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Abstract

The large amount of imaging data collected in several ongoing multi-center studies requires
automated methods to delineate brain structures of interest. We have previously reported on using
artificial neural networks (ANN) to define subcortical brain structures. Here we present several
automated segmentation methods using multidimensional registration. A direct comparison between
template, probability, artificial neural network (ANN) and support vector machine (SVM) based
automated segmentation methods is presented. Three metrics for each segmentation method are
reported in the delineation of subcortical and cerebellar brain regions. Results show that the machine
learning methods outperform the template and probability based methods. Utilization of these
automated segmentation methods may be as reliable as manual raters and require no rater
intervention.
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1. INTRODUCTION

Changes in the morphology of subcortical nuclei and the cerebellum have been associated with
a number of psychiatric and neurological disorders including: autism, depression, fetal alcohol
syndrome, schizophrenia, Alzheimer’s, Parkinson’s, and Huntington’s disease. The ability to
better understand these complex disorders, monitor their progression, and evaluate response
to treatment requires accurate, reliable and validated methods to segment these regions of
interest. Manual segmentation remains the current gold standard for region identification.
However, it is impractical to apply manual segmentation methods to large samples due to time
constraints. Manual techniques are also prone to rater drift and bias. A number of large multi-
center studies are currently studying these disorders, and the large amount of data collected by
these studies mandate the use of automated methods.

Several automated segmentation methods have been developed to identify subcortical nuclei,
thereby eliminating the problems associated with manual segmentation. A template based
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segmentation method was developed by losifescu et al. (1997) to delineate subcortical regions
of interest using a single atlas image. The algorithm by losifescu et al. first performed tissue
classification separating voxels into white matter, cerebrospinal fluid, subcortical and non-
subcortical gray matter. The second stage of the algorithm warped a manually delineated digital
atlas using an inelastic registration followed by an elastic registration. The reliability of the
algorithm was evaluated using spatial overlap (See Methods, Section 2.7). This method was
utilized to define the thalamus, caudate and putamen and the resulting spatial overlap ranged
from 0.78 to 0.85. Wu et al. (2006) compared the use of several public domain image
registration tools to automatically delineate the hippocampus using the Montreal Neurological
Institute brain atlas (Holmes et al. 1998). A fully deformable Thirion Demons registration
algorithm resulted in the best segmentation performance with a relative overlap (See Methods,
Section 2.7) of 0.58. Finally, Fischl et al. (2002) developed a probabilistic based automated
labeling algorithm. Prior probabilities and neighbor label probabilities were incorporated to
determine classification of 37 brain structures. Segmentation was evaluated using the similarity
index metric (See Methods, Section 2.7). Reliability for the subcortical structures ranged from
0.80 to 0.88.

Magnotta et al. (1999) previously utilized an artificial neural network (ANN) segmentation to
define the caudate, putamen and whole brain. A three-layer neural network was trained using
a standard backpropagation algorithm. A Talairach (Talairach and Tournoux, 1988) piecewise
linear registration was used to define an atlas space for generation of a probability map. This
method was later applied to the thalamus (Spinks et al., 2002), and extended by Pierson et al.
(2002) by incorporating a landmark registration for segmentation of the cerebellar lobes.
Relative overlap for the subcortical structures ranged from 0.74 to 0.80 and 0.79 to 0.87 for
the cerebellar regions.

In addition to the regional segmentation using neural networks described above, neural network
based machine learning algorithms have been used in MR image analysis for approximately
20 years. The primary utilization of neural networks has been in the area of tissue classification
(Piraino et al., 1991; Clarke et al., 1993; Cagnoni et al., 1993; Lin et al., 1996a; Lin et al.,
1996b; Reddick et al., 1997; Mulhern et al., 1999; Perez et al., 2003; Glass et al., 2003; Valdes-
Cristerna et al., 2004; Wagenknecht et al., 2004; Shen et al., 2005; Wismuller et al., 2006,
Song et al., 2006). Both supervised backpropogation as well as self organizing maps have been
utilized for this purpose. The fundamental feature utilized by these algorithms was the signal
intensity from the MR images. Neural networks have also been utilized for identification of
acute infarcts on diffusion weighted images by Prakash et al. (2006) Dickson et al. (1997) have
employed neural networks to segment tumors from MRI images. Support vector machine
algorithms have previously been used to automatically label white matter lesions (Quddus et
al. 2005) and tumors (Zhou et al. 2005) from MR images. SVM algorithms have also been
employed to perform tissue classification using MRI images (Akselrod-Ballin et al., 2006).

