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Abstract
In response to the need of establishing a high-resolution spatiotemporal neuroimaging technique,
tremendous efforts have been focused on developing multimodal strategies that combine the
complementary advantages of high-spatial-resolution functional magnetic resonance imaging
(fMRI) and high-temporal-resolution electroencephalography (EEG) or magnetoencephalography
(MEG). A critical challenge to the fMRI-EEG/MEG integration lies in the spatial mismatches
between fMRI activations and instantaneous electrical source activities. Such mismatches are
fundamentally due to the fact that fMRI and EEG/MEG signals are generated and collected in highly
different time scales. In this paper, we propose a new theoretical framework to solve the problem of
fMRI-EEG integrated cortical source imaging. The new framework has two principal technical
advancements. First, by assuming a linear neurovascular coupling, a method is derived to quantify
the fMRI signal in each voxel as proportional to the time integral of the power of local electrical
current during the period of event related potentials (ERP). Second, the EEG inverse problem is
solved for every time instant using an adaptive Wiener filter, in which the prior time-variant source
covariance matrix is estimated based on combining the quantified fMRI responses and the segmented
EEG signals before response averaging. A series of computer simulations were conducted to evaluate
the proposed methods in terms of imaging the instantaneous cortical current density (CCD)
distribution and estimating the source time courses with a millisecond temporal resolution. As shown
in the simulation results, the instantaneous CCD reconstruction by using the proposed fMRI-EEG
integration method was robust against both fMRI false positives and false negatives while retaining
a spatial resolution nearly as high as that of fMRI. The proposed method could also reliably estimate
the source waveforms when multiple sources were temporally correlated or uncorrelated, or were
sustained or transient, or had some features in frequency or phase, or had even more complicated
temporal dynamics. Moreover, applying the proposed method to real fMRI and EEG data acquired
in a visual experiment yielded a time series of reconstructed CCD images, in agreement with the
traditional view of hierarchical visual processing. In conclusion, the proposed method provides a
reliable technique for the fMRI-EEG integration and represents a significant advancement over the
conventional fMRI-weighted EEG (or MEG) source imaging techniques, and is also applicable to
the fMRI-MEG integrated source imaging.
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INTRODUCTION
Neural activities elevate electromagnetic signal changes accompanied by hemodynamic and
metabolic changes. These changes are the basic sources for most noninvasive neuroimaging
techniques. For example, electroencephalography (EEG) and magnetoencephalography
(MEG) monitor the electrophysiological activity inside the brain by measuring the induced
electromagnetic field using electric or magnetic sensors over the scalp surface (Nunez and
Srinivasan, 2005; He, 2004; Hämäläinen et al., 1993). Both EEG and MEG have an intrinsic
high temporal resolution that allows tracking rapid neurophysiologic processes at the neuronal
time scale of milliseconds. However, the EEG (or MEG) source imaging often suffers from
ambiguities in defining the anatomical locations of underlying electrical sources due to the
need of solving highly ill-posed inverse problems (for reviews, see He, 1999; Pascual-Marqui,
1999; Darvas et al., 2004). On the other hand, functional magnetic resonance imaging (fMRI)
(Bandettini et al., 1992; Kwong et al., 1992; Ogawa et al., 1992) is capable of mapping neural
activations across the entire brain by utilizing a so-called blood oxygen level dependent
(BOLD) contrast derived from a combination of hemodynamic and metabolic responses
(Ogawa et al., 1990). Functional MRI has rapidly gained a prominent position in neuroscience
research owing to its excellent spatial resolution and specificity. However, it is also generally
accepted that fMRI is not suitable for studying the temporal aspect of rapid neuronal events
since the hemodynamic response evolves in seconds rather than milliseconds (Boynton et al.,
1996). In the past decade, the complementary advantages of EEG/MEG and fMRI have
attracted great interests to integrate these modalities in an attempt to provide a multimodal
neuroimaging technique with millimeter spatial and millisecond temporal resolutions (Liu et
al., 1998; Dale and Halgren, 2001; Liu et al., 2006a). Furthermore, the feasibility of
simultaneously recording EEG and fMRI makes EEG more preferable than MEG in terms of
being integrated with fMRI (Allen et al., 1998, 2000; Goldman et al., 2000; Bonmassar et al.,
2001; Gotman et al., 2002; Im et al., 2006).

