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Abstract

In order to analyze where epileptic spikes are generated, we assessed the level of concordance 

between EEG source localization using distributed source models and simultaneous EEG-fMRI 

which measures the hemodynamic correlates of EEG activity. Data to be compared were first 

estimated on the same cortical surface and two comparison strategies were used: (1) MEM-

concordance: a comparison between EEG sources localized with the Maximum Entropy on the 

Mean (MEM) method and fMRI clusters showing a significant hemodynamic response. Minimal 

geodesic distances between local extrema and overlap measurements between spatial extents of 

EEG sources and fMRI clusters were used to quantify MEM-concordance. (2) fMRI-relevance: 

estimation of the fMRI-relevance index α quantifying if sources located in an fMRI cluster could 

explain some scalp EEG data, when this fMRI cluster was used to constrain the EEG inverse 

problem. Combining MEM-concordance and fMRI-relevance (α) indexes, each fMRI cluster 

showing a significant hemodynamic response (p <0.05 corrected) was classified according to its 

concordance with EEG data. Nine patients with focal epilepsy who underwent EEG-fMRI 

examination followed by EEG recording outside the scanner were selected for this study. Among 

the 62 fMRI clusters analyzed (7 patients), 15 (24%) found in 6 patients were highly concordant 

with EEG according to both MEM-concordance and fMRI-relevance. EEG concordance was 

found for 5 clusters (8%) according to α only, suggesting sources missed by the MEM. No 

concordance with EEG was found for 30 clusters (48%) and for 10 clusters (16%) α was 

significantly negative, suggesting EEG-fMRI discordance. We proposed two complementary 

strategies to assess and classify EEG-fMRI concordance. We showed that for most patients, part of 

the hemodynamic response to spikes was highly concordant with EEG sources, whereas other 

fMRI clusters in response to the same spikes were found distant or discordant with EEG sources.
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Introduction

Identification and understanding of the underlying mechanisms involved during the 

generation of interictal spikes is a key issue (Luders and Awad, 1992). Interictal spikes are 

transient events, characteristic of epilepsy, that occur between seizures. As opposed to 

seizures, spikes are generated by the brain without producing clinical signs, therefore, the 

use of multi-modal imaging is convenient when investigating them. In the present study, we 

evaluated two non-invasive modalities that can be used to explore the generators of interictal 

spikes: (1) Electroencephalography (EEG) source localization using distributed source 

methods, which measures a current density along the cortical surface at each time sample of 

the spike (Baillet et al., 2001; Grova et al., 2006b) and (2) simultaneous EEG-functional 

Magnetic Resonance Imaging (fMRI), which measures the hemodynamic correlates of EEG 

activity (Gotman et al., 2006). The main generators of brain electrical activity are the large 

pyramidal neurons found in the cortical layer V, which are oriented perpendicularly to the 

cortical surface (Speckmann et al., 2004). They are the main contributors to the signal 

measured on the surface of the scalp using EEG. Electroencephalogram provides 

information regarding neuronal activity at high temporal resolution (~1 ms), but only weak 

spatial localization can be achieved from scalp recordings. Functional neuroimaging 

techniques such as fMRI or Positron Emission Tomography (PET) can measure neuronal 

activity indirectly through oxygenation, blood flow and metabolism changes with a spatial 

resolution of a few millimeters.

Simultaneous recordings of fMRI and intracortical neural signals have shown correlations 

between the Blood Oxygenation Level Dependent (BOLD) signal changes measured by 

fMRI and the activity of the main generators of the EEG signals (Logothetis et al., 2001). 

These results support the existence of a coupling between EEG sources and fMRI signals. 

Using well controlled evoked potential experiments, good correlations, within 10–16 mm, 

have been reported between fMRI results and equivalent current dipoles (ECD) estimated 

from electric or magnetic scalp measurements (Sanders et al., 1996; Korvenoja et al., 2001; 

Thees et al., 2003). EEG and fMRI are exploring different physiological phenomena with 

complementary temporal and spatial resolutions (~1 ms and ~1 cm for EEG source 

localization and ~1 s and ~3 mm for fMRI (Menon et al., 1998)) and discrepancies between 

fMRI and electro-physiological results have also been reported (Nunez and Silberstein, 

2000; Gonzales Andino et al., 2001; Korvenoja et al., 2001).

Simultaneous EEG-fMRI acquisition constitutes a unique technique to study the 

hemodynamic changes correlated with interictal epileptic activity detected on the scalp EEG 

acquired within the scanner (Salek-Haddadi et al., 2003; Gotman et al., 2006). EEG-fMRI 

concordance was usually reported by comparing fMRI results with scalp topography of the 

discharges (Krakow et al., 2001; Archer et al., 2003; Al-Asmi et al., 2003; Kobayashi et al., 

2005a), but the results have rarely been compared with EEG source localization. Average 
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Euclidian distance larger than 3 cm between EEG generators modeled by ECDs and fMRI 

results suggested no clear concordance (Lemieux et al., 2001; Bagshaw et al., 2005; Bénar et 

al., 2006). ECDs have been widely used to localize epileptic spikes and their accuracy was 

assessed by comparison with intracortical recordings (Merlet and Gotman, 1999). 

Generators of spikes are known to be spatially extended, as at least 6 cm2 of cortex need to 

be active to detect a spike on scalp EEG (Ebersole, 1997). Hence, ECD can model at best the 

center of mass of the generator and can also be misleading in presence of spatially extended 

sources (Kobayashi et al., 2005b), whereas EEG source localization using distributed source 

methods is probably more appropriate to recover spike generators with their spatial extent 

(Grova et al., 2006b). As fMRI responses to interictal spikes are rarely focal (Kobayashi et 

al., 2006a), spatial extent of EEG sources should be taken into account when studying 

concordance between EEG sources and fMRI results. In this study, we propose a new 

methodology to quantify “EEG-fMRI concordance”. We will denote as “EEG-fMRI 

concordance” the concordance between fMRI responses to epileptic spikes interpolated on 

the cortical surface and EEG sources of these spikes estimated on the same cortical surface 

using distributed models.

Providing accurate estimation of the levels of “EEG-fMRI concordance” is of particular 

interest. Concordance between EEG sources and fMRI results may give further evidence that 

fMRI responses indeed reflect hemodynamic changes linked to spike generation, in 

agreement with a presumed neurovascular coupling at the time of a spike. Discordance or 

complementarities between EEG sources and fMRI responses can provide insights that the 

underlying structure of spike generators may be organized as a distributed network, parts of 

this network being able to generate either EEG or fMRI detectable signals. Such a situation 

could occur especially because fMRI does not require synchronization among large 

populations of neurons to detect a significant response, whereas EEG does.

The purpose of this study is to measure quantitatively and classify the levels of EEG-fMRI 

concordance among all fMRI responses and EEG sources detected for a specific epileptic 

spike. We first propose a dedicated method to address such a difficult quantification 

problem. This method was then applied to nine patients with focal epilepsy. Our overall 

objective was to demonstrate that the underlying structure of spike generators may be 

organized as a distributed network, where one can detect and classify concordant and 

discordant EEG sources and fMRI responses. Quantification of “EEG-fMRI concordance” 

remains a difficult task and the issues are twofold: (i) EEG sources and fMRI responses 

should be quantified on the same spatial support, such as the cortical surface, and 

appropriate comparison metrics are required; to address this issue, fMRI clusters showing a 

significant BOLD response to interictal spikes assessed by standard event-related analysis 

(Bagshaw et al., 2004) were selected and interpolated onto the cortical surface (Grova et al., 

2006a) to be compared with EEG source localization results. (ii) As an ill-posed inverse 

problem, EEG source localization does not admit any unique solution, unless prior 

information is added. Quantification of “EEG-fMRI concordance” should take into account 

the choice of such prior information. This is why we propose two complementary 

comparison strategies:
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• (1)MEM-concordance: each fMRI cluster was compared with EEG sources 

estimated using the Maximum Entropy on the Mean (MEM) approach (Amblard 

et al., 2004; Grova et al., 2006b). Minimal geodesic distances between local 

extrema and overlap measurements between spatial extents of EEG sources and 

fMRI clusters were used to quantify MEM-concordance. As prior information 

assumed by the MEM approach was very general and completely independent 

from fMRI results, MEM-concordance provides insights regarding EEG-fMRI 

concordance from results obtained completely independently from each other.

• (2)fMRI-relevance: using an fMRI-relevance index α, we tested the ability of 

each fMRI cluster to be a relevant prior in the EEG inverse problem (Daunizeau 

et al., 2005). Significantly positive α means that sources located within this 

fMRI cluster could clearly explain some scalp EEG data, whereas significantly 

negative α means that sources located within this fMRI cluster could not explain 

scalp EEG data.

Combining MEM-concordance and fMRI-relevance (α) indexes, each fMRI cluster showing 

a significant hemodynamic response (p<0.05 corrected), was classified according to its 

concordance with EEG data.

