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Abstract
High throughput screening (HTS) of cell-based assays has recently emerged as an important tool of
drug discovery. The analysis and modeling of HTS microscopy neuron images, however, is
particularly challenging. In this paper we present a novel algorithm for extraction and quantification
of neurite segments from HTS neuron images. The algorithm is designed to be able to detect and link
neurites even with complex neuronal structures and of poor imaging quality. Our proposed algorithm
automatically detects initial seed points on a set of grid lines and estimates the ending points of the
neurite by iteratively tracing the centerline points along the line path representing the neurite segment.
The live-wire method is then applied to link the seed points and the corresponding ending points
using dynamic programming techniques, thus enabling the extraction of the centerlines of the neurite
segments accurately and robustly against noise, discontinuity, and other image artifacts. A fast
implementation of our algorithm using dynamic programming is also provided in the paper. Any thin
neurite and its segments with low intensity contrast can be well preserved by detecting the starting
and ending points of the neurite. All these properties make the proposed algorithm attractive for high-
throughput screening of neuron-based assays.

Keywords
neuron image analysis; automatic neurite tracing; high-throughput screening; neurite extraction; line
structures; dynamic programming

1. Introduction
Knowledge and tools from cellular and molecular biology is playing an increasingly important
role in assisting researchers in the pharmaceutical industry in studying the mechanisms of
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diseases and in finding better drug hits and leads. High-throughput screening (HTS) technology
has recently emerged as an important drug discovery tool for identification of biological probes
and drug leads by screening large volume, diverse biochemical and cell-based assays (Feng,
2002,Cacace et al., 2003,Dunkle, 2003,Fox, 2003,Gaunitz and Heise, 2003,Klyushnichenko,
2003,Yarrow et al., 2003,Perlman et al., 2004). The power of the high-throughput screening
comes from the automated fluorescence microscopy imaging techniques that make it possible
and facile to visualize the complex biological processes at the cellular and molecular levels
and allow speedy and economic acquisition of such high throughput neuron image data. This
technology generates huge amounts of fluorescence microscopy images, with each image
containing several million pixels. Accessing these data to extract and compose useful
information requires efficient and cost-effective image analysis tools that involve minimum
human interaction, the image processing task of which has been a challenging problem for
years.

In the context of high-throughput screening of neuron-based assays, the fundamental goals of
neuron image processing include: 1) measuring the length of the total neurite segments, and
2) detecting and segmenting neuron cells. In this paper, we consider the problem of
automatically extracting and labeling all the neurite segments in a fluorescence microscopy
neuron image. We observe that an individual neurite segment can be treated as a bright
elongated wire-like structure surrounded by dark background; in this way, the problem is
equivalent to the problem of extracting line structures from digital images.

The existing research work on extraction of line structures in digital images can be roughly
categorized into three groups. The first group of algorithms is generally referred to as tracing-
based algorithms (Collorec and Coatrieux, 1988,Coatrieux et al., 1994,Janssen and Vossepoel,
1997,Polli and Valli, 1997,Can et al., 1999,Al-Kofahi et al., 2002,Al-Kofahi et al., 2003). When
extracting a single neurite segment, these algorithms start from an automatically selected seed
point and detect a series of points along the centerline of the segment by estimating the local
direction of each point. Each centerline point is traced based on its previous detected centerline
point in a recursive manner until certain stopping conditions are satisfied. This group of
algorithms is efficient since it only processes the pixels that are close to the line structures.
Another advantage is that no further linking algorithm is needed since the points on the neurite
segment can be linked and labeled during the tracing process. However, since most of these
algorithms consider only the grayscale values and their estimation of the local directions is not
robust, their performance on line extraction is quite low for images with poor quality or of
complex line structures.

The second group of algorithms on line extraction is based on the concept of line-pixel detection
(Chaudhuri et al., 1989,Wang and Pavlidis, 1993b,a,Kweon and Kanade, 1994,Maintz et al.,
1996,Steger, 1996,Sato et al., 1998,Steger, 1998,Frangi et al., 1999,Wink et al., 2002). For
each pixel, the algorithms consider local geometric properties of the lines, such as ridges and
ravines, as well as their local orientations. The line pixels can be extracted accurately by
modeling the 2-D line profiles and examining its first and second derivatives using the Gaussian
smoothing kernel (Florack et al., 1992,Iverson and Zucker, 1995,Lindeberg, 1998). After
detecting all the individual line pixels, additional effort is needed to link them together (Steger,
1998). Although highly precise on extracting lines, these algorithms suffer a drawback that
thin lines or lines with low intensity contrast may be smoothened out unintentionally by the
Gaussian kernel, resulting in the loss of the corresponding neurite segments. Furthermore, they
cannot resolve issues of discontinuities since there are no line pixels found in the breaking
areas.

