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Dynamic causal modelling for fMRI: A two-state model

A.C. Marreiros,” S.J. Kiebel, and K.J. Friston

Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL, 12 Queen Square, London WCIN 3BG, UK

Received 14 March 2007; revised 10 July 2007; accepted 6 August 2007
Available online 25 August 2007

Dynamical causal modelling (DCM) for functional magnetic
resonance imaging (fMRI) is a technique to infer directed
connectivity among brain regions. These models distinguish between
a neuronal level, which models neuronal interactions among
regions, and an observation level, which models the hemodynamic
responses each region. The original DCM formulation considered
only one neuronal state per region. In this work, we adopt a more
plausible and less constrained neuronal model, using two neuronal
states (populations) per region. Critically, this gives us an explicit
model of intrinsic (between-population) connectivity within a
region. In addition, by using positivity constraints, the model
conforms to the organization of real cortical hierarchies, whose
extrinsic connections are excitatory (glutamatergic). By incorporat-
ing two populations within each region we can model selective
changes in both extrinsic and intrinsic connectivity.

Using synthetic data, we show that the two-state model is
internal consistent and identifiable. We then apply the model to real
data, explicitly modelling intrinsic connections. Using model
comparison, we found that the two-state model is better than the
single-state model. Furthermore, using the two-state model we find
that it is possible to disambiguate between subtle changes in
coupling; we were able to show that attentional gain, in the context
of visual motion processing, is accounted for sufficiently by an
increased sensitivity of excitatory populations of neurons in V5, to
forward afferents from earlier visual areas.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Functional magnetic resonance imaging; Dynamic causal
modelling; Neural mass model

Introduction

Dynamic causal modelling (DCM) for fMRI is a natural
extension of the convolution models used in the standard analysis
of fMRI (Friston et al., 2003). This extension involves the
explicit modelling of activity within and among regions of a

* Corresponding author. Fax: +44 20 7813 1420.
E-mail address: amarreiros@fil.ion.ucl.ac.uk (A.C. Marreiros).
Available online on ScienceDirect (www.sciencedirect.com).

1053-8119/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.neuroimage.2007.08.019

hypothesized network, at the neuronal level. The general idea
behind DCM is to construct a reasonably realistic neuronal model
of interacting cortical regions with neurophysiologically inspired
parameters. These parameters are estimated such that the
predicted blood oxygenation level dependent (BOLD) series,
which results from converting the neural dynamics into
hemodynamics, correspond as closely as possible to the observed
BOLD series.

Standard DCMs for fMRI are based upon a bilinear
approximation to neuronal dynamics with one state per region.
The neuronal dynamics are described by the differential
equations describing the dynamics of a single state that
summarizes the neuronal or synaptic activity of each area;
this activity then induces a hemodynamic response as
described by an extended Balloon model (Buxton et al.,
1998). Examples of DCM for fMRI can be found in Mechelli
et al. (2004), Noppeney et al. (2006), Stephan et al. (2005),
and Griffiths et al. (2007) (for a review on the conceptual
basis of DCM and its implementation for functional magnetic
resonance imaging data and event-related potentials, see
Stephan et al., 2007).

Dynamical causal modelling differs from established methods
for estimating effective connectivity from neurophysiological time
series, which include structural equation modelling and models
based on multivariate autoregressive processes (Harrison et al.,
2003; MclIntosh and Gonzalez-Lima, 1994; Roebroeck et al.,
2005). In these models, there is no designed perturbation and the
inputs are treated as unknown and stochastic. DCM assumes the
input to be known, which seems appropriate for designed
experiments. Further, DCM is based on a parameterized set of
differential equations which can be extended to better describe
the system.