Material and methods

In the first five sections, we will describe patient selection, data acquisition, anatomical MRI 

preprocessing methods (cortical surface segmentation), fMRI preprocessing methods 

(statistical analysis and interpolation of significant BOLD responses on the cortical surface) 

and EEG preprocessing methods (spike detection and averaging, and EEG source 

localization). The sixth section will introduce MEM-concordance methodology and notably 

how to measure geodesic distances and overlap measurements between EEG sources 

estimated with the MEM and fMRI results. The seventh section will describe fMRI-

relevance methodology and the fMRI-relevance index α. In the last section, we will present 

how each fMRI cluster showing a significant hemodynamic response was classified 

according to its concordance with EEG data.

Patient selection

Nine epileptic patients were selected according to the following criteria: (1) all patients 

underwent an EEG-fMRI examination followed by an EEG recording session outside the 

scanner immediately afterwards. This EEG recording will be referred to as the prolonged 

EEG to distinguish it from the EEG recorded during scanning. It was used for source 

localization. (2) All patients had focal epilepsy with not more than two distinct types of 

spikes identified on the EEG within the scanner. (3) Spikes acquired within and outside the 

scanner were consistent and there were at least two events of a particular spike type on the 

prolonged EEG. (4) Only patients for whom the anatomical MRI did not show large 

morphological abnormalities (e.g., lesions, surgical resections) were selected, so an accurate 

segmentation of the cortical surface could be computed. Nine subjects already described in 

Bagshaw et al. (2005) were selected for this study. Written informed consent was obtained in 
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accordance with the regulations of the Research Ethics Board of the Montreal Neurological 

Institute and Hospital.

Data acquisition

The EEG-fMRI sessions were carried out in a 1.5T Siemens Sonata scanner (Siemens, 

Erlangen, Germany) using 21 Ag/AgCl MR compatible electrodes and an EMR32 amplifier 

recording at a sampling rate of 1 kHz (Schwarzer, Munich, Germany). A standard Echo 

Planar Imaging (EPI) fMRI sequence was used (voxel dimensions 5×5×5 mm, 25 slices, 

64×64 matrix, TE=50 ms, TR=3 s, ip angle 90°) and an anatomical T1-weighted scan was 

also acquired prior to fMRI recording (~170 sagittal slices, 1 mm slice thickness, 256×256 

matrix, TE=9.2 ms, TR=22 ms, flip angle 30°). The fMRI data were acquired in runs of 120 

images taking 6 min each. The gradient artifact was removed off-line using FEMR software 

(Schwarzer; Hoffmann et al. (2000)). The patient’s head was immobilized using a vacuum-

bag filled with polystyrene spheres (S&S X-ray products, New York, USA). The scanning 

session lasted approximately 2 h, with 5 to 12 runs of fMRI data acquired for each patient. 

Following the EEG-fMRI scanning session, the patient was taken from the scanner to the 

clinical EEG department. Starting from the 10–20 system for electrode placement acquired 

in the scanner, extra electrodes were added according to the 10–10 system leading to a total 

of 44 electrodes. Approximately 45 min of EEG data was acquired at a sampling rate of 200 

Hz with the patient in a relaxed position (Harmonie, Stellate, Montreal, Canada).

MRI preprocessing: cortical surface segmentation

To provide a comparison driven by the anatomy of each subject, fMRI BOLD responses and 

EEG sources were estimated on the same spatial support defined by the cortical surface. The 

cortical surface was obtained from a tesselated surface of the white matter/gray matter 

interface segmented from the MRI of each subject (Mangin, 1995), using the BrainVISA 

software.1 This method provides a very accurate description of the cortical surface, 

consisting on average of 40,000 vertices with a mean intervertices distance around 1 mm or 

less. The distributed source model used to perform EEG source localization was obtained by 

down-sampling this surface by a ratio of 10, providing a model of p ≃ 4000 sources (mean 

intervertices distance ≃ 7 mm). fMRI results were interpolated at each vertex of the same 

surface.

fMRI preprocessing

Estimation of fMRI clusters showing a significant BOLD response—An 

experienced neurophysiologist reviewed filtered EEGs acquired in the scanner and marked 

the spikes, which provided an event-related paradigm for fMRI data analysis. The fMRI data 

were first motion corrected and smoothed (6 mm full width at half maximum (FWHM)) 

using the software package from the Brain Imaging Center of the Montreal Neurological 

Institute.2 Models and signals were prewhitened with an auto-regressive filter of order 1, and 

low frequency drifts in the signal were modeled with a third order polynomial fitted to each 

run. Statistical analysis was performed using fMRIStat (Worsley et al., 2002). Each data set 

1BrainVISA: http://www.brainvisa.info.
2BIC software: http://www.bic.mni.mcgill.ca/software/.
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was analyzed with four monophasic, single gamma functions peaking after 3, 5, 7 and 9 s 

with an FWHM of 5.2 s, as described in Bagshaw et al. (2004). The analysis described 

below was repeated for each HRF. For each run j, the method provided an estimate of the 

effect of interest ej and its standard deviation sj, and thus a t-statistic tj = ej/sj. The data of 

each run were then registered and resampled to the position of the first run using a rigid 

transformation (three rotations and three translations). Results for all runs of a subject were 

combined using a fixed effects model, leading to an estimation of the global statistics e, s 
and t=e/s for each subject.

The resulting t-statistic images were thresholded using the minimum given by a Bonferroni 

correction and random field theory, taking into account the non-isotropic spatial correlation 

of the errors. The FWHM of the inter-run analysis was first estimated at each voxel from the 

residuals of the previous analysis. Assuming the FWHM map sufficiently uniform 

throughout the brain, we used the averaged brain FWHM (ranging from 7.51 to 12.97 mm 

among subjects, mean: 9.57 mm) to perform a cluster size test (Worsley et al., 2002). All 

voxels showing a t value higher than 3.17 or lower than −3.17 (uncorrected p<0.001) located 

within a mask of the brain were considered for this cluster analysis. Every cluster showing a 

corrected p<0.05 for its spatial extent was considered significant, and thus selected for the 

comparison study.

Interpolation of significant fMRI results on the cortical surface—For comparison 

with EEG source localization results, fMRI t-maps were interpolated on the cortical surface 

used for EEG source localization. We used the method recently proposed in Grova et al. 

(2006a): each vertex of the cortical surface was associated to an interpolation kernel, i.e., a 

small local volume of interest, over which volumic fMRI t-values were integrated. The value 

resulting from this integration was associated to the corresponding vertex of the cortical 

surface. This interpolation method was designed to automatically adapt a trade-off between 

choosing large enough interpolation kernels, because of the distributed nature of the 

hemodynamic response, and avoiding mixing data from different anatomical structures. 

Starting from each vertex of the cortical surface, interpolation kernels were generated using 

a 3D geodesic Voronoï diagram within an anatomical mask. Resulting interpolation kernels 

adapt their volume and shape to the local morphology of the cortex of each subject. Only 

fMRI information located within a close neighborhood of the cortical surface was thus 

considered for the interpolation, and possible BOLD responses located far from the cortical 

surface were automatically discarded.

Before interpolation, fMRI 3D t-maps were resampled over the anatomical MRI using 

nearest neighbor interpolation. For each of the four HRF analysis, each selected fMRI 

cluster had its t-values integrated over each interpolation kernel. fMRI t-values of each 

cluster being thresholded before interpolation (see Estimation of fMRI clusters showing a 

significant BOLD response), all vertices of the cortical surface showing a non-null 

interpolated t-value were considered to belong to this particular cluster.
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EEG preprocessing

Spikes detection and averaging—Detection and averaging of interictal spikes from the 

prolonged EEG was performed as described in Bagshaw et al. (2005). Epileptic spikes were 

identified semi-automatically using BESA 2000 (MEGIS Software GmbH, Germany), 

following the method of Bast et al. (2004). The EEG was band pass filtered between 1.6 Hz 

and 35 Hz and then manually inspected to identify a typical spike, showing similar 

morphology to those marked on the EEG acquired within the scanner. A pattern matching 

algorithm combined with visual inspection was then used to identify all segments similar to 

this typical spike. The selected events were used to form an average spike, on which source 

localization methods were applied. In order to determine at which time points of the average 

spike the spatio-temporal maps of EEG sources should be compared with fMRI results, we 

identified main EEG time peaks of the average spike as local maxima of the maximum field 

power over all the sensors. These time peaks will be denoted tj.

EEG source localization using distributed models—The distributed source model 

assumes that the main generators of EEG potentials consist of a large number of dipolar 

sources distributed on the cortical surface; the orientation of each dipole being perpendicular 

to the surface. Using this anatomical constraint, the relationship between source amplitudes 

and scalp potentials is expressed by the following linear model (Dale and Sereno, 1993):

(1)

where M is a n×t matrix of the EEG signal measured at n electrodes and t time samples. J is 

the p×t unknown matrix of amplitudes of the p dipoles along the time. G indicates the n×p 
lead field matrix (forward operator) associated with the fixed positions and orientations of 

the p dipolar sources of the model. G is obtained by solving the forward problem, by 

estimating the influence on the sensors of each dipole location and orientation given by the 

distributed model (Mosher et al., 1999). Data are corrupted by an additive measurement 

noise E (n×t matrix).

The source model was composed of p≃4000 dipolar sources distributed over the cortical 

surface previously described. Electrode positions were located on the MRI of each subject, 

as the 19 electrodes used within the scanner were visible on a 3D rendering of the head 

surface segmented from the MRI. The remaining electrodes were placed manually. The 

forward matrix G was calculated according to a three-layer spherical model (de Munck, 

1988), using the Brainstorm software.3 Conductivities were set to 0.33 S/m for brain and 

scalp and 0.0165 S/m for skull, corresponding to a skull/brain conductivities ratio of 1/20 

(Oostendorp et al., 2000).

