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Abstract

Spatial normalization is a crucial step in assessing patterns of neuroanatomical structure and 

function associated with health and disease. Errors that occur during spatial normalization can 

influence hypothesis testing due to the dimensionalities of mapping algorithms and anatomical 

manifolds (landmarks, curves, surfaces, volumes) used to drive the mapping algorithms. The 

primary aim of this paper is to improve statistical inference using multiple anatomical manifolds 

and Large Deformation Diffeomorphic Metric Mapping (LDDMM) algorithms. We propose that 

combining information generated by the various manifolds and algorithms improves the reliability 

of hypothesis testing. We used this unified approach to assess variation in the thickness of the 

cingulate gyrus in subjects with schizophrenia and healthy comparison subjects. Three different 

LDDMM algorithms for mapping landmarks, curves and triangulated meshes were used to 

transform thickness maps of the cingulate surfaces into an atlas coordinate system. We then tested 

for group differences by combining the information from the three types of anatomical manifolds 

and LDDMM mapping algorithms. The unified approach provided reliable statistical results and 
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eliminated ambiguous results due to surface mismatches. Subjects with schizophrenia had non-

uniform cortical thinning over the left and right cingulate gyri, especially in the anterior portion, as 

compared to healthy comparison subjects.
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1. Introduction

In recent years, computational algorithms have been developed to compare functions of the 

cortical mantle in human subjects with and without neuropsychiatric disease using high-

resolution magnetic resonance (MR) imaging datasets. The most popular approach for 

making such comparisons is to spatially normalize the neuroanatomical structure, carry 

relevant functions (e.g. cortical thickness, functional response) onto atlas coordinates, and 

then to perform hypothesis testing in the atlas space. We refer to this approach as extrinsic 

since it depends on the relationship between individual brains and an external atlas 

(Vaidyanathan et al., 1997, Csernansky et al., 1998, Grenander and Miller, 1998, Thompson 

et al., 1998, Fischl et al., 1999a, Fischl et al., 1999b, Fischl and Dale, 2000, Csernansky et 

al., 2002, Chung et al., 2003, Gee et al., 2003, Chung et al., 2004, Csernansky et al., 2004a, 

Csernansky et al., 2004b, Thompson et al., 2004, Van Essen, 2004a, Van Essen, 2004b, 

Chung et al., 2005, Miller et al., 2005, Thompson et al., 2005, Van Essen, 2005).

The field of computational anatomy (CA) has three aims: (a) construction of anatomical 

manifolds, such as landmarks, curves, surfaces, and subvolumes; (b) construction of 

anatomical correspondences across subjects; (c) statistical codification of anatomical 

functions via probability measures allowing for inference and hypothesis testing related to 

disease states. The automated construction of anatomical manifolds that is receiving 

tremendous attention by many groups has facilitated analyses of brain structure in 

populations with and without neuropsychiatric disease. Deformable and active models as 

well as statistical models are being used to generate 1-dimensional manifold curves in R2 or 

R3 and 2-dimensional manifold surfaces, and to segment anatomical volumes into 3-

dimensional submanifolds (Bakircioglu et al., 1998, Dale et al., 1999, Xu et al., 1999, 

MacDonald et al., 2000, Miller et al., 2000, Fischl et al., 2002, Han et al., 2002, Ratnanather 

et al., 2003, Han et al., 2004, Xu et al., 2004, Khan et al., 2005). Local coordinate 

representations of cortical manifolds have included both spherical and planar representations 

for local coordinates in studying the brain (Fischl et al., 1999a, Van Essen, 2002, Hurdal and 

Stephenson, 2004, Tosun et al., 2004, Van Essen, 2004a, Wang et al., 2005a, Wang et al., 

2005b, Wang et al., 2005c). To compare anatomical manifolds in various populations, one 

has to account for the fundamental structural variability of biological shapes. The earliest 

mapping of biological coordinates via landmarks and dense imagery was pioneered in the 

early 1980s and continues today by Bookstein and Bajcsy, Gee and co-workers (Bookstein, 

1978, Bajcsy et al., 1983, Dann et al., 1989, Bookstein, 1991, Gee et al., 1993, Bookstein, 

1996, Bookstein, 1997, Avants and Gee, 2003, Chen et al., 2003, Avants and Gee, 2004). 
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Mappings restricted to the cortical manifold have been computed through spherical 

representations of the cortical manifold or landmarks or curves (Thompson et al., 1996, 

Fischl et al., 1999a, Joshi and Miller, 2000, Van Essen, 2002, Tosun et al., 2004, Van Essen, 

2005). Using such mappings in combination with statistical representations of shapes and 

other functions, CA studies of normal brain growth, aging, and neuropsychiatric diseases 

have rapidly expanded over the past ten years (Csernansky et al., 2004b, Thompson et al., 

2004, Thompson et al., 2005). However, recent CA studies have raised issues about the 

effects of anatomical mapping methods on statistical hypothesis testing. In general, prior 

research has suggested that high dimensional mapping methods increase power of 

hypothesis testing in part by increasing the accuracy of spatial normalization (Desai et al., 

2005, Miller et al., 2005, Kirwan et al., 2006, Vaillant et al., 2007).