Here, we extend the original model to cover two states per
region. These states model the activity of inhibitory and
excitatory populations. This has a number of key advantages.
First, we can relax the shrinkage priors used to enforce stability
in single-state DCMs because the interaction of excitatory—
inhibitory pairs confers dynamical stability on the system.
Second, we can model both extrinsic and intrinsic connections.
Third, we can enforce positivity constraints on the extrinsic
connections (i.e., interregional influences of excitatory popula-
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tions). Finally, this re-parameterization enables one to model
context-dependent changes in coupling as a proportional
increase or decrease in connection strength (cf., the additive
effects used previously; Friston et al., 2003).

Shrinkage priors are simply priors or constraints on the
parameters that shrink their conditional estimates towards zero
(i.e., their prior expectation is zero and the prior variance
determines the degree of shrinkage, in relation to observation
noise). They were employed in early formulations of DCM to
ensure coupling strengths did not attain very high weights,
which generate exponentially diverging neuronal activity.
However, this motivation for shrinkage priors is rather ad hoc
and, as we will discuss later, confounds model specification and
comparison.

This paper is structured as follows. In the first section, we
present the two-state DCM, with two states per region. In the
subsequent section, we provide a stability analysis of the two-
state DCM. In the third section, we describe model inversion;
i.e.,, prior distributions, Bayesian estimation, conditional infer-
ence and model comparison. In Simulations—model compar-
isons, we compare the single- and two-state DCM using
synthetic and real data to establish its face validity. Finally, an
empirical section then demonstrates the use of the two-state
DCM by looking at attentional modulation of connections during
visual motion processing. From these analyses, we conclude that
the two-state DCM is a better model for fMRI data than the
single-state DCM.

Theory
Dynamic causal modelling for fMRI—single-state models

In this section we review briefly dynamic causal models of
fMRI data (Friston et al., 2003). In the next section, we extend
this model to accommodate two neuronal sources per region. A
dynamic causal model is, like the general linear model, an
equation which expresses predicted responses in terms of some
parameters and explanatory variables. In our case, the explana-
tory variables are the experimental inputs «, which correspond to
stimulus functions in conventional models. The causal aspect
comes from control theory, in which the response of causal
models can be predicted from the current and past input.
Critically, dynamic models do not predict the response per se
but its rate of change. This rate of change can be a complicated
nonlinear function of the models unknown parameters and
known inputs. The form and parameterization of this function is
entailed by the specific DCM used. In fMRI, people generally
use a simple bilinear form with coupling parameter matrices A,
BY and C. Critically, the B matrices parameterize interactions
between inputs and states; hence, bilinear. The DCMs
considered below are multiple-input multiple-output systems
that comprise N, inputs and N, outputs with one output per
region. The N, inputs correspond to designed causes (e.g.,
boxcar or impulse stimulus functions used in conventional
analyses). Each region produces a measured output that
corresponds to the observed BOLD signal. These time-series
would normally be the averages or first eigenvariates of N,
selected regions.

Interactions among regions are modelled at the neuronal level.
In single-state models each region has one state variable. This

state is a simple summary of neuronal (i.e., synaptic) activity X9,

in a region. Friston et al. (2003) used a bilinear form to describe
their dynamics:
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This model is used to generate neuronal activity; later we will
add hemodynamics and noise to furnish a probabilistic model of
fMRI measurements. In this model, the state vector x(¢) contains
one scalar per region. The changes in neuronal (i.e., synaptic)
activity are described by the sum of three effects. First, the matrix
A encodes directed connectivity between pairs of regions. The
elements of this connectivity matrix are not a function of the
input, and can be considered as an endogenous or condition-
invariant. Second, the elements of B’ represent the changes of
connectivity induced by the inputs, u;. These condition-specific
modulations or bilinear terms B are usually the interesting
parameters. The endogenous and condition-specific matrices are
mixed to form the total connectivity or Jacobian matrix 3. Third,
there is a direct exogenous influence of each input u; on each area,
encoded by the matrix C. The parameters of this system, at the
neuronal level, are given by 0" 24, B',..., B™", C. At this level,
one can specify which connections one wants to include in the
model. Connections (i.e., elements of the matrices) are removed
by setting their prior mean and variance to zero. We will illustrate
this later.