Based on the success of applying the ANN algorithm to segmentation of the cerebellar regions
by incorporating a higher dimensional transformation, the focus of this research was to extend
this algorithm to use a high dimensional intensity based transform. The input vector information
was also optimized to enhance the feature vectors used by the ANN algorithm. Three algorithms
were tested to compare the effects of registration and input vector information: 1) A single
subject template, 2) probabilistic atlas template, and 3) an artificial neural network (ANN). In
addition, 4) another segmentation algorithm based on a support vector machine (SVM)
algorithm was evaluated. Both the SVM and ANN based segmentation methods are machine
learning algorithms. These methods were applied to segment the subcortical and cerebellar
structures. Three reliability metrics were used allowing the algorithms to be compared to a
number of previously published studies.
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2. METHODS

A systematic approach was used to evaluate the effects of various modifications. First, a high
dimensional image registration algorithm was used to perform a template based segmentation
using a single subject. The second algorithm used an atlas based probability map for
segmentation allowing the effects of both registration and probabilistic information to be
evaluated. The third algorithm was the ANN that included the high dimensional registration
procedure used in the first two algorithms and included additional features including signal
intensity, probability information, and spatial location. Finally, a SVM algorithm was applied
to the same input vector information as was used for the ANN algorithm. The performance of
these algorithms was compared using a number of commonly used metrics for measuring
reliability of segmentation algorithms. These algorithms were tested using subcortical
(caudate, putamen, thalamus, and hippocampus) and cerebellar regions of interest. All of the
structures except the hippocampus had been evaluated using the previously developed neural
network algorithm.

2.1 Data Acquisition

In this study, two samples of subjects were collected using different acquisition schemes. For
both samples, informed consent was obtained in accordance with the Institutional Review
Board (IRB) at The University of lowa. The first sample of subjects consisted of twenty-five
subjects recruited into a high resolution MR imaging protocol to study brain morphology. All
subjects underwent a multi-modal imaging protocol consisting of T1 and T2 weighted
sequences obtained on a 1.5-T GE Signa MR scanner. The T1 sequence was obtained as a 3D
volume in the coronal plane using a spoiled GRASS sequence with the following parameters:
TE =6 ms, TR =20 ms, flip angle = 30°, FOV = 160x160x192 mm, matrix = 256x256x124,
NEX=2. The T2 images are acquired using a 2D fast spin-echo sequence in the coronal plane
with the following parameters: TE = 85 ms, TR = 4800 ms, slice thickness/gap = 1.8/0.0 mm,
FOV = 160x160 mm, matrix = 256x256, NEX = 3, number of echoes = 8, number of slices =
124. This sample of subjects was utilized to segment the caudate, putamen, thalamus, and
cerebellar regions of interest.

The second sample was selected due to the availability of manual rater definitions from a
previous reliability study using this dataset (Pantel et al., 2000). The hippocampus sample
consisted of 15 subjects collected using a lower resolution MR imaging protocol. The MR
protocol acquired three image sets: a T1, T2 and PD weighted scan. The images were obtained
on a GE Signa 1.5 T MR scanner. The T1 weighted scan was acquired using a 3D spoiled
recalled gradient echo sequence with the following scan parameters: TE =5 ms, TR = 24 ms,
flip angle = 40°, NEX = 2, FOV = 26 x 19.2 x 18.6 cm, matrix = 256 x 192 x 124, The PD
and T2 weighted scans were acquired using a fast spin-echo sequence with the following
parameters: TE = 28/96 ms for the PD and T2 respectively, TR = 3000 ms, slice thickness/gap
=3.0t04.0 mm/0.0 mm, NEX =1, FOV =26 cm, matrix = 256 x 192, ETL = 8. These subjects
were utilized for evaluating the hippocampus segmentation.

2.2 Preprocessing

The BRAINS software (Andreasen et al., 1992; Andreasen et al., 1993; Magnotta et al.,
2002), a locally developed image processing package, was used to pre-process the data using
a standard image processing pipeline. The T1-weighted images were spatially aligned such
that anterior commissure and posterior commissure (AC-PC) line was oriented horizontally in
the sagittal plane, and the interhemispheric fissure was aligned on the two axes. The T1 images
were resampled in this orientation using a rigid transform and a resolution of 0.5 mm isotropic
(1.0 mm isotropic for the subjects used for the hippocampus definitions). The T2-weighted
(and PD-weighted for those subjects in the second protocol) images were then aligned to the
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spatially aligned T1-weighted image utilizing the automated image registration (AIR) program
(Woods et al., 1998). Tissue classification was performed using a multimodal discriminate
classifier to label each voxel with the tissue composition accounting for partial volume artifacts
(Harris et al., 1999). The multi-modal classification utilized T1 and T2 data for the subjects in
the first imaging protocol and T1, T2, and PD weighted images in the hippocampus imaging
protocol. The tissue classification contains a second order polynomial along each orthogonal
axis to correct for bias fields during tissue classification. The multi-modal data was used as
input into a discriminant analysis. In the resulting image, each voxel is given an intensity value
based on the weights assigned by the discriminate function reflecting the relative combinations
of GM, WM, and CSF (10-70 for CSF, 71-190 for GM, and 191-250 for WM). The tissue
classified image was used for both the registration algorithm and signal intensity information
used for the machine learning algorithms.