Our own efforts in CA have been largely focused on the generation of anatomical manifolds 

(landmarks, curves, surfaces, subvolumes) and on the development of high dimensional 

mapping algorithms for them. Large deformation diffeomorphic metric mapping (LDDMM) 

is one of these algorithms and provides one-to-one, smooth (forward and inverse) 

transformations φ ∈ G acting on the ambient space φ : X ⊂ R3 → X. Thus, connected sets 

remain connected, disjoint sets remain disjoint, and the smoothness of neuroanatomical 

features such as curves and surfaces is preserved. These transformations are generated by 

the flow of diffeomorphisms so that they are not additive and provide guaranteed bijections 

between anatomical configurations. The length of the optimal flow trajectory connecting 

two anatomical configurations gives a metric distance that can be used to quantify the 

“closeness” in shape between different instances. Thus far, we have developed techniques in 

the LDDMM framework used for treating image datasets, including 3D volumetric image 

matching, multi-value vector image matching, tensor image matching (Beg et al., 2004, Beg 

et al., 2005, Cao et al., 2005), and point-based matching (Joshi and Miller, 2000, Glaunes et 

al., 2004a, Glaunes et al., 2004b, Allassonniere et al., 2005, Vaillant and Glaunes, 2005, 

Glaunes et al., 2007). These implementations of the point-based LDDMM deal with various 

configurations of points, curves and surfaces (Joshi and Miller, 2000, Glaunes et al., 2004a, 

Glaunes et al., 2004b, Vaillant and Glaunes, 2005). The applications of LDDMM mapping 

algorithms in studies of brain structure and function have shown their power for detecting 

functional activation and the effects of various neuropsychiatric diseases, especially in their 

mildest forms (Wang et al., 2001, Csernansky et al., 2002, Csernansky et al., 2004a, 

Csernansky et al., 2004b, Miller et al., 2005, Kirwan et al., 2006, Wang et al., 2006, Qiu et 

al., 2007).

While extrinsic analysis has many advantages, high individual brain variability combined 

with the essential demand for spatial normalization may introduce errors that directly 

influence the testing of statistical inferences. Also, because of the complexity of the human 

cortical mantle, one-to-one correspondences between anatomical configurations across 

subjects may not be easily defined. For example, when cortical surfaces are highly curved, 

different anatomical correspondences across subjects could be found depending on the 

different types of anatomical manifolds that drive the mapping algorithms; i.e., landmarks, 

curves, and surfaces. Thus, the statistical conclusion may depend on manifolds that are used 

to estimate the anatomical correspondences (Desai et al., 2005).
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In this paper, we compare multiple LDDMM mapping algorithms driven by a variety of 

anatomical manifolds (landmarks, curves, surfaces, and volumes), and then present a 

framework for combining the information derived from these manifolds to perform 

hypothesis testing. This framework combines the information from the available anatomical 

manifolds into a single statistical model so that abnormalities associated with a disease 

condition common to all of the mappings are identified. We demonstrate that this framework 

improves the reliability of hypothesis testing by eliminating errors caused by the registration 

of different modalities of anatomical manifolds. Our approach is similar in concept to recent 

brain tissue segmentation methods that use multi-modality images that feature both common 

and complementary information.

We defined disease-related functions, F(x), on the surface of the cingulate gyrus represented 

by 0,1 and 2 dimensional manifolds (landmarks, curves, surfaces). We compared separate 

LDDMM mappings of landmarks, curves, and surfaces to determine what information of the 

cortical surface was taken into account in each of the three mapping algorithms. The 

correspondence between the template and the target cortical surfaces were represented by 

diffeomorphic maps of φL (landmark), φC (curve), and φS (surface) respectively. Due to 

differences in the dimensionality of landmarks, curves, and surfaces, φL, φC, and φS are not 

identical for a single subject. As a consequence, the representation of F(x) in the atlas 

depends on which diffeomorphic map is chosen; i.e., the variation due to the mapping 

algorithm is introduced into F(x) in the atlas. We modeled this variation as a random effect 

in our statistical testing. For this, we first built a Gaussian Random Field (GRF) model of 

the function using decomposition over the eigenfunctions of the Laplace-Beltrami operator 

in the atlas for each of the mappings. We then tested inferences related to both diagnosis and 

mapping methods on GRFs via a linear regression model. We finally applied this framework 

to a comparison of the pattern of variation in the thickness of the cingulate gyrus in groups 

of subjects with and without schizophrenia.

We selected the cingulate gyrus for this study because of prior studies suggesting that 

subjects with schizophrenia show thinning of this structure (Narr et al., 2005) and because 

patterns of individual variation in its sulcal/gyral patterning have been relatively well 

defined (Ono et al., 1990, Fornito et al., 2006a, Fornito et al., 2006b). We fully explore the 

generation of anatomical manifolds of landmarks, curves, and surfaces in the cingulate gyrus 

and the matching error of each mapping algorithm. Our results empirically show that 

statistical testing is dependent on the mapping algorithms and that the combination of 

anatomical manifold information via diffeomorphic mappings provides a reliable approach 

for evaluating the statistical significance of results. In our comparison of subjects with and 

without schizophrenia, our results suggest that schizophrenia is characterized by a 

heterogeneous pattern of thinning throughout both the left and right cingulate gyri.

