to this minimization problem. Joshi
(Joshi and Miller, 2000a) and Glaunès (Glaunès, Trouvé, and Younes, 2004) have defined
such a variational problem for matching isolated landmark points, Beg (Beg et al., 2005) for
dense scalar imagery. More recently Cao (Cao et al., 2005b; Cao et al., 2005a) has defined
such a solution for diffusion tensor images.

2.2 Triangulate Surface Mesh Norm
Assume the anatomical configurations are subcortical surfaces in the brain, represented via
triangulated meshes. Then for any pair S, T, what is required is the definition of the norm-
squared registration distance D between surfaces. We represent these surfaces explicitly as
triangular meshes in . Given a face f of S, let f1, f2, f3 denote its vertices, e1 = f2 − f3, e2 =
f3 − f1, e3 = f1 − f2 its oriented edges, c(f) = ⅓ (f1 + f2 + f3) its center, and N(f) = ½(e3 × e2)
which is its normal vector with length equal to its area (see Figure. 2).

Now let f, g represent the faces of S and q, r represent the faces of T. We impose an inner
product structure on these representations which induces a norm-square which we write D(S,
T). The matching criterion given by the norm-square becomes

(3)
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where t is transpose. kW is a radial, positive definite 3 × 3 diagonal matrix kernel function
such as

The terms in (3) integrate measures of local geometry for each face via inner products of its
normal with normals of neighboring faces. The choice of kernel function, kW, together with
its parameters controls the local neighborhoods used in the calculations. The first and last
terms measure the local geometry within S and T, and the middle term measures the
mismatch in local geometry between S and T. The detailed theoretical derivation of above
approach for the continuum surface is in references (Glaunès, 2005;Vaillant and Glaunès,
2005).

2.3 The Algorithm
We write x1, …, xN for the vertices of the mesh S and define the trajectories xi(t) := ϕt(xi) for
i = 1, …, N. Note that ϕ1(S) is approximated by applying ϕ1 to the vertices of S. I.e. ϕ1(S) is
simply the mesh defined by the vertices xi(1) for all i = 1, …, N, and faces f(1) of S. Since
the matching term of (2) depends only on the vertices of the mesh through (3), a general
result for diffeomorphic matching problems (Joshi and Miller, 2000b; ?) shows that the
solution must be of the form

(4)

where α is named as momentum vector because of its analogy with fluid mechanics (Arnold,
1989).

Defining fi(t) = ϕt(fi) for i = 1, 2, 3, the cost function in (2) becomes

The Frechet derivative of J in the space V is given for variations vt + εht. We find ▽Jt for t =

[0, 1] satisfying . The gradient (Vaillant and Glaunés, 2005)
becomes

together with the identities vt given by Eqn. 4 and
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(5)

(6)

where × denotes the cross product, and a(h) = 1 if h a face of ϕ1(S) and a(h) = −1 if h is a
face of T. We can then use this gradient in a descent algorithm to find a minimum solution to
(2). The algorithm we have implemented is a simple adaptive step size steepest descent
algorithm as outlined below:

Algorithm.

1. Discretize time into T time steps t = 0,…, T − 1 and initialize xi(t) = xi and αi(t) = 0
for t = 0,…,T − 1.

2. Iterate until convergence:

(a) Compute βi(t) solving the differential equation of (5,6) by numerical
integration.

(b) Set αi(t)new = αi(t) − 2 * ε(αi(t) + βi(t)/σ2), where ε is the descent step
size.

(c) Compute the new trajectories, xi(t)new, by integrating

(d) Compute J(xnew) and while J(xnew) < J(xold) decrease the step size ε
and return to 2b.

(e) Set α(t) = αnew(t) and x(t) = x(t)new, and increase step size ε.

The stopping criterion for convergence is given by a tolerance on the cost difference
between successive iterations.