The principle of fMRI-EEG integration lies in the linkage between hemodynamic response and
neural activity. Early studies (Rees et al., 2000; Heeger et al., 2000) have found a linear
relationship between human fMRI response and primate neuronal spike activity in the visual
areas (V5 and V1). Nevertheless, important findings obtained from simultaneously recorded
BOLD and intracranial electrical signals on primates suggest that the BOLD response is
linearly correlated with the power of local field potential (LFP), which represents the
synchronized synaptic inputs of a given neural population (Logothetis et al, 2001; Logothetis,
2002). Since then, evidence has increasingly suggested that the BOLD fMRI signal primarily
reflects synaptic activity rather than neuronal spike activity (Arthurs and Boniface, 2002;
Lauritzen and Gold, 2003; Martindale et al., 2003). This is also in light of the fact that the
hemodynamic response is driven by the metabolic energy demand, nearly all of which is
imposed by synaptic activity instead of action potential firing (Mathiesen et al., 1998; Arthurs
and Boniface, 2002). The observed correlation between the BOLD signal and the neuronal
spiking rate (Rees et al., 2000; Heeger et al., 2000) might be explained by the post-synaptic
current flow in correlation with the spike activity of the pre-synaptic neurons (Heeger and Ress,
2002; Arthurs and Boniface, 2002). In addition, the energy contained in the synaptic current
flow (proportional to the square of current density or LFP) can be further thought of as the
physical energy correlate of metabolic energetics. In line with the pioneering work done by
(Logothetis et al. 2001), another recent study using the visual stimulation with different
contrasts and frequencies suggests that the BOLD fMRI response varies linearly with the power
(instead of the magnitude) of the current source activity summed over the entire stimulus
duration (Wan et al., 2006). In consideration of the above evidences together, it is reasonable
to assume that regions in the brain that show increased BOLD responses are also on average
more electrically active over time (Dale and Sereno, 1993).
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Under this assumption, fMRI activation maps resulting from statistical analyses of fMRI time
series are typically used as a priori information regarding where the EEG sources are likely
located. Depending on different EEG source models, the fMRI map can be used to constrain
the locations of multiple current dipoles, namely the fMRI-constrained dipole fitting (Ahlfors
et al., 1999; Korvenoja et al., 1999; Fujimaki et al., 2002; Vanni et al., 2004), or to constrain
the distributed source distribution over the folded cortical surface or in the 3-D brain volume,
namely the fMRI-constrained current density imaging (George et al., 1995; Liu et al., 1998;
Dale et al., 2000; Wagner et al., 2000; Babiloni et al., 2005; Ahlfors and Simpson, 2004; Sato
et al., 2004; Phillips et al., 2005; Liu et al., 2006b; Mattout et al., 2006).

While applications of dipole fitting techniques are often questionable when brain activities are
spatially distributed and not confined to focal regions, the distributed source imaging has
relative wider applicability. Existing methods for the fMRI-constrained current density
imaging have been implemented under different frameworks such as Wiener estimation (Dale
and Sereno, 1993; Liu et al., 1998; Dale et al., 2000), weighted minimum norm (Wagner et al.,
2000; Babiloni et al., 2005; Ahlfors and Simpson et al., 2004), Bayesian estimation (Sato et
al., 2004; Phillips et al., 2005; Mattout et al., 2006) and Twomey regularization (Liu et al.,
2006b).