The bilinear form in Eq. (1) can be regarded as an approxi-
mation to any function, F(z,u,0), because it is simply a Taylor
expansion around z=0 and u=0; retaining only terms that are
first-order in the states or input. In this sense, the bilinear model
can be regarded as a generic approximation, to any [unknown]
function describing neuronal dynamics, in the vicinity of its
fixed-point; i.e., when the neuronal states are at equilibrium or
ZEr0.

At the observation level, for each region, the neuronal state
forms an input to a hemodynamic model that generates the
BOLD signal. Region-specific hemodynamics are modelled by
four extra hemodynamic state-variables. The corresponding first-
order ordinary differential equations are parameterized by five
region-specific parameters, 6" (see Friston et al., 2003 for a
complete description). Here, we summarize the integration of
the neuronal and hemodynamic states by the generalized
convolution

h(t) = h(u(), 0). )
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By integrating the ordinary differential equations of both levels,
we can compute the systems predicted hemodynamic response /(f)
as a continuous function of time, given the neuronal and
hemodynamic parameters 6 2 0",0", input u(f), and some initial
states. Finally, this response is sampled appropriately to form
predictions for the BOLD time-series (Kiebel et al., 2007). By
assuming the observation error ¢ is Gaussian, we implicitly specify
a likelihood model for the ith observation in the time-series

yi = h(t) + & = p(0) = N(h(0),2(4))- 3)

Where X(4) is the error covariance that is parameterized by an
unknown hyperparameter. To complete the model specification, we
need only the priors, p(f). However, we will first review the
extension of conventional likelihood models and their implicit re-
parameterization.

Dynamic causal modelling for fMRI—two-state models

We now extend the standard DCM above to incorporate two
state variables per region. These model the activity of an inhibitory
and excitatory population respectively. Schematics of the single-
and two-state models are shown in Fig. 1.

The Jacobian matrix, 3 represents the effective connectivity
within and between regions. Intrinsic or within-region coupling is
encoded by the leading diagonal blocks (see Fig. 1), and extrinsic or
between-region coupling is encoded by the off-diagonal blocks. Each
within-region block has four entries, 3 = {3EF, 3 GE SIE

i i

These correspond to all possible intrinsic connections between the

Single-state DCM

excitatory and inhibitory states, {x-, x'} of the ith region. These
comprise self-connections, E — E, I — I and interstate connections
E — 1,1 — E. We enforce the connections, E— E, I - E, I — I to be
negative (i.e., SEE, S%I,SESO), which means they mediate a
dampening effect on population responses. This negativity is
imposed by using log-normal priors; we use the negative expo-
nential of an underlying coupling parameter with a normal prior
(see below). Although the excitatory self-connections are negative,
we do not mean to suggest that there are direct inhibitory connect-
ions among excitatory units, rather the multitude of mechanisms
that self-organize neuronal activity (e.g., adaptation, gain-control,
refractoriness, polysynaptic input from recurrent axonal collaterals,
etc.) will conspire to make the effective self-connection negative.
The extrinsic connections among areas are assumed to be positive
(ie., SEEZO) and are mediated exclusively by coupling among
excitatory populations (cf., glutamatergic projections in the real
brain). In accord with known anatomy, we disallow long-range
coupling among inhibitory populations.

The two-state DCM has some significant advantages over the
standard DCM. First, intrinsic coupling consists of excitatory and
inhibitory influences, which is biologically more plausible. Also,
the interactions between inhibitory and excitatory subpopulations
confer more stability on the overall system. This means we can
relax the shrinkage priors used to enforce stability in single-state
DCMs. Furthermore, we can now enforce positivity constraints on
the extrinsic connections (i.e., interregional influences among
excitatory populations) using log-normal priors and scale para-
meters as above for the intrinsic connections. This means changes
in connectivity are now expressed as a proportional increase or

Two-state DCM
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Fig. 1. Schematic of the single-state DCM (left) and the current two-state DCM (right). The two-state model has an inhibitory and an excitatory subpopulation.
The positivity constraints are explicitly represented in the two-state connectivity matrix by exponentiation of underlying scale parameters (bottom right).
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decrease in connection strength. In what follows, we address each
of these issues, starting with the structural stability of two-state
systems and the implications for priors on their parameters.