3 Results
3.1 Subjects, MRI Acquisition, and Data Processing

Twenty healthy subjects, aged from 20 to 54 (mean: 36.5; standard deviation: 11.2), were
selected from schizophrenia and bipolar disorder studies of Dr. Patrick Barta in the Division
of Psychiatric Neuroimaging at the Johns Hopkins University School of Medicine. There
were 10 males and 10 females among these healthy subjects. All subjects gave informed
consent for their participation after the risks and benefits of participation were explained to
them prior to MRI scanning. The population was examined with high-resolution magnetic
resonance (MR) scans acquired using 1.5 T scanner and MPRAGE sequence (repetition time
= 13.40 ms, echo time = 4.6 ms, flip angle = 20°, number of acquisition = 1, matrix 256 ×
256) with 1 mm3 isotropic resolution across the entire cranium. Using ANALYZE (Robb et
al., 1989), raw MR data were reformatted from signed 16-bit to unsigned 8-bit. A 3D region
of interest (ROI) subvolume encompassing the superior temporal gyrus (STG) was masked
for each of the two hemispheres in each subject (Ratnanather et al., 2003). Bayesian
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segmentation was performed labeling voxels in the subvolume as gray matter (GM), white
matter (WM), or cerebrospinal fluid (CSF) (Joshi et al., 1999; Ratnanather et al., 2001;
Ratnanather et al., 2004). Surfaces were generated at the GM/WM interface using a
topology-correction method and a connectivity-consistent isosurface algorithm applied to a
binarized subvolume of white matter to remove all cavities in the WM object (Han et al.,
2002). The connectivity-consistent isosurface algorithm is used to extract the isosurface of
the edited image to guarantee that the extracted isosurface has the same topology as the
object surface in the binarized image (Han et al., 2001). As demonstrated in Figure 1, the
boundary of the planum temporale (PT) was delineated by tracking principal curves from the
retro-insular end of the Heschl's Sulcus (HS) to STG, along the posterior STG up to the start
of the ramus and back to the retro-insular end of the HS via dynamic programming
(Ratnanather et al., 2003). Three landmarks on each surface (intersections between STG and
HS, between STG and ramus, between ramus and HS) were manually defined in this
procedure and formed the triangulated shape of PT. Each PT surface was represented by a
triangulated mesh with approximately 1000 vertices.

The left and right PT surfaces of one subject were selected as left and right templates in such
a way that their surface areas are close to average left and right PT surface areas among the
population and the surfaces have a typical triangular PT shape. Affine transformation was
estimated by the previously described three landmarks to bring PT surfaces to the same
orientation as the template. Then, the surface matching algorithm was used to register all
PTs onto the template. In our matching algorithm, we assumed kernels kV and kW are

Gaussian with variance  and .  determines the smoothness of vector fields vt and 
controls how close the target surface is to the template. Small  causes unsmooth
deformation field and large  leads that the deformed surface is far from the template. We

experimentally determined  and  in this study.

3.2 Examples
Figures 3 and 4 show results for left and right PTs from the surface matching algorithm,
respectively. Panels (a)–(e) of each figure give five examples of original (top row) and
deformed PTs (bottom row). Left and right templates are respectively shown in panels (f) of
Figures 3 and 4. The top row in each panel shows an original surface color encoded by the
mean curvature information for the purpose of visualization. Bright color denotes gyral
regions while dark color denotes sulcal regions. The bottom row in each panel shows the
deformed surface that is colored by the deformation measurement in the direction of the
tangent plane at each location of the surface. This deformation information is quantified by
ratio of the area on the deformed surface to the area on the original surface at local
coordinate of the cortical surface. Red color denotes stretched regions, while blue color
denotes shrunken regions in terms of surface area. In these two figures, all surfaces are in
the same orientation as the template surfaces.