The third group is searching-based algorithms (Barrett and Mortensen, 1996,Falcão et al.,
1998,Mortensen and Barrett, 1998,Falcão et al., 2000,Meijering et al., 2004). Given each pair
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of starting point and ending point, these algorithms extract the line by searching for an optimal
path from the starting point to the ending point. An optimal path can be found by calculating
the globally minimal cumulative cost using a predefined cost function (Meijering et al.,
2004). This is also referred to as live wire algorithm based on dynamic programming
technology. Although robust against noise and discontinuities in line structures, these
algorithms are unable to extract a line when a starting point is located within a large bright
region with intensity values evenly distributed (usually a region of neuron cell body). They are
computationally expensive since they search for and find an optimal path for every pixel in the
image, not only for the ending point. The requirement of manually selecting starting points and
ending points makes it certainly impractical for high throughput screening applications.

Based on the aforementioned observations and increasing development of high-throughput
screening of neuron-based assays, we believe that it is necessary to develop an automated image
analysis algorithm to extract and label the neurite segments accurately and completely with
minimum user intervention. In this paper, we propose a novel algorithm for automatic labeling
and tracing of neurite segments in microscopy neuron images. The algorithm selects the starting
and ending points automatically and links the line using dynamic programming techniques.
Sections 2 and 3 describe the automatic selection of starting points and ending points while
the linking algorithm using dynamic programming is presented in Section 4. Section 5 shows
the experimental results and the validation method used to verify the extraction performance.
The selection of the parameters and their effect on performance are also discussed. Section 6
presents our conclusions.

2. Starting point selection
We present in Fig. 1 a block diagram for our proposed algorithm. The input images are pre-
processed to remove undesirable features and enhance branching structures. The starting points
and the ending points of the neurite segments can be automatically detected so that human
interaction is no longer required. The points are then linked automatically using dynamic
programming technique. Each step is discussed in detail in the following subsections.

A starting point, also called a seed point, is a point on or near the centerline of a neurite segment.
To extract all the neurite segments, at least one starting point should be selected on each
individual segment. More than one starting point is needed in cases where the neurite structure
is complex or the intensity contrast is very low along the neurite segment.

When selecting the starting points, only N horizontal lines and M vertical lines in the neuron
image are considered. The pixels on each of the horizontal or vertical lines are first processed
by a low-pass filter in the form of [0.25 0.5 0.25]T, an approximation of the 1-D Gaussian
kernel. Since a discrete approximation in this form involves only local fixed point shifting and
adding operations, the computational cost for the convolution can be significantly reduced.
Thus, high-frequency components are removed from the sequence of pixels. After low-pass
filtering, local intensity maxima are searched and detected using a window of size W along
each line. W should be chosen so that at least one maximum is detected on each neurite segment.
Thus, a small value is desired. In our work, we use the minimum expected neurite width as the
value for W. Such a small window size may leads to multiple local maxima at locations where
the neurite segments are very wide. This is how redundant seed points are detected. We believe
that it is necessary to use redundant seed points so that the extraction is complete, partially
because our targeted neuron images have very complicated neurite structures. The starting
points will be selected among the local maxima detected on the set of grid lines.

We select the starting points based on the following two criteria:
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Criterion 1: the local maxima Im has an intensity value that is larger than or equal to a
threshold value TI: Im≥TI.

The threshold value is determined by the intensity values of the image: TI=μI+σμ, where
μI is the median intensity value of all the pixels, and σμ is the standard deviation calculated
based on μI. This way, we pick up the pixels having intensity values that are above the
average intensity of the image. However, those pixels whose intensity values are below
the averaged intensity value and are on or near neurite segments will be ignored. Thus we
need the second criterion for these pixels.

Criterion 2: the local maximum, Im, has a local signal-to-noise ratio, SNRm, that is larger
than or equal to a threshold value TSNR: SNRm≥TSNR.

SNRm is calculated based on the point m and its local neighborhoods Nm, a 10 ×10 block
of pixels centered at the point m. We calculate a local threshold value TN for the
neighborhoods Nm using Otsu’s algorithm (Otsu, 1979). The pixels in Nm are grouped as
the foreground if their intensity values are larger than or equal to TN. The rest of the pixels
in Nm are then grouped as the background. By defining the mean value of the intensities
of the foreground pixels and background pixels as μf and μb respectively, and the standard
deviation of the background pixels as σb, the local signal-to-noise ratio SNRm is calculated
as follows:

SNRm =
μf − μb
σb

(1)

the threshold value TSNR is determined by the mean value of all the local signal-to-
noiseratio calculated by (1) for all the local maximum point m detected previously:

TSNR ≥median
m

{SNRm} (2)

In other words, if a local maximum point has an intensity value that is below the threshold,
we still keep it as a starting point if its local SNR is above the average SNRs among all
the local maxima points.

3. Ending point selection
An ending point is identified by iteratively tracing a single neurite segment from the selected
starting point until the end of the segment. The track does not need to be accurate or smooth;
since the accuracy and smoothness of the track will be achieved by the linking process based
on dynamic programming technique. Thus we need to design a rapid but rough tracing method
which has robust stopping criteria for selection of the ending points. A tracing from the current
point pi to the next point pi+1 can be described as estimating the local direction di for pi, and
tracing along di to find the point pi+1. The tracing starts at one of the starting points, steps
forward from one point to another along the neurite segment, and stops when the stopping
conditions are satisfied, at which the ending point is identified. The question is then how to
estimate the local direction of a pixel in the image.