2. Large Deformation Diffeomorphic Metric Mapping (LDDMM)

Two cortical surfaces may be mapped onto each other by treating the 2-dimensional 

manifolds of the cortical surfaces as 0-dimensional information (landmark points), or 1-

dimensional features (curves), or 2-dimensional structure of the manifold as a whole. An 

advantage to 0-dimensional and 1-dimensional manifolds is that the computation is reduced 
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compared to 2-dimensional surface matching. Also the selection of landmarks and curves 

can be guided by previous knowledge derived from postmortem studies. In the setting of 

LDDMM, we developed mapping algorithms that utilize three different anatomical 

manifolds; i.e. landmarks, curves, and surfaces (Joshi and Miller, 2000, Vaillant and 

Glaunes, 2005, Glaunes et al., 2007). All of these mapping algorithms provide 

diffeomorphic maps --- one-to-one, reversible smooth transformations that preserve 

topology. The use of LDDMM for studying the shapes of objects requires the placement of 

shapes in a metric space, provides a diffeomorphic transformation, and defines a metric 

distance that can be used to quantify the similarity between two shapes. We assume that the 

shapes can be generated one from the other via a flow of diffeomorphisms, solutions of 

ordinary differential equation  = νt(φt), t ∈[0,1] with φ0 = id, identity map, and associated 

velocity fields νt. For a pair of objects Itemp and It arg, a diffeomorphic map φ transforms one 

to the other φ1 · Itemp = It arg at time t = 1. The metric distance between shapes is the length 

of the geodesic curves φt · Itemp,t ∈ [0,1] through the shape space generated from connecting 

Itemp to It arg in the sense that φ1 · Itemp = It arg. The metric ρ(Itemp, It arg) between two shapes 

Itemp and It arg takes the form

where νt ∈ V, a Hilbert space of smooth vector fields with norm ∥·∥V to ensure that the 

solutions are diffeomorphisms. In practice, the metric ρ and the diffeomorphic map φ 

between Itemp and It arg are computed via a variational problem:

(1)

where D(φ1 · Itemp, It arg) quantifies the closeness between the deformed object φ1 · Itemp and 

object It arg. Such a variational problem can be adapted to different objects, such as images, 

vectors, tensors, landmarks, curves, and surfaces (Joshi and Miller, 2000, Beg et al., 2004, 

Glaunes et al., 2004a, Beg et al., 2005, Cao et al., 2005, Vaillant and Glaunes, 2005, 

Glaunes et al., 2007, Vaillant et al., 2007). For the purpose of registering two cortical 

surfaces, we review how to define D(φ1 · Itemp, It arg) for objects of landmarks, curves, and 

surfaces.

2.1 LDDMM-landmark

A point in R3 is characterized by its location in R3. The closeness of two points can be 

quantified by the Euclidean distance between them. Assume {xi, yi} be a pair of landmarks, 

where xi ∈ Itemp and yi ∈ It arg for i = 1,2,…,N. We define D(φ1 · Itemp, It arg) as

which quantifies mismatching between two corresponding points (Joshi and Miller, 2000).
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2.2 LDDMM-curve

Since a curve is a geometric object, it cannot be uniquely reconstructed based on the 

locations of a set of points. We consider that a curve embedded in R3 is a one-dimensional 

manifold in the sense that the local region of every point on the curve is equivalent to a line 

which can be uniquely defined by this point and the tangent vector at this location (Glaunes 

et al., 2007). Therefore, in the discrete case, we represent a curve with a sequence of points 

and tangent vectors, I = {cl, τl}, where  is the center of two consequent 

points xl1 and xl2 and τ = xl2 − xl1 approximates the tangent vector at cl.

Now we define D(φ1 · Itemp, It arg) for registering two curves in the LDDMM setting based 

on their position and tangent vectors. Let Itemp = {cl, ηl} and It arg = {ch, ηh} be template and 

target curves represented by centers of two consequent points on the curve and their 

corresponding tangent vectors. Denote the deformed template curve φ1 · Itemp = {cl1, ηl1}, 

where  is the center of points φ1 · xl1 and φ1 · xl2, τl1 = φ1 · xl2 

− φ1 · xl1 is the tangent vector at location cl1. Let l, g be indices of points on the curve Itemp 

and h, q be indices of points on the curve It arg. The data attachment term D(φ1 · Itemp, It arg) 

in Eq. (1), which quantifies the closeness of the two curves φ1 · Itemp and It arg, is given in 

the form

where kW(x, y) is a kernel and in practice defined as an isotropic Gaussian kernel matrix, 

. ∥x − y∥ denotes Euclidean distance between points x and y and id3×3 is a 3 × 3 

identical matrix. The first two terms are intrinsic energies of the two curves φ1 · Itemp and 

It arg. It is clear that D(φ1 · Itemp, It arg) does not require two curves with equal number of 

points and dense correspondence between the matched curves. Roughly, the more rounded 

the curves are, the higher energy they possess; i.e., flat shaped parts of the curves tend to 

vanish in the space of this measure. The last term gives penalty to mismatching between 

tangent vectors of It arg and those of φ1 · Itemp.