Although the inverse problem becomes linear when using a distributed source model, it is 

still an ill-posed problem as the forward matrix G is under-determined (p ≫ n). The inverse 

problem admits no unique solution unless a priori information regarding the distribution of 

the sources J is added to regularize the problem. The two proposed comparison strategies, 

3Brainstorm: http://neuroimage.usc.edu/brainstorm/.
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i.e., MEM-concordance and fMRI-relevance, rely respectively on the two following 

regularization techniques:

• Maximum Entropy on the Mean (MEM) model (Appendix A): Within the MEM 

approach, prior information regarding J is expressed using a reference 

distribution dμ.

The objective is to estimate J as a realization of a random multivariate variable 

following a distribution dp(j)=Prob(J=j). Regularization is introduced by writing 

the solution of the form dp(j)=f (j) dμ(j), where f (j) is a μ-density to be found 

such that it explains the data in average (noise being zero mean):

(2)

Among all the distributions dp satisfying the constraint (2), the MEM solution dp̂ 
=f̂ dμ is the one with maximum μ-entropy, i.e., the solution that makes the least 

assumption regarding missing information (Amblard et al., 2004; Grova et al., 

2006b). The great advantage of the MEM framework relies on a very flexible 

way to define prior information, through the distribution dμ. The model dμ used 

in this study assumes that brain activity may be described by K cortical parcels 

showing an homogeneous activation state. Each parcel is characterized by an 

activation state and a probability of being active. Whenever active, the current 

distribution within each cortical parcel is described by a Gaussian distribution. 

More details regarding the MEM principle and the definition of dμ are provided 

in Appendix A and in Grova et al. (2006b). The spatio-temporal current density 

map corresponding to the MEM solution is the mean value of the density dp̂ and 

will be denoted ĴMEM.

• Hierarchical Bayesian model used by fMRI-relevance (Appendix B): 

Hierarchical models offer another elegant way of introducing prior information. 

Assuming Eτ, the additive noise in Eq. (1) at time sample τ, to be zero-mean 

Gaussian with variance σ2In (In being the identity matrix of dimension n), a set 

of mutually independent hyperparameters (σ2, ε2) and a specific hypothesis (Hi), 

the a priori distribution of J may be stated as follows (Daunizeau et al., 2005):

(3)

where  denotes a Gaussian distribution and 0p a zero column vector of length p. 

According to this model, Jτ at time sample τ is then assumed to be zero-mean 

Gaussian with prior covariance . Any specific hypothesis Hi 

actually corresponds to a model affecting the prior covariance of the sources. To 

assess fMRI-relevance, a non-informative hypothesis (H0) will be compared to 
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an informative hypothesis (H1) derived from fMRI results (see fMRI-relevance: 

assessing the relevance of fMRI-based prior in the EEG inverse problem).

Bayesian inference allows integrating every source of uncertainty of the model 

(σ2, ε2, Hi) while estimating the solution Ĵ. Under these assumptions, the 

Maximum A Posteriori (MAP) estimator ĴMAP is obtained by minimizing the 

following cost function:

(4)

This minimization aims at tuning a trade-off between data fit ||M−G·J|| and 

respect to prior information ||L(Hi) · J||, while adapting the scale hyperparameter 

ε2 (see Appendix B and Daunizeau et al. (2005) for details).

MEM-concordance: comparison between each fMRI cluster and MEM sources

As summarized in the first part of Fig. 1, MEM-concordance addressed one particular 

question: are there sources of EEG activity estimated with the MEM in agreement with each 

significant fMRI cluster?

MEM-concordance is an asymmetrical comparison regarding fMRI data. fMRI volumic t-
maps were thresholded according to the methodology described in Estimation of fMRI 

clusters showing a significant BOLD response. Consequently, every vertex of the cortical 

surface belonging to an fMRI cluster does represent a significant BOLD response. On the 

other hand, detecting significant EEG sources from ĴMEM using a t-statistic was not feasible 

as it required the estimation of the covariance of ĴMEM. Selecting significant EEG sources 

based on a single threshold was thus not straightforward. MEM results were thus selected by 

detecting vertices showing local extrema of |ĴMEM|. Two comparison metrics taking into 

account the morphology of the cortical surface were then used:

• (1) minimal geodesic distance between each fMRI cluster and the closest local 

extremum of |ĴMEM|.

• (2) overlap measurements between spatial extents of MEM sources and each 

fMRI cluster.

The estimated current density map ĴMEM is a spatio-temporal map of EEG activity, whereas 

fMRI clusters on the cortical surface represent static data. To take into account EEG spike 

propagation during the analysis, comparison between static fMRI clusters and EEG sources 

was then only performed at the peaks of the average spike tj (i.e., peaks of the maximum 

field power as defined in Spikes detection and averaging).

Minimum geodesic distance between local extrema of MEM sources and fMRI 
clusters—At each peak of the average spike tj, the local extrema of the MEM current 

density map was defined as each vertex i of the cortical surface, where |ĴMEM (i, tj)| was 

greater than all its neighbors and greater than the full width half max of the current density 

distribution, maxi (|ĴMEM (i, tj)|)/2. For each significant fMRI cluster and at each peak of the 
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spike tj, we measured the minimum geodesic distance D between each vertex of the fMRI 

cluster and each MEM local extremum. This metric is asymmetrical because only local 

extrema were considered from MEM current density maps, whereas all the vertices showing 

a significant BOLD response were considered for each fMRI cluster.

Overlap measurements between spatial extents of MEM sources and fMRI 
clusters—Comparing the spatial extents of each fMRI cluster with the MEM current 

distribution at tj requires thresholding the MEM distribution. Ideally, one would compute a t-

statistic on ĴMEM and threshold it accordingly. As it was not straightforward, we estimated 

overlap measurements at all possible thresholds of |ĴMEM| and integrated them. To do so, a 

Receiver Operating Characteristic (ROC) curve approach was used, considering each fMRI 

cluster as the reference for comparison. To assess the detection accuracy of a method when a 

reference is available, ROC curves are generated by plotting the sensitivity against the false 

positive detection rate, for different detection thresholds. The Area Under the ROC Curve 

(AUC) is a well-known criterion to assess detection accuracy (Metz, 1986). Usually, the 

reference reflects some ground truth regarding the object to be detected, and detection errors 

are assessed by comparing this reference to the results of the method for different thresholds. 

Whereas no ground truth was available for the present comparison, we used ROC 

methodology to assess the concordance between each fMRI cluster and the current 

distribution |ĴMEM| at tj. Each fMRI cluster was then considered as the reference for the 

estimation of sensitivity and false positive rate at different thresholds of |ĴMEM| ranging 

between 0 and maxi(|ĴMEM(i, tj)|). AUC should be interpreted carefully, as we are not 

measuring detection errors as is usually the case when using ROC curves. If we consider a 

set of randomly selected pairs of EEG sources located inside (index i′) or outside (index i) 
the fMRI cluster, the AUC criterion represents the following probability:

(5)

To interpret AUC as the probability that EEG sources located inside the fMRI cluster have 

higher amplitude |ĴMEM| than sources located outside the fMRI cluster, one should 

theoretically provide the same number of sources inside and outside the fMRI cluster to 

estimate ROC parameters. In Grova et al. (2006b), we proposed a method specifically 

dedicated to this issue. A non-biased estimation of AUC is obtained by randomly drawing 

outside the fMRI cluster as many fictitious sources as sources located inside the fMRI 

cluster. The AUC is then measured using this set of pairs of sources. This random drawing is 

repeated 100 times and the proposed metric of EEG-fMRI concordance is the average AUC 

over these 100 trials.

fMRI-relevance: assessing the relevance of fMRI-based prior in the EEG inverse problem

As summarized in the second part of Fig. 1, fMRI-relevance compared EEG and fMRI 

localizations by the indirect route of testing the relevance of each fMRI cluster as prior 

information for the EEG inverse problem. Using a Bayesian model comparison approach 

(Daunizeau et al., 2005), we estimated a relevance index α that quantifies whether EEG 

generators located within each fMRI cluster could partly explain scalp EEG data. This 
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relevance index α is the logarithm of a Bayes’ factor (Gelman et al., 1998) comparing the 

evidences of two prior models: a non-informative hypothesis (H0) and an informative 

hypothesis (H1) defined from each fMRI cluster. The evidence of each model Hi (i =0, 1) 

was estimated as p(Hi|M), the posterior probability of Hi, given the data M (see Appendix B 

for details).

Assessing the relevance of each fMRI cluster in the EEG inverse problem is equivalent to the 

following hypothesis test:

(6)

Within the proposed hierarchical linear model, any hypothesis Hi corresponds to a model a 

affecting the prior covariance of the sources, as mentioned in EEG source localization using 

distributed models. Starting from the general a priori model (Hi) described in Eq. (3), the 

non-informative model H0 was stated as:

(7)

where Ip denotes the identity matrix of dimension p. Similarly, for each fMRI cluster 

interpolated on the cortical surface, the informative model H1 was stated as:

(8)

where f represents a coupling function between fMRI and EEG sources. Here we defined Z 
as the absolute value of the t-values of the fMRI cluster after interpolation on the cortical 

surface. The following coupling function was used (Babiloni et al., 2003):

(9)

This model allows an increased discrepancy of the fMRI-favored sources from their zero 

prior mean. The parameter Δ tunes the weight of the fMRI constraint in the prior covariance 

matrix, it was empirically set to Δ=10 as suggested by Babiloni et al. (2003) and evaluated 

by Daunizeau et al. (2005).

