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Abstract
A component based method (CompCor) for the reduction of noise in both blood oxygenation level
dependent (BOLD) and perfusion-based functional magnetic resonance imaging (fMRI) data is
presented. In the proposed method, significant principal components are derived from noise regions-
of-interest (ROI) in which the time series data are unlikely to be modulated by neural activity. These
components are then included as nuisance parameters within general linear models for BOLD and
perfusion-based fMRI time-series data. Two approaches for the determination of the noise ROI are
considered. The first method uses high-resolution anatomical data to define a region of interest
composed primarily of white matter and cerebrospinal fluid, while the second method defines a region
based upon the temporal standard deviation of the time series data. With the application of CompCor,
the temporal standard deviation of resting state perfusion and BOLD data in gray matter regions was
significantly reduced as compared to either no correction or the application of a previously described
retrospective image based correction scheme (RETROICOR). For both functional perfusion and
BOLD data, the application of CompCor significantly increased the number of activated voxels as
compared to no correction. In addition, for functional BOLD data, there were significantly more
activated voxels detected with CompCor as compared to RETROICOR. In comparison to
RETROICOR, CompCor has the advantage of not requiring external monitoring of physiological
fluctuations.

Introduction
Over the last decade, blood oxygenation level dependent (BOLD) and perfusion-based
functional magnetic resonance imaging (fMRI) have become indispensable tools for studies
of the working brain. When utilized together, the BOLD and perfusion signals can provide a
quantitative understanding of the metabolic response to neural activity and provide insight into
neurovascular coupling mechanisms (Hoge et al. 1999). However, as the fMRI community has
moved to higher field strengths, physiological noise has become an increasingly important
confound limiting the sensitivity and the application of fMRI studies (Kruger and Glover
2001; Liu et al. 2006).

Physiological fluctuations have been shown to be a significant source of noise in BOLD fMRI
experiments, with even a greater effect in perfusion-based fMRI utilizing arterial spin labeling
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(ASL) techniques (Kruger and Glover 2001; Restom et al. 2006). Physiological sources of
noise primarily include cardiac pulsations and respiratory-induced modulations of the main
magnetic field. Additional sources include blood flow changes coupled to end-tidal C02 and
vasomotion occurring at 0.1 Hz (Hu et al. 1995; Dagli et al. 1999; Glover et al. 2000a).

Approaches to removing cardiac and respiratory related-noise include temporal filtering, image
based retrospective correction (RETROICOR), k-space based correction (RETROKCOR) and
navigator echo based correction (DORK) (Hu et al. 1995; Biswal et al. 1996; Josephs et al.
1997; Glover et al. 2000a; Pfeuffer et al. 2002). More recently, RETROICOR has been
extended to a general linear model (GLM) framework (Lund et al. 2006) and modified for use
in ASL studies (Restom et al. 2006). A recent adaptation for BOLD based imaging employs
additional regressors describing variations in respiratory volume (Birn et al. 2006).

An alternate approach to the use of external measures of physiological activity or specially
modified pulse sequences is to globally subtract average time-courses from regions unlikely
to be associated with neural activity, such as ventricles and large vessels (Petersen et al.
1998; Lund and Hanson 2001). However, since this technique removes only the average time-
series, it is unable to account for voxel-specific phase differences in the noise due to
physiological fluctuations. Additionally, component based techniques, utilizing independent
component analysis (ICA) or principal components analysis (PCA), have shown potential in
identifying spatial and temporal patterns of structured noise (Thomas et al. 2002; McKeown
et al. 2003; Beckmann and Smith 2004). However, the utility of component based methods has
been limited to BOLD studies with sampling times short enough to clearly differentiate cardiac
and respiratory elements from evoked responses (Thomas et al. 2002), in which case a temporal
band pass filter would be adequate for noise removal.

In this paper we present and characterize a novel component based method (CompCor) for the
correction of physiological noise in BOLD and perfusion-based fMRI. We show that principal
components derived from noise regions-of-interest (ROI) are able to accurately describe
physiological noise processes in gray matter regions. In our presentation we investigate the use
of two different methods for determining noise ROIs. The first method uses anatomical data
to identify white matter and CSF voxels, while the second method uses the temporal standard
deviation (tSTD) of the time-series data to identify voxels dominated by physiological noise.
We show that the use of principal components derived from a noise ROI as nuisance regressors
in a GLM of the fMRI signal can significantly reduce the temporal standard deviation in resting
state scans and increase the sensitivity of functional BOLD and perfusion-based studies.

Theory
CompCor Algorithm

The underlying assumption in the CompCor algorithm is that signal from a noise ROI can be
used to accurately model physiological fluctuations in gray matter regions. The term “noise
ROI” refers to areas (e.g. white matter, ventricles, large vessels) in which temporal fluctuations
are unlikely to be modulated by neural activity and are primarily a reflection of physiological
noise. The ability to model gray matter physiological noise elements is then predicated on the
similarity between physiological fluctuations in the noise ROI and gray matter. A principal
components analysis (PCA) is used to compactly characterize the time-series data from the
noise ROI. Significant principal components are then introduced as covariates in a general
linear model (GLM) as an estimate of the physiological noise signal space.

In this paper we investigate the use of two methods for determining the noise ROI. The first
method uses anatomical data to identify voxels that consist primarily of either white matter or
cerebrospinal fluid (CSF). Since neural activation is localized to gray matter, fluctuations in
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white matter and CSF regions should primarily reflect signals of non-neural origin, such as
cardiac and respiratory fluctuations.