All these approaches have limitations in two important aspects. First, there is no generalized
method to quantify the fMRI signals such that the resulting quantification has an explicit
physical interpretation in the context of EEG source imaging (Liu et al., 2006b). It is perhaps
such limitation that makes it difficult to develop a principled way of using the fMRI data in
solving the EEG inverse problem. Moreover, when the prior spatial constraint is derived from
the fMRI activation map after applying a statistical threshold as in most existing methods, the
fMRI-constrained source reconstruction is also subject to the choice of threshold as well as
various methods of fMRI analysis (Ahlfors and Simpson, 2004). Secondly but more
importantly, an fMRI-derived “time-invariant” spatial constraint (Lin et al., 2006) is applied
when imaging the temporally variable current source distribution that accounts for the event-
related potentials (ERP) during the entire period of interest. However, such a time-invariant
spatial constraint may entail both fMRI false positives and false negatives, as a result of possible
mismatches between locations of fMRI activations and instantaneous source activities, namely
the fMRI-EEG mismatches.

Most of the fMRI-EEG mismatches are fundamentally caused by the highly different temporal
scales in which the fMRI and EEG data are generated and collected. Neural activities evolve
so fast that the brain function is always carried out readily. In response to a single “event”, the
evoked neural activity is most substantial within a very short period of time ranging from tens
to hundreds milliseconds. Since neuronal events are accompanied with instantaneous electrical
responses, the scalp EEG signals collected with a sufficiently fast sampling rate carry the
information about the “current” status of underlying neural activities (Nunez and Srinivasan,
2005). On the other hand, the neuronal activity also induces delayed and sluggish hemodynamic
responses measured by fMRI. It has been shown that the change of BOLD fMRI signals only
happens about 3 seconds after the event onset (Boynton et al., 1996). Since such a delay is
significant relative to the short duration of neural activity, one can only infer from the fMRI
data the “past” status of neural activity. The sluggish hemodynamics may also be appreciated
by considering the neurovascular coupling system as a low-pass filter (or a temporal point
spread function) (Logothetis et al., 2001; Friston et al., 1994). The rapid neural dynamics is
effectively smoothed out, and the fMRI response accordingly reflects the energetic effect of
neural activity averaged (or accumulated) over time (Boynton et al., 1996; Mathiesen et al.,
1998; Martindale et al., 2003; Wan et al., 2006). Lastly, the fMRI data acquisition is also limited
by the scanning speed (typically up to 50 ms per slice), which is often too slow to probe the
temporal aspect of neural activity. In short, the spatial locations of fMRI activations cannot be
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simply equated with those of electrical activities at every millisecond considering that the fMRI
has much lower temporal resolution and specificity than the EEG.

The fMRI-EEG mismatches can be further categorized into two types, namely fMRI extra
sources and fMRI invisible sources (Liu et al., 1998; Wagner et al., 2000; Liu et al., 2006b).
The fMRI extra sources represent the source regions deemed as active in fMRI but are not the
EEG sources at certain time instants. During a short period of interest following the event onset,
the fMRI activations have to be thought of as “static” (or time-invariant) while the EEG signals
are variable and the source imaging is carried out instant by instant. Electrical source activities
at certain time instants may only involve a subset of the activated fMRI areas, whereas other
areas may appear as false positives if including them all as time-invariant spatial constraints
(Liu et al, 2006b). The fMRI invisible sources are the real EEG sources but not deemed as
active by fMRI. A transient current source may generate observable EEG signals whereas it
may last too briefly to induce a sustained BOLD response. Under this condition, the fMRI-
derived time-invariant spatial constraint includes false negatives, which often result in the
underestimation of fMRI invisible sources as reported in several independent studies (Liu et
al., 1998; Liu et al., 2006b). Therefore, dealing with such unavoidable spatiotemporal
mismatches is essential to establishing a reliable fMRI-EEG integrated neuroimaging.