2.3 LDDMM-surface

We assume the cortical surface embedded in R3 to be a two-dimensional manifold in the 

sense that the neighborhood of every point on the surface is equivalent to a two-dimensional 

plane in Euclidean space. Such a plane can be uniquely defined by a point and a vector 

originated at this point and normal to the plane. Therefore, we can represent a triangulated 

mesh as I = {cf, ηf}, a set of points and normal vectors, where  is 

the center of triangle f on I with three vertices xf1, xf2, xf3 and 

 is the normal vector to f at location cf. The symbol × 

denotes cross product (Vaillant and Glaunes, 2005, Vaillant et al., 2007).
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Now we define D(φ1 · Itemp, It arg) for registering surfaces in the LDDMM setting based on 

their position and normal vectors. Let Itemp = {cf,ηf} and It arg = {ch,ηh} be the template and 

target triangulated meshes represented by center points of triangles on the surface and their 

corresponding normal vectors. Denote the deformed template surface φ1 · Itemp = {cf1,ηf1}, 

where  is the center of deformed triangle f and 

 is the normal vector to deformed 

triangle f at location cf1. Let f, g be indices of triangles on the surface Itemp and h, q be 

indices of triangles on the surface It arg. The data attachment term D(φ1 · Itemp, It arg) in Eq. 

(1), which quantifies the closeness between φ1 · Itemp and It arg, is given in the form

This term in the LDDMM-surface mapping is similar to that in the LDDMM-curve 

mapping, except the surface is represented by its normal vector while the curve is by its 

tangent vector.

3. Statistical Analysis

To test for a group difference in cortical thickness, we assumed that our observations arose 

from random processes, including anatomical structure M (cortical surface) and thickness 

map F indexed over M. The variation in anatomical structure relative to the atlas Matlas was 

carried by diffeomorphic maps φ such that φ · M = Matlas. In our case, φ was generated by 

the LDDMM landmark, or curve, or surface mapping algorithms, respectively denoted by 

φL, φC, and φS. Next, we represented anatomical structure through the anatomical atlas 

coordinate system Matlas and the diffeomorphic map φ and considered φ as a nuisance 

parameter in our statistical analysis. In the anatomical atlas coordinates, F was modeled as a 

Gaussian random field (GRF) and characterized by an infinite number of Gaussian random 

variables Fi defined as

(2)

where ν(x) is area measure at location x ∈ Matlas and ψi(x) is a basis function indexed over 

Matlas. We chose ψi(x) to be the i th eigenfunction of the Laplace-Beltrami (LB) operator on 

Matlas, the extension of the Laplacian from the regular grid to an arbitrary surface. The LB 

operator was characterized by intrinsic surface geometric information, such as length, area 

and angle between two curves on the surface so that the LB eigenfunctions in Eq.(2) were 

only dependent on the geometry of the extrinsic atlas and not on thickness data (Qiu et al., 

2006). Figure 1 illustrates the first eight LB eigenfunctions on the left cingulate surface. Red 

and blue respectively denote regions with positive and negative values. These 

eigenfunctions are similar to sine or cosine basis functions on the regular grid in the sense 

that the positive and negative regions alternate more rapidly when moving to the higher 

order of basis. For instance, the first eigenfunction is constant everywhere and its 
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corresponding coefficient F1 represents the average thickness over the cingulate surface. In 

turn, the second eigenfunction has the waveform from negative to positive as it moves from 

the anterior to the posterior extreme of the cingulate gyrus. F2 represents amount of signal of 

F(x) in the same pattern as ψ2(x).

We aimed to produce a test that could identify the LB eigenfunctions that significantly 

contributed to group differences in thickness. We assumed that the finite number of Fi 

carried enough information so that we could perform statistical analysis on them. In general, 

only one mapping approach is needed to derive Fi with diagnosis as the main factor in a 

statistical analysis. However, Eq. (2) implies that Fi depends on the estimated diffeomorphic 

map φ. Therefore, both diagnosis and mapping algorithms need to be considered as main 

factors in hypothesis testing. Our statistical task was to integrate anatomical manifold 

information relating to landmarks, curves, surfaces so that the effects of both diagnosis and 

mapping algorithm on F(x) could be examined. To do so, we associated the ith LB 

eigenfunction with a set of coefficients  where  were 

computed from Eq. (2), respectively, based on the landmark, curve, and surface mappings. 

 were thus included as dependent variables in the statistical analyses 

using a linear regression model. Diagnostic group and mapping algorithm were included as 

categorical predictor variables while covarying for total cerebral volume. For each subject, 

the coefficients from the three mapping were considered as repeated measures, and the error 

term in the linear regression model was split into errors between and within subjects. 

Interactions between diagnosis and mapping algorithm were also examined.