Expert manual raters applied standard sets of previously published guidelines to define regions
of interest for the thalamus (Spinks et al., 2002), caudate (Magnotta et al., 1999), putamen
(Magnotta et al., 1999), cerebellar lobes (anterior, posterior-superior, posterior-inferior, and
corpus medullary) (Pierson et al., 2002) whole brain (Magnotta et al., 2002), and 31 cerebellar
landmarks. The location of the landmark points was previously described by Pierson et al.
(2002) and includes eight points defining a bounding box around the cerebellum, one point
from the midline fourth ventricular notch, and twenty-two points from regions defining the
cerebellar fissures. These were defined on all twenty-five subjects in the high resolution sample
of subjects. The hippocampus (Pantel et al., 2000) and whole brain (Magnotta et al., 1999)
were defined on the fifteen subjects in the low resolution sample. Raters were assessed for
reliability before defining the regions of interest on the subjects in this sample. The inter-rater
reliability of the manual raters for the structures of interest is shown in Table 1. In both samples
a brain with median volume and typical anatomy was selected as the atlas image. The same
atlas image was used throughout the study for each of the segmentation algorithms. The high
and low resolution protocol samples were divided into training and testing subsets. In the high
resolution protocol, fifteen subjects were assigned to the training set, and the remaining ten
subjects were used as the testing set. For the low resolution hippocampus protocol, ten subjects
were assigned to the training set and five were used as the testing set. The training sets were
used to generate probability maps for the structures and defining training vectors as described
in Sections 2.4-2.6. The testing sets were used to compare the outputs of the automated methods
with expert manual traces.

2.3 Template Based Segmentation

To systematically explore the effect of image registration changes to the ANN algorithm, a
template based segmentation was developed and evaluated. This registration algorithm also
serves as the foundation for all of the other algorithms presented. Since the fundamental
objective of this work was to segment regions of interest and the deformation field was not
required to be diffeomorphic, the Thirion demons non-linear optical flow registration algorithm
was used (Thirion, 1998). This implementation used a multi-level Thirion demons registration
algorithmavailable in the ITK library. In this framework, a low resolution solution is computed
and then progressively finer solutions are estimated by increasing the resolution of the images
utilized in the registration algorithm.

For this work, the tissue classified images were used as input into the registration algorithm.
The registration was accomplished using a two stage approach. First, a deformation field was
computed from the atlas to subject space using the multi-level Thirion registration with four
resolution levels. Resolutions of 1/16, 1/8, 1/4, and 1/2 were used with 2000, 500, 250, and
100 iterations respectively. The interpolation of the brain mask was performed using the shape
based interpolation (Grevera and Udupa, 1996). The deformed brain mask was used to produce

Neuroimage. Author manuscript; available in PMC 2009 January 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Powell et al.

Page 5

a skull stripped subject brain image. A second pass of image registration was then calculated
between the atlas and subject using the resulting skull stripped images with the same
registration parameters used in the first pass. The deformation field resulting from this second
registration step was then applied to the anatomical definitions defined on the template subject
deforming the definitions onto the individual subject using the shape based interpolation. For
the cerebellar segmentation, the first step of registration was the same as described above,
except during the second phase of registration the deformation field as initialized with a
landmark based thin-plate spline alignment (Bookstein, 1991) of 31 points that were defined
by the manual raters as descried in Section 2.2. These landmarks were used to address variation
in the location cerebellar fissures. Location of the major fissures may have significant variation
(~ 2cm) across subjects that cannot be overcome using signal intensity based registration
algorithms alone.

Registration was performed between the atlas image and each subject within the same sample.
The deformation fields generated in this portion of the project were utilized in all subsequent
steps. The anatomical labels were transformed onto each of the subjects in the reliability
samples.

2.4 Probability Based Segmentation

In the ANN algorithm, information from a probability atlas was included in the input feature
vectors. To investigate the combination of registration with probability information a minor
modification was made to the template based segmentation described in the previous section.
To generate the probability information, subjects in the training set were warped to the atlas
image using the registration process similar to that described above. The first stage of
registration was the same as before. However, in the second phase of registration, the subject
image was warped to the atlas image mapping the binary segmentations for these subjects into
the atlas space. The probabilistic atlas was created by computing the probability of the structure
of interest being located at each voxel within the atlas space across all subjects in the training
set. The resulting probability map was then smoothed using a Gaussian filter with a full width
half maximum (FWHM) of 1.5 mm. A separate probability map was created for each structure.
After the probabilistic atlas was created, the deformation fields generated in the template based
segmentation were applied to the probabilistic images warping them onto the subjects used for
the reliability sample. The deformed probability maps were smoothed using a Gaussian filter
of 0.5 mm FWHM and then thresholded at a probability level of fifty percent to produce the
binary structure definitions.