Stability and priors

In this section, we will describe a stability analysis of the two-
state system, which informs the specification of the prior
distributions of the parameters. Network models like ours can
display a variety of different behaviours (e.g., Wilson and Cowan,
1973). This is what makes them so useful, but there are
parameterizations which make the system unstable. By this we
mean that the system response increases exponentially. In real
brains, such behaviour is not possible and this domain of parameter
space is highly unlikely to be populated by neuronal systems. The
prior distributions should reflect this by assigning a prior
probability of zero to unstable domains. However, this is not
possible because we have to use normal priors to keep the model
inversion analytically tractable. Instead, we specify priors that are
centered on stable regions of parameter space.

In the original single-state DCM, we had a single state per
region and a self-decay for each state (see Fig. 2). This kind of
system allows for only an exponential decay of activity in each
region, following a perturbation of the state by exogenous input
or incoming connections. For this model, Friston et al. (2003)
chose shrinkage priors, which were used to initialize the inversion
scheme in a stable regime of parameter space, in which neuronal
activity decayed rapidly. The conditional parameter estimates
were then guaranteed to remain in a stable regime through
suitable checks during iterative optimization of the parameters.

Two-state models (Fig. 3) can exhibit much richer dynamics
compared to single-state models. Indeed, one can determine
analytically the different kinds of periodic and harmonic oscillatory
network modes these systems exhibit. This is important because it
enables us to establish stability for any prior mean on the
parameters. This entails performing a linear stability analysis by
examining the eigenvalues of the Jacobian, I under the prior
expectation of the parameters. The system is asymptotically stable
if these eigenvalues (cf., Lyapunov spectrum) have only negative
real parts (Dayan and Abbott, 2001). This is the procedure we
adopt below.

It should be noted that, in generic coupled nonlinear systems,
instability of a linearly stable fixed point does not always lead to
exponential growth, but may lead to the appearance of a stable
nonlinear regime. In the case of a Hopf bifurcation (as in Wilson
and Cowan, 1973), a limit cycle appears near the unstable fixed
point, which can model alpha rhythms and other oscillatory
phenomena. Indeed, a system close to a linear instability exhibits
longer and more complex nonlinear transients on perturbation (e.g.,

Fig. 2. Schematic of single-state DCM (one region).

Fig. 3. Schematic of two-state DCM (one region).

Friston, 1997). This is a further reason to avoid using shrinkage
priors (that preclude systems close to instability). However,
because the bilinear model is linear in its states, its unstable fixed
points are necessarily associated with exponential growth.

Priors

We now describe how we specify the priors and enforce
positivity or negativity constraints on the connections. We seek
priors that are specified easily and are not a function of
connectivity structure; because this can confound model compar-
ison (Penny et al., 2004). The strategy we use is to determine a
stable parameterization for a single area, use this for all areas and
allow only moderate extrinsic connections. In this way, the system
remains stable for all plausible network structures.

Priors have a dramatic impact on the landscape of the objective
function that is optimized: precise prior distributions ensure that
the objective function has a global minimum that can be attained
robustly. Under Gaussian assumptions, the prior distribution p(0) is
defined by its mean and covariance X. In our expectation—
maximization inversion scheme, the prior expectation is also the
starting estimate. If we chose a stable prior, we are guaranteed to
start in a stable domain of parameter space. After this initialization,
the algorithm could, of course, update to an unstable parameter-
ization because we are dealing with a dynamic generative model.
However, these updates will be rejected because they cannot
increase the objective function: in the rare cases an update to an
unstable regime actually occurs (and the objective function
decreases), the algorithm returns to the previous estimate and
halves its step-size, using a Levenberg—Marquardt scheme (Press
et al., 1999). This is repeated iteratively, until the objective
function increases, at which point the update is accepted and the
optimization proceeds. Therefore, it is sufficient to select priors
whose mean lies in a stable domain of parameter space.
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Stability is conferred by enforcing connectivity parameters to
be strictly positive or negative. In particular, the intrinsic, E—E,
I—I, I>E connections are negative while the E—I and all extrinsic
E—E connections are positive. We use