In this paper, we introduce a new theoretical framework on the integration of fMRI and EEG.
This new framework distinguishes itself from other existing approaches by 1) using a unified
quantification of BOLD-fMRI responses that can be interpreted as proportional to the time
integral of EEG source power (or source variance with respect to a zero mean), and 2) deriving
a set of “time-variant” spatial constraints in the form of source covariance matrices by fusing
data from both fMRI and EEG. The derived time-variant source covariance matrices are
incorporated into solving the instantaneous EEG inverse problem by means of the Wiener filter.
In contrast to the conventional Wiener filter method with a time-invariant source covariance
matrix (Dale and Sereno, 1993; Liu et al., 1998; Dale et al., 2000; Lin et al., 2006), we shall
refer to the proposed approach as the “adaptive Wiener filter”, considering the time-variant
source covariance matrix is derived in a data-driven manner.

In both computer simulation and experimental settings, we evaluated the performance of the
proposed method, as opposed to the inverse solution based on the EEG alone (Hämäläinen and
Ilmoniemi, 1984) and the fMRI-constrained inverse solution based on the Wiener estimation
with a constant spatial prior (Liu et al., 1998; Dale et al., 2000). In our simulations, effects of
both fMRI false positives and false negatives were investigated. The estimation accuracy under
typical or complicated source temporal dynamics was also assessed. In our experimental
investigation, the spatiotemporal cortical activity responding to a unilateral visual stimulus was
imaged by using three algorithms in comparison, i.e. the minimum norm estimation
(Hämäläinen and Ilmoniemi, 1984) based on the visual evoked potential (VEP) alone, or using
the proposed adaptive Wiener filter and the conventional 90% fMRI weighted algorithm (Liu
et al, 1998) based on both fMRI and EEG.

METHODS
Quantification of BOLD-fMRI signals

Since an fMRI experiment is often conducted in a block-design manner, we first derive a
quantification method based on the BOLD-fMRI response evoked by a block of repeated
stimuli, and then generalize the method to other experimental designs such as the event-related
design.

Assume a single stimulus at time 0 evokes synaptic current sources s ⃑(r,t) (where r indicates
location in the brain and t indicates time) that last for a very short period Ts typically ranging
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from several tens to several hundreds milliseconds. Then the source activity evoked by a block
of N stimuli, denoted as g⃑(r,t), can be written as Eq. (1).

(1)

where δ(t) is a delta function, TISI is the inter-stimulus-interval (ISI) and * denotes convolution.
Eq. (1) is valid when the ISI is longer than the neuronal refractory period. It is particularly so
in most ERP studies, in which the ISI is designed to be even longer than Ts in order to ensure
that the electrical activity responding to preceding stimuli recovers to the resting state (or the
baseline) before the response to next stimulus is elicited.

Assume the induced BOLD-fMRI response f(r,t) relates to the power of local synaptic current
by a linear system that is characterized by the hemodynamic impulse response function (HRF)
h(t), plus noise. Such a linear system is illustrated in Fig. 1 and mathematically expressed as
Eq. (2) to Eq. (4):

(2)

(3)

(4)

where g(r,t) and s(r,t) are the magnitudes of g⃑(r,t) and s ⃑(r,t) respectively, fs(r,t) is the “signal”
part of the fMRI response and fn(r,t) is the “noise” part.

In terms of describing the relationship between the neural activity and the BOLD fMRI
response, the model being assumed as Eq. (2) is similar to a linear transform model that serves
as the theoretical core of the widely used fMRI statistical parametric mapping (Friston et al,
1994;Boynton et al, 1996;Dale and Buckner, 1997). It should be noted that here we input the
neural activity assessed by the power of synaptic current flow to the linear system (i.e. HRF)
(Logothetis et al., 2001;Wan et al., 2006; also see Introduction), instead of using the stimulus
function.

Note that Eq. (3) can be re-organized as Eq. (5):

(5)

We define a predictor signal p(t) as Eq. (6).

(6)

Then, Eq. (5) can be further re-written as Eq. (7) and Eq. (8).

(7)

(8)
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Since the hemodynamic impulse response h(t) evolves much slower than the
electrophysiological impulse response, it keeps approximately constant over the duration of
the electrical source signal evoked by a single stimulus. Mathematically, we assume p(t) ≈ p
(t − τ) for 0 ≤ τ ≤ Ts. Then Eq. (8) can be simplified as Eq. (9)

(9)

We define β(r) as Eq. (10) and re-write Eq. (9) as Eq. (11)

(10)

(11)

For a time series of fMRI response with Nf discrete samples over time, it immediately follows
from Eq. (4) and Eq. (11) that an over-determined linear regression model can be described
using a vector notation as Eq. (12).