As a comparison with statistical testing using a unified approach, we also performed a linear 

regression analysis to test for the effects of diagnosis on the first ten Fi when one mapping 

algorithm was applied. Each individual coefficient was separately examined and considered 

as a dependent variable in the statistical analysis using a linear regression model. Diagnostic 

group (schizophrenia subjects and comparison subjects) was included as a categorical 

predictor variable covarying with total cerebral volume. A similar statistical model was used 

to examine diagnostic group differences in Fi for every mapping algorithm.

4. Cingulate Thickness Variation in Schizophrenia

4.1 Subjects and Image Acquisition

Forty-nine individuals with schizophrenia and sixty-four healthy comparison subjects, 

group-matched for age, gender, race, and parental socioeconomic status, gave written 

informed consent for participation in this study after the risks and benefits of participation 

were explained to them. Individual demographic and clinical information have been detailed 

elsewhere (Csernansky et al., 2004a). All subjects with schizophrenia were outpatients and 

were scanned after they had been optimally treated with antipsychotic drugs and attained 

clinical stability.

MR scans were collected on a Magnetom SP-4000 1.5-Tesla Siemens imaging system with a 

standard head coil using a turbo-FLASH sequence (TR=20ms, TE=5.4ms, flip angle=30 

degrees, 180 slices, 256-mm field of view, matrix=256×256, number of acquisitions=1, 
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scanning time=13.5min) that acquired three-dimensional datasets with 1mm3 isotropic 

voxels across the entire cranium (Venkatesan and Haacke, 1997).

4.2 Cingulate Manifold Generation

The cingulate surfaces were then represented by landmarks, curves, and surfaces in order to 

apply LDDMM landmark, curve, and surface mappings, respectively.

Surfaces—Bayesian segmentation using the expectation-maximization algorithm to fit the 

compartmental statistics was used to label voxels in the subvolume as gray matter (GM), 

white matter (WM), or cerebrospinal fluid (CSF) (Joshi et al., 1999, Miller et al., 2000). 

Then, surfaces were generated at the GM/WM interface using a topology-correction method 

and a connectivity-consistent isosurface algorithm (Han et al., 2002). The cingulate gyrus 

was delineated by tracking principal curves via dynamic programming (Ratnanather et al., 

2004).

Curves—Two sets of curves, exterior and interior, were delineated on the cingulate 

manifold surfaces via dynamic programming (Khaneja et al., 1998, Ratnanather et al., 

2004). The exterior curves were already defined in the process of delineating the cingulate 

manifold surface (Wang et al., 2007) by following the external boundary of the cingulate 

manifold surface formed by callosal sulcus, cingulate sulcus, subpariteal sulcus and 

calcarine sulcus, as labeled as curves 1,2 3 on the template cingulate surface in Figure 2(a). 

The interior curves followed the foldings of the cingulate manifold surface in its interior 

space, marked as curves 4,5,6 in Figure 2(a).

Landmarks—Corresponding landmarks were extracted as the result of matching above 

template and subject curves via (Bakircioglu et al., 1998) where distances between curves 

followed the Frenet representation of speed, curvature and torsion. Examples of these 

landmarks on the template surface are illustrated in Figure 2(b).

4.3 LDDMM Mappings

We chose the left and right cingulate gyri as represented in the MR scan collected from one 

of the healthy comparison subjects as a template and mapped all other anatomies to this 

template via LDDMM landmark, curve, and surface mappings. To evaluate the precision of 

these mappings, we computed distances between the deformed surfaces and the template 

surface. Let νSi and νTj respectively be vertices on deformed surface S and template surface 

T. The distance of νTj to S is defined as , where ∥·∥ is the 

Euclidean distance in R3. We call dTj, a function indexed over the template surface; i.e., a 

distance error map that quantifies the mismatching error at each location of the template.

Left and right columns in Figure 3 show average distance error maps from 112 deformed 

surfaces generated by landmark, curve, and surface mappings. Large mismatching errors 

occurred on the boundary of the cingulate gyri on both the left and right sides and with the 

use of all three mapping algorithms. Larger mismatching errors appeared in the very anterior 

and posterior regions of the left and right cingulates with the use of the landmark and curve 

mapping algorithms, possibly because paired landmarks and curves do not contain enough 
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information to represent the complexity of the anatomical structure in these areas. When 

reducing 2-dimensional surfaces to sets of 0-dimensional points or 1-dimensional curves, 

geometric information of the cortical surface is discarded. Moreover, due to the 

discretization of these appoaches, there may not always be homologous points on two 

cortical surfaces, which gives also constrains the registration processes. Compared with 

these two mapping algorithms, most of mismatching distance errors of the surface mapping 

algorithm were less than 1 mm as shown in Figure 3(c,f). However, error can still be 

introduced when complex anatomical structures do not offer one-to-one correspondences 

across subjects. As an example of this problem, the cingulate sulcus has an interrupted 

course (Ono et al., 1990, Fornito et al., 2006a), which produces two (or more) distinct 

segments (cingulate and paracingulate).