The relevance of each fMRI cluster in the EEG inverse problem solution was quantified as 

the logarithm of the Bayes’ factor comparing the evidence of prior models H0 and H1:
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(10)

Using Bayesian inference, α was estimated by integrating all the levels of uncertainties of 

the parameters and hyperparameters of both hierarchical models H0 and H1. This integration 

took into account the whole signal of the spike, i.e., the main peak and the following slow 

wave. α is therefore a global metric summarizing EEG-fMRI concordance over the whole 

spike. Such a metric includes how much each fMRI cluster could contribute to the measured 

EEG signal at some point during spike propagation, as opposed to D and AUC that were 

estimated only at the main peaks of the spike (tj).

Classification of the level of concordance between EEG sources and fMRI responses

MEM-concordance results regarding the minimal geodesic distance (D) between local 

extrema of MEM sources and fMRI clusters were classified using a threshold of 20 mm. 

Regarding spatial extents of MEM sources and fMRI clusters, an AUC value close to 1 

means that EEG sources were mainly located within the fMRI cluster, and that no other EEG 

sources were found elsewhere. It is therefore a stringent index of concordance, as a perfect 

match is not expected between |ĴMEM| at tj and each fMRI cluster. In order to allow the 

occurrence of some false positives, i.e., other EEG sources located far from the selected 

fMRI cluster at tj, we used a threshold of 0.6 to classify AUC results. Moreover, for each 

fMRI cluster, D and AUC were estimated at each time peak tj of the average spike. Spike 

propagation being detectable in EEG only (high temporal resolution), it was taken into 

account in MEM-concordance results by considering only the best comparison 

measurements among all time peaks tj, i.e., the minimum geodesic distance min(D) and the 

maximum area under the ROC curve max(AUC). According to MEM-concordance (min(D) 

and max(AUC)), the following two levels classification of EEG-fMRI concordance were 

considered:

• MEM concordant defined by min(D) ≤20 mm and max (AUC)≥0.6: a MEM 

source was close to the fMRI cluster.

• MEM non-concordant defined by min(D)>20 mm or max (AUC)<0.6: no MEM 

source was close to the fMRI cluster.

To classify fMRI-relevance results, a threshold of 1.5 was considered. An fMRI-relevance 

index α>1.5 means that the posterior probability of the informative model (H1) given the 

data M was 4.5 times greater than the posterior probability of the non-informative model 

(H0). In other words, the fMRI cluster associated to the model H1 was in good agreement 

with the EEG data, i.e., both EEG data and the fMRI prior were “pulling the EEG source 

solution in the same direction”. Conversely, an fMRI-relevance index α<−1.5 means that 

EEG data and the fMRI prior were “pulling the EEG source solution in opposite directions”. 

A discordance between this fMRI cluster and the EEG is then suspected, as it is very 

unlikely that sources located within this fMRI cluster could contribute to the measured EEG 

data. According to fMRI-relevance (α), the following three level classification of EEG-fMRI 

concordance was proposed:
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• fMRI relevant defined by α>1.5: the fMRI cluster constitutes a relevant 

constraint for EEG source localization.

• α non-significant defined by α ∈[−1.5; 1.5]: there was no significant difference 

when using or not the fMRI cluster to constrain the EEG source localization.

• fMRI non-relevant defined by α<−1.5: the fMRI cluster was not a relevant 

constraint for EEG source localization.

Combining the two levels of MEM-concordance and the three levels of fMRI-relevance, the 

concordance of each fMRI cluster with EEG data was classified according to the following 

six level classification summarized in Fig. 1:

• MEM concordant and fMRI relevant: complete EEG-fMRI concordance.

• MEM concordant and α non-significant: concordance according to MEM and no 

additional information provided by α.

• MEM concordant and fMRI non-relevant: disagreement between MEM-

concordance and fMRI-relevance.

• MEM non-concordant and fMRI relevant: source probably missed by the MEM, 

but suggested by α.

• MEM non-concordant and α non-significant: no concordance according to MEM 

and no additional information provided by α.

• MEM non-concordant and fMRI non-relevant: complete EEG-fMRI discordance.

Results

Summary of results

Two of the nine patients were excluded as they did not show any significant cortical BOLD 

response (Patients 5 and 7). Among the seven other patients, 62 fMRI clusters were 

analyzed, corresponding to significant positive or negative BOLD responses obtained with 

the four HRF analysis: 31 clusters of activations (positive BOLD response) and 31 clusters 

of deactivations (negative BOLD response). We found no disagreement between MEM-

concordance and fMRI-relevance, i.e., none of the fMRI cluster was classified as MEM 

concordant and fMRI non-relevant. This class was omitted in Tables 1 and 2. We will first 

illustrate some typical observations before providing quantitative results.

Illustrative cases showing different levels of EEG-fMRI concordance

All four patients selected for illustration had additional information available to confirm our 

results. Three underwent intracranial EEG investigation as part of a presurgical evaluation. 

The fourth had a focal cortical dysplasia. Intracranial recordings were reviewed by 

experienced electro-encephalographers in order to determine which pattern of interictal 

spiking activity was the most likely to correspond to scalp EEG spikes (see Bénar et al., 

2006). It was considered that a necessary condition for the spikes to be visible on scalp EEG 

was that they involved several intracranial electrode contacts, including superficial contacts 

or epidural electrodes. Such a criterion was used to ensure that similar events were selected 
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on scalp and intracranial recordings, even if these signals were not recorded simultaneously. 

Intracranial electrode contacts considered active were identified and represented in red 

within a 3D display of the patient’s MRI and cortical surface. Intracranial electrode 

coordinates were registered onto the patient’s MRI, using anatomical landmarks and 3D 

locations of electrodes and landmarks provided by the neuronavigation system that guided 

the implantation (SNN Neuronavigation System Inc., Mississauga, Ontario, Canada). The 

intracranial EEG results were only used to qualitatively confirm an overall spatial agreement 

with MEM sources and fMRI clusters.

Illustrative case showing excellent EEG-fMRI concordance (patient 3)—Results 

of the analysis done in patient 3 are summarized in Fig. 2. Spikes were bilateral occipital. 

Three peaks (t1, t2, t3) of the maximum field power were identified on the average spike 

from the prolonged EEG (Fig. 2a). t1 and t2 showed a fast propagation of the discharge from 

the right occipital (maximal negativity at PO8 electrode) to the left occipital region 

(maximal negativity at PO7 electrode). MEM results confirmed this propagation from right 

to left occipital regions (Fig. 2b). Most significant fMRI responses (Figs. 2c and d) consisted 

in BOLD deactivation located in the right temporo-occipital and mesial–parietal area (cluster 

1) and in the left temporo-occipital area (cluster 2). Visual inspection showed that fMRI 

cluster 1 was concordant with the MEM sources estimated at t1, whereas cluster 2 

corresponded to the MEM sources found at t2. MEM-concordance and fMRI-relevance 

results confirmed these trends (Fig. 2e). α>5 for both clusters suggests that sources located 

in these areas could explain scalp EEG data. Moreover, when both clusters were used 

together as a prior for EEG source localization, we found a highly significant relevance 

index (α=10.0), suggesting that these two regions were involved. On the other hand, only the 

EEG data provide information regarding the direction of the propagation of the discharge, 

from right to left. Brain areas suggested by EEG sources and fMRI results were in good 

agreement with the one detected using intracranial recordings, electrode contacts identified 

as active during these spikes being presented in red in Fig. 2f.

Illustrative case suggesting EEG-fMRI concordance during spike propagation 
(patient 1)—Results from patient 1 are summarized in Fig. 3. Spikes were right temporal. 

At the main peak of the fast wave t1, the average spike showed a maximum negativity at T8 

electrode (Fig. 3a). MEM results at t1 consisted in an extended right lateral temporal source 

(Fig. 3b). The most significant fMRI results were a right superior posterior temporal cluster 

showing activation (cluster 1) and a right parietal cluster showing deactivation (cluster 2). 

Most significant clusters are presented in Figs. 3c and d. Visual inspection suggested some 

overlap between the spatial extents of cluster 1 and the MEM sources at t1 (Figs. 3b and d), 

as confirmed by MEM-concordance results (min(D)=11.6 mm and max(AUC)= 0.66). 