The local direction di of point pi is estimated by correlating the neighborhoods of piwith a set
of 2-D directional correlation patterns. Early usage of such directional correlation patterns can
be found in (Sun et al., 1995) and later they were widely used in (Can et al., 1999,Al-Kofahi
et al., 2002). A correlation pattern, also called a template, is defined as a 2-D filter that calculates
a low-pass differential perpendicular to the direction of a line and low-pass averaging along
the direction of the line. An example of such patterns, designed to calculate the correlation
along the x-axis direction (0° direction), is shown in Fig. 2. Obviously a point on a line structure
along the x-axis direction will have the maximum correlation with such a pattern among all
the 2-D directions that a line structure could have. The patterns at other directions can be
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generated by rotating the one at 0° direction. Notice that the first two lines of the pattern in the
figure have opposite signs compared to the last two lines of the pattern. This means that the
maximum correlation occurs at the boundary of the line structure. Thus the local direction of
a centerline point can be estimated by correlating the corresponding points on or near the edge
of the line structure, which is achieved by searching for the edge points along the two directions
perpendicular to the local direction.

Since the local direction is unknown, we need to do searching for all the possible 2-D directions.
To simplify the process, all the 2-D directions are quantized into 16 directions (Can et al.,
1999), each represented by an integer number. We denote the quantized direction as dk where
k = 0,1,…15. There exists a pair of patterns for each dk, one for the left edge and the other for
the right edge. They are denoted as TL

k , TR
k , with subscripts L,R indicating the direction toward

the left edge or the right edge. The two directions perpendicular to dk are denoted as dL
k  and

dR
k . The correlation g between the patterns TL

k , TR
k  and a point pi with the coordinate (m,n) is

calculated as follows:

gL
k(m, n) = ∑

x,y
Np(m + x, n + y) ∗ TL

k(x, y)

gR
k(m, n) = ∑

x,y
Np(m + x, n + y) ∗ TR

k(x, y)
(3)

where Np is the neighborhoods of pi selected as a 5×6 block of pixels with p  centered at the
leftmost column. “*” denotes the multiplication operator. Such a correlation operation
obviously indicates the “matchness” between the pattern and the image at each point. For each
left direction dL

k  and its pattern TL
k , we search for a maximum correlation calculated by (3)

beginning from pi until a pre-defined maximum possible width Wmax, resulting in a total of 16
such maximum correlations. The highest correlation represents the best match and thus the
corresponding direction can be selected as the estimation of the local direction. The same search
is also applied along the right direction dR

k . The highest correlations are obtained as follows:

GL = max
k,(m,n){gL

k(m, n)}
GR = max

k,(m,n){gR
k(m, n)} (4)

where GL,GR denotes the highest correlations along the left and right directions respectively.
The points at which the highest correlations occur are identified as the edge points and are
denoted as pL,pR:

pL = (mL , nL ) = arg max
k,(m,n) {gL

k(m, n)}
pR = (mR, nR) = arg max

k,(m,n) {gR
k(m, n)} (5)

since the current point pi may not be on or near the centerline, its location needs to be adjusted.
The new location of pi resides at the middle point of the line between pL andpR. The local
direction for pi is estimated as the direction whose correlation is the highest in a total of 32
maximum correlations:

di = arg max
k

{GL , GR} (6)
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The next point pi+1 is traced from pi along the direction di as follows:

pi+1 = pi + di (7)

Once the local direction of a point is determined, the local direction for the next point can be
estimated from the three directions that are similar to the previous one. This is based on the
assumption that the directions change smoothly along the orientation of the neurite. If the
estimated local direction is di=dk for point pi, then the local direction for pi+1 will be estimated
from {dk–1,dk,dk+1}. In this way the running time is further reduced.

Since a starting point may be located at the middle of a line structure, at least two ending points
need to be identified. This is achieved by estimating two local directions for the starting point.
The second local direction is selected as the one corresponding to the second highest correlation
in the 32 maximum correlations calculated by (3). The angle between the two local directions
is 180° ± 22.5° if quantization errors are considered.

Tracing stops when it reaches the boundary of the image or a cell body, or it goes from the
foreground into the background. The following criteria capture these situations:

Criterion 1: The next centerline point has been traced before, or it is a starting point, or
its neighboring point has been traced before.

Criterion 2: The next centerline point lies on or outside the boundary of the image, or it
lies on or inside a soma region (the method to detect soma regions is discussed in (Zhang
et al., 2006)).

Criterion 3: The number of tracing steps for a single neurite reaches a pre-defined
maximum value, or it is below a pre-defined minimum value.

Criterion 4: The next centerline point has the highest maximum correlation that is below
a threshold value T.

