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Abstract
The general linear model (GLM) approach is the most commonly used method in functional magnetic
resonance imaging analysis to predict a particular response. Recently, a novel method of analysis,
referred to as inter-participant correlation (IPC), was developed that attempts to determine the level
of BOLD (Blood Oxygen Level Dependent) synchrony among subjects. The IPC approach enables
detection of changes in inter-participant BOLD synchrony in a manner that does not rely on an explicit
model of the hemodynamic activity. In this paper, we extend IPC to the case of two groups and derive
an approach for thresholding the resulting maps. We demonstrate our approach by comparing 35
patients with paranoid schizophrenia (DSM-IV subtype 295.30) to 35 healthy matched controls
during an auditory target detection paradigm. Results showed significantly lower inter-participant
BOLD synchrony in patients versus healthy controls in areas including bilateral temporal lobes,
medial frontal gyrus, anterior cingulate cortex, dorsolateral prefrontal cortex, thalamus, insula, and
cerebellum. The IPC approach is straightforward to use and provides a useful complement to
traditional GLM techniques. This approach may also be sensitive to underlying, but unpredictable,
changes in inter-participant BOLD synchrony between patients and controls.
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INTRODUCTION
The most commonly used technique in functional magnetic resonance imaging (fMRI) analysis
is based on the general linear model (GLM) (Friston, et al. 1995a; Friston, et al. 1995c) and
involves fitting the acquired fMRI data to a canonical hemodynamic response function (Friston,
et al. 1995b; Rajapakse, et al. 1998). The GLM is an excellent tool when searching for a task-
related response, but is limited by the fact that it only accounts for canonical hemodynamic
activity. Recently, a novel approach to fMRI analysis, referred to as inter-participant
correlation (IPC), was introduced that attempts to quantify the level of correlation of fMRI
BOLD activity within a group of participants (Hejnar, et al. 2006). By not making a specific
assumption about the shape of the hemodynamic response, the IPC approach has proven
capable of revealing regions synchronized across individuals, and thus finding activations that
do not necessarily track smoothly with a given task. More specifically, it attempts to determine
this correlation at the voxel level between two participants for every voxel in the brain. A
correlation map is then generated that depicts areas of high BOLD correlation between two
participants and repeated for all possible pairwise comparisons within a group. The statistical
average of these comparisons then provide a picture of which regions in the brain are
synchronized for a particular group of participants.

The previous study that developed the IPC algorithm analyzed a single group of healthy
controls. Here we develop the IPC method to allow for group comparisons and to make
additional changes that would more effectively account for the variances between them. Two
modifications were made to the original IPC algorithm. The first modification was to utilize
the fundamental theories of U-statistics to create valid statistical thresholds for the within-
group and between-group comparisons. The motivation for this modification was due to the
fact that the previous algorithm divided its averaged correlation maps by its standard deviation
and was thresholded at an arbitrary z-value. To remedy this, we took into account the
dependence that would exist between individual correlation images as a result of performing
an exhaustive correlation analysis between participants within a group. Our solution involved
the use of U-statistics (Randles and Wolfe, 1979), a statistical method used in nonparametric
statistics that accounted for the dependence between participants and provided us with true t-
values that can be further thresholded using a false discovery rate correction (Genovese, et al.
2002). The second modification was made to account for the variances that might exist between
sessions by using an ordinary GLM regression model to regress one participant’s session with
another. The original IPC algorithm concatenated the sessions for a single participant as a single
session and then performed its correlation afterwards. The GLM regression model allows us
to treat each session individually, thus the first session for each participant would be correlated
with the first session of the other participant.

After the IPC results were generated, a clustering analysis was performed at the group-level
to conglomerate regions that activate in a similar manner. This was performed to account for
the possibility that neighboring voxels might have very different timecourses from one another
since the IPC does not test for inter-voxel synchrony. The clustering approach allows us to see
which regions of the brain are closely linked to one another and a maximum efficiency
algorithm was developed to determine the best number of clusters to use for this part of the
analysis.

In order to test the between-group comparisons approach with the IPC method, we chose to
compare a group of patients with schizophrenia (n=35) with a matched group of healthy
controls (n=35). Participants performed an auditory target detection or ‘oddball’ task. This task
was chosen because this paradigm elicits a robust fMRI response that reliably distinguishes
patients with schizophrenia from controls (Calhoun, et al. 2006; Kiehl and Liddle 2001; Kiehl,
et al. 2005a; Laurens, et al. 2005; Ngan, et al. 2003). The auditory oddball paradigm is a task
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where a participant hears a combination of three distinct classes of stimuli, defined as standard
(80% probability), novel (10% probability), and target (10% probability) tones. The participant
is instructed to press a button during the experiment whenever they hear a target tone and to
ignore everything else. Previous work utilizing this paradigm with fMRI have found attenuated
activity in schizophrenia within frontal, temporal, parietal, and subcortical sites during the
detection process of this specific target auditory tone (Kiehl, et al. 2005b).