Moreover, the relevance index α=3.65 estimated using the entire duration of the spike 

suggested that EEG sources in the superior posterior temporal fMRI cluster could explain 

some scalp EEG data. Exploring the evolution of MEM sources along the duration of the 

spike, we found at t0, 25 ms before the main peak t1, a superior posterior temporal source 

particularly concordant with cluster 1 (Figs. 3b and d). Evolution of the scalp potentials and 

MEM source localization from t0 to t1 suggested a propagation of the discharge from 

superior posterior temporal (PO4 electrode) to lateral temporal regions (T8 electrode). 
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Considering MEM results alone, such an origin of the spike at to should be considered with 

caution, but associated with the fMRI-relevance index α=3.65 one can have more confidence 

in this result. Conversely, α=−2.53 found for the right parietal deactivation (cluster 2) 

suggested that this area was not involved in EEG spike generation. These results were in 

good agreement with the intracranial recordings that confirmed the involvement of both the 

superior posterior temporal area found with MEM and fMRI and the lateral temporal area 

found only with MEM (Fig. 3f).

Illustrative case showing partial EEG-fMRI concordance (patient 8)—Results 

from patient 8 are summarized in Fig. 4. Widespread frontal spikes showed a maximum 

negativity at Fz electrode with a left predominance. At the main peak of the average spike 

(t2), MEM showed a widespread frontal source, involving mainly the left frontal region close 

to the midline. The topography of the electric potentials was more complex than in the two 

previous examples and other MEM sources less intense but widespread were found in the 

left parietal, right orbito-frontal and right temporal pole regions. fMRI results were also 

complex and widespread, with many large clusters of activations or deactivations involving 

many different areas (Table 1). The two most significant fMRI clusters (Figs. 4c and d) were 

a large activation in the first and second left frontal gyri, including supplementary motor 

area (cluster 1) and the other a deactivation in the right anterior cingulate region (cluster 2). 

Visual inspection (Figs. 4b and d) as well as MEM-concordance and fMRI-relevance results 

(Fig. 4e) confirmed a good correspondence between the main frontal MEM source and fMRI 

cluster 1. This cluster showed the highest fMRI-relevance index of our study (α=10.39), 

suggesting that EEG sources located in this area could clearly explain some scalp EEG data. 

Although cluster 2 did not show any concordance with MEM results (min(D)=29.12 and 

max (AUC) the fMRI-relevance index α=1.89>1.5 suggested that sources located in the 

right anterior cingulate region could explain some scalp EEG data. Intracranial recording 

results (Fig. 4f) supported these findings but also illustrated the complexity of the case, as 

spikes involved many contacts in the lateral and mesial frontal regions, including those close 

to clusters 1 and 2.

Illustrative case showing EEG-fMRI concordance within a focal cortical 
dysplasia (patient 9)—Results of the analysis done in patient 9 are summarized in Fig. 5. 

Left centro-parietal spikes were selected. At the peak of the fast wave t1, the average spike 

showed maximum negativity at CP1 electrode (Fig. 5a). At t1, MEM found a left parietal 

source (Fig. 5b). The two most significant fMRI clusters were in the left and right parietal 

regions (Figs. 5c and d). Visual inspection (Figs. 5b and d) as well as MEM-concordance 

and fMRI-relevance results (Fig. 5e) showed a very good concordance between MEM 

source and fMRI cluster 1, both being located within the left parietal focal cortical dysplasia 

(Fig. 5f). The relevance index α showed that using only the left parietal cluster (cluster 1) 

was more relevant (α=3.89) than using both right and left parietal fMRI clusters as prior 

information for the EEG inverse problem (α=2.77).

Classification of the level of EEG-fMRI concordance

The different levels of concordance with EEG found for each fMRI cluster are presented in 

Tables 1 and 2. For each patient, fMRI clusters fell within almost all the classes of EEG-
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fMRI concordance, except the one suggesting disagreement between MEM-concordance and 

fMRI-relevance methods (class MEM concordant and fMRI non-relevant). Six of seven 

patients had at least one fMRI cluster in complete concordance with EEG data (class MEM 

concordant and fMRI relevant). In three patients out of seven, we also found fMRI clusters 

completely discordant with EEG data (class MEM non-concordant and fMRI non-relevant). 

In the only patient showing no fMRI cluster in good concordance with EEG (patient 6), 

fMRI data were noisy and only two spikes were detected during the simultaneous EEG-

fMRI recording.

Among the 62 fMRI clusters considered in this analysis, 15 (24%) were highly concordant 

with EEG according to both MEM-concordance and fMRI-relevance (class MEM-

concordant and fMRI-relevant). EEG concordance was found for 5 clusters (8%) according 

to α only, suggesting sources probably missed by the MEM. No concordance with EEG was 

found for 30 clusters (48%). Finally, α was significantly negative for 10 clusters (16%). This 

means that no EEG source located in these clusters could explain any part of scalp EEG 

data, which suggests EEG-fMRI discordance.

Distributions of MEM-concordance and fMRI-relevance metrics

Distributions of MEM-concordance (min(D) and max(AUC)) and fMRI-relevance (α) 

metrics are represented in Fig. 6 for all 62 fMRI clusters. All these metrics were uniformly 

distributed over their range of values, explaining why we found fMRI clusters classified 

within almost all classes of EEG-fMRI concordance for each patient (Table 2). No 

difference was found when comparing the levels of EEG-fMRI concordance from clusters 

representing activations or deactivations (Fig. 6). Deactivation or activation clusters could be 

either concordant or discordant with EEG results. We found no effect of the HRF model 

(peak 3, 5, 7 or 9) on the level of EEG-fMRI concordance (results not shown).

Overall, there was a good agreement between MEM-concordance (min(D) and max(AUC)) 

and fMRI-relevance (α) metrics (Fig. 6). More discrepancies were observed between 

max(AUC) and min(D). We found a widespread distribution of max(AUC) for the highest 

min(D) values (Fig. 6c), suggesting that these two metrics proposed to quantify MEM-

concordance were complementary and necessary to compare source localization, using 

distributed source models, and fMRI results interpolated onto the cortical surface. α results 

were in good agreement with MEM results. Highest α values were observed when MEM 

exhibited a source close to or completely overlapping the corresponding fMRI cluster. No 

concordance or discordance (α<−1.5) was observed for fMRI clusters that were due to 

artifacts, as indicated on Table 1. For instance, fMRI artifacts were suspected when we 

found widespread fMRI activity within one axial slice, whereas adjacent slices did not show 

any response. Other clusters could be artifact when the BOLD response was found within 

the ventricles or in the tentorium cerebellum.

Fig. 7a shows that almost all the largest fMRI clusters (volume>10 mm3) were highly 

relevant for EEG source localization (α>1.5). Knowing that an epileptic spike will only be 

visible on the scalp if EEG sources cover a sufficient area or cortex (at least 6 cm2), it was 

not surprising to observe concomitant large fMRI responses in these regions. The fMRI 

responses concordant with EEG were either activation or deactivation, also fMRI clusters 
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showing deactivation tend to be slightly larger than the ones showing activations (Fig. 7a). 

Most of the fMRI clusters found relevant for the EEG inverse problem (α>1.5) were also 

highly significant clusters (corrected p<0.01) as showed on Figs. 7b and c.

Discussion

In the first section, we will discuss the method we proposed to compare EEG sources and 

fMRI responses to spikes. In the second section, we will discuss what we learned from this 

comparison regarding the underlying phenomena linked to spike generation measured by 

EEG and fMRI.

A new methodology to assess EEG-fMRI concordance during epileptic spikes

We proposed a new methodology to quantify the level of concordance between EEG sources 

and BOLD responses to epileptic spikes. We first addressed important issues to make 

possible this difficult comparison: (1) EEG sources and fMRI results were estimated on the 

same cortical surface before being compared, (2) the ill-posed nature of the EEG inverse 

problem was taken into account by combining two complementary approaches, MEM-

concordance and fMRI-relevance.

Assessment of EEG-fMRI concordance driven by the anatomy of each subject
—The proposed framework to assess EEG-fMRI concordance was driven by the anatomy of 

each subject: the common spatial support used to estimate and compare EEG and fMRI data 

was the cortical surface segmented from the MRI of each subject. Therefore, a source (EEG 

or fMRI) located far from the cortical surface was not considered in this study. To our 

knowledge, this study was the first attempt to compare EEG sources and fMRI results 

estimated onto the same cortical surface. Appropriate comparison metrics taking into 

account the morphology of the cortical surface were also proposed (D and AUC).

In most previous studies, the whole brain volume was the common spatial support used to 

compare fMRI results with EEG or MEG sources. Indeed, EEG or MEG sources were 

estimated using either Equivalent Current Dipoles (ECDs) (Sanders et al., 1996; Lemieux et 

al., 2001; Bagshaw et al., 2005) or dipole scanning approaches on 3D grids (Seeck et al., 

1998; Van der Meij et al., 2001; Mulert et al., 2004; Bénar et al., 2006). Consequently, the 

comparison metric was the Euclidian distance within the whole brain volume. The main 

generators of electrical activity being the large pyramidal neurons (Speckmann et al., 2004), 

constraining EEG source localization to the cortical surface as proposed by Dale and Sereno 

(1993), is a fair assumption. Moreover, as opposed to ECDs, distributed source models can 

recover spike generators with their spatial extent, especially using the MEM (Grova et al., 

2006b).

fMRI data were acquired and analyzed on a 3D voxel grid covering the whole brain volume. 