The comparison of original surfaces in Figures 3 and 4 indicates that all left or right PT
surfaces are in close agreement with the global triangulated shape and three boundary
curves. However, these surfaces are variant in details across subjects. For instance, Figure
3(d) shows the original surface with a gyral structure in the interior region. Both Figure 4(c)
and Figure 4(e) shows the original surfaces with wavy interior. Moreover, the anterior
region of the surfaces in Figure 4(d) and Figure 4(e) have a gyral structure, which is
different from that of the other surfaces shown in the top row of Figure 4. These two
surfaces are on the STG with double-Heschl's gyrus and the anterior boundary is defined in
the first Heschl's sulcus based on cytoarchitectonic structure of the auditory cortex. All
others are on the STG with single-Heschl's gyrus and the anterior boundary is defined in the
Heschl's sulcus.
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The deformed surfaces that are shown in the bottom row of each panel in Figure 3 and
Figure 4 suggest that the shape of the deformed surfaces are close to the shape of the
template. The color on the surface tells how the original surface moves to the deformed
surface. Since the template is relatively flat in the interior, for the case in Figure 3(d), a large
portion of the gyral region in the interior becomes similar to the shape of the template after
matching. However, we still observe a small bump. For the cases of Figure 4(c) and Figure
4(e), the wavy interior becomes flat after the deformation. For the cases of double-Heschl's
gyrus, the algorithm cannot remove this variation since the correspondence between the
template and the surfaces (shown in Figure 4(d) and Figure 4(e)) in the Heschl's gyral region
is not well defined in terms of the vertex location and the normal vector that are carried by
the algorithm.

3.3 Euclidean Position Validation
We calculate the cumulative distribution of distances between the deformed targets and the
template to quantify their closeness. We call this as surface distance graph from T to S,
defined as the percentage of vertices on a template surface T having the distance to a surface
S less than d mm. Let vsi and vti respectively be vertices on surfaces S and T. The distance of
vti to S is defined by:

(7)

where ∥·∥ is the Euclidean distance in R3. The surface distance graph is the cumulative
distribution of dti. The visualization of dti on surface T is named as distance error map.

Comparison with and without LDDMM-surface—Panel (a) of Figure 5 shows the
surface distance graphs of the original left PTs after the affine registration. The red curve is
the average graph among the left PTs. The average median of distances is 1.92mm in the
population. Blue, green, cyan, magenta, and yellow curves denote the graphs in the order
given as one of surfaces shown in Figure 3 (a)–(e). The intuitive illustration of where left PT
surfaces are far apart from the left template is demonstrated by a distance error map on the
left template surface colored by average distance of PT surfaces to each vertex of the
template in panel (c). Obviously, the three corners are closer to the template than other
places due to affine transformation constrained to these corners. Similarly, the surface
distance graphs of the deformed left PTs are shown in panel (b) and the distance error map is
demonstrated in panel (d). Clearly, after the matching, the average median of distances is
reduced to 0.55mm within the voxel resolution 1mm and the variation among the graphs is
significantly decreased. The worst matched surface among the population in terms of this
distance validation is shown in Figure 3(d) and the distance graphs before and after
matching are illustrated by magenta curves in panels (a) and (b) of Figure 5, respectively.
However, even for this case, 82.4% of vertices on the template have the distance within the
voxel resolution 1mm.

In parallel, the results of the surface distance graphs and distance error maps for the right
PTs are illustrated in Figure 6. The average medians of distances are 2.40mm and 0.65mm
for the original and deformed right PTs, respectively. The worst matched surface among the
population in terms of this distance validation is shown in panel (b) of Figure 4. However,
even for this case, after matching about 80% of vertices on the template are close to the
deformed surface within the MRI resolution 1mm. Notice that the variation in right PTs is
larger than that in left PTs for both original and deformed cases. This may be due to the fact
that right PT structure is more complicated than the left PT shape as reported in literature
(Barta et al., 1995). For example, the double-Heschl's cases, our matching algorithm cannot
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remove this structure to match the template. But the remained structure of the PT surface
can be matched into the proper position of the template based on the similarity of their
normal vectors.

Comparison of LDDMM-Surface and Landmark Matchings—The purpose of this
section is to compare the LDDMM-surface matching algorithm with a widely-used
landmark matching algorithm using surface distance graph. The landmark matching
algorithm we used in this paper is also under the LDDMM framework and is described in
reference (Joshi and Miller, 2000b).