Our specific hypothesis was that deficits in schizophrenia that are related to abnormalities
within the delicate interplay of multiple brain regions could manifest as a lack of coherence
between participants¨ This is consistent with the hypothesis that patients with schizophrenia
are characterized by abnormal interconnections between various brain regions (Breakspear, et
al. 2003; Friston 1998; Job, et al. 2002; Kubicki, et al. 2007). Calhoun et al. (2003) used
independent component analysis to show that patients with schizophrenia were characterized
by aberrant patterns of connectivity in bilateral temporal lobes during performance of the
auditory oddball task. We hypothesized that healthy controls would show a much stronger
correlation in BOLD activity versus patients with schizophrenia in the superior temporal gyrus
and in areas associated with target detection such as the anterior cingulate, dorsolateral
prefrontal cortex and subcortical systems such as the thalamus and cerebellum. (Calhoun, et
al. 2004; Kiehl, et al. 2005a; Lawrie, et al. 2002; Stevens, et al. 2005).

METHODS
Participants

Thirty-five outpatients with schizophrenia (30 males) and thirty-five matched healthy controls
(30 males) provided written informed consent and volunteered for the study. Healthy controls
were free from any Axis I disorder, as assessed with the SCID (Structured Clinical Interview
for DSM-IV-TR) screening device. Patients met criteria for paranoid schizophrenia (sub-type
295.30) in the DSM-IV based on a structured clinical interview and review of the case file
(First et al., 1995). All participants were right handed and there were no significant group
differences in age (patients, 38 ± 11 years, range 18–59 years; controls, 37 ± 12 years, range
18–55 years). IQ (Intelligence Quotient) assessments were determined from NART (National
Adult Reading Test) scores where healthy controls were higher than patients (patients n=26,
35 ± 15 points; controls n=17, 22 ± 7 points; t(41)=3.1323, p < .0032). To determine the
presence/absence of psychotic symptoms, the mean PANSS (Positive and Negative Syndrome
Scale) for patients were determined (n=28, 66 ± 19.6). Medication information was available
for 24 patients, where 13 patients were on atypical antipsychotic medications, 4 were on typical
antipsychotic medications, 2 were on both atypical and typical medications, and three were on
no medications at all. Four participants from the patient group were omitted from analysis, as
they demonstrated extremely poor performance on the auditory oddball task (more than ten
total incorrect responses in either targets or novels for both sessions). Two additional
participants were omitted for excessive head motion (greater than one and a half voxel-length
(6mm) in translation or rotation). All participants had normal hearing (assessed by self-report)
and were able to carry out both tasks successfully during practice, and during the scanning
session.

Tasks: Auditory Oddball
The auditory oddball task used in this study was identical to that used in the original inter-
participant correlation study (Hejnar, et al. 2006). Two runs of auditory stimuli were presented
to each participant by a computer stimulus presentation system (VAPP:
http://nilab.psychiatry.ubc.ca/vapp/) via insert earphones embedded within 30 dB sound
attenuating MR compatible headphones. The standard stimulus was a 500 Hz tone, the target
stimulus was a 1000 Hz tone, and the novel stimuli consisted of non-repeating random digital
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noises (e.g., tone sweeps, whistles). The target and novel stimuli each occurred with a
probability of 10%; the non-target stimuli occurred with a probability of 80%. The stimulus
duration was 200 ms with a random 1000, 1500, or 2000 ms inter-stimulus interval. All stimuli
were presented at approximately 80 decibels and all participants reported that they could hear
the stimuli and discriminate them from the background scanner noise. The headphones were
designed to work together with the head restraint system in order to minimize head movement.

An MRI compatible fiber-optic response device (Lightwave Medical, Vancouver, B.C.) was
used to acquire behavioral responses. Prior to entry into the scanning room, each participant
performed a practice block of 10 trials to ensure understanding of the instructions. The
participants were instructed to respond as quickly and accurately as possible with their right
index finger every time they heard the target stimulus and not to respond to the non-target
stimuli nor the novel stimuli.

Imaging Parameters
Imaging was implemented on a 3T Siemens Allegra MR system. Conventional spin-echo T1
weighted sagittal localizers were acquired to view the positioning of the participant’s head in
the scanner and to graphically prescribe the functional image volumes. Functional image
volumes were collected with a gradient-echo sequence (TR=1500 ms, TE=27 ms, FA=60°,
FOV= 22 × 22 cm, 64 × 64 matrix, 4 kHz bandwidth, 3.44 by 3.44 mm in plane resolution, 4
mm slice thickness, 1 mm gap, 29 slices acquired axially) effectively covering the entire brain
(145 mm) in an ascending manner. There were two runs of 255 time points each, prefaced by
a 9 second rest block allowing T1 effects to stabilize.

Data Analysis: Pre-processing
Data was preprocessed using the software package SPM2 (http://www.fil.ion.ucl.ac.uk/spm/).
Images were realigned using INRIalign – a motion correction algorithm unbiased by local
signal changes (Freire and Mangin 2001; Freire et al., 2002). Data was spatially normalized
(Ashburner and Friston 1999) into the standard Montreal Neurological Institute space and
spatially smoothed with a 10×10×10 mm3 full width at half-maximum Gaussian kernel. The
data (originally collected at 3.44×3.44×5 mm3) was slightly sub-sampled to 3 mm3, resulting
in 53×63×46 voxels and a fifth-order infinite impulse response Butterworth low-pass filter of .
25 Hz was applied to remove high-frequency noise.

