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Abstract
Because of well known nonlinearities in fMRI, responses measured with rapid event-related designs
are smaller than responses measured with spaced designs. Surprisingly, no study to date has tested
whether rapid designs also change the pattern of responses across different stimulus conditions. Here
we report the results of such a test. We measured cortical responses to a flickering checkerboard at
different contrasts using rapid and spaced event-related fMRI. The relative magnitude of responses
across contrast conditions differed between rapid and spaced designs. Modeling the effect of the
rapid design as a scaling of stimulus strength provided a good account of the data. The data were less
well fit by a model that scaled the strength of responses. A similar stimulus scaling model has
explained effects of neural adaptation, which suggests that adaptation may account for the observed
difference between rapid and spaced designs. In a second experiment, we changed the stimulus in
ways known to reduce neural adaptation and found much smaller differences between the two
designs. Stimulus scaling provides a simple way to account for nonlinearities in event-related fMRI
and relate data from rapid designs to data gathered using slower presentation rates.

Rapid event-related (ER) functional MRI is one of the most popular methods in cognitive
neuroscience. In this method, individual stimuli or trials occur every few seconds or faster.
Rapid ER fMRI has several advantages over traditional blocked designs, including the ability
to randomize trial types and sort data based upon behavioral responses.

Yet, doubt lingers about the generality of results from experiments that use rapid ER fMRI. In
particular, it is unclear whether results obtained with rapid event rates will replicate when
events occur at slower rates. Almost every study that uses rapid ER designs assumes that fMRI
responses show a certain kind of linearity. Specifically, they assume that responses in rapid
designs can be predicted by simply adding appropriately placed responses measured in isolation
to form the measured fMRI timecourse. Under this temporal superposition assumption, it is
straightforward to estimate the average response for each event type, and this response will be
identical to what the average response to that event type would be in a spaced design.

FMRI data, however, do not obey the assumption of temporal superposition. If superposition
holds, then subtracting the response to an individual event from the response to a sequence of
two events should yield a response that is identical in shape to the individual response. In actual
fMRI data the subtracted response is smaller, often as little as 60–70% of the individual
response (Dale and Buckner, 1997; Glover, 1999; Huettel and McCarthy, 2000, 2001; Boynton
and Finney, 2003; Soon et al., 2003; Huettel et al., 2004a; Murray et al., 2006). Similar
nonlinearities in response occur in sequences of blocks of events (Boynton et al., 1996; Robson
et al., 1998; Vazquez and Noll, 1998; Glover, 1999; Ances et al., 2000b; Liu and Gao, 2000;
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Birn et al., 2001; Miller et al., 2001; Huettel et al., 2004b; Soltysik et al., 2004; Gu et al.,
2005).

How damaging are these failures of superposition in practice? Most rapid ER studies at least
implicitly assert that the failures are not critical, under the assumption that while rapid
responses are smaller overall, the pattern of responses across conditions is the same as in spaced
designs. A few studies have compared rapid to spaced ER designs at rates where superposition
failures become most evident (Friston et al., 1998; Birn and Bandettini, 2005; Wager et al.,
2005), but surprisingly no study has tested whether the relative magnitude of responses across
conditions is preserved in rapid ER designs. That is, no study has examined whether the ratio
of responses to two different conditions is equal in rapid and spaced ER fMRI.

Changes in the pattern of responses would be particularly damaging to quantitative fMRI
applications, e.g., an attempt to correlate differences in fMRI response across conditions to
differences in behavior across the same conditions. If the relative magnitudes of responses
across conditions differed between rapid and spaced designs, then the correlation of these
responses with behavioral measures could differ substantially.

There is good reason to believe that the pattern of responses will differ between the two design
types. Because rapid designs drive neurons to higher response rates than spaced designs, they
should increase neural adaptation. Such adaptation likely contributes to the overall reduction
in response amplitudes observed in rapid designs (Boynton et al., 1996; Huettel and McCarthy,
2000; Birn et al., 2001; Buxton et al., 2004; Soltysik et al., 2004). Critically, neural adaptation
in visual cortex does alter the pattern of responses across conditions (Sclar et al., 1989).