Analysis involved a multiple HRFs approach (Bagshaw et al., 2004) to take into account the 

temporal variability of BOLD responses to spikes and to increase detection sensitivity. For 

each HRF, every cluster showing a significant BOLD response was selected using a cluster 

size test (Worsley et al., 2002) and its t-values were interpolated onto the cortical surface 

(Grova et al., 2006a). This interpolation method was designed to take into account the local 
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morphology of the cortical surface and the distributed nature of the hemodynamic response. 

fMRI results became available on the same cortical surface as the one used to constrain EEG 

source localization. This interpolation method could as well be applied on raw fMRI data to 

perform, as for EEG data, an analysis of fMRI data constrained to the cortical surface 

(Andrade et al., 2001). However, evaluating the added-value of such a constrained approach 

was out of the scope of this study.

MEM-concordance: concordance between fMRI clusters and MEM sources—
MEM-concordance was proposed to compare EEG sources and fMRI results obtained 

independently from each other. Geodesic distances (D) between local extrema and overlap 

measurements between spatial extents (AUC) of EEG sources estimated with the MEM and 

fMRI clusters were used to quantify MEM-concordance.

The geodesic distances (D) between fMRI clusters and MEM local extrema quantify EEG-

fMRI concordance taking into account the morphology of the cortical surface. Euclidian 

distance was the only comparison metric reported to assess EEG-fMRI or MEG-fMRI 

concordance, when sources were estimated using ECDs (Sanders et al., 1996; Lemieux et 

al., 2001; Bagshaw et al., 2005), dipole scanning approaches (Van der Meij et al., 2001; 

Bénar et al., 2006) or the LORETA distributed source method (Mulert et al., 2004; Seeck et 

al., 1998). Following the convoluted structure of the cortical surface, the geodesic distance is 

able to consider as distant sources located on both side of a sulcus, whereas the Euclidian 

distance between these sources is small. Geodesic distance is then a concordance index more 

selective than the Euclidian distance.

Our approach was also the first to compare EEG sources and fMRI responses by taking into 

account their spatial extents on the cortical surface. Therefore, we proposed a ROC curve 

analysis assuming the fMRI cluster to be the reference with which MEM sources had to be 

compared. For each fMRI cluster interpolated on the cortical surface, the metric AUC 

integrated overlap measurements over all possible thresholds of MEM current density maps. 

Although this comparison was asymmetric as we only took into account MEM sources 

located close to fMRI clusters, results suggested that both D and AUC were complementary 

and necessary to quantify MEM-concordance.

fMRI-relevance: relevance of each fMRI cluster for the EEG inverse problem—
fMRI-relevance compared EEG and fMRI localizations by the indirect route of testing the 

relevance of each fMRI cluster as prior information for the EEG inverse problem. This study 

is the first attempt to apply on clinical data the fMRI-relevance index α we proposed and 

validated on simulated data in Daunizeau et al. (2005). As it allowed to answer different 

questions than MEM-concordance, fMRI-relevance brought new and complementary 

information in the analysis of EEG-fMRI concordance. fMRI clusters with an α greater than 

1.5 suggested the presence of sources sometimes missed by the MEM (e.g., cluster 1 at t0 in 

Fig. 3 and cluster 2 in Fig. 4). Conversely, only fMRI clusters with an α lower than −1.5 

indicated that no current source within or close to this fMRI cluster could contribute to scalp 

EEG data (e.g., cluster 2 in Fig. 3).
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Using fMRI data to constrain the EEG inverse problem should be considered with caution 

and may be misleading, especially when the constraint is too strong such as in ECDs 

approaches (Gonzales Andino et al., 2001; Korvenoja et al., 2001; Bagshaw et al., 2005). 

Distributed source models proved to be an elegant way to introduce and control smooth 

constraints derived from fMRI results, in the EEG inverse problem (Liu et al., 1998; Dale et 

al., 2000; Babiloni et al., 2003). By combining hierarchical models and Bayesian inference 

techniques (Phillips et al., 2005; Daunizeau et al., 2005), the uncertainties associated to all 

parameters and hyperparameters of the models could be taken into account during the 

estimation. Model comparison, using for instance Bayes’s factor (Gelman et al., 1998), is 

then feasible and it was first applied to EEG source localization by Trujillo-Barreto et al. 

(2004) who compared different anatomical priors. The behavior of fMRI-constrained source 

localization in the presence of accurate or inaccurate fMRI priors was previously analyzed 

using extensive simulations (Liu et al., 1998; Babiloni et al., 2003; Phillips et al., 2005; 

Daunizeau et al., 2005). In most cases, only fMRI priors concordant with EEG sources were 

tested, even in the presence of additional EEG sources with no fMRI correspondence. The 

influence of fMRI priors non-concordant with simulated EEG sources was tested by 

Daunizeau et al. (2005) and Phillips et al. (2005). The results of these simulation studies 

help to achieve more confidence in the meaning of a fMRI-relevance index α significantly 

positive or negative. Our results obtained with clinical data confirmed the added-value of 

using α when analyzing EEG-fMRI concordance. However, the specificity of α should also 

be considered, which could be tested by comparing our results to the estimation of α using 

false fMRI clusters generated randomly in the brain. This was out of the scope of this study.

Why is it important to consider both MEM-concordance and fMRI-relevance 
approaches?—We proposed two complementary comparison strategies to assess EEG-

fMRI concordance: MEM-concordance and fMRI-relevance. The overall agreement 

observed between these two approaches increased the confidence we have in our results. 

They were also complementary, especially because fMRI-relevance could answer different 

questions than MEM-concordance, such as assessing if sources located within or close to an 

fMRI cluster could explain some scalp EEG data or not. We found no case of contradiction 

or complete disagreement between the two methods (class MEM concordant and fMRI non-

relevant). Moreover, fMRI clusters were observed within the five other classes of EEG-fMRI 

concordance, what confirmed this complementarity and emphasized the complexity of the 

underlying mechanisms associated with epileptic spikes generation.

The use of both MEM-concordance and fMRI-relevance was necessary to adequately take 

into account spike propagation when comparing EEG sources and fMRI responses. EEG is 

sensitive to spike propagation as it measures brain activity at the order of the millisecond, 

whereas fMRI data integrate a slow hemodynamic phenomenon over seconds. EEG sources 

corresponding to the main steps of such a propagation were considered in the analysis, as 

MEM-concordance metrics were only quantified at the main peaks of the spike. For each 

cluster, only the time peak for which we measured the most concordant result was 

considered and reported (cf. min(D) and max(AUC) indices). Using MEM-concordance, we 

showed in Fig. 2 that fMRI cluster 1 was in better concordance with the MEM source 

estimated at time t1 than at time t2, whereas fMRI cluster 2 was in better concordance with 
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the MEM source at time t2 than at time t1. EEG sources can propagate rapidly and some 

EEG-fMRI concordance could be missed just by considering few time samples, as for 

instance the superior posterior temporal source at t0 in Fig. 3. By integrating EEG-fMRI 

concordance metrics over the whole duration of the spike, α can address this issue and 

measure how much each fMRI cluster could contribute to the measured EEG signal at some 

point during spike propagation. As suggested by Ebersole (2000), one must check whether 

different voltage topographies appear over the course of the spike, indicating propagation. α 
may also provide clues where to analyze more carefully source localization results (see for 

instance the MEM source at t0 in Fig. 3, confirmed by α=3.65 for cluster 1).

What did we learn from studying EEG-fMRI concordance?

EEG-fMRI concordance and source localization—Good correlations within 10–16 

mm have been reported in evoked potential experiments (Sanders et al., 1996; Korvenoja et 

al., 2001; Mulert et al., 2004). However, such a good concordance is not found when 

analyzing the generators of interictal spikes (Lemieux et al., 2001; Bagshaw et al., 2005). 

Using the same data as in this study, Bagshaw et al. (2005) reported an average Euclidian 

distance greater than 3 cm between the location of the ECD and the nearest fMRI voxel 

showing a significant response. Similar EEG-fMRI discrepancies were reported by Bénar et 

al. (2006), who compared fMRI responses with statistical maps showing which dipoles on a 

3D grid are the most likely to contribute to a solution involving one, two or three ECDs. 

These studies suggested that the ECD may not be the appropriate model for spike 

localization. Our MEM results indicate a better EEG-fMRI concordance than results 

reported in Bagshaw et al. (2005) and Bénar et al. (2006) on the same data. Indeed, we 

found at least one fMRI cluster classified as MEM-concordant for six of seven patients. Our 

results showed that distributed source approaches, and notably the MEM approach, are well 

suited to assess EEG-fMRI concordance for epileptic spikes. A possible explanation may be 

the ability of the MEM technique to recover accurately the spatial extent of spike generators, 

as evaluated in Grova et al. (2006b). ECD localization may be misleading in presence of 

spatially extended generators (Kobayashi et al., 2005b). EEG sources detected using 

distributed source localization methods may over-estimate spatial extent by bleeding over 

adjacent lobes or sulci (every source showing similar orientation in neighboring sulci along 

the cortical surface will tend to show similar activity). Describing brain activity using a 

model composed of K cortical parcels associated with their probability of being active, the 

MEM technique is able to stop such bleeding by switching off the contribution of some 

parcels during the estimation, providing a more accurate estimate of the spatial extent of the 

source.