We excluded paracingulate portion in our study if it was present. As shown in Figure 4, the 

cingulate gyrus in panel (a) is relatively small when the paracingulate presents compared to 

one in panel (b) without appearance of the paracingulate. Since the portion in the red frame 

of Figure 4(b) has no corresponding surface in Figure 4(a), the LDDMM-surface cannot 

provide an accurate correspondence between these two anatomies. One approach for 

improving the quality of the LDDMM-surface matching in such cases is to include the input 

of an expert, such as was done during the manual placement of landmarks or curves. 

However, the results of all three approaches to mapping a given cortical surface (landmark, 

curve, and surface matchings) must eventually be combined for hypothesis testing.

4.4 Cortical Thickness Map

We indexed the thickness of the cingulate gyrus as a function over the local coordinates of 

the cortical surface using Local Labeled Cortical Mantle Distance Map (LLCMDM), a 

modification of LCMDM developed by (Miller et al., 2003). LLCMDM is a refinement of 

LCMDM in that it is designed for the analysis of a cortical surface instead of a image 

volume. LLCMDM labels each vertex on the GM/WM surface in relationship to a set of GM 

voxels. Hence, LLCMDM forms a secondary data structure of the same dimension as the 

GM/WM surface and associate each vertex with a set of labeled pairs {(x, d)}: S → 

{(l(x(νi)), d(x(νi))|l(x(νi)) = GM}, d(x(νi)) and l(x(νi)) representing the distances of the voxel 

center x(νi) to vertex νi on the cortical surface and the associated tissue type of voxel x(νi). 

From LLCMDM-derived measures of cortical GM distribution, we calculated via the 

histogram of d(x(νi)) the total number of GM as a function of distance from νi and its 

neighbor. Then, the thickness at νi was quantified using the 95 percentile of the histogram, 

which mitigates any error caused by tissue misclassification at a significance level α = 0.05.

Figure 5(a) shows the cortical thickness maps of the left and right cingulate gyri in two 

healthy comparison subjects, selected from the available comparison sample. The maps 

suggest that thickness is non-uniformly distributed over the cingulate surface; i.e., the 

anterior segment of the cingulate is thicker than the posterior segment and the gyral region is 

thicker than the sulcal region. Figure 5(b) gives examples of thickness maps of the left and 

right cingulate gyri in two individuals with schizophrenia, again selected from the available 

sample of schizophrenia subjects. In these subjects, thickness varied over the cingulate 

surface in a manner that was similar to the healthy comparison subjects, and yet, thickness 
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appeared to be reduced overall across the cingulate surfaces as compared to the healthy 

individuals.

Figure 6 shows average thickness maps of the left and right cingulate surfaces in groups as 

defined by diagnosis (rows (a,d) for the comparison group, and rows (b,e) for the 

schizophrenia group). Average thickness maps were similar for the three mapping 

algorithms in both groups and resembled the cortical thickness maps of the individuals 

shown in Figure 5. However, average thickness maps constructed using the landmark and 

curve mappings showed fewer differences in the anterior and posterior extremes of the 

cingulate gyrus than those constructed using surface mapping. Standard deviations for 

cortical thickness measurements in Figure 7 are similar across the groups and mapping 

algorithms. The very anterior and posterior segments of the left and right cingulate gyri 

showed greater variation in thickness partly due to mapping error as shown in Figure 3. The 

curve mapping algorithm produced the largest deviation in thickness in both of these 

regions, while the surface mapping algorithm produced the smallest deviation. The average 

difference in the cortical thickness between diagnostic groups are indexed in color in rows 

(c,f) in Figure 6. Red denotes thicker regions in the healthy comparison group and blue 

denotes thicker regions in the schizophrenia group.

4.5 Statistical Results via Unifying the Three Mappings

We tested each of the coefficients associated with the first ten LB eigenfunctions using a 

linear regression model with diagnosis and mapping method as independent variable after 

covarying for total cerebral volume. Coefficients from the first, seventh and eighth LB 

eigenfunctions in the left cingulate gyrus show significant effects of diagnosis after 

covarying for total cerebral volume (the second column in Table 1). This indicates that the 

group differences shown in the three panels of Figure 6 (c) can be represented by these 

eigenfunctions after considering the variability of thickness values due to individual 

variability and mapping errors. In the right cingulate, coefficients from the first and sixth LB 

eigenfunctions show significant effects of diagnosis after covarying for total cerebral 

volume (the sixth column in Table 1). This suggests that the common characteristics of the 

thickness group differences shown in the three panels of Figure 6(f) can be represented by 

these eigenfunctions after considering the variability of thickness values due to individual 

variability and mapping errors.

To illustrate the effects of diagnosis on thickness as represented by the unified method, we 

reconstructed maps of the significant group differences in thickness by first subtracting the 

mean of all coefficients generated by the three mappings in the schizophrenia group from 

the mean of all coefficients in the healthy comparison group, and then multiplying the 

difference by its associated LB eigenfunction. Figure 8 shows the effects of diagnosis on 

thickness of the left and right cingulate gyri. The effect of diagnosis in the left cingulate 

(panel a) was constructed using the first, seventh, and eighth LB eigenfunctions, while the 

effect of diagnosis in the right cingulate (panel b) was constructed using the first and sixth 

LB eigenfunctions. The results of the visualization in Figure 8 suggest that the identified 

combinations of LB eigenfunctions can be used to represent group differences in the 

thickness over the left and right cingulate gyri. Also, this visualization suggests that the 
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pattern of thinning of the cingulate gyrus is variable along its anterior-posterior axis in 

individuals with schizophrenia, with the most posterior segment of the cingulate being less 

affected.