Inter-Participant Correlation
The algorithm used to analyze the data was based on the inter-participant correlation algorithm
originally developed by (Hejnar, et al. 2006), but with two major modifications that will be
discussed later in this section. The original algorithm calculated an inter-participant Pearson
correlation for each voxel between all pairwise combinations of participants over their
respective time-courses. For example, a voxel from subject #1 would be correlated with the
same voxel from subject #2, but not with any other voxels. Every voxel in the brain is correlated
this way, which generates a single correlation map for those two subjects. The total number of
pair-wise correlation maps can be determined by the formula: (n2−n)/2 where n is equal to the
number of subjects. Thus, within a group of thirty-five subjects, there would be a total of 595
unique pair-wise correlation maps. These maps were then averaged together to create a total
of thirty-five correlation maps, one for each particular subject. For statistical display purposes,
the averaged maps were then divided by their standard deviation and an empirical threshold
of z = 3 was used to find significant areas of correlation for each individual subject¨ However,
the correlation maps were not divided by their standard deviation or thresholded for the second-
level analysis. A sample correlation map for one healthy control is shown to exhibit the
individual subject results obtained from the IPC algorithm (Figure 1).
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The first modification was made to the original algorithm by using a multiple regression model
to account for variances between runs. In the original approach, the sessions for each subject’s
dataset were concatenated and were analyzed as a single vector (e.g. y = βx+e where x =
[xrun1 xrun2] and y = [yrun1 yrun2] contain de-trended data for one voxel for participants x and
y; the square root of the multiple correlation coefficient, R is then computed for each pair of
participants). The current approach creates a general linear model to regress both sessions of
one subject’s data onto another subject’s data (allowing for variation between runs) as:

where again, for this regression equation, the square root of the multiple correlation coefficient
is computed for each pair of participants and used as our measure of correlation. If, for a given
voxel, the pairwise correlation for participant i and j is Ri,j, we compute the within-subject

average for subject j as . The second modification, described in the next paragraph,
involves extending the IPC approach to allow for group comparisons.

Second-Level Analysis (U-Statistics)
The average of all pairwise correlation maps for a given group (595 in total) was analyzed
using a statistical model that accounts for dependencies that might exist between the
participants’ correlation maps. A specialized statistical approach was needed because, for
example, a standard t-test on the average pairwise correlation will inevitably produce p-values
that are too small if the dependence between two pairwise correlations that have one participant
in common is ignored. The theory of U-statistics (Randles and Wolfe, 1979), which play an
important role in the field of non-parametric statistics, provides an exact expression for the
variance of the average pair-wise correlation and its large sample distribution. This approach
allowed us to produce valid standard errors for one-sample and two-sample t-tests. The t-
statistics could then be converted to p-values and false discovery rate (FDR) methods can be
applied to account for multiple comparisons (Genovese, et al. 2002).

In the within-group analysis, let r¯ be the sample average pair-wise correlation across all pairs
of subjects (in this case 595 correlations). Then r¯ is an unbiased estimate of ρ, the average of
the pairwise correlations in the target population. Further, r¯ is a U-statistic with a second order
kernel so the Central Limit Theorem for U-statistics implies that the distribution of r¯ is
approximately normal for large values of n, the number of subjects. This limit theorem applied
in conjunction with Slutsky’s theorem implies that when n is large:

where

is the estimated standard error of r¯. Here, ζ ̂2 is the sample variance of all pair-wise correlations
and ζ̂1 is computed by subtracting r¯2 from the average of all products of two pairwise
correlations that have one participant in common.
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The within-group analysis described above can also be applied to a between-group analysis
since the samples are assumed to be selected independently and thus:

where

The subscripts T and C are used to distinguish summaries that are computed separately from
the treatment and control groups.

Finally, a contiguity filter was used in the final image to remove voxel clusters that were smaller
than five voxels in terms of volume to filter out insignificant correlations and for display
purposes.

Clustering
Finally, voxels with high correlations may have very different time-courses (since the only
requirement for a high correlation is that the time-courses are similar for all participants). The
template mask that was to be used for the clustering was generated from the two-sample group
comparison IPC results. This mask was then used to select voxels from all the preprocessed
fMRI datasets for our study and analyzed using the Calinski and Harabasz (CH) stopping rule
(Harabasz 1974) to determine the optimal number of clusters or groupings that can be found.

To determine the optimal number of clusters, the distance between every two nodes (voxels)
is calculated where the nodes were represented using the subjects and their activation time
progress for the voxels. We then built the minimal spanning tree by a greedy algorithm. Then
the CH measure is calculated as a ratio between the cluster sum of squares and the within-
cluster sum of squares to obtain a range of numbers for cluster selection. The optimum number
of clusters, which turned out to be 5, was finally determined as the number where we had no
further increase in the CH measure.