Here we test whether rapid and spaced ER designs yield the same pattern of responses across
conditions. Formally, we capture this assumption with a response scaling model. The model
predicts that rapid responses are copies of corresponding spaced responses scaled by a single
constant factor.

We compare the response scaling model to a stimulus scaling model that predicts changes in
the pattern of responses across conditions. The model is drawn from prior work on neural
adaptation in visual cortex using both single unit electrophysiology and fMRI (Sclar et al.,
1989; Gardner et al., 2005). The model predicts that rapid responses are copies of spaced
responses to a set of stimuli whose strengths have been scaled by a single constant factor.

Experiment 1 measured the pattern of fMRI responses across multiple conditions using both
rapid and spaced designs. We recorded blood oxygen level-dependent (BOLD) signals in visual
cortex as subjects viewed checkerboards of different contrasts. The stimulus scaling model
provided a better account of the data than the response scaling model.

Experiment 2 tested the hypothesis that neural adaptation caused the observed differences
between spaced and rapid designs. We modified the stimuli from Experiment 1 in ways
expected to decrease neural adaptation and observed smaller differences between the two types
of designs.

Materials and Methods
Subjects

Four subjects participated in each of three experiments (6 subjects total, 2 males and 4 females,
ages 24–39, most participated in two or three of the experiments). All subjects were right-
handed and had normal or corrected-to-normal vision. Procedures were approved by the UCLA
Office for the Protection of Research Subjects.
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Stimuli
Stimuli were presented to subjects using MR-compatible goggles (Resonance Technology,
Inc). The goggles were calibrated using a Photoresearch PR-650 spectral radiometer.
Independence of the red, green, and blue channels was tested, and the inverse gamma function
for each channel was computed.

Pilot Experiment—Subjects viewed radial checkerboard patterns (Figure 1) that were
presented for 500 msec and contrast reversed at a rate of 8 Hz. The checkerboard patterns had
a radial frequency of 0.57 cycles per degree (cpd) of visual angle and an angular frequency of
18 cycles per stimulus (36 angular checks). The stimulus was centered on the display screen
and subtended 21° of visual angle. Stimulus contrast was varied to obtain contrast response
functions. Checkerboards in the pilot experiment were presented at 1, 10, and 100% contrast.

Experiment 1—Subjects viewed radial checkerboard patterns identical to those presented in
the pilot experiment. To obtain contrast response functions, checkerboards were presented at
3, 6, 12, 24, 48, 72, and 96% contrast.

Experiment 2—Subjects viewed 1.0 cpd sinusoidal gratings that were presented for 116
msec. Stimulus contrast modulated over time following a Gaussian temporal envelope with a
standard deviation of 29 msec. The gratings contrast reversed at a rate of 26 Hz, and their size
and position on the display screen were identical to the checkerboard stimuli used in the pilot
experiment and Experiment 1. These brief stimuli produced small fMRI responses, so we used
three relatively high contrast levels to measure contrast response functions. Gratings were
presented at 48, 72, and 96% contrast.

To reduce long-term neural adaptation, the phase (0, π/3, or 2π/3) and orientation (0, 45, 90,
or 135 deg) of the gratings varied randomly across stimulus trials. The orientation order was
constrained such that no stimulus trial had the same orientation as the stimulus trial preceding
it.

Experimental Design
Subjects in each experiment participated in an fMRI scanning session that included a single
localizer scan followed by a series of experimental scans. In each scan, subjects performed a
demanding letter recognition task at fixation while stimuli were presented in the surrounding
visual field (Figure 1).