In the second method, voxels with high temporal standard deviation (tSTD) are used to define
a noise ROI. This approach is based on previous preliminary work by Lund et al. (2001) in
which areas of high temporal standard deviation were found to correspond to ventricles, edge-
regions, and vessels. The advantage of this method is that it utilizes the time-series data to
identify a noise ROI without the need for an anatomical scan.

General Linear Model for ASL and BOLD
The general linear model for the BOLD-weighted data can be written as

b = Xh + Sd + Pc + n [1]

where b represents the measured BOLD data, Xh represents the stimulus response where X is
a N×k design matrix and h is a k×1 vector of hemodynamic parameters. In the case of a block
design, X reduces to a vector containing the smoothed stimulus pattern and h reduces to a scalar
representing the unknown amplitude. Nuisance parameters are integrated in Sd, where S is a
N×l matrix comprised of l nuisance model functions and d is a l×1 vector of nuisance
parameters. We have also added physiological noise terms Pc where P is a N×m matrix
containing m regressors and c represents the unknown regressor weights. Finally, n represents
the additive noise term.

A general linear model (GLM) for ASL data in gray matter can be written as
p = XhBOLD +MXhperf + Sd + Pc + n [2]

where p is the acquired raw data representing interleaved tag and control images. In this model,
the term modeling perfusion Xhperf is modulated by a diagonal matrix, M, consisting of
alternating −1's and 1's for the tag and control images, respectively (Mumford et al. 2006;
Restom et al. 2006). The term XhBOLD models a BOLD weighted static tissue component.

In a noise ROI, where we expect no stimulus-related response, the GLM reduces to b = Sd +
Pc + n or p = Sd + Pc + n for BOLD and perfusion data, respectively. An assumption of
CompCor is that the space spanned by the significant principal components from the noise ROI
can be used to estimate the space spanned by the columns of the physiological regressor matrix
P.

Figure 1 depicts the basic algorithm in which significant principal components from a noise
ROI are used to form a physiological noise matrix Pest which is then used as an estimate of
P in the GLM. For functional studies, an added processing step is included to minimize the
possibility of including stimulus related fluctuations. In this step, a preliminary GLM analysis,
using the appropriate design matrix X , is used to exclude voxels from the noise ROI with a
calculated p-value less than 0.2. Additional details are provided in the Methods section.

Methods
Experimental Protocol

Ten healthy subjects (ages 23 to 39) participated in the study after giving informed consent.
Each subject viewed one periodic single trial visual stimulus consisting of a 20-second initial
“off” period followed by 5 cycles of a 4 second “on” period and a 40 second “off” period. In
addition to a periodic design, each subject viewed one block design consisting of 4 cycles of
a 20 second “on” period and a 40 second “off” period. During the “on” periods, a full-field,
full contrast radial 8 Hz flickering checkerboard was displayed, while the “off” periods
consisted of a gray background of luminance equal to the average luminance of the “on” period.
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All subjects also underwent two resting-state scans (one for perfusion and one for BOLD),
during which the subject was presented with the “off” condition for 3 minutes.

Imaging Protocol
Imaging data were collected on a GE Signa Excite 3 Tesla whole body system with a body
transmit coil and an eight channel receive coil. During the perfusion resting-state scan and the
block design scan, data were acquired with a PICORE QUIPPS II (Wong et al. 1998) arterial
spin labeling (ASL) sequence (TR=2s , TI1/TI2=600/1500ms, 10 cm tag thickness, and a 1 cm
tag-slice gap) with a dual echo spiral readout (TE1/TE2=9.1/30 ms, FOV=24 cm, 64×64 matrix,
and a flip angle= 90 degrees). Small bipolar crusher gradients were included to reduce signal
from large vessels (b=2 s/mm2). Three oblique axial 8 mm slices were prescribed about the
calcarine sulcus for this ASL run. The first echo data was used for analysis of the perfusion
response and is referred to as the ASL or perfusion signal, while the second echo data was used
for analysis of the BOLD response and is referred to as the 2nd echo BOLD signal. During the
periodic single trial runs, BOLD-weighted images were acquired with a spiral readout
(TE=25ms, TR=500 ms, FOV=24cm, 64×64 matrix, and a flip-angle of 45 degrees) and the
same slice prescription as the ASL runs. The second resting state scan was acquired with the
following BOLD imaging parameters (TE=25ms, TR=250 ms, FOV=24cm, 64×64 matrix, and
a flip-angle of 40 degrees).

A high resolution structural scan was acquired with a magnetization prepared 3D fast spoiled
gradient acquisition in the steady state (FSPGR) sequence (TI 450ms, TR 7.9ms, TE 3.1ms,
12 degree flip angle, FOV 25×25×16 cm, matrix 256×256×124).

Cardiac pulse and respiratory effort data were monitored using a pulse oximeter (InVivo) and
a respiratory effort transducer (BIOPAC), respectively. The pulse oximeter was placed on the
subject's left index finger, and the respiratory effort belt was placed around the subject's
abdomen. Physiological data were sampled at 40 samples per second using a multi-channel
data acquisition board (National Instruments).