To determine the threshold value for Criterion 4, we consider a method proposed in (Can et
al., 1999). This method is based on the dynamic range of the intensity values on the grid line
where the starting point is selected. Since the intensity values usually change along the line
being traced, the threshold value by that method terminates the tracing too early. For example,
if the intensities decrease along the line, a threshold value determined at the starting point is
obviously too high to completely trace the entire neurite segment. In this paper, we propose a
revised method that can handle this situation. At each traced centerline point pi, a threshold
value Tp is calculated based on the method by (Can et al., 1999). We compare Tp with the
smallest threshold value calculated at all the starting points in the image, and pick the maximum
one as the threshold value T that will determine if the tracing should be terminated at point
pi. That is,

T = max{min
s

{Ts}, Tp} (8)

where S is the set of all the starting points. The calculation of a threshold value on the right
hand side of (8) is applied on a single line. The line for calculating Tp is determined by the
local direction di ofpi. If di points vertically or horizontally, the line is the vertical line or the
horizontal line with pi on it. Otherwise both vertical and horizontal lines are used to calculate
Tp. The line for calculating Ts is simply the one that is used to select the starting point. Since
the minimum value among all the threshold values is used, the early termination of a tracing
is avoided. The larger one between Ts and Tp is used to ensure that the tracing stops when it
enters the background. Using only Tp will lead to an infinite loop or the tracing is terminated
too late.
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4. Center-line extraction using dynamic programming
4.1. Introduction to dynamic programming

Dynamic programming (Bellman and Dreyfus, 1962) is an optimization procedure that is
designed to efficiently search for the global optimum of an energy function; it is an algorithmic
technique based on a recurrent formula and some starting states. The problem can usually be
divided into stages with a decision required at each stage. Each stage has a number of states
associated with it. The decision at one stage transforms one state into a state in the next stage.
Given the current state, the optimal decision for each of the remaining states does not depend
on the previous states or decisions. However, the sub-solution of the problem at each stage is
constructed from the previous ones, which is distinguished from the divide and conquer
algorithm. There exists a recursive relationship that identifies the optimal decision for stagei,
given that stage i+1 has already been solved, and the final stage must be solvable by itself. The
dynamic programming solutions have a polynomial complexity which assures a much faster
running time than other techniques, such as the backtracking and brute-force. The most
important and difficult issue in dynamic programming is to take a problem and determine stages
and states so that all of the above characteristics hold. More details and examples can be found
in (Cormen et al., 2001)

In the field of computer vision, dynamic programming has been widely used to optimize the
continuous problem and to find stable and convergent solution for the variational problems
(Yamada et al., 1988,Amini et al., 1990). Many boundary detection algorithms use dynamic
programming as the shortest or minimum cost path graph searching method (Mortensen et al.,
1992,Geiger et al., 1995). The problem of such a technique, if applied on image segmentation,
is that multiple user inputs are required in case of parameter adjustment, change of initial
conditions, or any other situations that require the restart of the application. The live wire
technique, an interactive optimal path selection algorithm, was developed to solve the problem
which can find multiple optimal paths from one seed point to every other pixel in the image,
and display the minimum cost path from the current point to the seed point on-the-fly (Barrett
and Mortensen, 1996,Falcão et al., 1998,Mortensen and Barrett, 1998,Falcão et al., 2000).
Dynamic programming, however, is more suitable for the neurite extraction problem, since the
starting point and the ending point are known. The linking between a pair of points can be
considered as a problem of searching for an optimal path between the two points, a problem
that can be solved using dynamic programming approach, if the energy function is defined
properly.

4.2. Optimal path selection
We denote the local energy cost as cL(p) (which is related to the line structure and will be
discussed later in this section) for point p and the direction energy cost as CD(p,q) representing
the linking cost from point p to one of its 8-neighbors q. Then the total cost C from p to q is
given by:

C(p, q) = cL (p) + cL (q) + cD(p, q) (9)

if P(p0, pK) denotes a path from a starting point p0 to an ending point pK, the total cost for such
a path will be:

C(p0, pk) = ∑
i=0

k
cL (pi) + ∑

j=0

k−1
cD(pj, p j+1) (10)
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There exists ni number of candidate points for each point pi (i= 1,…K–1) between p0 and pK.

That is, pi ∈ {pi
1, pi

2, …pi
ni}. The problem of finding an optimal path from p0 to pK is

equivalent to searching for a path P̂(p0, pk ) = {p0, p1, …, pk−1, pk }that minimizes C
(p0,pK):

p1, …, pk−1 = arg min
p

{C(p0, pk)} (11)

by rewriting equation (10) as a multistage process:

C(p0, p0) = cL (p0)

C(p0, pi) = C(p0, pi−1) + cL (pi) + cD(pi−1, pi)
(12)

where i=1,…, K. Thus, with the dynamic programming approach, the problem of finding
P̂(p0, pk ), the optimal path can be divided into stages and each pool of points on the path
between p0 and pK is regarded as a stage. All the possible candidate points for each stage
become the possible states of that stage. Thus a path can be constructed as illustrated in Fig.
3, with each circle representing a point. Starting from point p0, we calculate for each state its
minimum cost accumulated from the previous stage as follows:

Cm(p0) = 0

Cm(pi
j) = min

t=1,…ni−1
{Cm(pi−1

t ) + cL (pi
j) + cD(pi−1

t , pi
j)} (13)

where pi
j is the j-th candidate point (state) for the i-th stage, and Cm(pi

j) is the minimum cost

if linking p0 and pi
j. The candidate point which produce Cm(pi

j)is then stored for future
retrieval of the optimal path. The cost of the starting point is set to zero, even though it may
have a non-zero local cost. The optimal path can be obtained by tracing from the ending point
back to the starting point:

Pi−1 = arg min
t

{Cm(pi−1
t ) + cL (pi) + cD(pi−1

t , pi)} (14)

where i=K,… 2 and t= 1,… ni–1

The selection of the candidate points for each stage, however, is a difficult problem for the
above dynamic programming approach, since in 2-D images one point may have many linking
relationships to another point. For example, one point can directly connect to another point via
the diagonal direction, or it may connect to the third point vertically and then connect the
targeted point horizontally, as shown in Fig. 4. Here we use the idea of Dijkstra’s unrestricted
graph search algorithm (Dijkstra, 1959) to define the linking relationships among the candidate
points. With this method a list L of active points is maintained by adding unprocessed points
to the list in an increasing order of the cumulative cost. The calculation of the cumulative cost
is applied on the point p with the minimum cost in L. Basically the 8 neighbors of p are
considered the candidates of the next stage if they have not been earlier processed. If a
neighboring point Np is in L (Npis a state in a previous stage) and has a cumulative cost that is
larger than that if linking directly p and Np, then Np is removed from L , which means the
previous calculation for Np is invalid, and Np can be reconsidered as a candidate for the new
stage. Thus a new connecting relationship is created between the seed point and Np by linking
directly Np and p. By adjusting the candidate points in each stage based on the cumulative cost,
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each pixel in the 2-D image will have an optimal path to the starting point, including the ending
point. The optimal path can then be retrieved using (14) by back tracing from the ending point.

4. 3. Complexity analysis
By recording the interim results, the dynamic programming technique has a running time of
О (N2) for solving combinatorial problems compared to a traditional recursive algorithm that
has a О(2N) running time, where N is the size of the problem. However, the running time of
dynamic programming may dramatically increase when applied in high-throughput screening,
due to the huge amount of neurite segments presented in a neuron image. The experiments
show that a typical 1000×1000 neuron image may have up to 500~1000 neurite segments, so
it is reasonable to assume that the total number of neurites in an image is proportional to the
image size Nx (Nx=N×N for an N×N image). The dynamic programming then needs O(Nx

2)
for each starting point on an individual neurite segment since it calculates an optimal path
between the starting point and all the other pixels in the image, resulting in a total of O(Nx

3)
running time if a single neuron image is processed. Obviously this is not feasible for high-
throughput application. To address this problem, we apply dynamic programming only on a
small area of the image which is defined by the starting point, the ending point, and the edge
points detected during the ending point tracing process. The searching area (defined as a top-
left pixel ITL and a bottom-right pixel IBR in the image) is selected as follows:

ITL = (xTL , yTL ) = (min{xC, xE}, min{yC, yE})

IBR = (xBR, yBR) = (max{xC, xE}, max{yC, yE}) (15)

where (xC,yC) is the coordinate of all the center-line points detected and (xE,yE) is the coordinate
of all the edge points (left and right edge points) detected during the tracing process. Since a
neurite segment should not cross itself, its maximum length Lmax is:

L max = (N + N ) + (N − 1 + N − 1) + … + (2 + 2) + (1 + 1)

= 2 N (N − 1)
2 = N (N − 1)

= O(Nx)

(16)

At each point we search within a neighborhood of size m (m=8 or m=4), so the cost for linking
one neurite segment is О(mNx). If the number of neurite segments is estimated as Nx, the
total running time is О(mNx Nx). Since m can be fixed, we have the total cost О(Nx Nx)

4.4. Designing the energy function
In designing the energy function for the optimal path searching, we have adopted the method
proposed in (Meijering et al., 2004). The second-order directional derivative has been widely
used for detecting ridges and ravines in digital images. With this method, the image is treated
as a 2-D noisy function and its first- and second-order derivatives are estimated as the image
convolved with the derivatives of the 2-D Gaussian kernel. The Gaussian kernel and its
derivatives in 1-D case with the standard deviation σ are given by:
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G(x, σ) = 1
σ 2π exp( − x 2

2σ2 )
G ′(x, σ) = − x

σ3 2π
exp( − x 2

2σ2 )
G ″(x, σ) = x 2 − σ2

σ5 2π
exp( − x 2

2σ2 )
(17)

Thus the derivatives of an image, if treated as a 1-D function I(x), can be estimated as follows:

I ′ (x) = I (x) ∗ G ′ (x, σ), I ″ (x) = I (x) ∗ G ″ (x, σ) (18)

where “*” is the convolution operator. Considering a modified Hessian matrix whose form is
given by:

(Ixx −
1
3 Iyy

4
3 Ixy

4
3 Ixy I yy −

1
3 Ixx

) (19)

where Ixx,Iyy,Ixy are the partial derivatives along the x, y directions for a 2-D image I , the local
directions of a ridge point are given by the eigenvectors of this matrix. Let λa, λb denote the
two eigenvalues and, νa, νb the corresponding eigenvectors which satisfy ∣ λa ∣ > ∣ λb ∣ , it
is known that the longitudinal direction of the ridge structure is the pointing direction of νb and
its perpendicular direction is given by the direction of νa. The local cost cL(p) for each ridge
point p is:

cL (p) = {1 − λa
λamin

, ifλa < 0

1 otherwise
(20)

where λa min is the minimum λa over all the pixels in the image. Obviously the local costreflects
how close the ridge point is to the center of the line structure. That is, the closer the point is to
the center, the lower the local cost will be. The cost CD(p1,p2) of linking two points p1,p2 is
given by:

cD(p1, p2) = 1
2 ( 1 − eb1ep2−p1

+ 1 − eb1ep1−p2) (21)

where eb1 and ep2-p1 are the unit vector of νb1 and p2 – p1. From formula (21) we see that the
linking cost will be high in cases when sharp changes occur along the boundary direction and
low in cases when the two linking points have similar gradient directions. The total cost C
(p1,p2) from p1to p2 is defined as:

C(p1, p2) = εcL (p2) + (1 − ε)cD(p1, p2) (22)

where ε is a weighted parameter that has a value between 0 and 1. Later in the result section
we will discuss how this parameter affects the extraction performance. Since the ending points
are already known, the problem of ignoring some neurite segments by the Gaussian smoothing
kernel will be avoided.
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5. Results, validation, and discussion
5.1 Image acquisition

The test images are provided by Yuan’s Lab, one of our collaborators at the Institute of
Chemistry and Cell Biology (ICCB), Harvard Medical School. ICCB has an excellent high-
throughput small molecule screening facility, one of the first high throughput screening
facilities in academic centers. Many researchers have devoted their time and efforts to
identifying potential compounds that could prevent damages and losses of synapses and
neurites, known to be the early events in Alzheimer’s disease (AD). One predominant view of
the primary cause of AD is the abnormal accumulation of the Aβ peptides, the primary
component of the amyloid plaques. In order to study the role of Aβ, an experiment at Yuan’s
Lab was established using a sensitive and reproducible assay for amyloid neurotoxicity in
mouse primary cortical neurons using either aggregated or soluble Aβ 1-40. Light microscopy
was used to observe neuronal morphology following Aβ treatment as compared to untreated
controls. Recently they have further extended the analyses of the neurite loss following Aβ
treatment to the use of high-throughput screening methodology developed at ICCB. They
utilized cortical neurons stained with neuronal-specific antibody MAP2 and normalized to
neuronal cell number by counterstaining with nuclear stain DAPI. Primary cortical neurons
were left untreated or treated with 10 μM Aβ1-40 in 384 well plates for 48 hours, followed by
staining with TUJ1 and Sytox Green. Cell images were acquired using Autoscope platereader
at 20X resolution.

5.2 Neurite extraction results
Figure 5 and Figure 6 show two results for neurite segment extraction of two neuron images.
Each test image has complicated neurite structures and manually labeling those neurite
segments would require heavy laboring and huge time. Manual labeling may also ignore those
neurite segments with very low intensity contrast presented in the test images. Our proposed
algorithm can extract and label most neurite segments in the image and the quantification of
those neurite can also be done automatically. The running time for extracting the neurite
structures in an image with size 1360×1200 is 24.1 seconds with Pentium IV, 2.4GHz and
1024MB memory, compared to 24 minutes of running time if a typical live-wire based software
is used to extract the same number of neurite segments from the same neuron image using the
same computer.

We also compare the extraction performance between our proposed method and the NeuronJ,
a method proposed by Meijering et al (Meijering et al., 2004)and a plug-in tool of the ImageJ
(Lydon, 2005).Figure 7 shows a partial image of neurite segments and two extraction
results.Figure 7 (b) is the extraction result by NeuronJ. Note that the starting point and the
ending point have to be specified by the user.Figure 7 (c) is the extraction result by our proposed
method. The starting point and the ending points are automatically determined by the algorithm.
It is clear to see that our proposed method has the extraction performance as accurate as that
of NeuronJ and outperforms NeuronJ in terms of automation.

5.3 Validation
It is a difficult problem to evaluate the algorithm for automated neurite tracing, because manual
labeling always has bias and different people may have quite different results. If the manual
tracing is performed in a completely independent way and blinded to the algorithm, then the
quantitative difference between the manual results and the automated results will be always
quite huge. For example, users may randomly pick up a starting point and draw a centerline
from that point and stop at any location they want. In images with complicated branching
structures, human users may select a branch that is different from the one selected by the
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algorithm, even though the overall labels for the two methods could be very similar if examined
visually.

If the manual tracing is guided by the automated results, then it is guaranteed that both human
users and the algorithm use the same starting and ending points and select the same routine
when tracing the complicated branching structures. Based on that, the human users still judge
independently where the centerlines are located. We believe that using this method, the
algorithm can be evaluated effectively and efficiently from both visual inspection and
quantitative comparison.