Localizer Scan—A block design localizer scan was used to identify cortical regions of
interest (ROIs) that responded to the area of visual space where stimuli in the experimental
scans were presented. High contrast radial checkerboard patterns, identical to those used in the
pilot and Experiment 1, contrast reversed at 8 Hz (pilot and Experiment 1) and 10 Hz
(Experiment 2) for 16 seconds, followed by 16 seconds of a uniform mean field. Eight of these
stimulus cycles were presented.

Experimental Scans—There were two types of event-related experimental scans, spaced
and rapid, which differed in the length of time between stimulus presentations (called stimulus
onset asynchrony, SOA). In the pilot experiment, spaced scans contained a 16 sec SOA and
rapid scans a 3 sec SOA. In Experiments 1 and 2, spaced scans used a 3 sec SOA and rapid
scans a 1 sec SOA.

In these scans, each event consisted of one stimulus presentation. Each scan contained several
different types of events corresponding to the different stimulus contrasts presented in that
experiment. Zero contrast events were also included as baseline (rest) trials. Each contrast
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condition occurred an equal number of times in each scan, and the order of contrast conditions
within a scan was determined using m-sequences (Buracas and Boynton, 2002). Scans with
16, 3, and 1 sec SOAs contained 24, 127, and 381 events, respectively. All scans were 384 sec
in length, and at least two repetitions of each type of scan (rapid and spaced) were performed.

Attention Task—To control attention, subjects performed a demanding Rapid Serial Visual
Presentation (RSVP) task at fixation throughout the duration of each experimental scan. Letters
were presented one at a time in the center of the display screen, and subjects were instructed
to press a button when they saw the letter “X” (Figure 1). One of 14 possible letters was
displayed every 250 msec, and the presentation order was pseudorandom with the constraint
that no letter was presented twice in a row. Subjects in all experiments were able to perform
the RSVP task, and performance did not differ between rapid and spaced scans (cross-
experiment mean percent correct = 68.24 and 67.55, respectively; for each individual
experiment all t values < 1.6, all p values > 0.17).

FMRI Methods
Acquisition—Functional MRI data were collected using a Siemens Allegra 3T scanner.
During each scan, 12 slices of fMRI data, oriented perpendicular to the calcarine sulcus, were
acquired each second using an echo-planar imaging sequence (TR = 1000 msec; TE = 45 msec;
flip angle = 60 deg; voxel size = 3.1 x 3.1 x 4 mm; field of view = 200 mm). T2- weighted co-
planar anatomical images were also acquired.

ROI Definition—Visual areas V1, V2, V3, VP, V3a, and V4v were identified using reversals
in phase-encoded polar angle retinotopy data (Engel et al., 1994; Sereno et al., 1995; DeYoe
et al., 1996; Engel et al., 1997) acquired in a separate scanning session. MP-RAGE anatomical
data for use in cortical flattening were also acquired in this session. Flattened cortical maps
were generated using SurfRelax (Larsson, 2001) and retinotopic data were projected onto them
using mrVista (http://white.stanford.edu/software/). Regions of interest corresponding to
known retinotopic areas were then drawn by hand by identifying the known reversals in polar
angle retinotopy at their borders.

Data from the localizer and experimental scans were motion corrected and registered with the
volume anatomical data using FSL FLIRT (Jenkinson et al., 2002), allowing the visual area
ROIs to be projected onto the functional scan planes. Visual area ROIs were restricted to
include only those voxels for which activity during the localizer scan was above a threshold
correlation of 0.3 with a sinusoid at the on-off cycle frequency (see above). Changing this
threshold did not change the overall pattern of results.

Data Analysis—The fMRI time series from each active voxel was converted to a percent
change score by subtracting and dividing by the mean of the voxel’s time series across the
scan. Time series were then averaged across voxels within each restricted visual area ROI.
Linear estimates of fMRI response for each contrast condition within a scan were made using
ordinary least squares. The design matrix contained one column for each time point in the
response for each condition. FMRI responses were calculated for each scan and then averaged
together within scan type, yielding one rapid and one spaced response for each contrast
condition for each subject.