Data Analysis
Anatomical Definition of Noise ROI

Anatomical data were segmented into gray matter, white matter, and CSF partial volume maps
using the FAST algorithm available in the FSL software package (Smith et al. 2004). Tissue
partial volume maps were linearly interpolated to the resolution of the functional data series
using AFNI (Cox 1996). In order to form white matter ROIs, the white matter partial volume
maps were thresholded at a partial volume fraction of 0.99 and then eroded by two voxels in
each direction to further minimize partial voluming with gray matter. CSF voxels were
determined by first thresholding the CSF partial volume maps at 0.99 and then applying a 3-
dimensional nearest-neighbor criteria to minimize multiple tissue partial voluming. Since CSF
regions are typically small compared to white matter regions mask, erosion was not applied.

CSF and white matter ROIs were combined to form the anatomical noise ROI. Figure 2 depicts
white matter and CSF ROIs for Subject 1, as denoted by the magenta voxels, overlaid on their
respective partial volume maps. We refer to the application of CompCor with the anatomical
noise ROI as aCompCor.

tSTD Based Determination of Noise ROI
In a preliminary abstract, Lund and Hanson (2001) showed that voxel time courses with a
relatively high temporal standard deviation were dominated by physiological noise. They
observed that these voxels occurred in edge-regions, ventricles, and in areas close to large
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vessels. In their approach, they manually selected five pixels with high temporal standard
deviation (tSTD) that appeared to represent physiological fluctuation. The time-series from
these voxels were then included as nuisance covariates in a GLM, resulting in a marked
improvement in detection power (Lund and Hanson 2001). Here we extend the prior work by
first using the temporal standard deviation to select voxels in an unsupervised fashion and then
using principal components analysis to reduce the dimensionality of the data. For each voxel
time series, the temporal standard deviation is defined as the standard deviation of the time
series after the removal of low frequency nuisance terms (e.g. linear and quadratic drift). We
denote the noise ROI determined in this fashion as the tSTD noise ROI and refer to the
application of CompCor with this ROI as tCompCor.

To confirm that the tSTD metric identifies voxels with high levels of physiological noise, we
first examined the relation between measures of physiological noise and tSTD. For each voxel,
we defined the fractional variance of physiological noise as the ratio of the variance of the
voxel time series accounted for by physiological noise regressors as determined with
RETROICOR (see section on GLM analysis below) to the variance of the original time series
after removal of constant and linear trends (e.g. the square of tSTD). The fractional variance
of physiological noise was then compared to the temporal standard deviation on a per-voxel
basis. Figure 3 shows spatial maps of the fractional variance and tSTD (panels a and b
respectively) as well as a plot of tSTD versus fractional variance for a representative slice from
subject 1. As demonstrated by the plot in panel c and the similarity of the spatial maps, the
voxels with the highest tSTD also tend to have the highest fractional variance of physiological
noise, confirming the observations of (Lund and Hanson 2001).

To construct the tSTD noise ROI, we sorted the voxels by their temporal standard deviation
and retained a pre-specified upper fraction of the sorted voxels within each slice. For example,
specification of an upper fraction of 1% retains the voxels with the top 1% of temporal standard
deviation values. Specification of the fraction involves a trade-off between including too few
voxels to accurately represent the physiological noise space versus including too many voxels,
which would tend to include voxels whose temporal standard deviation is not dominated by
physiological noise. To empirically determine a reasonable value to use for the upper fraction,
we computed the mean fractional variance of physiological noise across voxels within the tSTD
ROI as a function of the upper fraction. This analysis was performed for each subject for both
resting ASL and BOLD runs. Figure 4 presents the mean across subjects of the fractional
variance of physiological noise versus the fraction of included voxels. As a greater number of
voxels are included in the analysis, the average fractional variance of physiological noise
decreases for both ASL and BOLD resting runs. Both the ASL and BOLD curves show a steady
decline in the fractional variance above a threshold of approximately 2%. Based on these
results, we chose a 2% threshold (∼20−30 voxels per slice) as a reasonable empirical threshold
that effectively identified voxels with the highest fractional variance of physiological noise.

Exclusion of stimulus-related components
Although the construction of the noise ROIs is designed to include voxels that are unlikely to
include stimulus-correlated activity, there is always a finite probability that some voxels may
contain stimulus-related components. Inclusion of these voxels in the noise ROI will tend to
reduce the statistical performance of the CompCor algorithm because stimulus-related
components will be treated as physiological noise components. To minimize the probability
of including voxels with stimulus-related components, we correlated the time course of each
voxel within the noise ROI with the stimulus-related reference function and excluded any
voxels with a p-value less than 0.2. To assess the effect of this threshold on performance, we
performed Monte Carlo simulations to generate receiver operating characteristic (ROC) curves
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at various threshold levels and used the area under the ROC curve to quantify performance.
An area of 1 represents ideal performance.

Simulated voxel responses (N=5000) were generated using the BOLD GLM presented in
equation 1. Physiological regressors, P, were generated at frequencies consistent with cardiac
(0.9 Hz) and respiration (0.3 Hz) with uniformly distributed phases to represent phase lags
between voxels. Physiological noise weights, c, were chosen from a normal distribution N(0,
0.3). A constant term was included as a nuisance term with the regressor weight d chosen from
a uniform distribution U(0,1), and the additive white noise term, n, was generated from a normal
distribution N(0,1). The block stimulus paradigm was used to construct the stimulus design
matrix X, and the stimulus weight h was set to a value of either 0 or 0.3 for the null and
alternative hypotheses, respectively. Correlation of the simulated voxel responses with the
block stimulus response was used to calculate p-values and z-scores for each condition. In the
null hypothesis condition, the distribution of z-scores had a mean and standard deviation of
−0.31 and 0.89, respectively, whereas in the alternative hypothesis condition the mean and
standard deviation were 3.18 and 1.27 , respectively.