The following experiment is used to quantitatively evaluate the neurite extraction performance
of our proposed algorithm. We apply our algorithm on 100 neuron images to extract neurite
segments. Then a total of 20 soma regions and their neurite segments are randomly selected
from those images. Two independent individuals manually labelled the neurite segments in the
twenty soma regions. The manual labeling process is guided by the computer generated results
so that the two results can be compared for validation. Length difference and centerline
deviation are the quantities used for evaluating the difference between the manual results and
the computer generated results. The length difference (ϕ) is defined as follows:

ϕ = ∣ 1 −
L m
L c ∣ , where Lm is the length of the neurite segment extracted manually, Lc is the

length of the neurite segment generated by the algorithm. The centerline deviation (φ) is

calculated as follows: φ =
Area(lc, lm)

L c
, where lc and lm are the centerlines of the neurite

segments extracted automatically and manually, respectively. Area(lc,lm) represents the area
of the region in pixels surrounded by lc and lm. Given ϕ and φ, we use the following methods
to validate our results:

1. compare the mean and standard deviation of ϕ and φ between the two observers;

2. calculate the p-values of ϕ and φ using the two-sided paired t-test;

3. calculate the Pearson linear correlation coefficients of ϕ and φ;

4. calculate the cumulative distribution of ϕ and φ using Kolmogorov-Smirnov
goodness-of-fit hypothesis test (Nimchinsky et al., 2002) and compare the quantile-
quantile plots of the two observers.

Table 1 lists the mean and standard deviation of ϕ  and φ for the two observers, as well as the
p-values between them. The results show that the manual extractions between the two observers
are very similar. Table 2 shows the Pearson linear correlation coefficients of ϕ  and φ among
the algorithm and the two observers. The coefficients indicate that there exist strong
correlations between the computer generated results and Observer 1’s results, the computer
generated results and Observer 2’s results, Observer 1’s results and Observer 2’s results. Figure
8 shows the box plots of the mean and standard deviation of ϕ and φ for the two observers,
indicating that the quantitative results from the two observers are similar.

Figure 9 (a)-(c) displays the quantile-quantile plots of the length and the centerline deviation
of the neurite segment observed by the two individuals. In the plots, the symbol “+” represents
the length values or the deviation values. A green line joints the first and third quartiles of each
distribution, which indicates that the two sets of quantitative values have a linear fit of the order
statistics. The red line is the extension of the green line to the ends of the data set to help
evaluate the linearity of the data. Figure 9 (d)-(f) shows the cumulative distributions of the
length and the center-line deviation of the neurite segment observed by the two individuals.
All the plots prove that the quantitative results obtained from the algorithm, and the two
observers have the same or similar statistics distributions.
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The test neuron images are also manually traced by two users in such a way that the manual
labels are completely independent and blinded to the automated results. The Quantile-quantile
plots and cumulative probability plots are displayed in Figure 10. From the figure we can see
that the new line difference and centerline deviation are relatively larger than those if the
manual results are guided by the automated results. However, the previous conclusions still
hold. That is, the quantitative results from the two observers are still very similar. The
quantitative results obtained from the algorithm, and the two observers have similar statistics
distributions. The cumulative probability plots show that the independent manual results
always have smaller line lengths compared to the automated results. This is due to the reason
that the users always ignore some neurite centerlines, especially the weak lines.

5.4 Parameter selection
The parameters that may affect the extraction of neurite segments include maximum possible
width Wmax of the neurite segments, the standard deviation σ of the Gaussian kernel, and the
weight ε for the cost function. We explain in the following how these parameters may affect
the performance of the algorithm.

The maximum possible width Wmax is used when detecting the ending point of a neurite
segment. It defines the searching range when detecting the edge points by examining the
maximum template responses. In high-throughput applications,Wmax can be determined by
looking into a single neuron image, and then it can be used for all the other neuron images
acquired from the same experiment. In this paper, we use Wmax=12 for all the 100 neuron
images and the results are satisfactory.

The second-order derivative of the neuron image is estimated as the convolution of the image
and the second-order derivative of a 2-D Gaussian kernel. The standard deviation σ of the
kernel is then an important factor that determines whether or not the centerline of a neurite
segment can be detected correctly. In (Steger, 1998), it was shown that the detectable line
structures have a width between 0 and 2.5σ, if the second-order derivative of the image is used
to detect the lines. In this paper, the second-order derivative of a neuron image is used in the
cost function (see formula 21) to determine the probability of a pixel being on the neurite
segment. Thus a lot of neurite segments with relatively large width will be ignored by using a
small σ. If σ is selected large enough to cover most neurite segments, narrow segments with
low intensity contrast will be smoothed out and parallel lines will affect each other. For
example, in Figure 11 two extraction results are shown when using different σ. Obviously when
σ = 6.5, the extracted center line is influenced by neighboring lines and the extraction is not
satisfactory. In this paper, we use σ = 2.0 as a fixed value for all the neuron images from the
same experiment. We believe that σ can be determined adaptively based on each neurite
segment and its second-order derivatives. We will consider the automatic selection of σ in our
future work.