To combine data across subjects, subject average responses were normalized by dividing by
the peak of the response to the highest contrast in the spaced SOA scans (in Experiment 1,
responses were normalized to the second highest contrast because one subject ran only six of
the seven contrast values). Normalized responses for each condition were then averaged across
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subjects. The height of each subject’s normalized response at the time point of the peak in the
group average was used as a measure of the fMRI response amplitude.

To test for effects of SOA and contrast, amplitudes were entered into three-way analyses of
variance, with SOA, stimulus contrast, and subject as factors. To evaluate the fits of the models
(see below), average peak response amplitudes for each SOA were plotted as a function of
contrast condition to generate contrast response functions.

Models
We compared how well two models could account for the results of Experiments 1 and 2. A
response scaling model predicts that rapid design responses are simply the spaced design
responses multiplied by a single common scale factor. Such a scaling would correspond to a
vertical shift of the contrast response function on a log-log axis (Figure 2A). A stimulus
scaling model predicts that rapid designs scale the effective strength (in this case, contrast) of
the stimulus relative to that of spaced designs. In other words, the model predicts that rapid
responses can be related to spaced responses by multiplying rapid contrast levels by a single
common scale factor. Such a scaling corresponds to a horizontal shift of the contrast response
function on a log-log axis (Figure 2B).

To formally define both models, we used a simple equation to parameterize fMRI response as
a function of contrast:

R = Kcn/ (cn + σn)

where R is the measured fMRI response, parameter c is stimulus contrast, n controls the
steepness of the function, K scales the curve along the response axis and σ controls the position
of the curve along the contrast axis. This equation has provided good accounts of neural contrast
response functions measured with single unit electrophysiology (Sclar et al., 1989). In general,
the model provided excellent fits to our fMRI contrast response functions. Importantly, our
results do not depend upon this parameterization of the contrast response function. Any
parameterization that adequately fit the data would give similar results.

The full response scaling model can be written as a pair of equations:

Rspaced = Kcn/ (cn + σn)

and

Rrapid = srespKcn/ (cn + σn)

where sresp is the scale factor relating the rapid to the spaced data. Because K controls the
position of the curve along the response axis, the effect of the scale factor is to shift the rapid
contrast response function along the vertical axis.

Similarly, the stimulus scaling model can be written as:

Rspaced = Kcn/ (cn + σn)

and

Rrapid = K (sstimc)n/ ((sstimc)n + σn)

where sstim is the scale factor relating the two types of data. The second equation here can
equivalently be written as:
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Rrapid = Kcn/ (cn + (σ / sstim)n)

Because σ controls the position of the curve along the contrast axis, this form of the equation
shows that the scale factor shifts the contrast response function along the horizontal axis.

Model Fitting—To determine which model could better account for our results, we fit both
to our data. For each model, we found the parameters that best fit the rapid and spaced data
simultaneously. Specifically, we minimized mean squared error in predicting both contrast
response functions using a nonlinear method (MATLAB fminsearch). We used the minimized
mean squared error as a measure of the quality of the model fit.

Plotting Model Fits—To illustrate the fit of the models graphically, we aligned the rapid
and spaced contrast functions using the best-fitting scaling parameter from each model. For
the response scaling model, the vertical distance between the two curves is estimated by
sresp. Accordingly, we divided the rapid response amplitudes by sresp and plotted them with
the unaltered spaced responses. This had the effect of shifting the rapid curve upward to align
with the spaced curve. For the stimulus scaling model, the horizontal distance between the two
curves is estimated by sstim. Accordingly, we divided the rapid contrast levels by sstim and used
them to plot the rapid response amplitudes. This had the effect of shifting the rapid curve
leftward to align with the spaced curve. For both models, we also plotted the predicted spaced
responses interpolated across the entire contrast range.