To construct the ROC curve, we varied the threshold on p-values from 0.01 to 1.0. For each
threshold value, voxel time-series with a p-value above the threshold were placed column-wise
into a matrix M. A principal component analysis of the matrix M (see details in following
section) was then used to form an estimate of the physiological noise matrix Pest. A GLM
analysis of the simulated voxel time-series was performed using the idealized stimulus response
X and the computed Pest. The calculated p-values obtained under the null and alternative
hypothesis conditions were then used to generate a ROC curve for each threshold value.

As the exclusion threshold was reduced from p = 1.0 down to p = 0.1, there was little
degradation in detector performance (area under the ROC curve >0.99), since voxels with any
hint of activation were effectively excluded. As the threshold was further reduced from 0.1 to
0.05, the ROC area decreased from 0.99 down to a value of 0.96, which is less than the area
(0.98) obtained in the absence of CompCor (e.g. Pest not included in the GLM). The degradation
in performance with lower p-values reflects the inclusion of weak stimulus-correlated
components. Based on these findings, we chose a conservative threshold of p = 0.2 to exclude
voxels with stimulus-correlated fluctuations.

Determination of Principal Components
Voxel time-series from the noise ROI (either anatomical or tSTD) were placed in a matrix
M of size N × m, with time along the row dimension and voxels along the column dimension.
The constant and linear trends of the columns in the matrix M were removed prior to column-
wise variance normalization. The covariance matrix C = MMT was constructed and
decomposed into its principal components using a singular value decomposition.

The number of significant principal components to retain was determined using a modified
version of the “broken stick” method described in (Jackson 1993). This method identifies
meaningful principal components (e.g. components unlikely to be due to random noise) by
comparing their associated principal values to principal values derived from normally
distributed data of equal rank. Ordered principal values calculated from normally distributed
data tend to show a sharp initial decrease followed by a more gradual decrease, thus resembling
a “broken-stick”. In this method, a Monte-Carlo simulation (N = 1000) was first used to
generate a statistical representation of expected principal values derived from normally
distributed data of rank equal to the matrix M. This statistical distribution was then compared
to the computed principal values from the data. Principal components that were significantly
larger than the generated distribution, as assessed using a two-tailed t-test (p<0.05), were
retained. Based on this method, we found an average of 6.3 ± 0.52 and 4.5 ± 0.38 significant
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principal components for BOLD and ASL runs, respectively, when using the anatomical noise
ROI. For the tSTD noise ROI there were an average of 5.9 ± 0.74 and 4.2 ± 0.59 principal
components for the BOLD and ASL runs, respectively.

General Linear Model Analysis
All images were coregistered using AFNI software (Cox 1996). Statistical inference was
performed using a general linear model (GLM) analysis with an AR(1) model for the additive
noise component (Burock and Dale 2000;Woolrich et al. 2001). The analysis was performed
using the appropriate GLM for the BOLD and ASL time-series under the following conditions:
1) no inclusion of physiological noise regressors (e.g. no correction), 2) inclusion of
RETROICOR regressors, 3) inclusion of CompCor regressors derived from the anatomical
noise ROI (aCompCor), and 4) inclusion of CompCor regressors derived from the tSTD noise
ROI (tCompCor). The stimulus-related component Xh was formed by convolving the
appropriate stimulus pattern with a gamma density function of the form h(t) = (τn!)− 1((t −
Δt)/τ) exp(− (t − Δt)/τ) for t ≥ Δt and 0 otherwise, with τ = 1.2, n = 3 and Δt = 1 (Boynton et
al. 1996). As nuisance regressors, we used a constant term, a linear term, and a discrete cosine
set implemented in SPM2 with a minimum period of 120 seconds (Worsley and Friston
1995;Lund et al. 2006). For statistical inference with RETROICOR, physiological noise
regressors obtained from the cardiac and respiratory measurements were used to form the
physiological noise matrix P (Glover et al. 2000b;Restom et al. 2006). In addition, estimates
of the cardiac and respiratory components were formed from partitioning the estimate of Pc
(i.e., PCcC and PRcR where the C and R subscripts denote cardiac and respiratory, respectively).
For the application of aCompCor and tCompCor, GLM analysis was performed using noise
matrix Pest, constructed from the principal component analysis of voxel time-series from the
anatomical noise ROI and the tSTD noise ROI, respectively. The estimate of the term Pestc
was used as the CompCor estimate of the physiological noise component.

For each method, we formed a “corrected time series” by subtracting the estimates of the
physiological noise components and the nuisance parameters from the measured time series.
We then used these corrected time series to compute, on a per-subject basis, the mean temporal
standard deviation of the resting-state data across all voxels within gray matter (partial volume
> 0.9). Paired t-tests (two-tailed) were used to assess differences between methods across the
sample of subjects.

The number of activated voxels detected with each method was computed for each subject by
thresholding the F-statistics at 5 and 30 for the ASL and BOLD functional runs, respectively.
These values were chosen to yield approximately the same number of activated voxels for the
ASL and BOLD functional runs and are consistent with thresholds previously used to
investigate physiological noise reduction for ASL (Restom et al. 2006). Paired t-tests (two-
tailed) were used to assess differences in the number of activated voxels.