The weight ε is used in the cost function defined in formula (21) to balance the influences of
the two cost components. The local cost cL(p) of a point p determines how well the extracted
line approximates the centerline of the neurite segment. The linking cost cD(p1, p2) of two
points determines the best way to link the points on the centerline by examining the similarity
between their gradient directions. Figure 12 compares two extractions when using weight 1
and 0 respectively. The results show that the centerline of a neurite segment may not be
extracted accurately if the local cost is not considered. In Figure 13 we compare the extraction
performance between the situation when only local cost is considered and the situation when
both the local cost and the linking cost are considered. The results prove that, even though the
centerline can be extracted in both cases, the linking between the centerline points is usually
smoother and tighter to a strong edge if the linking cost is considered. In this paper, we use
ε=0.8 for all the images.
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6. Conclusion
In this paper we present a novel algorithm for extraction of neurite structures in fluorescence
microscopy neuron images. This algorithm is specifically designed for high-throughput
screening of neuron-based assays, which usually requires the process to be fast and automatic.
The algorithm is able to automatically select a pair of starting point and ending point for each
neurite segment so that only minimum user interaction is required. The starting point is selected
by detecting the local maxima after low-pass filtering a grid of lines in the image, followed by
signal-to-noise ratio analysis to filter robust points. The automatic selection of the ending point
is achieved by iteratively tracing the points on or near the centerline of the neurite segment
until the end of the neurite structure. Robust starting points and redundant ending points are
used so that the extraction is complete. Dynamic programming is used to link the points so that
the centerline can be extracted rapidly, accurately, and smoothly. The results and validation
indicate that our proposed algorithm can automatically and accurately extract most of the
neurite segments in the image with complicated neurite structures. The algorithm is very
efficient in applying the dynamic searching only on a small area of the image. All these
advantages make the proposed algorithm suitable for the increasingly demanding and complex
image analysis tasks in high-throughput neurite imaging applications and drug screening.
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Fig 1.
The block diagram for the neurite tracing algorithm using dynamic programming

Zhang et al. Page 17

Neuroimage. Author manuscript; available in PMC 2008 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig 2.
The correlation kernel at 0° direction.
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Fig 3.
A path for finding an optimal path from p0 to pK using DP
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Fig 4.
Linking relationships between two points in an image
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Fig 5.
Sample result for neurite extraction. (a) original image; (b) result image with neurite segments
labeled by green color and soma regions labeled by red color.
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Fig 6.
Sample result for neurite extraction. (a) original image; (b) result image with neurite segments
labeled by green color and soma regions labeled by red color.
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Fig 7.
A partial image of neurite segment and two extraction results. (a) Original partial image; (b)
Extraction result using NeuronJ; (c) Extraction result using our proposed method.
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Fig 8.
Box plots for the length difference and the centerline deviation. The red line is the mean value
for each data set. The upper line of the box is the upper quartile value. The lower line of the
box is the lower quartile value. (a) length difference of the two observers; and (b) center-line
deviation of the two observers.
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Fig 9.
Quantile-quantile plots of the length of the neurite segment for (a) algorithm vs. Observer 1;
(b) algorithm vs. Observer 2; quantile-quantile plots of the centerline deviation for (c) Observer
1 vs. Observer 2; cumulative distributions of the length of the neurite segment for (d) algorithm
(green) vs. Observer 1 (red); (e) algorithm (green) vs. Observer 2 (red); cumulative
distributions of the centerline deviation for (f) Observer 1 (green) vs. Observer 2 (red)
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Fig 10.
Quantile-quantile plots of the length of the neurite segment for (a) algorithm vs. Observer 1;
(b) algorithm vs. Observer 2; quantile-quantile plots of the centerline deviation for (c) Observer
1 vs. Observer 2; cumulative distributions of the length of the neurite segment for (d) algorithm
(green) vs. Observer 1 (red); (e) algorithm (green) vs. Observer 2 (red); cumulative
distributions of the centerline deviation for (f) Observer 1 (green) vs. Observer 2 (red)
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Fig 11.
Comparison between extractions using different standard deviation values for the Gaussian
kernel. A partial image is displayed with the extracted centerlines for the partial neurite
segments are labeled in color. Note the difference of the lines within the two areas encircled
by the dashed green circles. (a) partial image with extracted results for σ = 6.5 , and (b) partial
image with extracted results for σ = 2.0.
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Fig 12.
Comparison between extractions using different weight values for the cost function. A partial
image is displayed with the extracted centerlines for the partial neurite segments are labeled
in color. Note the difference of the color lines in the middle of the image. (a) extraction results
for ε = 1.0; (b) extraction results for ε = 0.0
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Fig 13.
Comparison between extractions using different weight values for the cost function. A partial
image is displayed with the extracted centerlines for the partial neurite segments are labeled
in color. Note the difference of the lines within the two areas encircled by the dashed green
circles. (a) extraction results forε = 1.0; (b) extraction results forε = 0.8
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