Resampling Analysis—To evaluate the reliability of model fitting results, we conducted
resampling analyses. In each of 500 resamplings, we drew random samples of 4 subjects’ data
with replacement from our original data set. For each sample, we averaged across subjects to
compute a new rapid and spaced contrast response function. We then fit the stimulus and
response scaling models to this resampled function. For each resampling, we recorded the
mean-squared error and parameter estimates for each model fit.

To compare models directly, we calculated the percentage of resamplings in which one model
yielded lower mean-squared error than the other. We also computed confidence intervals on
our parameter estimates by finding the range of parameters spanned by 95% of the resamplings.

Results
Pilot Experiment

In a pilot experiment, a spaced ER design with a 16 sec SOA and a rapid ER design with a 3
sec SOA produced responses in V1 that did not differ significantly (F(1,6) = 1.79; p > 0.2).
These results agree with prior studies that found only small differences between spaced designs
and rapid designs with 4–5 sec SOAs (Pollmann et al., 1998; Miezin et al., 2000; Ollinger et
al., 2001). Accordingly, in subsequent experiments we used the 3 sec SOA as the spaced design
and moved to a shorter, 1 sec SOA for the rapid design.

Experiment 1
FMRI responses from V1 measured with a rapid, 1 sec SOA were significantly smaller than
responses measured with a spaced, 3 sec SOA (F(1,18) = 52.2; p < 0.01). Figure 3 plots the
data, averaged across 4 subjects, as a function of stimulus contrast. Figure 4A plots the peak
amplitudes of the BOLD responses as a function of stimulus contrast (i.e., contrast response
functions).

We next tested whether two simple models could account for the measured contrast response
functions. Because the response scaling model accounts for the effects of rapid designs by
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multiplying the spaced fMRI responses by a constant factor, it predicts that the two curves will
be shifted copies of each other along the log response axis. Thus an upward vertical shift of
the rapid data should bring it into alignment with the spaced data (Figure 2A).

Similarly, because the stimulus scaling model accounts for the effects of rapid designs by
multiplying the strength of the stimuli by a constant factor, it predicts that the two curves will
be shifted copies of each other along the log contrast axis. Thus a leftward shift of the rapid
data should bring it into alignment with the spaced data (Figure 2B).

The stimulus scaling model fit the data from Experiment 1 better than the response scaling
model. This can be easily seen by comparing the alignment of the two curves using the best
fitting scale factors from each model (Figure 4B and C; see Methods for aligning procedure).
The data fall closer together following a horizontal shift than a vertical shift.

Figure 4 also shows the models’ predicted responses for the spaced condition across the entire
contrast range. The proximity of these predictions to the actual data demonstrates the ability
of the models to fit the measured contrast response functions. In addition, both the spaced and
the shifted rapid data fall closer to the predictions of the stimulus scaling model than the
response scaling model.

The better fit of the stimulus scaling model was reliable. The mean squared error of the best-
fitting stimulus scaling model was lower than the mean squared error for the best-fitting
response scaling model in over 95% of samples in a resampling analysis (see Methods).

The scaling parameter in the stimulus scaling model also provides a convenient way to quantify
the effects of the rapid design. The rapid design scaled the effective contrast to 16% of the
spaced design on average (median of resamplings), with the range 9%–27% covering 95% of
the resamplings.

Experiment 2
The effects of the rapid ER design were greatly reduced in Experiment 2. Figure 5 plots the
average fMRI responses from V1 for the spaced and rapid scans. In contrast to Experiment 1,
the rapid responses were only slightly smaller than the spaced responses and did not differ
significantly from each other (F(1,6) = 0.08; p > 0.5).

We used the stimulus scaling model to compare quantitatively the effects of the rapid design
in our two experiments. The median estimated stimulus scale factor was 97% in Experiment
2. Our resampling analysis showed that this number was reliably larger than the estimated scale
factor in Experiment 1. In Experiment 2, 95% of resampled stimulus scale factors fell between
67% and 140%, which did not overlap with the confidence interval for Experiment 1 (9%–
27%).