2.5 Artificial Neural Network Based Segmentation

The artificial neural network (ANN) based segmentation presented here is an extension of the
ANN algorithm previously developed by Magnotta et al. (1999). The neural network utilized
in this application was a standard three layer fully connected feed-forward network trained
using the standard backprogation algorithm. In this work, the Thirion demons algorithm was
used to replace the Talairach atlas piece-wise linear registration utilized previously. Input
vector modifications included the conversion of spatial coordinates in Talairach space to
spherical coordinates and the inclusion of signal intensity values oriented along the maximum
image gradient. Spherical coordinates were chosen since it was thought that they would reflect
a more natural coordinate system for the brain as compared to a rectilinear based Talairach
system. The signal intensity values along the maximum gradient were chosen to keep the
number of voxels in the ANN signal intensity sampling to a reasonable number. In the interior
of a structure the gradient were randomly oriented, while at the surface of a structure the
gradient were oriented perpendicular to the surface providing a sampling of the signal intensity
across the boundary. The ANN segmentation algorithm was applied on a voxel by voxel basis
for every voxel in the image having a non-zero probability for the structure of interest. The
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modified ANN image segmentation algorithm was broken into three components: 1) creation
of training vectors, 2) training of the neural network, and 3) application of the neural network
utilizing the trained weights. The probability map generated in the previous section was utilized
to map the probability information onto each subject.

2.5.1 Training Vector Creation—500,000 input vectors were chosen randomly across the
training set for each of the structures. To be selected as a training vector, the voxel currently
under consideration had to have a non-zero probability of being the structure of interest based
on the probabilistic atlas warped to subject space. Each input vector consisted of 25 elements
(Figure 1) consisting of 1 probability value, 3 spherical coordinates, 9 signal intensity values
along the largest gradient including the current voxel under examination, and 12 signal intensity
values along each of the three orthogonal values (2 voxels from the current voxel along X, y,
and z). The previous work by Magnotta et al. (Magnotta et al., 1999) had sampled 42 signal
intensity values. In this work, the number of features in the input vectors was reduced. This
was made possible due to the selection of the signal intensities along the maximum gradient.
All input vector values were scaled between 0 and 1. The manually defined regions of interest
were used as the known outputs for the supervised learning algorithm.

2.5.2 Neural Network Training—Training was conducted using a learning rate of 0.30, a
momentum term of 0.15, and a sigmoid activation function. The network was initialized by
assigning random values for the weights connecting network nodes. The neural network was
then applied to the training vectors and the mean square error was monitored to determine when
the error reached an asymptote. Training was terminated at this point and the neural network
weights were saved. It took approximately 250 iterations of the 500,000 input vectors to reach
an asymptote. Training required approximately one day to complete. While this is a significant
duration, it is completed only once per network configuration. Training was conducted for each
structure separately, and the neural networks were trained to define a single structure within
each network.

2.5.3 Application of the Neural Network—Once the neural network was trained, the
neural network and resulting weights were applied to segment the structures on the reliability
sample. The probability information was mapped to subject space using the same deformation
fields created in the template based segmentation algorithm. The neural network model was
then applied to the individual subjects and the resulting network activation function was filtered
using a Gaussian filter of 0.5mm and thresholded at 0.5 to define the region of interest.
Application of the neural network to the reliability sample took less than 5 minutes per subject.

2.6 Support Vector Machine Based Segmentation

The last segmentation algorithm investigated was a machine learning algorithm based on the
support vector machine (SVM) architecture. The SVM algorithm used the same input vector
information was the ANN algorithm. Conventional linear classifiers determine a single
separating plane while SVM aims to calculate two planes of separation that maximize the
margin of classification. The hyperplanes are described by the following set of equations:

w-x—b=1 (1)
and
w-x—b=—1 2

where x € RN and w is the normal of the hyperplane. The goal is to maximum the margin
between the hyperplanes with no data points located between them. It can be shown that the
distance between hyperplanes is 2/||w||, therefore the goal is to minimize ||w/||. This results in a
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quadratic programming (QP) problem. The solution to this QP problem was generated using
the optimization techniques described by Osuna et al (Osunaetal., 1997). While support vector
machines were originally implemented to solve linear equations, they can be converted to solve
non-linear problems by replacing the dot products in the above equations with a nonlinear
kernel function. For this work a radial basis function was used.