In order to examine these time-courses, a k-means clustering algorithm was used on the
auditory oddball task correlation data (Duda 2001). The algorithm was configured to find five
clusters within the same template mask that was utilized for the Calinski and Harabasz analysis
and then overlaid on an anatomical map for display purposes.

Event related averages were also calculated for targets, novels, and standards within each
cluster for patients and healthy controls. Data from nine timepoints after the onset of each
stimulus were taken from the k-means clustering results and averaged together for each cluster
to determine their event related averages. These were then plotted for each cluster within a
single plot to represent the overall effect of the hemodynamic response during target responses.

RESULTS
Behavioral Data

There were no significant differences between patients and healthy controls for percentage of
correct hits (patients 95.9% SD[6.3%]; controls 98.8% SD[2.9%], t(68)=.8168, p < .3918),
percentage of novel stimuli correctly rejected (patients 96.5% SD[4.6%]; controls 97.4% SD
[4.3%], t(68)=.3591, p < .7206), percentage of standard stimuli correctly rejected (patients
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99.7% SD [1.3%]; controls 99.9% SD[0.5%], t(68)=.9019, p < .3703). Significant differences
were found in response time to target stimuli where healthy controls were greater than patients
(patients = 391.38 seconds SD[67.96s]; controls = 486.28 seconds SD[127.02s] t(68)=3.8974,
p < .0002).

Within Group Analysis - Healthy Controls
In the within group analysis for healthy controls, the highest areas of significance were found
in the medial (t=13.3/13.6 in the left and right hemispheres respectively) and superior frontal
gyrus (t=12.6/12.3), followed by the superior temporal gyrus (t=12.3/10.2). Significant levels
of correlation were found in the anterior cingulate (t=8.1/7.8), precuneus (t=8.8/10.7), inferior
parietal lobule (t=11.1/10.5), pre-central (t=8.9/10.9) and post-central gyrus (t=9.8/12.3).
Subcortical structures such as the thalamus (t=8.9/9.2), insula (t=11.3/10.6), and hippocampus
(t=7.9/8.7) were also found to be significant. See Table 1 for a full listing of their talairach
coordinates, their area of significance, and maximum t-values (Figure 2).

Within Group Analysis - Patients with Schizophrenia
In the within-group analysis for patients with schizophrenia, the highest areas of significance
were found in bilateral temporal lobes (t=17.5/18.5). Significant areas of correlation were also
found in the frontal lobe, specifically the anterior cingulate gyrus and medial prefrontal gyrus
(t=6.7/9.1). The pre-central (t=5.8/8.2) and post-central (t=7.5/8.5) gyrus were found to be
significant in both hemispheres. Subcortical areas such as the thalamus (t=5.9/6.7) and a small
portion of the cingulate gyrus were also significant (t=7.4/8.2). See Table 2 for a full listing of
their talairach coordinates, their area of significance, and maximum t-values (Figure 3).

Between Group Analyses
A second-level between-group analysis was performed on the results from the IPC algorithm
to determine significant activations between healthy controls and patients. The results showed
that there were similar patterns of correlation between healthy controls and paranoid
schizophrenics, but consistent with our hypothesis there were significant differences in range
and significance across major areas of the brain, including bilateral temporal lobes, medial
frontal gyrus, parietal lobules, anterior cingulate, dorsolateral prefrontal cortex, thalamus and
cerebellum. The greatest differences between the two groups were found in the medial frontal
gyrus (t=6.4/6.3) and the insula (t=6.1/5.2). The superior temporal gyrus (t=5.8/5.1), thalamus
(t=4.0/3.9), parahippocampus (t=5.0/4.2), anterior cingulate (t=4.6/4.7), and inferior parietal
lobule (t=5.0/4.3) were all found to be significant as well. No significant activations were found
for patients > healthy controls under our specified FDR threshold. See Table 3 for a full listing
of their Talairach coordinates, area of significance, and maximum t-values (Figure 4).

Individual Subject Analysis
Within each subject’s correlation maps there were consistent patterns of activation within
healthy controls and patients. Overall, correlation maps for healthy controls showed more
robust activation at the same threshold (z=3) in comparison to schizophrenics performing the
same task (See Figure 5). Common areas of significance were bilateral temporal lobes followed
by medial frontal gyrus and pre-central gyrus.

Clustering
The assigned colors from each cluster correspond to the same line colors found in the event
related averages for both groups. Results from the cluster map for healthy controls showed the
red and cyan cluster were composed of bilateral temporal lobes, thalamus, medial frontal gyrus,
and anterior cingulate. The blue and purple clusters grouped around regions near the precentral

Kim et al. Page 7

Neuroimage. Author manuscript; available in PMC 2009 September 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and post-central gyrus, while the green cluster comprised of small regions within the occipital
lobe.

Results from the cluster map for patients showed the blue cluster was composed mostly of
bilateral temporal lobes and small areas of the thalamus. The purple cluster involved the right
temporal lobe, medial frontal gyrus, thalamus, and anterior cingulate The green cluster was
composed of small regions within the occipital lobe and cerebellum while the red and cyan
clusters grouped together around the pre-central and post-central gyrus.