Toward a better understanding of the phenomena underlying spike generation
—Our results demonstrate that the underlying structure of spike generators may be 

organized as a distributed network, where part of this network is able to generate detectable 

EEG signals, detectable fMRI signals or both. For each patient, we found fMRI clusters in 

almost all the five classes of EEG-fMRI concordance. Part of the hemodynamic response to 

spikes was highly concordant with EEG sources, but as a response to the same EEG spikes, 

there were also other BOLD responses distant or even discordant with EEG sources. This 

highlights the complex nature of the underlying phenomenon linked to spike generation and 
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propagation. Using the proposed classification scheme defined with MEM-concordance and 

fMRI-relevance indices, we detect parts of this network where strong concordance between 

EEG sources and fMRI response was found, as well as other parts where EEG-fMRI 

discordance was suspected. When such an information was available, MEM-concordance 

and fMRI-relevance results were confirmed by intracranial EEG recordings (Figs. 2–4). 

EEG-fMRI concordant results were also found within a focal cortical dysplasia (Fig. 5). 

These observations increased the confidence we have in our findings, although more patients 

should be considered for evaluation.

Whereas the nine patients of this study were not selected based on their fMRI findings, 

EEG-fMRI concordance was not quantified for two patients, as they did not show any 

significant fMRI results. This observation is in agreement with the fact that EEG-fMRI 

analysis of interictal spike suffer from weak sensitivity. Indeed, Bagshaw et al. (2004) 

showed that using four HRFs resulted in an increased sensitivity from 45% when using the 

standard HRF alone, to 62.5%. Our results suggest that more advanced fMRI analysis 

techniques could be considered in regions where EEG sources were detected.

fMRI clusters identified as fully concordant with EEG data according to both MEM-

concordance and fMRI-relevance could be considered to study in greater detail the coupling 

between electrophysiological and hemodynamic phenomena. A very simple coupling 

function was considered in this study (Eq. (9)). The proposed fMRI-relevance index α may 

also test and compare different coupling functions, such as the more complex ones proposed 

by Babiloni et al. (2003). In the illustrative cases, we showed that combining more than one 

fMRI cluster in the prior model may lead to a better fMRI-relevance. For instance, α 
increased when cluster 1 and 2 were considered together in patient 3 (Fig. 2). Combining 

different clusters may also lead to a decrease of α (Fig. 5). fMRI-relevance may then help to 

identify the optimal set of fMRI clusters suspected to be concordant with EEG data during 

an interictal spike. The proposed method to assess EEG-fMRI concordance is then 

appropriate to identify brain region where a coupling between electrophysiological and 

hemodynamic phenomena is highly suspected. Such coupling could then be further 

investigated using dedicated data fusion approaches (Dale and Halgren, 2001; Pflieger and 

Greenblatt, 2001; Kiebel and Friston, 2004).

Another originality of the proposed method was its ability to identify areas where EEG and 

fMRI localizations were considered discordant (class MEM non-concordant and fMRI non-

relevant). There may be two ways to interpret this discordance. On one hand, a problem 

during fMRI analysis occurred and the corresponding clusters may be a false positive or an 

artifact. This assumption may be tested by better analyzing the fMRI signal in such a region, 

using HRF estimation techniques for instance (Marrelec et al., 2003). If, however, a 

significant HRF is found in these regions, then a decoupling between EEG sources and 

BOLD response may have occurred, and this phenomenon needs to be explained.

Many physiological phenomena may explain discrepancies between electrophysiological 

sources and BOLD responses (Nunez and Silberstein, 2000; Gonzales Andino et al., 2001). 

Nunez and Silberstein (2000) suggested that different cell assemblies are responsible for 

electro-magnetic and hemodynamic signatures. Indeed, there is no need for synchronization 
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of neuronal firing to obtain an increase of BOLD response. For instance, the cortical stellate 

cells provide a closed field structure and are thus electrically and magnetically invisible, 

whereas they are known to have a large metabolic contribution. Conversely, a few percent of 

synchronously active neurons may generate large EEG/MEG oscillating signals such as the 

alpha rhythm, without much energy consumption.

By construction, both imaging techniques considered in this study are only sensitive to the 

epileptic discharges that are sufficiently spatially extended to generate a spike seen on scalp 

EEG (Ebersole, 1997). Many phenomena linked to the generation and propagation of a spike 

may not be measured by scalp EEG, and propagated sources can already be involved at the 

time point of the peak of the spike on the scalp (Alarcon et al., 1994). Conversely, one can 

measure a BOLD response as soon as it correlates with scalp EEG. Because of the inertia of 

the hemodynamic phenomena, detected BOLD responses could also correspond to events 

that occurred slightly before or after the main spike seen on scalp EEG. For instance, distant 

BOLD responses located in sub-cortical or contralateral regions are often found (Kobayashi 

et al., 2006a) and may reflect such phenomena. Whereas only interictal discharges were 

considered in this study, we have shown that during the electrographic seizures of one 

patient, a right focal temporal EEG discharge corresponding to a right temporal MEM 

source was associated to a huge BOLD response involving almost the whole hemisphere 

(Kobayashi et al., 2006b).

Similar EEG-fMRI concordance levels were found for clusters corresponding either to 

BOLD activation or deactivation. We previously suggested that positive BOLD responses 

were likely to be more meaningful than negative ones regarding the presumed epileptogenic 

area (Kobayashi et al., 2005a). In our small group of patients, we showed that both kinds of 

BOLD responses provided similar levels of concordance with EEG. The reasons why a 

BOLD deactivation may be either completely concordant (e.g., clusters 1 and 2 in Fig. 2) or 

discordant with EEG sources (e.g., cluster 2 in Fig. 3) remain unclear. Although Shmuel et 

al. (2006) showed recently a tight coupling between negative BOLD and decreased neuronal 

activity using simultaneous recording of fMRI and intracortical EEG data in the macaque 

visual areas, little is known regarding the meaning of negative BOLD responses. Even more 

precaution should then be considered when analyzing fMRI and EEG responses to epileptic 

spikes, which is a pathological situation. It is generally accepted that BOLD deactivation is 

caused by a decrease in energy consumption and that an epileptic spike requires the 

synchronization of neuronal firing over a fairly extended area to be detected on scalp EEG. 

As the BOLD does not depend on neuronal synchronization, we may then assume that a 

cortical region showing less active cells but more synchronous cells may generate at the 

same time BOLD deactivation and an EEG spike. EEG-fMRI discordance may also be 

explained by BOLD deactivation associated to a suspension of the default state of the brain 

(Raichle et al., 2001) that could be interpreted as a decrease of the level of attention during 

the spike. These fMRI deactivations, completely discordant with EEG data, were found 

when studying spike and wave discharges in patients with idiopathic generalized epilepsy 

(Gotman et al., 2005). Deactivations within the network associated to the default state of the 

brain could also be detected partially or completely after focal spikes, and cluster 2 in 

patient 1 (Fig. 3) may be part of this network. Analyzing more data using the method 
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proposed here as well as more detailed analysis of fMRI results will help us to better 

understand these complex phenomena linked to spike generation and propagation.

Conclusion

We propose a new framework to analyze EEG-fMRI concordance by comparing BOLD 

responses to interictal spikes using EEG-fMRI simultaneous acquisition with EEG source 

localization. An important contribution was to propose an anatomically informed method to 

compare these two sources of information on the same spatial support, the cortical surface. 

Two complementary strategies were considered, MEM-concordance and fMRI-relevance, in 

order to classify each significant fMRI cluster according to its level of concordance with 

EEG data. Our main result was that for most patients, part of the hemodynamic response to 

epileptic spikes was highly concordant with EEG sources, and as a response to the same 

spikes other fMRI clusters were found distant or discordant with EEG sources. Our results 

emphasized the complex nature of the underlying phenomenon linked to spike generation 

and propagation. We propose an original method to identify cortical areas where electro-

physiological and hemodynamic phenomena may be coupled during spike generation.
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Appendix A. MEM regularization of the EEG inverse problem

The reference distribution dμ used to incorporate prior information within the MEM 

framework is described in Fig. 8a. This very general model assumes that brain activity may 

be described by K a priori independent cortical parcels showing an homogeneous activation 

state. Each cortical parcel k was characterized by an activation state Sk (=0 or 1), described 

by a probability of being active: Prob(Sk =1)= αk. jk denotes the intensity of the pk sources 

in the kth parcel, δ is the Dirac distribution that allows to shut down the activity when the 

parcel is inactive (Sk =0). The Gaussian distribution  (μk, Σk) (jk) with mean μk and 

covariance Σk describes the current distribution within the kth parcel when it is assumed to 

be active (Sk =1). The initialization of the parameters of this model is described with more 

details in Grova et al. (2006b).

The principle of MEM regularization of the EEG inverse problem is summarized in Fig. 8b. 

Considering this prior model dμ, the MEM solution dp̂ within the kth parcel is found to be:

(A.1)

where Gk is the n × pk submatrix of G and the “free energy” term Fμ,k corresponding to the 

kth parcel is defined as:

(A.2)

where λ̃ is the maximum of a non-linear optimization within a n-dimensional space 

(Amblard et al., 2004).