-1 -05
05 -1

as the prior mode (most likely a priori) for a single region’s
Jacobian, where its states, x=[xfx§]T summarize the activity of its
constituent excitatory and inhibitory populations. This Jacobian
has eigenvalues of —1+0.5/ and is guaranteed to be stable. We then
replicate these priors over regions, assuming weak positive
excitatory extrinsic E—E connections, with a prior of 0.5 Hz.
For example, a three-region model, with hierarchical reciprocal
extrinsic connections and states, x=[x115,x11,x§,x12,x]35,x§]T would
have Jacobian with a prior mode of

-1 -05 05 0 0 0
05 -1 0 0 0 0
0

o5 0 -1 -05 05
“lo0o 0 05 -1 0 0
0 0 05 0 -1 —05
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The eigenvalue spectrum of this Jacobian is show in Fig. 4 (left
panel), along with the associated impulse response functions for
an input to the first subpopulation (right panels); evaluated with
x(f)=exp(uf)x(0). It can be seen for this architecture we expect
neuronal dynamics to play out over a time-scale of about 1 s. Note
that these dynamics are not enforced; they are simply the most
likely a priori.

Positivity constraints and scale-parameters

To ensure positivity or negativity, we scale these prior modes, ¢
with scale-parameters, which have log-normal priors. This is
implemented using underlying coupling parameters with Gaussian
or normal priors; for example, the extrinsic connections are
parameterized as J; = uiexp(4; + uBj), where p(Aj)=N(0,v)
and we have assumed one input. A mildly informative log-normal
prior obtains when the prior variance v ~ 1/16. This allows for a
scaling around the prior mode, u;; of up to a factor of two, where

real eigvalues

08
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02

-0.2
12 3 45 6 0 2 4 6 8

mode time (s)

Fig. 4. Stability analysis for a two-state DCM (three regions).

Table 1
Log-evidences for three different models using synthetic data generated by
the backward, forward and intrinsic models (see text)

Models Synthetic data

Backward Forward Intrinsic
Backward 523.93 (99.9%) 494.19 (0.0%) 477.50 (0.7%)
Forward 382.07 (0.0%) 538.09 (99.9%) 439.22 (0.0%)
Intrinsic 497.67 (0.0%) 503.55 (0.0%) 482.47 (99.3%)

The diagonal values show higher log evidences, which indicate that the two-
state DCM has internal consistency. The percentages correspond to the
conditional probability of each model, assuming uniform priors over the
three models examined under each data set.

the sign of the mode determines whether the connection is positive
or negative. In what follows, we use a prior variance for the
endogenous and condition-specific coupling parameters, A/l:jl-c and
BJf of v=1/16.

Re-parameterizing the system in terms of scale-parameters
entails a new state equation (see Fig. 1), which replaces the
Bilinear model in Eq. (1)
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In this form, it can be seen that condition-specific effects u; act to
scale the connections by exp(ukB;-j'(/‘)) = exp(B;-;(k))”k. When B;j(") =0,
this scaling is exp(uBj; ®)=1 and there is no effect of input on the
connection strength. The hemodynamic priors are based on those
used in Friston (2002).

Having specified the form of the DCM in terms of its likelihood
and priors, we can now estimate its unknown parameters, which
represent a summary of the coupling among brain regions and how
they change under different experimental conditions.