Event related averages for patients and healthy controls were calculated for target responses
during an auditory oddball task. Purple clusters corresponded to the greatest signal change,
followed by cyan, red, green, and blue clusters. Patients showed significant differences in signal
strength in terms of their maximum values than healthy controls. Healthy controls depicted a
0.4% maximum signal increase versus a 0.27% signal increase for patients. Patients and healthy
controls showed a similar hemodynamic response in terms of their shape, though patients
showed a distinct grouping for the last three clusters of interest (Figure 6 & 7).

DISCUSSION
The main benefits of the IPC algorithm is that it is a data-driven model that attempts to
determine the level of fMRI BOLD synchrony within a group of subjects. The IPC is a useful
complementary tool since the questions it asks differ from popular approaches such as the
GLM, which attempts to find significant brain activity that is relevant to its experimental model.
The IPC is concerned with regions of the brain that are commonly utilized for a given task. If
a certain region is consistently activating along with a task, then it is likely that it will be found
to be significant using the IPC approach even if the activation does not track smoothly with
the task. The previous IPC approach focused on its comparison to the GLM method used in
SPM2. Here, we have presented a modified IPC algorithm that provides a number of new
enhancements to the original IPC algorithm and have utilized it to compare a group of patients
with paranoid schizophrenia against healthy controls.

The first modification is that we utilized the IPC method at the level of group comparisons.
The previous IPC approach was used for a single within-group comparison and used an
empirical threshold rather than a statistical one. The application of U-statistics allows us to use
a non-parametric approach to determine statistical significance in the within-group and
between-group analyses. The resulting t-values can be easily converted to probability values
at each voxel which can then undergo an FDR correction for multiple comparisons. The FDR
threshold that we applied from the resulting t-values were thresholded at a higher value for the
within-group analyses (FDR, p<.00005) based on the strength of our findings while the
between-group analysis was subjected to a much lower threshold (FDR, p<.005). This is
consistent with previous schizophrenia research that has shown much stronger effects in the
within-group analysis than the between-group analysis during an auditory oddball task (Kiehl
and Liddle 2001; Kiehl, et al. 2005a). The second modification deals with performing the initial
correlation by regressing the datasets by their sessions rather than concatenating them and
treating it as a single session. By regressing each session with one another, we try to account
for variances that might exist in between session. For example, the range of the amplitude
signal might differ between the first and second sessions and if the two were concatenated and
regressed as a single session, these differences might not be taken into account.

Two neighboring voxels might contain very different signals, but can be both highly significant
from the IPC analysis and contain similar t-values. In a more extreme case, these neighboring
voxels might be completely associated with very different tasks. Since the IPC approach does
not attempt to answer questions regarding the synchrony between voxels within a participant,
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we used a clustering method to group brain regions that contained similar time-courses. The
clustering approach is useful in grouping these time-courses together and delineating an area
of interest that can be further scrutinized. The results of our clustering approach shows that
patients tend to have clusters that are more homogenous throughout task-related regions within
the brain in comparison to healthy controls. One interesting finding can be seen in how patients
cluster bi-lateral temporal lobes along with the anterior cingulate and other nearby areas within
that particular slice, while the healthy controls tend to delineate the anterior cingulate
specifically away from the rest of those regions. The event related averages for patients also
showed a significant decrease in amplitude when compared to healthy controls for target
responses, especially in the anterior cingulate and bi-lateral temporal lobes. This suggests that
patients were not activating as strongly as healthy controls for task-related activities even
though they followed a similar hemodynamic response.

Our initial hypothesis stated that healthy controls would show a stronger level of inter-
participant synchrony in areas related to auditory target detections. These hypotheses were
confirmed, as strong differences were found in bilateral temporal lobes, dorsolateral prefrontal
cortex, anterior cingulate, inferior parietal lobules as well as subcortical systems such as the
thalamus and parahippocampus. These findings complement current models of schizophrenia
such as the frontotemporal disconnection model and the heteromodal association cortex
(HASC) model (Friston 1999; Pearlson, et al. 1996). The frontotemporal disconnection
hypothesis model focuses on the interconnections between the prefrontal cortex and bilateral
temporal lobes. This is consistent with our findings from the between-group analysis which
showed the medial frontal gyrus (t=6.4/6.3) and superior temporal lobes bilaterally (t=5.8/5.1)
as being highly significant, which implies that patients are not utilizing these areas of the brain
as consistently as healthy controls. The HASC model attempts to link schizophrenia as a
dysfunction of the heteromodal association cortex, which comprises primarily of the pre-frontal
cortex, superior temporal, and inferior parietal cortices. Those same areas were found to be
implicated in our between-group analysis. Though these models deal with the interconnectivity
between brain regions, our analysis has shown that similar areas are implicated in BOLD
synchrony at the voxel-level. Furthermore, our clustering analysis shows that some of these
regions may be valuably grouped together on the basis of their time-course similarities.