Spectral Analysis
We used spectral analysis to compare the physiological components estimated by
RETROICOR with those estimated by CompCor. For each subject, we computed the power
spectra of the physiological noise components estimated with each method on a per-voxel basis,
normalized each power spectrum by its peak value, and then averaged the normalized spectra
across all voxels in gray matter (partial volume > 0.9). The RETROICOR power spectra were
used to identify the peak cardiac and respiratory frequencies. We defined cardiac and
respiratory frequency bands as the 0.1 Hz wide band of frequencies centered around the
respective peak frequency. To quantify the similarity between methods of the spectra in these
bands, we computed the band-averaged coherence Cohxy (fband) defined as
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Cohxy( f band) =
∣ ∑
fband

Sxy( f ) ∣ 2
∑

fband
Sxx( f ) ∑

fband
Syy( f )

where fband denotes the frequency band, x and y are the two time series of interest, Sxy(f) is the
cross-spectrum of x and y, and Sxx(f) and Syy(f) are the power spectra of x and y, respectively
(Sun et al. 2004). The cross-spectral and power-spectral densities are estimated using Welch's
modified periodogram averaging method as previously outlined by (Sun et al. 2004).
Coherence is bounded by 0 and 1, with 1 representing perfect coherence, and is analogous to
correlation analysis of time-series. The spectral coherence between physiological noise
elements was computed on a per-voxel basis and then averaged across gray matter voxels
(partial volume > 0.9).

Additional Analysis of BOLD Data with TR of 2 Seconds
Although the physiological noise in the BOLD time series is critically sampled given the short
TR of 0.5s, the cardiac and respiratory noise fluctuations in the ASL perfusion time series will
typically be aliased due to the lower sampling rate (TR = 2s). In the results section we show
that both aCompCor and tCompCor are capable of identifying these aliased components. To
further demonstrate the performance of aCompCor and tCompCor for undersampled data, we
downsampled the BOLD time series by a factor of 4 to generate a BOLD time series with a
TR of 2 seconds and analyzed the performance of the CompCor methods using the GLM
analysis approach described above. We also applied CompCor to the BOLD weighted second
echo data from the ASL time series (TR of 2 s), using the GLM in Equation 2 with hBOLD as
the parameter of interest.

Receiver Operating Characteristic Curve
To gain additional insight into the relative performance of the CompCor methods, we used
simulations to construct receiver operating characteristic (ROC) curves. For these simulations,
we first defined a region of interest (ROI) in the visual cortex based on GLM analysis (with
tCompCor regressors) of the 2nd echo BOLD data from the block design functional runs. For
each subject, a liberal threshold (r>0.2) was used to delimit an ROI with approximately 400 to
500 voxels. These voxels were then used for the subsequent simulations, which made use of
the BOLD resting-state data. For each method, the false positive rates at varying thresholds
were calculated by applying the GLM analysis to the resting-state data and computing the
fraction of false positives within the ROI. To determine the true positive rates, we added
simulated activations (block design: 20s on, 40 seconds off; 1% amplitude) to the time course
of each voxel within the ROI. At each threshold level, we then computed the fraction of true
positives within the ROI.

Performance of tCompCor in the Presence of Motion
As the tCompCor approach is based on the identificaton of voxel time series with high temporal
standard deviations, it will also identify voxels with large signal components due to subject
motion. Motion-related signal changes can reflect both simple linear effects (e.g. translation
and rotation of brain regions) and more complex nonlinear effects, such as changes in the
distortion and blurring of the image due to magnetic field inhomogeneities. To the extent that
motion-related signal changes increase the temporal standard deviation of the time series, these
changes can be reflected in the principal components identified by tCompCor. In the presence
of stimulus-correlated motion, the exclusion process described previously will bias against the
inclusion of time series with stimulus-correlated changes. As a demonstration of the application
of tCompCor in the presence of subject motion, we analyzed a BOLD (TR = 0.5s) time series
in which there was significant subject motion. The data were acquired during a periodic single
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trial run with the protocol and imaging parameters described above. To emphasize the effect
of motion, we applied tCompCor to data that were not motion corrrected. Estimates of rotation
and displacement during the experiment were obtained with the 3dvolreg program in AFNI.

Results
Figure 5 shows normalized power spectra of physiological components estimated by
RETROICOR, aCompCor, and tCompCor for the resting-state BOLD run of subject 1. The
top row (panel a) depicts the respiratory and cardiac components identified with the use of
RETROICOR. Cardiac and respiratory peaks are located prominently at ∼1.2 Hz and ∼0.2 Hz,
respectively. Panels b) and c) show the average spectra of elements estimated by aCompCor
and tCompCor, respectively. Both variants of CompCor estimate cardiac and respiratory
elements that are similar to those removed by RETROICOR. In addition, very low frequency
1/f components are visible in both the aCompCor and tCompCor spectra. These low frequency
components can appear in the CompCor spectra because we remove only constant and linear
trend terms prior to the principal components analysis. Note that, as stated in the Methods
section, the use of the discrete cosine transform (DCT) low frequency nuisance terms is
reserved for the statistical assessments performed with the GLM. As a result, the space spanned
by the principal components may partially overlap with the space spanned by the discrete cosine
transform nuisance terms. Potential issues with this overlap are addressed in the Discussion
section.