Bayesian estimation, inference and model comparison

For a given DCM, say model m, parameter estimation corres-
ponds to approximating the moments of the posterior distribution
given by Bayes rule

_ pblo.mp(61m)

p(0ly, m) o) (5)

The estimation procedure employed in DCM is described in
Friston et al. (2003) and Kiebel et al. (2006). The posterior
moments (conditional mean 7 and covariance ) are updated
iteratively using Variational Bayes under a fixed-form Laplace (i.e.,
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Gaussian) approximation to the conditional density g(60)=(n,€).
This is formally equivalent to expectation—maximization (EM) that
employs a local linear approximation of Eq. (2) and Eq. (4) about
the current conditional expectation.

Often, one wants to compare different models for a given data
set. We use Bayesian model comparison, using the model evidence
(Penny et al., 2004), which is

pOim) = / 010, m)p(0m)db. (6)

Note that the model evidence is simply the normalization
constant in Eq. (5). The evidence can be decomposed into two
components: an accuracy term, which quantifies the data fit, and a
complexity term, which penalizes models with redundant para-
meters. In the following, we approximate the model evidence for
model m, under the Laplace approximation, with

Inp(y|m) =Inp(y|2,m). ()

This is simply the maximum value of the objective function
attained by EM. The most likely model is the one with the largest
log-evidence. This enables Bayesian model selection. Model

A)
Model 1

Motion

Photic —k/

Model 2

Motion

Model 3

Motion

comparison rests on the likelihood ratio of the evidence for two
models. This ratio is the Bayes factor B;;. For models i and j

In B; = Inp(y|m = i) — Inp(y|m = j). (®)

Conventionally, strong evidence in favour of one model
requires the difference in log-evidence to be about three or more
(Penny et al., 2004). Under the assumption that all models are
equally likely a priori, the marginal densities p(y|m) can be
converted into the probability of the model given the data p(m|y)
(by normalizing so that they sum to one over models). We will
use this probability to quantify model comparisons below (see
Tables).

Simulations—model comparisons

Here we establish the face validity of the DCM described in
the previous section. This was addressed by integrating DCMs
with known parameters, adding observation noise to simulate
responses and inverting the models. Crucially, we used different
models during both generation and inversion and evaluated all
combinations to ensure that model section identified the correct
model.
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Fig. 5. In all models photic stimulation enters V1 and the motion variable modulates the connection from V1 to V5. Models 1, 2 and 3 all assume reciprocally and
hierarchically organized connections. They differ in how attention modulates the influences on V5; Model 1 assumes modulation of the backward extrinsic
connection, Model 2 assumes modulation of intrinsic connections in V5 and Model 3 assumes modulation of the forward connection. A: single-state DCMs. B:

two-state DCMs.
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Fig. 5 (continued).

The DCMs used the posterior or conditional means from three
different models estimated using real data (see next section). We
added random noise such that the final data had a signal-to-noise
ratio of three, which corresponds to typical DCM data'. We created
three different synthetic data sets corresponding to a forward,
backward and intrinsic model of attentional modulation of
connections in the visual processing stream. We used a hierarchal
three-region model where stimulus-bound visual input entered at
the first or lowest region. In the forward model, attention increased
coupling in the extrinsic forward connection to the middle region;
in the backward model it changed backward influences on the
middle region and in the intrinsic model attention changed the
intrinsic I—E connection. In all models, attention increased the
sensitivity of the same excitatory population to different sorts of
afferents.

! Note that a DCM time-series of a single region is the first eigenvariate
of a cluster of voxels and is relatively denoised.

L L i i L
0 200 400 600 £00 1000 1200
lime:

Fig. 6. Plot of the DCM fit to visual attention fMRI data, using the two-state
Model 3. Solid: Prediction; Dotted: Data.
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Fig. 7. Results of the Bayesian model comparisons among DCMs for single-state (left) and two-state (right) formulations. The graphs show the log-evidences for
each model: Model 3 (modulation of the forward connections by attention) is superior to the other two models. The two-state model log-evidences are better than

any single-state model (note the difference in scale).