Since QP techniques require a substantial amount of memory, a subset of 15,000 training
vectors was arbitrarily chosen from the ANN training set. The decomposition algorithm was
used to train the SVM. In this procedure, an initial subset of vectors was chosen and a solution
for the subset was determined. Vectors not near the separating planes were replaced with
unexamined vectors until all training vectors are examined. The SVM model comprised of
these bounding support vectors was saved. SVM training was completed in approximately ten
minutes per configuration. The SVM model was applied to segment the structures on the
reliability sample. Application of the SVM based segmentation took approximately ten minutes
per subject.

2.7 Reliability Evaluation of the Segmentation Algorithms

2.7 Software

The reliability of the various segmentation algorithms were compared to the manually defined
regions of interest from the reliability sample. To date there has been no consensus on the most
appropriate metric to evaluate correspondence between segmented regions of interest;
therefore the results reported in this paper are provided using three commonly used metrics:
relative overlap, spatial overlap, and similarity index.

Volume(A N B)

Spatial Overlap = —J77 "~ "

Volume(A N B)

Volume(A U B) @

Relative Overlap =

(5)

Similarity Index = Volume(AN B)
y { Volume(A) + Volume(B))
{

2 )

These three metric were chosen because they all compare spatial location, shape, and size
between the two regions of interest. Intra-class correlations, another commonly used reliability
metric, do not include shape or spatial location. Instead, intra-class correlations simply reflect
the correspondence between the volumes.

All software developed in this application was built upon the National Library of Medicine
Insight Segmentation and Registration Toolkit (ITK), http://www.itk.org. This toolkit provided
the framework for working with images and implementation of the image registration
algorithms. The neural net code used the ANNIE Neural Network Library
(http://annie.sourceforge.net/). LibSVM available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm/was incorporated for support of the SVM based
image segmentation. The resulting programs are included with the BRAINS (Andreasen et al.,
1992; Andreasen et al., 1993; Magnotta et al., 2002) image analysis software that is freely
available from http://www.psychiatry.uiowa.edu/ipl.

3. RESULTS

The results for the four segmentation algorithms are shown in tables that report different
reliability metrics: relative overlap (Table 2), similarity index (Table 3), and spatial overlap
(Table 4). The template based segmentation algorithm had relative overlaps of 0.81, 0.80, and
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0.84 for the caudate, putamen and thalamus respectively. The relative overlap for the
hippocampus was lower at 0.59. The cerebellar regions have relative overlaps ranging from
0.70 to 0.83. The reliability metrics of similarity index and spatial overlap were higher for all
structures. The probabilistic segmentation had very similar results as compared to the template
based segmentation. This is true for all structures except the caudate where the template based
segmentation had a higher relative overlap as shown in Table 5. The incorporation of machine
learning into the segmentation algorithms significantly increased the relative overlap for all
structures except the inferior posterior lobe of the cerebellum. ANN and SVM based
segmentation did not differ significantly from each other. For all the segmentation algorithms
the hippocampus had the lowest reliability. This held true for all of the reliability metrics. The
SVM algorithm retained approximately 1000-2000 support vectors for each class after
training.

The relative overlap of the template based segmentation method was comparable to the manual
rater reliability for the caudate, putamen, and thalamus. Structures such as the hippocampus
and cerebellar regions had significantly lower reliability as compared to the manual raters.
Employing machine learning algorithms resulted in relative overlap measures that were
comparable to the manual raters on all regions except for the anterior lobe of the cerebellum.
The only difference in the atlas based segmentations (single template versus probabilistic
template) was found in the caudate where the single template outperformed the probabilistic
template. The machine learning algorithms contain additional anatomical information
including spatial position and information about the signal intensity in the surrounding voxels.
This information helps the machine learning algorithms to identify the boundaries in regions
where anatomical boundaries are fuzzy and greater residual anatomic variability remains. This
is evident in structures such as the hippocampus and cerebellum.

A visual comparison of the automated methods to the manual rater is shown in Figure 2 for
the subcortical regions, Figure 3 for the hippocampus and Figure 4 for the cerebellum. In all
cases the manual definition is in red. The automated definitions are shown in blue in Figures
2-3. In Figure 4, a different color is used to define each of the automated segmentation regions
of interest. All of the automated segmentation algorithms tend to follow the border defined by
a manual rater very closely. The template based segmentation tended to have the largest
deviation from the manually defined border. This is clear in the Figure 2 for the putamen and
Figure 3 showing the hippocampus. Figure 5 shows a surface representation for the ANN
segmented regions of interest from a subject in the testing set. The cortical surface is shown
for reference.

The results show that the relative overlap metric has the greatest penalty for shape differences
between the automated segmentation and the manual rater. This is due to the dominator of the
metric. The volume of the union for the two regions is guaranteed to be greater than or equal
to the volume of the manual rater or the average volume of the two regions. Spatial overlap
imposes the smallest shape penalty. In fact, spatial overlap will produce its maximum value of
1 for any generated region that fully encompasses the entire manually defined region.