A confound in the interpretation of our results could be that the experimental paradigm does
not consistently activate a specific neural network and allocates random resources of the brain.
For example, a resting state task that requires the patient to stare at a blank screen for a few
minutes might recruit any number of neural resources at a given moment, making the IPC
method difficult to apply. If the activations are not consistent across time, then IPC will not be
able to find a strong correlation in those voxels. In such cases, an alternative method would be
to implement something like independent component analysis or a similar data-driven approach
that could overcome such obstacles (Calhoun and Adali 2006; Jafri, et al. 2007).

The question of how similar the time-courses are within a region is very pertinent and we
attempted to answer this by using a clustering algorithm to group these areas together.
However, the algorithm is hindered by the fact that the number of clusters specified for the
algorithm might not take into account the more subtle inter-relationships that exist between
these regions. A pairwise correlation between every voxel of interest could be performed to
more directly assess interregional connectivity. Future possibilities in answering these
questions might utilize tools within probability theory such as structural equation modeling or
dynamic Bayesian networks, which recently have been successfully applied to neuroimaging
data to determine relationships between specific brain regions of interest (Burge and Lane
2005; Friston, et al. 2003; McIntosh and Gonzalez-Lima 1994).
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Conclusion
By utilizing a novel data-driven correlation approach to fMRI data, we were able to uncover
many distinct brain regions that point to a lack of inter-participant synchrony within paranoid
schizophrenics that correlate with previous fMRI studies of schizophrenia. Improvements were
made to the original algorithm to improve the robustness of our results and to perform
statistically valid group comparisons that shed new light on the differences between patients
with schizophrenia and healthy control populations. The IPC method in general is an excellent
tool in complementing popular approaches to fMRI such as GLM and ICA as it attempts to
look at a different aspect of BOLD activity, namely inter-participant neural synchrony. Our
approach is general and can be applied to any study which involved comparisons of groups.
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Figure 1.
Sample correlation map from healthy control participant #1
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Figure 2.
IPC - Healthy (FDR p < .00005)
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Figure 3.
IPC - Patients (FDR p < .00005)
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Figure 4.
IPC – Group Healthy > Patients (FDR p <.005)

Kim et al. Page 15

Neuroimage. Author manuscript; available in PMC 2009 September 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Correlation Samples from Schizophrenics and Healthy Controls
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Figure 6.
Event Related Averages for Targets - Five Cluster Results for Healthy Controls
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Figure 7.
Event Related Averages for Targets - Five Cluster Results for Patients
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Table 1
Talairach Coordinates for 1-sample U-statistics for Healthy Controls

Area (Positive Activation) Brodmann Areas R/L volume (mm3) R/L random effects Max T

Medial Frontal Gyrus 32, 6, 8, 9, 10, 11 13.5/12.6 13.6(0,8,47)/13.3(3,8,47)

Superior Frontal Gyrus 6, 8, 9, 10 14.7/15.3 12.6(0,5,49)/12.3(3,5,49)

Superior Temporal Gyrus 22, 21, 13, 42, 41, 38, 39 31.7/30.2 12.3(−59,−34,10)/10.2(59,−32,7)

Postcentral Gyrus 2, 1, 3, 4, 5, 40, 7, 43 21.5/21.1 9.8(−30,−38,60)/12.3(39,−32,62)

Cingulate Gyrus 24, 32, 9, 31, 23 17.9/13.3 12.2(−3,2,47)/12.2(6,11,41)

Middle Temporal Gyrus 21, 22, 39, 38, 37, 19, 20 24.5/20.3 11.8(−62,−32,4)/9.4(62,−32,4)

Sub-Gyral 21, 6, 40, 13, 20,Corpus
Callosum, 47,Hippocampus,
8, 7

21.6/22.2 11.4(−50,−12,−7)/9.2(36,−18,42)

Insula 13, 41, 22, 40, 47, 45 13.0/14.5 11.3(−56,−37,18)/10.6(53,−31,21)

Cuneus 18, 17, 23, 7, 19, 30 15.0/11.3 11.3(−18,−102,3)/8.3(9,−99,0)

Inferior Parietal Lobule 40, 39, 7 18.1/17.3 11.1(−62,−40,24)/10.5(42,−36,46)

Precentral Gyrus 4, 6, 44, 13, 43, 9, 3 25.5/22.2 8.9(−30,−12,48)/10.9(36,−21,48)

Precuneus 7, 19, 31, 39 18.5/13.6 8.8(−6,−61,58)/10.7(3,−52,61)

Middle Frontal Gyrus 6, 8, 9, 46, 10, 47 22.5/13.3 9.5(−50,13,35)/10.4(33,−6,61)

Paracentral Lobule 5, 31, 6, 4, 7 5.8/4.8 10.2(0,−9,45)/10.0(3,−9,45)

Inferior Occipital Gyrus 18, 17, 19 3.0/4.1 10.2(−33,−96,−3)/8.8(39,−91,−6)

Inferior Frontal Gyrus 47, 9, 45, 44, 13, 46 17.8/9.9 10.2(−50,17,−6)/7.5(42,14,−11)