We then used the three models to fit each of these three
synthetic data sets, giving nine model inversions. Table 1 presents
the log-evidences for each inversion. The highest evidences were
obtained for models that were used to generate the synthetic data:
these correspond to the diagonal entries. These results show that
model comparison can identify reliably the correct model, among
competing and subtly different two-state models.

Empirical analyses—model comparisons

In this section we ask whether the two-state extension described
in this paper is warranted, in terms of providing a better
explanation of real data. This was addressed by inverting the
single- and two-state models using the same empirical data. These
data have been used previously to validate DCM and are available
from http://www.fil.ion.ucl.ac.uk/spm. We analyzed data from a
study of attentional modulation during visual motion processing
(Biichel and Friston, 1997). The experimental manipulations were
encoded as three exogenous inputs: A ‘photic stimulation’ input
indicated when dots were presented on a screen, a ‘motion’
variable indicated that the dots were moving and the ‘attention’
variable indicated that the subject was attending to possible
velocity changes. The activity was modelled in three regions V1,
V5 and superior parietal cortex (SPC).

We compared the single- and two-state DCM over the
following three model variants. Model 1 assumed that attention
modulates the backward extrinsic connection from SPC to V5.

Table 2

Model 2 assumed that attention modulates the intrinsic connection
in V5 and Model 3 assumed attention modulates the forward
connection from V1 to V5. All models assumed that the effect of
motion was to modulate the connection from V1 to V5. In Fig. 5
we show each of these three variants for the single- and two-state
DCM.

We inverted all models using the variational EM scheme above
and compared all six DCMs using Bayesian model comparison. As
a representative example of the accuracy of the DCM predictions,
we show the predicted and observed BOLD series for Model 3
(two-state) in Fig. 6. The results of the Bayesian model comparison
are shown in Fig. 7, in terms of the log-evidences (in relation to a
baseline model with no attentional modulation). These results show
two things. First, both models find strong evidence in favour of
Model 3, i.e., attention modulates the forward connection from V1
to V5. Second, there is strong evidence that the two-state Models 2
and 3 are better than any single-state model. The respective log-
evidences for this Bayesian model comparison among DCMs
(Biichel and Friston data) are shown in Table 2. Again, the table
shows that the forward model is the best model, among either the
single- or two-state DCMs. Moreover, there is very strong evidence
in favour of the two-state model over the single-state model,
because the differences in log-evidences are all greater than five.
For reference; the log-evidence for the baseline model with no
attentional modulation was —1649.9.

These results represent an inference on model space. To illus-
trate inference on parameter space, Fig. 8 shows the conditional

This table shows the log-evidences for the two models, single and two-state DCMs, plotted in the previous figure

Backward

Forward Intrinsic

Single-state DCM
Two-state DCM
Difference in log-evidence

~1649.38 (0.00%)
~1629.20 (1.08%)
20.180

~1647.36 (0.00%)
~1624.80 (88.12%)
22.560

~1648.60 (0.00%)
~1626.90 (10.79%)
21.700

Forward modulation is the best for both models. We can also see that that there is very strong evidence in favour of the two-state model over the single-state
model. The percentages in bold correspond to the conditional probability of each model, given the data and assuming uniform priors over the six models
examined.
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Fig. 8. Posterior probability density functions for the Gaussian parameter,
BEE(’” associated with attentional modulation of the forward connection in
the best model. There is an 88% confidence that this gain is greater than one
(area under the Gaussian to the right of the dashed line). The dashed line
indicates BEE(”: 0=>exp(B§»E(3)): 1.

density of the parameters representing attentional gain of the
forward connection in the best model. We show this conditional
density on the Gaussian parameter, BS—EG) (with an implicit gain or
scale-parameter exp(BE‘-EB))) associated with attention (i.e., when
u3=1). It can be seen that we can be 88% confident that this gain is

greater than one.

Discussion

In this paper, we have described a new DCM for fMRI, which
has two states per region instead of one. With the two-state DCM,
it is possible to relax shrinkage priors used to guarantee stability in
single-state DCMs. Moreover, we can model both extrinsic and
intrinsic connections, as well as enforce positivity constraints on
the extrinsic connections.