Figure 6 shows the average spectra from Subject 1 of the noise elements estimated from the
resting-state ASL data. In the top row, the RETROICOR estimated cardiac (red line) and
respiratory (green line) elements are aliased due to the long TR. The spectrum of elements
estimated by either aCompCor (panel b) and tCompCor (panel c) show components consistent
with the cardiac and respiratory elements identified by RETROICOR.

To quantify the similarity between the spectra, we used the spectral coherence analysis
described above in Methods. For aCompCor applied to the resting BOLD runs, the average
spectral coherence and standard error values across subjects (N=10) were 0.67 ± 0.08 and 0.80
± 0.05 for respiratory and cardiac elements, respectively. Corresponding values for tCompCor
were 0.62 ± 0.10 and 0.86 ± 0.07. For resting ASL runs the mean spectral coherences when
using aCompCor were 0.79 ± 0.03 and 0.65 ± 0.06 for respiratory and cardiac elements,
respectively, with corresponding values of 0.82 ± 0.03 and 0.69 ± 0.06 for tCompCor.

The effects of CompCor and RETROICOR on the average temporal standard deviation (tSTD)
of the resting BOLD and ASL data are shown in Figure 7, with associated standard error bars.
The panels show the normalized mean temporal standard deviation (tSTD) in gray matter
(partial voluming >0.9) for a) resting TR = 0.5 s BOLD data, b) downsampled (TR = 2s) resting
BOLD data, c) resting 1st echo ASL (perfusion) data, and d) resting 2nd echo BOLD data, with
the application of RETROICOR and the two variants of CompCor. For each subject, the tSTD
values obtained with physiological noise reduction methods are normalized by the values
obtained for the uncorrected time series. The standard error bars are provided to give a sense
of the inter-subject variability, but should not be used to interpret statistical significance, since
paired t-tests are used to compare the normalized tSTD values between methods.

As compared to no correction, RETROICOR significantly (p<0.001) reduced the normalized
tSTD in the resting (TR = 0.5s) BOLD data by 8% whereas application of aCompCor and
tCompCor resulted in even greater reductions of 20% (p<0.001) and 29% (p<0.001),
respectively. Both variants of CompCor significantly (p<0.02) reduced the tSTD as compared
to RETROICOR, and tCompCor significantly (p<0.001) reduced the tSTD compared to
aCompCor. For the downsampled (TR = 2s) BOLD data, all three methods significantly (p<
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0.001) reduced the normalized tSTD with percent decreases of 12% , 17% and 22% for
RETROICOR, aCompCor, and tCompCor, respectively. In addition, the normalized tSTD
values achieved with tCompCor were significantly (p<0.03) lower than the values obtained
with either RETROICOR or aCompCor.

For the resting 1st echo ASL data, all three methods significantly (p< 0.001) reduced the
normalized tSTD with percent decreases of 13%, 18%, and 23%. The normalized tSTD values
obtained with aCompCor and tCompCor were significantly (p<0.04) lower than the values
obtained with RETROICOR. In addition, the tSTD obtained with tCompCor were significantly
(p< 0.03) lower than the values obtained with aCompCor. Similarly, for the the resting 2nd

echo BOLD data, the three methods led to significant (p< 0.001) reductions in tSTD with
percent decreases of 13%, 19%, and 21%. Both aCompCor and tCompCor lead to significantly
greater reductions (p< 0.01) than RETROICOR.

Bar graphs comparing the effect of the various correction schemes on the normalized number
of activated voxels for the BOLD periodic and functional ASL block runs are shown in Figure
8. For each method, the number of activated voxels is normalized on a per subject basis by the
number of voxels detected for the data prior to the application of noise reduction. As with the
plots in Figure 7, since statistical signifiance is assessed with paired tests, the standard errors
bars are provided only to give a sense of inter-subject variability. As compared to no correction,
there were significant (p< 0.02) increases of 10%, 76% and 82% in the normalized number of
activated voxels for the periodic (TR = 0.5s) BOLD runs (panel a) with the application of
RETROICOR, aCompCor, and tCompCor, respectively. Application of either aCompCor or
tCompCor increased the number of voxels significantly (p< 0.04) as compared to
RETROICOR. For the downsampled (TR = 2s) BOLD data, both aCompCor and tCompCor
significantly increased the normalized number of activated voxels with respect to both the
uncorrected data (p< 0.02) and RETROICOR (p< 0.02). In addition, the number of activated
voxels with tCompCor was significantly greater (p< 0.04) than the number obtained with
aCompCor.

For the first echo ASL block functional data, the normalized number of activated voxels
increased significantly (p<0.03) with gains of 65%, 51%, and 49% with the application of
RETROICOR, aCompCor, and tCompCor, respectively. There was not a significant difference
(p> 0.25) between the normalized number of activated voxels detected with the three methods.
For the second echo BOLD functional data, both aCompCor and tCompCor significantly
increased the normalized number of activated voxels with respect to both the uncorrected data
(p< 0.005) and RETROICOR (p< 0.005).

Figure 9 shows a representative ROC curve comparing the relative performances achieved
without correction (blue) and the application of RETROICOR (green), aCompCor (red), and
tCompCor (cyan). Consistent with the results shown in Figure 8, both aCompCor and
tCompCor yield better detection performance than RETROICOR, and the performance of
tCompCor is better than that of aCompCor.