4.6 Comparison of Statistical Results Derived from Single and Unified Mappings

To compare the results obtained using the unified method with the results obtained using the 

three individual mappings, we examined the effects of diagnosis on coefficients of the LB 

eigenfunctions using each of three mapping algorithms after covarying for total cerebral 

volume. The statistical results from each mapping algorithm (Table 1) were in reasonable 

agreement. Both the left and right cingulate gyri exhibited similar patterns of cortical 

thickness variation and the calculated eigenfunctions with their associated coefficients 

yielded similar patterns of significant effects of diagnosis. However, the three different 

mapping algorithms also produced some discrepant statistical results. For instance, the 

seventh coefficient of the left cingulate showed a significant effect of diagnosis when using 

the landmark and surface mappings at significant level of α = 0.05, but not when using the 

curve mapping. Also, the eighth coefficient showed a significant effect of diagnosis when 

using the landmark mapping, but not when using the curve or surface mapping. These 

results support the need for an approach to hypothesis testing that can integrate the results 

from all the three mappings. Compared with the statistical testing using each mapping 

algorithm in turn, the statistical testing after combining the three mappings produced the 

most reliable results regarding the effects of diagnosis on thickness; i.e., these results were 

most similar to the results obtained when using the surface mapping algorithm with the 

smallest matching error.

After considering statistical comparisons derived from each mapping algorithm as a set of 

statistical tests, we used the Bonferroni correction to lower significance level of α in order to 

avoid a lot of spurious positives, which sets . In this case, the eighth 

LB eigenfunction showed a significant diagnostic effect on the thickness in the left cingulate 

when using the landmark mapping, while the first LB eigenfunction showed significant 

diagnostic effect on the thickness in the right cingulate when using the curve mapping. 

Compared with these results, the statistical testing after combining the three mappings 

increased the statistical power.

5. Discussion

In this paper, we present a statistical framework for combining anatomical manifold 

information from three different diffeomorphic mappings to study abnormalities in brain 

structure and function in clinical populations. By diminishing errors associated with any 

single mapping approach, this method improved our ability to identify and characterize 

abnormalities in the structure of the cingulate gyrus in subjects with schizophrenia. We 

believe that this framework should also be helpful in characterizing irregularities of the 

cortex in subjects with other neuropsychiatric disorders.

Existing approaches for detecting group differences in functions defined on brain anatomical 

structure across clinical populations generally include two steps. The first step is to apply a 
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mapping algorithm, which is in general based on single modality of anatomical manifold, to 

transform brains into an extrinsic common coordinate system. Then, the second step is to 

test inferences on the functions in the extrinsic common coordinates. The difficulty with any 

extrinsic strategy is that the one to one correspondence between anatomical configurations 

across subjects may not always be well defined (as the example shown in Figure 4). 

Furthermore, for highly curved cortical surfaces, different anatomical correspondences 

across subjects could be found based on different types of anatomical manifolds, such as 

landmarks, curves, and surfaces. These limitations imply that the statistical conclusion from 

any extrinsic analysis will depend on the algorithm that is used to estimate the anatomical 

correspondence. Our results support this assertion in that they demonstrate that the use of 

different mapping algorithms had substantial effects of the conclusions drawn from 

statistical testing. This may be partly due to artificial variation in thickness values at 

particular locations within a cortical region caused by matching errors. Anatomical 

manifolds with higher dimensionality appear to produce more accurate matching. For 

instance, the LDDMM surface matching algorithm produced relatively smaller matching 

errors, and showed the least deviation of thickness across the populations being studied. 

However, combining the results of the three mapping algorithms further mitigated 

variability in thickness values due to matching error, and allowed us to define features of 

cortical thinning in the individuals with schizophrenia that were common to all three 

mapping algorithms. The statistical results from this unified test were in close agreement 

with those produced using the surface matching alone. This was expected since the surface 

matching algorithm provided the best correspondence between the template and the target 

structures. In conclusion, the results of this study suggest that combining information 

captured by different types of anatomical manifolds can help eliminate statistical ambiguity 

in comparison of subjects with and without neuropsychiatric disease.

Our finding that cortical thinning is variably distributed across the anterior-posterior extent 

of the cingulate gyrus in subjects with schizophrenia may help to shed light on the variable 

results that have been reported by other investigators. Notably, some groups have reported 

gray matter volume reduction or thinning in the cingulate gyrus (Sigmundsson et al., 2001, 

Goldstein et al., 2002, Narr et al., 2003) while others have failed to find such differences 

(Crespo-Facorro et al., 2000, Mitelman et al., 2003, Riffkin et al., 2005). To the extent that 

thinning of the cingulate gyrus is variable in its anatomical location across patients with 

schizophrenia, small differences in defining the anatomical boundaries of the cingulate 

gyrus could easily lead to differing results. While post-mortem studies of subjects with 

schizophrenia have been mostly confined to the anterior cingulate gyrus, the results of these 

studies suggest that thinning of the gray matter may be due to the loss of specific 

populations of interneurons and their processes (Todtenkopf et al., 2005). Taking these 

results together with our finding of variable thinning across the anterior-posterior extent of 

the cingulate and the known typology of connections across the cingulate gyrus, it suggests 

that populations of interneurons that function within neuroanatomical circuits represented 

across the cingulate gyrus may be especially vulnerable to the disease process associated 

with schizophrenia.