4. DISCUSSION

Atlas, probability, ANN, and SVM based automated segmentation methods have been
developed to automatically delineate subcortical and cerebellar regions of interest. Relative
overlap of the subcortical and cerebellar structures by the template based method ranged from
0.59 to 0.84. The hippocampus had the lowest relative overlap at 0.59. This is similar to the
results obtained by Wu et al. (Wu et al. 2006) who obtained relative overlap of 0.62 using a
similar technique. The probabilistic atlas approach had similar results as compared to the
template method. Relative overlaps ranged from 0.62 to 0.84 for the structures utilized in this
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study. Improvements in the resulting relative overlaps came from the application of the machine
learning methods including ANN and SVM. The relative overlap ranged from 0.74 to 0.88 for
the ANN based methods and from 0.74 to 0.87 for the support vector machine algorithm. The
previous utilization of the ANN method by Magnotta et al. (Magnotta et al. 1999) resulted in
relative overlap measures of 0.80, 0.76, and 0.83 for the caudate, putamen, and thalamus
respectively. Similar results were obtained in this work using the template based segmentation.
With the modifications to the ANN input vector information the relative overlaps increased to
0.84, 0.84, and 0.87 for these same regions. In this implementation, the SVM parameter space
was not fully explored. Future work could be undertaken to explore weighting of certain
features (e.g. probability and signal intensity) greater than others (e.g. spatial position).

A comparison between the four methods shows that the machine learning algorithms
outperform the template and probabilistic based methods when examining the relative overlap
(Table 5). This metric was used because it is the most sensitive to shape differences. The relative
overlap between the manual raters ranged from 0.72 to 0.86 for the subcortical and cerebellar
structures. The machine learning algorithms were as reliable as manual segmentation based on
the relative overlap values, and can be applied to large datasets in a small fraction of the time
required by manual raters. Rater drift is also eliminated using these automated approaches to
image segmentation.

To compare the automated segmentation methods with previously published methods,
similarity index and spatial overlap were examined. Spatial overlap measurements were similar
for all of the applied methods and ranged from 0.84 to 0.94 across all methods and structures.
The spatial overlap measured by losifescu et al. (1997) was 0.78, 0.78, and 0.85 for the caudate,
putamen, and thalamus respectively. The ANN algorithm provided spatial overlap of 0.93,
0.91, and 0.93 for the same structures. Fischl et al. (2002) reported similarity indices ranging
from 0.80 to 0.88 for the subcortical structures. However, the data presented by Fischl et al.
relied on only the use of T1 weighted images while the methods presented here utilized data
from a multi-modal imaging protocol.

This work provides a direct comparison between four automated segmentation methods using
the same data set. The machine learning algorithms outperformed the template and probabilistic
based segmentation methods, suggesting that the inclusion of additional information such as
surrounding voxel signal intensity can improve segmentation performance. There is also little
disparity between the ANN and SVM based segmentation algorithms. ANN training takes
significantly longer than SVM training, but can be applied more quickly to segment the regions
of interest. An expert manual rater who reviewed the results could not differentiate between
the manually and machine learning defined regions of interest. The neural network and support
vector machine models produced by this algorithm may be utilized to accurately delineate
subcortical and cerebellar regions of interest in a matter of minutes.

The advantage of the proposed machine learning algorithms is the ability to define anatomic
regions of interest with a high degree of reliability in regions where the anatomy is fairly
homogenous. The algorithms may not generalize to defining cortical regions of interest due to
the greater degree of heterogeneity. For this region, unsupervised algorithms may have a
distinct advantage.

As the number of multi-center studies grows, there is increased demand for development and
utilization of methods that can automate the segmentation of cortical, subcortical and cerebellar
regions of interest. These methods in addition to be being automated need to identify subtle
brain changes. The artificial intelligence based methods presented in this paper have reliability
similar to a human rater across a variety of structures. By using a completely automated
segmentation process, the possibility of rater drift is eliminated if the same model is applied
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throughout a longitudinal study. Additionally, application of an automated process reduces
rater bias by minimizing human interaction in the decision making process for delineation of
structures. The algorithms presented here are appropriate for large scale imaging studies.
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Figure 1.

Training vector components. The training vectors include probability information, spherical
coordinates, area iris values, signal intensity along the image gradient. The output of the neural
network is a binary mask defining the region of interest.
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Figure 2.

Manual (red) and automated (blue) defined regions of interest are shown for the caudate,
putamen, and thalamus. The template, probabilistic, ANN, and SVM automated segmentations
are shown from left to right.
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Figure 3.

Manual (red) and automated (blue) defined regions of interest are shown for the hippocampus.
The template, probabilistic, ANN, and SVM automated segmentations are shown from left to
right.
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Figure 4.