Extra-Nuclear 47,Corpus Callosum,
13,Pulvinar,Lateral Globus
Pallidus, Putamen

17.9/18.1 8.7(−36,23,−1)/9.9(30,6,0)

Lingual Gyrus 18, 17, 19 10.8/8.4 8.8(−27,−99,−3)/9.5(24,−99,−5)

Lentiform Nucleus Putamen,Lateral Globus
Pallidus, Medial Globus
Pallidus

7.5/8.3 8.1(−18,11,−8)/9.3(27,6,2)

Transverse Temporal Gyrus 41, 42 1.5/1.8 8.7(−48,−26,10)/9.3(45,−29,10)

Thalamus 5.6/6.4 8.9(−12,−11,6)/9.2(15,−17,6)

Middle Occipital Gyrus 18, 37, 19 5.9/4.8 9.0(−21,−99,5)/8.0(39,−93,0)

Supramarginal Gyrus 40 4.9/4.6 8.9(−59,−42,27)/7.2(50,−42,30)

Parahippocampal Gyrus 30,Amygdala, 27, 34, 35, 19,
36, 18,Hippocampus, 37, 28

4.5/3.5 7.9(−9,−41,5)/8.7(12,−32,−1)

Claustrum 1.4/1.4 7.1(−33,9,0)/8.3(30,11,−3)

Anterior Cingulate 24 2.9/3.1 8.1(−3,16,24)/7.8(3,19,24)

Superior Parietal Lobule 7 3.9/3.5 7.5(−18,−49,61)/8.0(36,−47,60)

Fusiform Gyrus 37 4.6/6.8 6.4(−21,−79,−14)/7.8(42,−50,−18)

Caudate Caudate Tail 1.3/1.6 6.5(−6,3,0)/7.8(36,−15,−7)

Lateral Ventricle 2.5/2.5 7.5(−3,18,7)/7.2(6,−2,11)

Subcallosal Gyrus 13, 34, 47 0.6/0.5 7.4(−18,11,−11)/6.7(24,8,−11)

Inferior Temporal Gyrus 21, 20, 37, 19, 18 2.8/2.4 7.1(−56,−12,−15)/6.9(53,−2,−30)

Superior Occipital Gyrus 19 1.1/0.6 6.5(−33,−83,29)/7.0(42,−80,32)

Uncus 20, 28 0.5/0.6 5.8(−24,−10,−27)/6.8(33,−13,−27)

Posterior Cingulate 30, 29, 31, 23 2.9/2.3 6.7(−6,−43,8)/6.0(3,−43,8)

Angular Gyrus 39 0.7/0.6 6.1(−48,−56,36)/6.0(53,−56,36)
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Table 2
Talairach Coordinates for 1-sample U-statistics for Patients

Area (Positive Activation) Brodmann Areas R/L volume (mm3) R/L random effects Max T

Superior Temporal Gyrus 22, 42, 41, 21, 13, 38 17.1/18.5 10.9(−62,−34,10)/11.4(48,0,−5)

Middle Temporal Gyrus 22, 21, 37, 39 11.6/3.9 10.6(−50,−32,2)/9.3(59,−46,8)

Sub-Gyral 21, 13 3.6/3.2 7.9(−45,−9,−15)/9.5(39,−18,−7)

Transverse Temporal Gyrus 41, 42 1.0/1.5 8.2(−50,−23,12)/9.3(42,−31,13)

Middle Frontal Gyrus 6, 9, 46, 8, 10 1.1/1.9 6.7(−45,8,38)/9.1(39,2,47)

Insula 13, 22, 40, 47, 41 2.6/7.0 7.8(−36,20,2)/8.9(42,−20,1)

Postcentral Gyrus 40, 2, 3, 43, 1, 5 1.9/8.8 7.5(−50,−30,37)/8.5(53,−28,21)

Cingulate Gyrus 32, 24, 31 3.6/3.9 7.4(−9,25,32)/8.2(9,8,38)

Inferior Frontal Gyrus 47, 45, 9, 44 3.5/0.2 8.2(−36,20,−6)/5.8(33,23,−4)

Extra-Nuclear 47, 13 0.2/1.4 7.7(−36,20,−1)/8.2(48,0,3)

Precentral Gyrus 44, 6, 13, 43 0.3/6.2 5.9(−42,18,7)/8.2(48,0,6)

Medial Frontal Gyrus 6, 32, 9, 8 1.9/2.0 7.1(0,2,50)/8.0(6,5,49)

* Dentate,Subthalamic Nucleus,Substania Nigra 0.6/0.1 7.2(−65,−52,11)/7.7(50,3,3)

Inferior Parietal Lobule 40 2.7/2.9 7.6(−50,−30,40)/7.6(53,−31,24)

Superior Frontal Gyrus 6, 8 1.3/0.5 7.4(0,5,49)/7.4(3,5,49)

Thalamus 0.4/1.1 5.9(−15,−20,4)/6.7(12,−17,6)
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Table 3
Talairach Coordinates for 2-sample U-statistics where Healthy Controls > Patients.