Using synthetic data, we have shown that the two-state model
has internal consistency. We have also applied the model to real
data, explicitly modelling intrinsic connections. Using model
comparison, we found that the two-state model is better than the
single-state model and that it is possible to disambiguate between
subtle changes in coupling; in the example presented here, we were
able to show that attentional gain, in the context of visual motion
processing, is accounted for sufficiently by an increased sensitivity
of excitatory populations of neurons in V5 to forward afferents
from earlier visual areas.

These results suggest that the parameterization of the standard
single-state DCM is possibly too constrained. With a two-state
model, the data can be explained by richer dynamics at the
neuronal level. This might be seen as surprising because it
generally is thought that the hemodynamic response function
removes a lot of information and a reconstruction of neuronal
processes is not possible. However, our results challenge this
assumption, i.e., DCMs with richer dynamics (and more
parameters) are clearly supported by the data.

In the following, we discuss some potential extensions to
current DCMs that may allow useful questions to be addressed to

fMRI data: currently, we model excitatory (glutamatergic) and
inhibitory (GABAergic) connections. As a natural extension we
can include further states per region, accounting for other
neurotransmitter effects. Important examples here would be
adaptation phenomena and activity-dependent effects of the sort
mediated by NMDA receptors. This is interesting because NMDA
receptors are thought to be targeted preferentially by backward
connections. This could be tested empirically using a suitable
multistate DCM based on an explicit neural mass model.

Another important point is that the hemodynamics in the
current DCM are a function of the excitatory states only. The
contributions to the BOLD signal from the inhibitory states are
expressed indirectly, through dynamic interactions between the two
states, at the neuronal level. One possible extension would be to
model directly separate contributions of these two states, at the
hemodynamic level. Hypotheses about the influence of excitatory
and inhibitory populations on the BOLD signal could then be
tested using model comparison.

Another extension is to generalize the interactions between the
two subpopulations, i.e., to use nonlinear functions of the states in
the DCM. Currently, this is purely linear in the states, but one
could use sigmoidal functions. This would take our model into the
class described by Wilson and Cowan (1973). In this fashion, one
can construct more biologically constrained response functions and
bring DCMs for fMRI closer to those being developed for EEG
and MEG. Again, the question of whether fMRI data can inform
such neural mass models can be answered simply by model
comparison. As noted above, the bilinear approximation used in
the original formulation of DCM for fMRI represents a global
linearization over the whole of state-space; the current extension
uses the same bilinear approximation in the states (although it is
nonlinear in the parameters). Further refinements to the model,
such as applying a sigmoid nonlinearity (cf., Wilson and Cowan,
1973) would give a state equation that is nonlinear in the states. In
this instance, we can adopt a local linearization, when integrating
the system to generate predictions. In fact, our inversion scheme
already uses a local linearization because the hemodynamic part of
DCM for fMRI is nonlinear in the hemodynamic states (Friston,
2002). However, this approach does not account for noise on the
states (i.e., random fluctuations in neuronal activity). There has
already been much progress in the solution of stochastic
differential equations entailed by stochastic DCMs, particularly
in the context of neural mass models (see Valdes et al., 1999;
Sotero et al., 2007).

Finally, in the next development of DCM for fMRI, we will
evaluate DCMs based on density-dynamics. Current DCMs
consider only the mean neuronal state for each population. In
future work we will replace the implicit neural mass model with
full-density dynamics, using the Fokker—Planck formalism. This
would allow one to model the interactions between mean neuronal
states (e.g., firing rates) and their dispersion or variance over each
population of neurons modelled.

Conclusion

Our results indicate that one can estimate intrinsic connection
strengths within network models using fMRI. Using real data, we
find that a two-state DCM is better than the conventional single-
state DCM. The present study demonstrates the potential of
adopting generative models for fMRI time-series that are informed
by anatomical and physiological principles.
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