Manual (red) and automated defined regions of interest are shown for the cerebellum. The
automated regions are shown in green (anterior), pink (superior posterior), yellow (inferior
posterior), and light-blue (corpus medullare). The template, probabilistic, ANN, and SVM
automated segmentations are shown from left to right.
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Figure 5.

Surface definitions of the ANN automatically defined regions of interest (excluding the cortical
surface). For the subcrotical regions, the caudate is shown in green, putamen in blue, and
thalamus in yellow. The cerebellar regions include the corpus medullare (pink), anterior
(green), superior posterior (blue), and inferior posterior (yellow) lobes.
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Inter-rater reliability (Relative Overlap) for the manually defined the structures of interest

Table 1

Page 18

Structure Relative Overlap Mean (Standard Deviation)
Thalamus 0.84 (0.05)
Caudate 0.78 (0.03)
Putamen 0.81(0.02)
Hippocampus 0.72 (0.03)
Corpus Medullare 0.81 (0.04)
Inferior Posterior Lobe 0.86 (0.02)
Superior Posterior Lobe 0.84 (0.04)
Anterior Lobe 0.80 (0.06)
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Relative overlap (mean and standard deviation) of the four automated segmentation methods compared to a

manual rater.

Structure and Side Template Probability] ANN SVM
Caudate 0.81 (0.04), 0.77 (0.03) 0.83 (0.04) 0.84 (0.04)
Left 0.80 (0.03), 0.76 (0.03) 0.83 (0.04) 0.84 (0.04)
Right 0.81 (0.04) 0.77 (0.03) 0.84 (0.04) 0.84 (0.04)
Hippocampus 0.59 (0.02), 0.62 (0.07) 0.74 (0.04), 0.72 (0.04),
Left 0.59 (0.05), 0.63 (0.08) 0.75 (0.03) 0.74 (0.04)
Right 0.59 (0.08) 0.62 (0.06) 0.72 (0.04) 0.71 (0.05)
Putamen 0.80 (0.03), 0.80 (0.04) 0.85 (0.03), 0.84 (0.03)
Left 0.81 (0.04), 0.80 (0.04) 0.85 (0.03) 0.84 (0.03)
Right 0.78 (0.03) 0.79 (0.04) 0.84 (0.02) 0.83 (0.03)
Thalamus 0.84 (0.03), 0.84 (0.03) 0.88 (0.02), 0.87 (0.03)
Left 0.84 (0.04), 0.84 (0.03) 0.88 (0.02) 0.86 (0.03)
Right 0.84 (0.03) 0.85 (0.02) 0.88 (0.01) 0.87 (0.02)
Anterior Lobe 0.70 (0.08), 0.71 (0.07) 0.77 (0.07), 0.76 (0.06),
Left 0.72 (0.06), 0.72 (0.06) 0.78 (0.07) 0.77 (0.05)
Right 0.69 (0.10) 0.70 (0.08) 0.77 (0.07) 0.76 (0.06)
Corpus Medullare 0.78 (0.08), 0.80 (0.08) 0.85 (0.02), 0.85 (0.03),
Left 0.81 (0.04), 0.81 (0.05) 0.85 (0.03) 0.85 (0.03)
Right 0.76 (0.11) 0.79(0.11) 0.84 (0.02) 0.84 (0.03)
Inferior Posterior Lobe 0.83 (0.08)| 0.83 (0.08) 0.87 (0.03), 0.86 (0.03),
Left 0.84 (0.04), 0.84 (0.06) 0.86 (0.03) 0.85 (0.03)
Right 0.82 (0.11) 0.82(0.11) 0.88 (0.02) 0.87 (0.02)
Superior Posterior Lobe 0.79 (0.07), 0.79 (0.07) 0.84 (0.03), 0.83 (0.03),
Left 0.80 (0.04), 0.79 (0.05) 0.83 (0.04) 0.83 (0.03)
Right 0.78 (0.09) 0.79 (0.09) 0.85 (0.03) 0.84 (0.03)
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Similarity Index (mean and standard deviation) of the four automated segmentation methods compared to a

manual rater.