Appendix B. Hierarchical linear model and Bayesian inference

Fig. 9 presents a graph representation of the hierarchical linear model of data generation 

stated in Eq. (3). To estimate the evidence of any hypothesis or prior model Hi, three levels 

of Bayesian inference are needed to integrate every source of uncertainty of the model 

(Daunizeau et al., 2005):

• First level of inference: Estimation of the parameters J
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Fig. 9a presents Bayesian inference used to estimate the unknown parameters of 

interest J, assuming a specific prior model (Hi) and a set of mutually independent 

hyperparameters (σ2, ε2). p(J|σ2, ε2, M, Hi) defines the posterior probability 

density function (pdf) to be estimated. p(M|J, σ2) represents the data likelihood 

and p(J|σ2, ε2, Hi) is the prior pdf of J stated in Eq. (3). Under specific 

assumptions regarding prior distributions using Gaussian distributions, it is 

possible to estimate ĴMAP, the Maximum a Posteriori (MAP) estimate of J, 

given Hi and a set of hyperparameters (σ2, ε2) linked to the variance of the noise 

and of the sources.

• Second level of inference: Estimation of the hyperparameters (σ2, ε2)

Fig. 9b presents Bayesian inference used to integrate in the model the source of 

variability due to the choice of the hyperparameters (σ2, ε2). p(σ2, ε2 |M, Hi) 

defines posterior pdf to be estimated. p(M|σ2, ε2, Hi) is the data likelihood, 

estimated by integrating over J the numerator of the first level Bayes’ rule (Fig. 

9a). p(σ2, ε2) is the prior pdf of the hyperparameters, which is generally a non-

informative distribution assumed to be independent from Hi. A method to 

estimate the posterior pdf and then the MAP estimate of σ2 and ε2 is described in 

Daunizeau et al. (2005).

• Third level of inference: Estimation of the relevance of the hypothesis Hi

Fig. 9c presents Bayesian inference used to integrate in the model the source of 

variability due to the choice of the hypothesis Hi. The model evidence p(Hi | M) 

to be estimated is the posterior probability of the ith hypothesis Hi given the data 

M. p(M|Hi) is the data likelihood of Hi, estimated by integrating over σ2 and ε2 

the numerator of the second level Bayes’ rule (Fig. 9b). A numerical method to 

estimate p(M|Hi) using an integration of a 1-dimension function is detailed in 

Daunizeau et al. (2005). p(Hi) is the prior distribution of the hypothesis. In our 

context, in order not to privilege any hypothesis, we assume uniform probability: 

p(H0)= p(H1)=1/2.
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Fig. 1. 
Summary of the method to classify the six levels of EEG-fMRI concordance for each fMRI 

cluster according to MEM-concordance (min(D) and max (AUC)) and fMRI-relevance (α). 

For MEM concordant results, the interpretation of the corresponding classification according 

to α (fMRI non-relevant, α non-significant and fMRI relevant) is presented using green font. 

For MEM non-concordant results, the interpretation of the corresponding classification 

according to α(fMRI non-relevant, α non-significant and fMRI relevant) is presented using 

red italic font.
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Fig. 2. 
Analysis of patient 3 showing excellent EEG-fMRI concordance. (a) Signal and maximum 

field power of the average spike, local peaks (t1, t2, t3) considered for MEM-concordance are 

represented using red vertical lines. (b) MEM source localization estimated at t1 and t2, the 

positive and the negative parts of ĴMEM being thresholded upon the level of background 

activity, using Otsu’s threshold estimated on |ĴMEM| (Otsu, 1979). (c) t-values of the two 

most significant fMRI clusters obtained with the HRF peaking 5 s after the spike, 

superimposed on the 3D anatomical MRI. (d) Same fMRI clusters after interpolation onto 

the cortical surface. (e) MEM-concordance and fMRI-relevance metrics for cluster 1, cluster 

2 and when considering both clusters together. (f) 3D representation of the position of the 

intracranial EEG electrodes with one MRI axial slice and the cortical surface (yellow 

slightly transparent), active contacts being represented in red. Visual inspection (b and d) 

and quantitative results (e) showed an excellent EEG-fMRI concordance within right and left 

occipital regions, and were confirmed by intracranial EEG recordings (f).
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Fig. 3. 
Analysis of patient 1 suggesting EEG-fMRI concordance during spike propagation. (a) 

Signal and maximum field power of the average spike, local peaks (t1, t2) considered for 

MEM-concordance are represented using red vertical lines. (b) MEM source localization, 

thresholded as in Fig. 2b, estimated at t1 and t0, an additional time point showing some early 

activity located at PO4 electrode (green vertical line in panel a) and in the right superior 

posterior temporal area on the cortex. (c) t-values of the two most significant fMRI clusters 

obtained with the HRF peaking 5 s after the spike, superimposed on the 3D anatomical MRI. 

(d) Same fMRI clusters after interpolation onto the cortical surface. (e) MEM-concordance 

and fMRI-relevance metrics for cluster 1 and cluster 2. (f) 3D representation of the position 

of the intracranial EEG electrodes with one MRI sagittal slice and the cortical surface 

(yellow slightly transparent), active contacts being represented in red. Comparisons between 

fMRI and MEM results at t1 suggested partial spatial overlap between sources. α=3.65 for 

cluster 1 suggested a good EEG-fMRI concordance, which could be slightly detectable in 

MEM results at t0. These results were confirmed by intracranial EEG recordings (f).
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Fig. 4. 
Analysis of patient 8 showing partial EEG-fMRI concordance. (a) Signal and maximum 

field power of the average spike, local peaks (t1, t2, t3) considered for MEM-concordance are 

represented using red vertical lines. (b) MEM source localization, thresholded as in Fig. 2b, 

estimated at the main peak of the spike t2. (c) t-values of the two most significant fMRI 

clusters obtained with the HRF peaking 5s after the spike, superimposed on the 3D 

anatomical MRI. (d) Same fMRI clusters after interpolation onto the cortical surface. (e) 

MEM-concordance and fMRI-relevance metrics for cluster 1 and cluster 2. (f) 3D 

representation of the position of the intracranial EEG electrodes with one MRI coronal slice 

and the cortical surface (yellow slightly transparent), active contacts being represented in 

red. EEG source localization, fMRI and intracranial EEG results showed a complex and 

widespread distribution of the activity involved at the time of the spike. However, excellent 

EEG-fMRI concordance was found within a widespread left frontal source (fMRI cluster 1). 

No MEM source was found concordant with the right anterior cingulate BOLD deactivation 

(cluster 2), although α=1.89 suggested that sources located in this region could explain some 

scalp EEG data, which was confirmed by intracranial EEG results (f).
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Fig. 5. 
Analysis of patient 9 showing partial EEG-fMRI concordance within a focal cortical 

dysplasia. (a) Signal and maximum field power of the average spike, local peaks (t1, t2) 

considered for MEM-concordance are represented using red vertical lines. (b) MEM source 

localization estimated at t1, thresholded as in Fig. 2b. (c) t-values of the two most significant 

fMRI clusters obtained with the HRF peaking 3 s after the spike, superimposed on the 3D 

anatomical MRI. (d) Same fMRI clusters after interpolation onto the cortical surface. (e) 

MEM-concordance and fMRI-relevance metrics for cluster 1, cluster 2 and when 

considering both clusters together. (f) Left parietal focal cortical dysplasia manually 

segmented and superimposed in red on an axial MRI slice, together with the cortical surface 

(yellow slightly transparent). Visual inspection (b and d) and quantitative results (e) 

confirmed an excellent EEG-fMRI concordance within the dysplastic lesion (f). α suggested 

that considering only cluster 1 as prior information in the EEG inverse problem was more 

relevant than considering both cluster 1 and cluster 2.
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Fig. 6. 
Distributions of MEM-concordance (min(D) and max(AUC)) and fMRI-relevance (α) 

metrics for all the 62 clusters considered in this study. Clusters corresponding to activations 

are represented in red triangles, and deactivations in blue circles. Thresholds used for 

classification are displayed using dashed lines. There is overall a good agreement between 

α, min(D) and max(AUC) and they are uniformly distributed over their whole range of 

values. In most cases, fMRI-relevance was then in agreement with MEM-concordance and 

all levels of EEG-fMRI concordance were observed. More discrepancies were observed 

between max(AUC) and min(D), especially for highest min(D) values (c), suggesting that 

these two metrics were complementary and necessary to quantify MEM-concordance.
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Fig. 7. 
Distribution of the fMRI-relevance index α as a function of: (a) the volume of each cluster, 

(b) the corrected significance level of the cluster p and (c) its logarithm log10(p). Each point 

corresponds to one of the 62 clusters considered in this study. Clusters corresponding to 

activations are represented in red triangles, and deactivations in blue circles. Thresholds used 

for classification are displayed using dashed lines. Almost all the largest fMRI clusters 

(volume>10 mm3) were highly relevant for EEG source localization (α>1.5). The fMRI 

responses concordant with EEG were either activation or deactivation, also fMRI clusters 

showing deactivation tend to be slightly larger than the ones showing activations (a).
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Fig. 8. 
Principle of source localization using MEM principle: (a) definition of the reference 

distribution dμ expressing prior information on J, (b) principle of MEM regularization, 

estimation of the solution dp̂ explaining the data M in average with maximum μ-entropy. dp̂ 
is the distribution explaining the data M in average closest to dμ in the sense of Kullback–

Leibler divergence.
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Fig. 9. 
Graph representation of the hierarchical linear model of data generation and description of 

three levels of Bayesian inference used to estimate the evidence of any prior model Hi.
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