Extrastriate Cortex
Compared to V1, results from extrastriate cortex showed larger differences between rapid and
spaced designs. This was true for both Experiments 1 and 2. Figure 6 plots contrast response
functions from both experiments for areas V1, V2, VP, V3, V3a, and V4v, and Table 1 lists
the estimated stimulus scaling parameters for each visual area. Prior studies have also found
larger failures of linearity in visual areas beyond V1 (Huettel and McCarthy, 2001;Boynton
and Finney, 2003).

Other results were generally similar in V1 and extrastriate cortex. The stimulus scaling model
accounted for the results of Experiment 1 better than the response scaling model (percentage
of resamplings where stimulus scaling fit better: V2: 87%, V3: 62%, VP: 91%, V3a: 54%,
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V4v: 84%). Also as in V1, the differences between rapid and spaced responses were an order
of magnitude smaller in Experiment 2 than in Experiment 1. We were unable to conduct the
resampling analysis in Experiment 2 because the data were relatively noisy. Specifically, many
of the resampled contrast response functions were non-monotonic, which led to unacceptably
poor model fits. Hence Table 1 reports scaling factors only from fits to the grand average data
for Experiment 2.

Discussion
Our results suggest that rapid and spaced ER designs can be related in a relatively simple way:
rapid designs scale the effective strength of stimuli to evoke hemodynamic responses. In V1,
for example, the rapid design reduced the effective contrast of stimuli to 16% of their strength
in the spaced design. This stimulus scaling model fit our data quite well and reliably better than
a response scaling model.

The failure of the response scaling model means that the quantitative pattern of responses is
not maintained across the change from rapid to spaced designs. Specifically, relative
magnitudes of responses across conditions can differ between the two designs. In this important
sense, data from rapid ER designs will not generalize to spaced designs. The stimulus scaling
model, however, provides a simple way to account for these unintended effects of rapid ER
designs.

A few prior experiments directly compared results from rapid and spaced designs (Friston et
al., 1998; Pollmann et al., 1998; Miezin et al., 2000; Ollinger et al., 2001; Birn and Bandettini,
2005; Wager et al., 2005). Only one of these manipulated stimulus strength, and it used a 5 sec
SOA and found only very small differences between the rapid and spaced designs (Ollinger et
al., 2001). Others have tested a single stimulus strength below 3 sec ISIs and found that rapid
designs produce substantially smaller responses than spaced designs (Friston et al., 1998; Birn
and Bandettini, 2005; Wager et al., 2005). Our results support stimulus scaling as a simple
quantitative account of these effects.

There remain two reasons for caution in interpreting our results. First, because brain regions
differ in the neural and hemodynamic properties that produce failures of superposition (Birn
et al., 2001; Huettel and McCarthy, 2001; Miller et al., 2001; Boynton and Finney, 2003;
Huettel et al., 2004b; Soltysik et al., 2004), we cannot be certain how well the stimulus scaling
model will account for data in non-visual regions in the brain. Second, the failures of the
response scaling model, while reliable, are small enough that it may still be adequate for some
applications. This should be especially true when effects of neural adaptation are minimized.

Other simple models of the effects of rapid ER designs
Another model of the difference between rapid and spaced designs is a simple subtractive
effect. This model predicts responses from rapid designs to be smaller than responses from
spaced designs by a fixed absolute amount (as opposed to a fixed percentage). Simple
subtractive models seem unlikely to explain differences between the two design types because
they predict negative responses for conditions where spaced designs would yield small positive
responses close to zero. Such inversions of weak responses do not appear in our data and have
not been reported elsewhere in the literature. Nevertheless we fit a simple subtractive model
to our results and compared it to the stimulus scaling model. The stimulus scaling model fit
our data better than the subtractive model, yielding a smaller mean squared error in 96% of
500 resamplings of data from V1.
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We cannot not rule out, however, models that combine several of the simple effects discussed
above. To test models that, for example, combine subtractive and scaling effects, will require
more powerful data.