Structure and Side Template Probability] ANN SVM
Caudate 0.89 (0.02), 0.87 (0.02) 0.91 (0.02), 0.91 (0.02)
Left 0.89 (0.02), 0.86 (0.02) 0.91 (0.02) 0.90 (0.02)
Right 0.89 (0.03) 0.87 (0.02) 0.91 (0.02) 0.91 (0.02)
Hippocampus 0.74 (0.05), 0.77 (0.05) 0.85 (0.03), 0.84 (0.03),
Left 0.74 (0.04), 0.77 (0.06) 0.86 (0.02), 0.85 (0.02)
Right 0.74 (0.06) 0.76 (0.05) 0.84 (0.03) 0.83 (0.03)
Putamen 0.89 (0.02), 0.89 (0.02) 0.92 (0.02) 0.91 (0.02)
Left 0.90 (0.02), 0.89 (0.02) 0.92 (0.02) 0.91 (0.02)
Right 0.88 (0.02) 0.88 (0.03) 0.92 (0.01) 0.91 (0.02)
Thalamus 0.92 (0.02), 0.91 (0.02) 0.93 (0.01), 0.93 (0.02),
Left 0.92 (0.02), 0.91 (0.02) 0.93 (0.01) 0.93 (0.02)
Right 0.91 (0.02) 0.92 (0.01) 0.94 (0.01) 0.93 (0.01)
Anterior Lobe 0.82 (0.06), 0.83 (0.05) 0.87 (0.04) 0.86 (0.04)
Left 0.84 (0.04), 0.84 (0.04) 0.87 (0.04) 0.87 (0.03)
Right 0.81 (0.07) 0.82 (0.06) 0.87 (0.05) 0.86 (0.04)
Corpus Medullare 0.88 (0.06), 0.89 (0.06) 0.92 (0.01), 0.92 (0.02)
Left 0.89 (0.02), 0.90 (0.03) 0.92 (0.01) 0.92 (0.02)
Right 0.86 (0.08) 0.88 (0.08) 0.92 (0.01) 0.91 (0.02)
Inferior Posterior Lobe 0.91 (0.06)| 0.90 (0.06) 0.93 (0.02), 0.92 (0.02),
Left 0.91 (0.03), 0.91 (0.04) 0.93 (0.02) 0.92 (0.02)
Right 0.90 (0.08) 0.90 (0.08) 0.93 (0.01) 0.93 (0.01)
Superior Posterior Lobe 0.88 (0.05)| 0.88 (0.05) 0.91 (0.02), 0.91 (0.02),
Left 0.89 (0.03), 0.88 (0.03) 0.90 (0.02), 0.91 (0.02)
Right 0.87 (0.06) 0.88 (0.06) 0.92 (0.02) 0.91 (0.02)
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Spatial Overlap (mean and standard deviation) of the four automated segmentation methods compared to a manual
rater.
Structure and Side Template Probability| ANN SVM
Caudate 0.94 (0.04) 0.82 (0.03) 0.93 (0.03) 0.91 (0.03)
Left 0.94 (0.04) 0.82 (0.04) 0.92 (0.04) 0.90 (0.04)
Right 0.94 (0.04) 0.82 (0.03) 0.95 (0.03) 0.92 (0.02)
Hippocampus 0.81 (0.08)| 0.73 (0.08) 0.85 (0.04), 0.82 (0.04),
Left 0.82 (0.07) 0.73 (0.09) 0.85 (0.04) 0.83 (0.03)
Right 0.81 (0.10) 0.74 (0.07) 0.85 (0.05) 0.82 (0.05)
Putamen 0.88 (0.03) 0.84 (0.04) 0.91 (0.03) 0.90 (0.03)
Left 0.89 (0.03) 0.84 (0.03) 0.91 (0.03) 0.89 (0.03)
Right 0.87 (0.04) 0.84 (0.05) 0.91 (0.03) 0.89 (0.04)
Thalamus 0.92 (0.03) 0.88 (0.02) 0.93 (0.01) 0.92 (0.02)
Left 0.92 (0.02) 0.87 (0.02) 0.93 (0.01) 0.91 (0.02)
Right 0.93 (0.02) 0.89 (0.02) 0.93 (0.02) 0.93 (0.02)
Anterior Lobe 0.84 (0.05) 0.81 (0.05) 0.88 (0.06) 0.85 (0.05)
Left 0.83 (0.07) 0.80 (0.06) 0.84 (0.06) 0.84 (0.06)
Right 0.86 (0.03) 0.83 (0.04) 0.91 (0.04) 0.86 (0.04)
Corpus Medullare 0.89 (0.05) 0.86 (0.05) 0.92 (0.04) 0.90 (0.05)
Left 0.91 (0.04) 0.86 (0.05) 0.92 (0.03) 0.90 (0.05)
Right 0.87 (0.05) 0.87 (0.06) 0.92 (0.05) 0.90 (0.05)
Inferior Posterior Lobe 0.92 (0.02), 0.88 (0.03) 0.90 (0.03), 0.89 (0.03),
Left 0.93 (0.02) 0.88 (0.03) 0.90 (0.04) 0.88 (0.03)
Right 0.91 (0.02) 0.88 (0.03) 0.90 (0.03) 0.89 (0.02)
Superior Posterior Lobe 0.86 (0.03), 0.83 (0.03) 0.87 (0.04), 0.86 (0.03),
Left 0.87 (0.04) 0.83 (0.04) 0.85 (0.05) 0.86 (0.04)
Right 0.85 (0.03) 0.83 (0.03) 0.88 (0.03) 0.86 (0.03)
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