Qiu et al. Page 13

Neuroimage. Author manuscript; available in PMC 2015 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Improved methods for identifying aberrations in the normative pattern of cortical thickness 

variation are needed to improve our understanding of the effects of various neuropsychiatric 

disorders on the development of the cortical mantle. As suggested above, the results of the 

current study could be used to help guide more detailed studies of the cellular structure of 

those portions of the cingulate gyrus with demonstrable thinning in subjects with 

schizophrenia. In addition, specific patterns of cortical thinning could be associated with 

abnormalities of brain activation or performance on tests of cognition thought to be related 

to the specific cortical regions that are affected in schizophrenia.
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Figure 1. 
Panels (a-f) respectively show the first eight eigenfunctions of the Laplace-Beltrami operator 

on the left template cingulate surface.

Qiu et al. Page 19

Neuroimage. Author manuscript; available in PMC 2015 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Panel (a) show six curves colored differently on the left template cingulate surface. Three 

exterior curves are labeled as 1,2,3 in white; three interior curves are marked as 4,5,6 in 

black. Panel (b) illustrates seventy two landmark points.
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Figure 3. 
Panels (a,b,c) show average distance error maps over 112 deformed left cingulate surfaces 

for the landmark, curve, and surface mappings, respectively. Similarly, panels (d,e,f) show 

average distance error maps over 112 deformed right cingulate surfaces.
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Figure 4. 
Panels (a,b) show left cingulate structures. The cingulate in panel (a) is relatively narrow 

due to the appearance of the paracingulate that is excluded in the study. The region in the 

red frame of panel (b) has no similar structure in the cingulate gyrus in panel (a).
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Figure 5. 
Panel (a) shows cortical thickness maps of two healthy subjects, while panel (b) illustrates 

thickness maps of two schizophrenic subjects. Each row shows thickness maps on the left 

and right cingulates of one subject. In each panel, the top row shows the thickness maps of 

the subject with large median thickness value in the right cingulate while the bottom row 

shows the thickness maps of the subject with small median thickness value in the right 

cingulate.
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Figure 6. 
Rows (a-b) show the average thickness maps of the left cingulate in the control (row (a)) and 

schizophrenic (row (b)) groups. The average group difference in thickness of the left 

cingulate is shown in row (c). Similarly, rows (d-e) show average thickness maps of the 

right cingulate in the control (row (d)) and schizophrenic (row (e)) groups. The average 

group difference in thickness of the right cingulate is shown in row (f). From the left to the 

right columns, the average thickness maps were generated via the landmark, curve, and 

surface mappings, respectively.
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Figure 7. 
Rows (a-b) show the standard deviation maps of the thickness for the left cingulate in the 

control (row (a)) and schizophrenic (row (b)) groups. Similarly, rows (c-d) show the 

standard deviation maps of the thickness for the right cingulate in the control (row (c)) and 

schizophrenic (row (d)) groups. From the left to the right columns, the standard deviation 

maps were generated via landmark, curve, and surface mappings, respectively.
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Figure 8. 
Diagnostic group differences in thickness are reconstructed from the LB eigenfunctions 

associated with the coefficients showing statistically significant effects of diagnosis.
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Table1

Table lists p-values for diagnostic effect on coefficients. Significant (p<0.05) or near-significant effect of 

diagnosis (0.05<p<0.1) are shown in bold face after covarying for total cerebral volume.

the i th
coefficient

Left Right

combined landmark curve surface combined landmark curve surface

1 0.0455 0.0580 0.0590 0.0433 0.0069 0.0180 0.0027 0.0248

2 0.7450 0.9468 0.9906 0.3729 0.4645 0.3363 0.9885 0.1738

3 0.7414 0.4305 0.2880 0.1708 0.9400 0.8252 0.5882 0.3428

4 0.3660 0.7027 0.3923 0.2858 0.1224 0.1352 0.1911 0.2429

5 0.1266 0.3924 0.0972 0.1621 0.1530 0.2313 0.2623 0.2773

6 0.9205 0.7067 0.9494 0.4743 0.0390 0.1091 0.0713 0.0390

7 0.0492 0.0916 0.1659 0.0445 0.1643 0.4270 0.0826 0.3725

8 0.0494 0.0110 0.1587 0.7764 0.8109 0.7869 0.7171 0.9500

9 0.7046 0.9618 0.7133 0.0746 0.9194 0.9025 0.6824 0.3145

10 0.3108 0.8355 0.6997 0.0220 0.9042 0.9762 0.7469 0.9741
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