Complex models of nonlinearities in rapid ER fMRI
A large number of prior studies have documented failures of temporal superposition in fMRI
data (Boynton et al., 1996; Dale and Buckner, 1997; Robson et al., 1998; Vazquez and Noll,
1998; Glover, 1999; Ances et al., 2000b; Huettel and McCarthy, 2000; Liu and Gao, 2000;
Birn et al., 2001; Huettel and McCarthy, 2001; Miller et al., 2001; Boynton and Finney,
2003; Soon et al., 2003; Huettel et al., 2004b; Huettel et al., 2004a; Soltysik et al., 2004; Gu
et al., 2005; Murray et al., 2006). Other studies have found additional nonlinearities in fMRI;
for example, increasing neural activity by a certain percentage fails to increase fMRI response
by the same percentage (e.g., Logothetis et al., 2001; Devor et al., 2003; Jones et al., 2004;
Sheth et al., 2004; Hewson-Stoate et al., 2005; Wan et al., 2006).

Attempts to capture these nonlinearities in fMRI data have produced a number of complex
models, including Volterra Kernels and biologically inspired models of neural and blood flow
dynamics (Buxton and Frank, 1997; Friston et al., 1998; Friston et al., 2000; Miller et al.,
2001; Buxton et al., 2004; Birn and Bandettini, 2005). Our results do not falsify these more
complex models. Volterra kernels with enough terms can model any nonlinearity, and the
biologically inspired models contain explicit parameters to capture neural adaptation, the likely
cause of our effects. The complex models, however, may be difficult to use for many everyday
fMRI applications. Fitting these models can be both computationally expensive and ambiguous
if the data are not rich enough to constrain all their parameters.

The stimulus scaling model may represent a useful middle ground between assuming linearity
and implementing the more complex nonlinear models (c.f., Wager et al., 2005). For many
applications, stimulus scaling may provide a relatively complete account of nonlinearities in
the fMRI data that is easy to implement and interpret.

Sources of nonlinearities in fMRI
Two aspects of our results suggest that neural adaptation is a major source of nonlinearity in
rapid ER designs. First, stimulus scaling effects, like those found in our fMRI data, have also
been observed in electrophysiological studies of long-term adaptation. When individual
neurons in visual cortex are driven strongly over a period of minutes, they reduce their
responsiveness to subsequent stimuli. These long-term changes in responsiveness are well
modeled as a scaling of effective stimulus contrast (Sclar et al., 1989). The similarity of this
effect to the results of Experiment 1 suggests that neural adaptation may underlie the observed
effects of rapid ER designs. Responses in the rapid design could be smaller than in the spaced
design because the rapid stimulus presentation maintains high firing rates for a long period of
time, causing neurons to reduce their responsiveness. A recent fMRI study also found effects
of long-term adaptation that resemble stimulus scaling (Gardner et al., 2005).

Second, Experiment 2 reduced factors expected to produce neural adaptation and yielded much
smaller differences between rapid and spaced designs. The stimuli were presented very briefly
and were composed of sinusoidal gratings whose orientation changed from trial to trial. Such
stimuli would be expected to generate lower average spiking rates in orientation selective V1
neurons and so should reduce adaptation. Prior work has long suggested that neural adaptation
could be a major factor producing reductions in the BOLD response (Boynton et al., 1996;
Huettel and McCarthy, 2000; Birn et al., 2001; Boynton and Finney, 2003; Buxton et al.,
2004; Soltysik et al., 2004), and several fMRI studies have demonstrated long-term neural
adaptation in human V1 (Tootell et al., 1998; Engel and Furmanski, 2001; Engel, 2005; Fang
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et al., 2005; Gardner et al., 2005; Larsson et al., 2006). Indeed, the assumption that adaptation
influences the BOLD response has been used to develop novel experimental paradigms such
as fMR-adaptation (e.g., Grill-Spector and Malach, 2001).