Figure 10 shows an example of the performance of tCompCor in the presence of signal changes
due to subject motion. The top row shows the uncorrected BOLD time series (red), the time
series after application of tCompCor (blue), and the periodic single trial reference function
(black dash line). For this run, the most significant motion components were found to be left-
right roll and displacement. Estimates of roll in units of degrees (blue) and displacement in
units of millimeters (green) are shown in the middle row. Note that the large motion peaking
at 79 seconds gives rise to a large signal change in the uncorrected time series. The bottom row
shows the top three principal components as estimated by tCompCor. These components reflect
the motion at 79 seconds as well as smaller movements in other portions of the experimental
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run. Projecting these components out of the uncorrected time series leads to the corrected time
series, with a noticeable reduction in the motion-related signal changes, especially at the 79
second timepoint.

Discussion
In this paper, we have examined whether signal components derived from regions of interest
that are unlikely to be modulated by neural activity can be used to estimate noise components
(due to physiological fluctuations, subject motion, etc.) within activated regions. We
considered two methods for the determination of the noise ROIs: 1) anatomical identification
of significant areas of CSF and white matter and 2) definition of noise regions based upon their
temporal standard deviation. We demonstrated that the application of CompCor using either
ROI significantly reduces the temporal standard deviation of both resting state BOLD and ASL
data. Additionally, we have shown that CompCor using either ROI leads to a marked
improvement in sensitivity to detect the response to a visual stimulus, as quantified by the
number of significantly activated voxels for both BOLD and ASL experiments.

For the resting-state data, we found a significantly greater reduction of the normalized temporal
standard deviation with the application of CompCor as compared to RETROICOR (with the
exception of aCompCor for the downsampled BOLD data). This most likely due to the removal
of noise terms that are identified by the principal components analysis used in CompCor but
not modeled by the RETROICOR cardiac and respiratory regressors.

For the functional BOLD runs, we found that the application of either aCompCor or tCompCor
resulted in significantly more activated voxels as compared to RETROICOR. In contrast, for
the ASL data, there were not significant differences between the percent of activated voxels
detected by either form of CompCor as compared to RETROICOR. Due to the tag and control
modulation used in the ASL acquisition process, low frequency noise components are
effectively attenuated in the ASL analysis process (Liu and Wong 2005). The fact that the
improved detection performance of the CompCor methods was limited to the BOLD data
suggests that the gain reflects a reduction in low frequency noise components that are identified
by CompCor but not by RETROICOR. As noted in the Results section, the presence of these
low frequency components may cause the space spanned by the principal components to
overlap with the signal space spanned by the nuisance regressors used in the general linear
model. In the unlikely case that the overlap causes the model to be ill-posed, it may be necessary
to orthogonalize the principal components with respect to the nuisance regressors. However,
we have not found this to be necessary in practice.

The performance gains achieved with both RETROICOR and CompCor (as compared to the
uncorrected data) were observed both for the critically sampled (TR = 0.5s) BOLD data and
for the undersampled or downsampled (TR = 2s) ASL and BOLD data. In the undersampled
data, both respiratory and cardiac fluctuations are typically aliased. With RETROICOR, these
aliased components can be identified from the external measures of cardiac and repiratory
activity, as has been previously discussed (Glover et al. 2000b; Restom et al. 2006). In
CompCor, the principal components analysis takes advantage of the spatial coherence of the
aliased components to identify the most significant aliased components. Because this
identification procedure does not depend on the frequencies of the physiological components,
it works well even with undersampled data. As shown by Figure 6 and the spatial coherence
measures reported in the Results section, both RETROICOR and CompCor identify similar
spectral components in both the critically sampled and undersampled data.

The ability of CompCor to identify spatially coherent noise components that are unlikely to be
of neural origin also plays a role in its capacity to improve performance in the presence of
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motion-related signal changes. Since these effects are primarily due to bulk motion, they will
tend to give rise to spatially coherent signal changes. Although the exact signal change in any
given voxel will depend on a variety of factors, such as the local anatomy and magnetic field
distributions, CompCor will identify those components that are common across voxels. The
performance of CompCor in any given voxel will depend on the extent to which these
components can represent the signal changes in that voxel. An example of the efficacy of
tCompCor in removing a motion-related signal component is shown in Figure 10. In cases with
especially severe motion artifacts, the principal components identified by CompCor may
primarily describe the effects of motion, thus possibly decreasing the ability of CompCor to
reduce the effect of cardiac and repiratory fluctuations. Further work to better elucidate the
limitations of CompCor in the presence of motion would be useful.

The accurate specification of the noise ROI is key to both aCompCor and tCompCor. As
discussed in the methods section, inclusion of voxels with stimulus-correlated activity can
reduce the performance of the methods. For aCompCor this may occur due to factors such as
inaccuracies in tissue segmentation or misalignment of the anatomical and functional data (e.g.
due to subject movement between the scans). For tCompCor this performance reduction can
occur when voxels with high tSTD also have significant stimulus-correlated components (e.g.
due to stimulus-correlated motion). In the present study, we used a liberal threshold (p< 0.2)
to exclude voxels with possible stimulus-correlated components. Although our experimental
data support the efficacy of this approach for periodic and block designs, the performance of
this approach may be reduced for complex event-related fMRI experiments in which the
expected stimulus-related response may not be well defined. In addition, in the rare cases where
the cardiac noise is aliased to the stimulus frequency (Lund and Hanson 2001), the exclusion
criteria will reduce the ability of CompCor to identify these noise sources. Finally, this
exclusion approach is not easily extended to resting state experiments aimed at studying
functional connectivity. Future work addressing the applicability of CompCor to these types
of studies would be useful.