Area (Positive Activation) Brodmann Areas R/L volume (mm3) R/L random effects Max T

Medial Frontal Gyrus 6, 9, 8, 32, 25, 10 4.7/4.7 6.4(−3,−23,67)/6.3(3,−20,65)

Insula 13, 41, 40, 22, 47 8.2/6.3 6.1(−45,−14,3)/5.2(36,−17,12)

* Corpus Callosum,Dentate,Red Nucleus 1.3/0.7 5.0(−12,14,−8)/4.8(21,65,19)

Superior Temporal Gyrus 22, 13, 38, 39, 41, 21, 42 21.6/12.5 5.8(−45,−17,6)/5.1(53,−60,20)

Extra-Nuclear Corpus Callosum, 13,Lateral Globus
Pallidus,Putamen

10.5/8.9 5.4(−15,17,−8)/5.7(30,6,0)

Lentiform Nucleus Putamen,Lateral Globus
Pallidus,Medial Globus Pallidus

5.7/5.0 5.2(−18,14,−8)/5.4(27,6,0)

Transverse Temporal Gyrus 41, 42 1.4/0.5 5.4(−39,−23,12)/4.2(39,−23,12)

Sub-Gyral 21, 40, 13, 20 11.1/6.2 5.3(−48,−9,−15)/4.6(36,−12,−7)

Paracentral Lobule 6, 5, 4, 31, 7 3.9/4.1 4.8(−3,−29,65)/5.3(3,−32,62)

Superior Frontal Gyrus 10, 9, 6, 8 5.5/6.8 4.5(−27,54,30)/5.3(9,26,48)

Inferior Occipital Gyrus 18, 17, 19 1.5/2.0 5.1(−33,−94,−5)/5.2(39,−88,−8)

Caudate Caudate Head,Caudate Body,Caudate
Tail

1.2/1.1 4.2(−12,17,−6)/5.1(6,6,5)

Precentral Gyrus 4, 6, 13, 9, 43, 44 15.1/4.7 5.1(−30,−15,50)/4.2(56,−1,36)

Cuneus 17, 18, 19, 23, 30, 7 10.0/1.9 5.1(−3,−81,7)/4.1(9,−64,9)

Middle Temporal Gyrus 39, 21, 38, 22, 19, 37, 20 13.0/10.2 5.1(−53,−12,−12)/5.1(53,−63,20)

Lingual Gyrus 17, 18, 19 7.5/2.2 5.0(−9,−97,−8)/4.2(24,−99,−5)

Claustrum 1.0/0.7 5.0(−36,−14,3)/4.8(33,−17,12)

Parahippocampal Gyrus 35,Hippocampus, 18, 19, 34,Amygdala,
30, 36

2.2/0.8 5.0(−24,−13,−25)/4.2(24,−10,−25)

Inferior Parietal Lobule 40 6.2/1.2 5.0(−62,−36,29)/4.3(50,−32,57)

Precuneus 7, 31, 19 4.6/2.9 5.0(−12,−47,55)/4.4(9,−47,60)

Postcentral Gyrus 2, 5, 3, 7, 1, 40, 43 9.2/4.8 4.9(−27,−35,57)/4.9(45,−32,62)

Fusiform Gyrus 37, 19, 18, 20 1.3/2.2 4.9(−56,−50,−15)/4.8(56,−50,−18)

Middle Frontal Gyrus 10, 9, 6, 8, 47, 46 4.8/2.9 4.7(−45,16,30)/4.9(24,62,19)

Cingulate Gyrus 24, 32, 31, 23 10.4/7.0 4.8(−3,−7,39)/4.8(3,−7,36)

Inferior Frontal Gyrus 47, 9, 45 5.5/4.9 4.6(−50,17,−6)/4.8(42,20,−11)

Subcallosal Gyrus 13, 34, 25, 47, 11 0.8/1.0 4.8(−21,8,−11)/4.2(15,11,−13)

Middle Occipital Gyrus 18, 19, 37 2.5/0.8 4.7(−27,−99,5)/4.6(42,−79,−9)

Anterior Cingulate 32, 24, 25, 33 0.8/1.2 4.6(−9,14,−8)/4.7(9,39,20)

Supramarginal Gyrus 40 2.3/0.7 4.6(−56,−51,33)/3.7(53,−54,36)

Uncus 20, 28 0.7/0.9 4.5(−30,4,−30)/4.5(33,−13,−27)

Inferior Temporal Gyrus 21, 20, 37, 19 1.6/1.9 4.3(−56,−12,−15)/4.5(53,−2,−30)

Superior Parietal Lobule 7, 5 0.5/0.3 4.5(−18,−47,60)/4.0(18,−55,61)

Posterior Cingulate 30, 23, 31, 29 1.5/1.4 4.4(−21,−58,6)/4.1(9,−40,24)

Thalamus 2.2/1.5 4.0(−12,−6,6)/3.9(9,−2,8)

Medial Frontal Gyrus 6, 9, 8, 32, 25, 10 4.7/4.7 6.4(−3,−23,67)/6.3(3,−20,65)
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