As we describe in Section 3.1, three corner points and three boundary curves of the PT are
defined as point and curve landmarks across the population. Five points equally spaced on
each boundary and the three corner points were chosen as point landmarks on each PT
surface. Then, the landmark matching algorithm (Joshi and Miller, 2000b) is applied to PTs
to obtain the deformation field that is used to deform PT surfaces to the template. Distance
surface graphs between deformed and template surfaces were computed and are shown in
gray in Figure 7(a,b). The average graphs over the population are shown in green in each
panel for left and right PTs, respectively. For the comparison, we replot surface distance
graphs (shown in Figure 5(b) and 6(b)) in each panel of Figure 7 for the left and right PTs,
respectively. These two panels suggest that all surface distance graphs from the surface
matching algorithm is above those from the landmark matching algorithm, which implies
that the surface matching algorithm introduced in this paper significantly improve matching
results from the landmark matching in terms of surface distance measurement. Moreover,
compared to the landmark matching, the surface matching algorithm gives the smaller
variation of surface distance graphs, which also indicates that the surface matching
algorithm properly carries anatomical variation cross the population so that it may increase
the power of statistical testing on shape, cortical thickness, curvature, and functional
responses in clinical studies.

3.4 Geometric Validation
To evaluate the geometric closeness between two surfaces, we compute two quantities:
distance of normal vectors (the first-order differential geometric information) given in (3)
and mean curvature (the second-order differential geometric information).

Distance of Normal Vectors—The distance of normal vectors between two surfaces is
given in (3). It integrates the local first-order geometry for each face via inner products of its
normal with normals of neighboring faces. The large value indicates the two surfaces are not
close in terms of their normals, while the small value suggests that the normals of the two
surfaces are nearly in the same direction and also have the similar length.

Figure 8 shows the boxplots of this measure for left and right PTs. In each panel, we show
the distance of normal vectors of all other 19 PT surfaces relative to the template before
matching, after the landmark matching (Joshi and Miller, 2000b), and after the surface
matching. The labels on the x-axis respectively represent the results corresponding to
surfaces before matching, after the landmark matching, and after the surface matching. Each
asterisk represents the measurement for one PT surface. The boxes have lines at the lower
quartile, median, and upper quartile values. The whiskers are lines extending from each end
of the boxes to show the extent of the rest of the data. The results shown in the figure
suggest that the deformed surfaces from the surface matching are much closer to the
template, compared to the original surfaces and deformed surfaces from the landmark
matching. The standard deviation of the distance indicates the variation of PT surfaces in
terms of normal vectors. For the left PTs, they are 33.88, 30.41, and 12.81 respectively for
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original surfaces, landmark deformed surfaces, and deformed surfaces from the surface
matching. For the right PTs, they are 44.17, 17.96, and 17.10 respectively for original
surfaces, landmark deformed surfaces, and deformed surfaces from the surface matching.
These results suggest that the variation of PT surfaces after the surface matching is less than
that of the originals or the landmark deformed surfaces. However, the standard deviation of
the distance for the right PTs from the surface matching is close to the one from the
landmark matching. This is due to one measurement marked by red asterisk in Figure 8(b),
which corresponds to the surface with double-Heschl's gyrus shown in Figure 4(e).
Compared to that of the left PTs, the standard deviation of the right PTs before and after the
surface matching indicates larger variation in the population, which agree with the euclidean
position validation shown in Figures 5 and 6.

Mean Curvature—To validate the shapes of the surfaces we use the mean curvature to
quantify the second-order differential geometry of the cortical surface. On a triangulated
mesh, the local coordinate chart of the cortical surface is fitted by the second order in the
Taylor series expansion. The coefficients of the second-order terms construct the shape
operator. Its trace of the shape operator at a vertex v ε S determines twice of the mean
curvature at v. The estimate of the shape operator, the symmetric 2 × 2 matrix, at each v ε S
is based on the neighborhood Nv of the vertex v by minimizing mean squared error (see
details in (Joshi et al., 1995; Hamann, 1993)). We use its cumulative distribution to
represent the percentage of vertices having mean curvature less than a certain number k,
called curvature graph. The representation of mean curvature on the surface is named as
curvature map.