Importantly, the results of Experiment 2 were not simply due to the stimuli producing smaller
absolute fMRI responses overall. Responses in Experiment 2 were roughly equal in magnitude
to responses for the lower contrast stimuli in Experiment 1. Yet, when we compared just these
two sets of responses, we still observed much larger differences between rapid and spaced
designs in Experiment 2.

We cannot rule out, however, that some part of the nonlinearity in rapid ER fMRI is due to
non-neural factors, such as blood flow dynamics. A number of results are consistent with non-
neural contributions to failures of superposition (Ances et al., 2000a; Miller et al., 2001;
Pfeuffer et al., 2003; Martindale et al., 2005; Murray et al., 2006). Nevertheless, in our
paradigm, changing factors known to control neural adaptation greatly reduced nonlinearities
in the BOLD response (see also Huettel et al., 2004a). This result has two possible
interpretations. First, non-neural nonlinearities may be controlled by the same factors that
control neural adaptation. Alternatively, these nonlinearities may only contribute weakly to
signals in rapid ER fMRI. Resolving this issue will likely require further examination of
temporal superposition with methods that combine imaging and electrophysiology.
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Figure 1.
Stimulus and Methods. Subjects viewed contrast-reversing checkerboards (pilot and
Experiment 1; Experiment 2 used gratings, not shown) that varied in their contrast and were
presented for 500 msec with fixed temporal intervals between their onsets (SOA). To control
attention, subjects monitored a string of letters for a target letter (see text for details).
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Figure 2.
Model Predictions. A. Response scaling model. The left plot shows sample spaced data (taken
from Experiment 1; pink curve) alongside hypothetical rapid data (black curve). The response
scaling model predicts that shifting the rapid contrast response function along the vertical
response axis will best align the two curves (right plot). B. Stimulus scaling model. The left
plot shows the same spaced data plotted alongside a second set of hypothetical rapid data (black
curve). The stimulus scaling model predicts that shifting the rapid contrast response function
along the horizontal contrast axis will best align the two curves (right plot).
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Figure 3.
Results of Experiment 1 in V1. Average normalized hemodynamic responses from spaced (3
sec SOA, pink curve) and rapid (1 sec SOA, green curve) designs. The black bar spans the size
of the average standard error of the mean.
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Figure 4.
Model Fits to Experiment 1 Data. A. Peak fMRI spaced (pink) and rapid (green) responses as
a function of stimulus contrast. The error bars span 2 standard errors of the mean. B. Fit of the
response scaling model. The rapid curve has been shifted vertically into optimal alignment
with the spaced curve. The dotted black curve traces the model fit (see text for details). C. Fit
of the stimulus scaling model. The rapid curve has been shifted horizontally into optimal
alignment with the spaced curve. The dotted black curve traces the model fit.

Heckman et al. Page 16

Neuroimage. Author manuscript; available in PMC 2007 March 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Results of Experiment 2 in V1. A. Average hemodynamic responses from spaced (3 sec SOA,
pink curve) and rapid (1 sec SOA, green curve) designs. The black bar spans the size of the
average standard error of the mean.
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Figure 6.
Results of Experiment 1 (A) and Experiment 2 (B) for all visual areas. Average peak fMRI
responses are plotted as a function of stimulus contrast. The error bars span 2 standard errors
of the mean.
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Table 1
Results of Experiment 1 and 2. Each cell contains the stimulus scaling that best aligns the rapid and spaced
contrast response functions. Ranges in parentheses contain 95% of scalings produced by 500 resamplings of the
data.

Stimulus Scaling Factors
V1 V2 V3 VP V3a V4v

Exp 1 15% (8–27) 7% (3–13) 4% (1–16) 4% (2–8) 2% (0–9) 5% (2–13)
Exp 2 97% 70% 27% 82% 80% 58%
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