In this work we used an empirical threshold to determine the fraction of voxels to retain in the
tSTD noise ROI. While this threshold provided better performance for the data sets analyzed
in this study, it is possible that this threshold may not be optimum for other data sets. An
examination of additional datasets would be helpful for better characterizing the efficacy of
tCompCor. In addition, an investigation into other approaches for determining the threshold
may provide gains in performance.

Conclusion
We have shown that application of CompCor to ASL and BOLD fMRI time-series can
significantly reduce noise due to physiological fluctuations and other sources, such as subject
motion. CompCor does not require external monitoring and can be applied in an automated
fashion to reduce the confounding effect of physiological fluctuations on fMRI time-series.
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Figure 1.
Schematic of the CompCor algorithm in which significant principal components derived from
time-series data within noise regions-of-interest (nROI) are used to form an estimate Pest of
the physiological noise matrix P. Incorporation of Pest into the general linear model for the
signal in gray matter allows for estimation and removal of physiological fluctuations.
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Figure 2.
Areas with a high fraction of white matter and cerebrospinal fluid (CSF), as denoted by the
magenta voxels, overlaid on their respective partial volume maps from a representative slice
from Subject 1. White matter-only areas (panel a) were determined by first thresholding the
white matter partial volume fraction map at 0.99 and then performing a map erosion by two
pixels to minimize the effect of partial voluming with other tissue types. Panel b) displays CSF-
only areas with a partial volume fraction greater than 0.99 with application of a nearest neighbor
clustering criteria.
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Figure 3.
Panel (a) shows a spatial map of the fractional variance of physiological noise for the resting
BOLD scan from a representative slice in subject 1. Panel (b) shows a spatial map of the
temporal standard deviation (tSTD). Areas of high fractional variance of physiological noise
correspond to areas of high tSTD. Panel c) compares the tSTD to the fractional variance of
physiological noise on per voxel basis. Data points in red represent the 2% of voxels in the
slice with the highest tSTD.
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Figure 4.
Mean fractional variance of physiological noise across subjects as a function of the fraction of
voxels (sorted by tSTD) that is included in the noise ROI for BOLD (red) and ASL (blue)
resting-state data. The black dotted line denotes the 2% threshold that is used in the present
study.
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Figure 5.
Average normalized power spectra of components estimated with the application of various
correction schemes to the resting BOLD run from subject 1. As shown in panel (a), cardiac
and respiratory elements estimated by RETROICOR are located at 1.2 and 0.2 Hz, respectively.
Application of aCompCor (panel b) or tCompCor (panel c) estimates components similar to
the cardiac and respiratory elements identified by RETROICOR.
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Figure 6.
Average normalized power spectra of components estimated by the various correction schemes
for the resting ASL run from subject 1. As shown in panel (a), cardiac (red) and respiratory
(green) elements identified by RETROICOR are aliased due to the long TR. The power
spectrum of components estimated by either aCompCor (panel b) or tCompCor (panel c) are
similar to the sum of the cardiac and respiratory elements identified by RETROICOR.
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Figure 7.
Percent temporal standard deviation across gray matter voxels (partial volume >0.9) for
uncorrected data (denoted as None) and data after application of RETROICOR (denoted as
Phys) and CompCor for (a) resting-state BOLD data, (b) downsampled resting-state BOLD
data, (c) first-echo resting state ASL perfusion data, and (d) second-echo resting-state BOLD
data . Values are normalized on a per subject basis by the mean temporal standard deviation
for the uncorrected data, so that the values for the uncorrected data are 100%. Diamonds
represent a significant difference (p<0.05) between the percent temporal standard deviation
when no correction is applied and the standard deviation after removal of physiological noise
with use of either RETROICOR or the two variants of CompCor. Circles and squares represent
significant (p<0.05) differences as compared to RETROICOR or aCompCor, respectively. A
paired t-test was used to assess significance. Error bars represent the standard error across
subjects (N = 10).
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Figure 8.
Percent of significantly activated voxels across subjects (N=10) for uncorrected data (denoted
as None) and data with application of RETROICOR (denoted as Phys) and CompCor for (a)
periodic design BOLD data, (b) downsampled periodic design BOLD data, (c) first-echo block
design ASL perfusion data, and (d) second-echo block design BOLD data. Values are
normalized on a per subject basis by the number of activated voxels for the uncorrected data,
so that the values for the uncorrected data are 100%. Diamonds represent a significant
difference (p<0.05) between the percent of activated voxels when no correction is applied and
the percentage after removal of physiological noise with the use of either RETROICOR or the
two variants of CompCor. Circles and squares represent a significant (p<0.05) difference as
compared to RETROICOR or aCompCor, respectively. A paired t-test was used to assess
significance. Error bars represent the standard error across subjects.
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Figure 9.
Representative receiver operating characteristic curve showing the true positive rate versus
false positive rate for uncorrected data (blue), RETROICOR (green), aCompCor (red), and
tCompCor (cyan).
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Figure 10.
Example of the application of tCompCor in the presence of motion-related signal changes. The
top row shows the original time series (red), the time series after the application of tCompCor
(blue), and the periodic design reference function (black dashed). The middle row shows
estimates of the roll (blue) and left-right displacement (green) time courses. The top three
principal components as identified by tCompCor are shown in the bottom row.
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