To validate how close the shape of deformed surfaces are to that of the template, mean
curvature was computed locally on each PT surfaces (Joshi et al., 1995; Hamann, 1993).
Panels (a) and (b) in Figure 9 respectively show curvature graphs for original and deformed
left PT surfaces. The curvature graph and map of the left template are given by the red
curves in panels (a, b) and (c). The average of curvature maps among matched left PTs is
shown in panels (d). Parallelly, panels (a) and (b) in Figure 10 respectively show the
curvature graphs of original and deformed right PT surfaces. The curvature graph and map
of the right template are given by the red curves in panels (a, b) and (c). The average of
curvature maps among deformed right PTs is shown in panels (d). Blue, green, cyan,
magenta, and yellow curves denote the distributions associated with surfaces shown in
panels (a–e) of Figure 4. In panel (b) of Figures 9 and 10 the curvature graphs are pushed to
get close to the red one after matching. And the same phenomena as we see in the previous
section is that the variation in the right PT is larger than the one in the left PT for both
original and deformed surfaces.

4 Discussion and Conclusion
Our group has been developing large deformation diffeomorphic metric mapping
(LDDMM) methods for studying the mapping of coordinates in the brain. The previous
work have focused on mapping landmarks (Joshi and Miller, 2000b) or dense images (Beg
et al., 2005) and these mapping methods have been used to study hippocampal shapes.
However, this paper we present is the first of its kind studying matching methods for
mapping cortical surfaces (the boundary between white matter and gray matter). The cortical
surface is a geometric object different from landmarks or dense images. It is represented by
both its coordinates and normal vectors. The focus of the surface matching approach is to
introduce a matching functional that incorporates the geometric information (normal vector)
of the cortical surface. We present validation results for the diffeomorphic surface matching
approach initially introduced (Vaillant and Glaunès, 2005). The results from both Euclidean
and geometric quantitative evaluations as well as the comparison with the landmark
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matching show that the LDDMM-surface matching algorithm gives good matching fidelity.
In the Euclidean positional validation, after the surface matching, about 90% of vertices on
the template have distances to all other PTs less than the MRI resolution 1mm in both left
and right sides. This is also illustrated on distance error maps on panels (d) of Figures 5 and
6. Moveover, the distance of normal vectors and the mean curvature provide the validation
of local shape based on the first and second-order differential geometry of the cortical
surface. Furthermore, compared with the landmark matching algorithm, the diffeomorphic
maps from the LDDMM-surface matching algorithm carries more of the variability of the
anatomical structures. As a limitation of all brain warping techniques, our algorithm also
faces the difficulty: the correspondence for many anatomical structures is not well defined,
as we described in Section 3.2. If such a case happens, our algorithm matches the structure
into the proper place of the template based on normal vectors between the surface and
template.

Our surface matching approach overcomes several issues occurring in surface-based
matching approaches based on landmarks. A clear issue in using landmarks is that manually
labeling landmarks is labor-intensive. Moreover, due to discretization, one point on one
surface may not have a homologous point on the other surface. Furthermore, the geometry
information is discarded when reducing surfaces, inherently 2D objects, to 0-dimensional
point sets. Of course, the tradeo of our approach is the computational time since the
algorithm does not require predefined correspondence and exhaustly searches the best
match. However, we have optimized the code using tree structures so that the algorithm can
be applied to large surfaces as well.

The surface matching method along with its quantitative evaluation on PT cortical surfaces
indicates the ability to accurately match cortical surfaces (substructure of the brain) so that it
will be powerful to detect any changes in anatomical and functional profiles, such as cortical
thickness maps, functional activation maps, and curvature maps, in different populations.
From the benefit of the accurate surface matching, the inference of mismatching to statistical
analysis will be significantly reduced so that we will be able to clarify ambiguity of regions
identified as regions with significant structure or function changes. Moreover, an immediate
application of the diffeomorphic matching of our surface matching approach is in statistical
inference of shape via the momentum representation of flow (Vaillant et al., 2004). The
reference (Miller, Trouvé, and Younes, 2006) has shown that the image under the flow φt is
completely determined by the momentum (α) at time t = 0. Therefore, the momenta encode
the non-linear transformation from one structure onto another and are in a linear space
which leads the shape analysis to linear statistical analysis.
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FIG. 1.
The left superior temporal gyrus (STG). The planum temporale (PT) structure is defined by
three boundaries – STG (blue line), Heschl's sulcus (red line, HS), and posterior boundary
(green line) on the top of STG.
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FIG. 2.
Example face representation from a triangular mesh.
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FIG. 3.
The top and bottom rows in panels (a)–(e) illustrate left original and deformed PTs. The
template surface is shown in panel (f). The original surface is colored by curvature
information for the purpose of visualization. The deformed surface is colored by the area
deformation. Red and blue respectively denote the stretched and shrunken regions after
matching.
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FIG. 4.
The top and bottom rows in panels (a)–(e) illustrate right original and deformed PTs. The
template surface is shown in panel (f). The original surface is colored by curvature
information for the purpose of visualization. The deformed surface is colored by the area
deformation. Red and blue respectively denote the stretched and shrunken regions after
matching.
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FIG. 5.
Distance validation on the left planum temporale. Panels (a, b) show surface distance graphs
of left original and deformed PTs, respectively. Mean graphs among the population are
marked as red in each panel. Blue, green, cyan, magenta, and yellow curves indicate the
surface distance graphs associated with surfaces shown in Figure 3 (a)–(e), respectively.
Panels (c, d) intuitively demonstrate where the original and deformed surfaces are far from
the template surface, respectively.
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FIG. 6.
Distance validation on the right planum temporale. Panels (a, b) show surface distance
graphs of right original and deformed PTs, respectively. Mean graphs among the population
are marked as red in each panel. Blue, green, cyan, magenta, and yellow curves indicate the
surface distance graphs associated with surfaces shown in Figure 4 (a)–(e), respectively.
Panels (c, d) intuitively demonstrate where the original and deformed surfaces are far from
the template surface, respectively.
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FIG. 7.
Panels (a, b) show surface distance graphs of left and right PTs, respectively. Surface
distance graphs for the surface matching are in black and their average graphs are marked as
red in each panel. Similarly, for the landmark matching, distance graphs are in gray and
average graphs are marked as green in each panel.
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FIG. 8.
Panels (a, b) show the boxplots of the similarity measures given in (3). The measure
quantifies the closeness of other 19 surfaces relative to the template surface. In each panel,
from left box to right box respectively show the measurements for original surfaces, surfaces
after landmark matching, surfaces after the surface matching. “ORIG”, “LMK”, and
“SURF” respectively denote original, landmark matching, surface matching. In panel (b),
one outlier in the surface matching is marked as red asterisk.
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FIG. 9.
Curvature validation on the left planum temporale. Panel (a, b) show curvature graphs for
left original and deformed PTs. The curvature map for the left template is marked as red in
each panel. Blue, green, cyan, magenta, and yellow curves indicate the curvature graphs
associated with surfaces shown in Figure 3 (a)–(e), respectively. The curvature map of the
left template is shown in panel (c), while the average of curvature maps among deformed
surfaces is in panel (d).
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FIG. 10.
Curvature validation on the right planum temporale. Panel (a, b) show curvature graphs for
right original and deformed PTs. The curvature map for the right template is marked as red
in each panel. Blue, green, cyan, magenta, and yellow curves indicate the curvature graphs
associated with surfaces shown in Figure 4 (a)–(e), respectively. The curvature map of the
right template is shown in panel (c), while the average of curvature maps among deformed
surfaces is in panel (d).
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