(12)

where F(r) = [f(r,1) f(r,2)… f(r, Nf]T and Fn(r) = fn(r,1) fn(r, 2)… fn(r, Nf)]T are a vector of
the fMRI time series and its “noise” part respectively, and P = [p(1) p(2)… p(Nf)]T is a vector
of the predictor signal.

Based on Eq. (12), the minimum least-squares estimate of β(r), denoted as β ̂(r), can be
computed from Eq. (13)

(13)

As expressed in Eq. (13), β ̂(r) is a quantity that exclusively depends upon the BOLD response,
the experimental protocol and the hemodynamic impulse response function. More importantly,
β ̂(r) can be interpreted, by the definition of β(r) in Eq. (10), as an estimate of the time integral
of current source power over the period of Ts. This interpretation is meaningful in the context
of electrical source imaging and is explicitly used later when incorporating the fMRI into
solving the EEG inverse problem.

The above method can also be applied to the quantification of the event-related fMRI response,
simply by changing the predictor function in Eq. (6) to Eq. (14).

(14)

The above method can be further generalized to more complicated experimental designs with
multiple or mixed tasks. Correspondingly, multiple predictor functions need to be defined by
convolving the mathematically expressed experimental protocol with the HRF. If the
quantification of BOLD responses has a multivariate nature, the regression parameters should
be defined for each stimulus or task independently. And we can set up a general linear model
(GLM) (Friston et al., 1995) similarly as Eq. (12) and compute the regression parameters using
a multivariate linear algorithm.

EEG inverse problem of cortical source imaging
As originally proposed in (Dale and Sereno, 1993), the EEG source space is constrained to a
realistically-shaped cortical surface extracted from high-resolution T1-weighted magnetic
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resonance (MR) images. For the source modeling, the folded cortical surface can be extracted
from the segmented boundary between the gray matter and the white matter. The cortical
current density distribution is modeled by thousands of current dipoles evenly placed on the
folded cortical surface, and the orientation of each dipole is constrained to be perpendicular to
the local cortical patch (Dale and Sereno, 1993; Liu et al., 2006b). For the volume conductor
modeling, the head model contains 3 compartments (scalp, skull and brain) and the electrical
conductivity is assumed to be piece-wise homogeneous. After tessellating 3 surfaces that
separate these compartments, the boundary element method (BEM) (Hämäläinen and Sarvas,
1989) can be employed to solve the EEG forward problem.

As a result, a transfer matrix A can be numerically computed to link the underlying current
source distribution, s(t), to the recorded scalp potentials, x(t), under the existence of
measurement noise, b(t), for every time instant t.

(15)

where A is a Nx-by-Ns matrix (Nx is the number of EEG sensors, Ns is the number of current
sources), s(t) is a Ns-by-1 vector, x(t) and b(t) are Nx-by-1 vectors.

At any time instant, the spatial vectors s(t), x(t) and b(t) can be viewed as stochastic processes
with their index sets over source or sensor locations. Assuming both s(t) and b(t) have zero
means, we define the source auto-covariance matrix and the noise auto-covariance matrix as
Eq. (16) and Eq. (17), respectively.

(16)

(17)

If a priori information is given to both Cs(t) and Cb(t), a linear inverse operator G(t) as Eq.
(18) can be used to estimate s(t) from x(t), denoted as ŝ(t).

(18)

(19)

In practice, the noise covariance matrix, Cb(t), can be estimated directly from the EEG data
(Fuchs et al., 1998), whereas a priori knowledge of Cs(t) is usually unavailable and hence it
is typically assumed to be proportional to an identity matrix (Hämäläinen and Ilmoniemi,
1984) or a spatial Laplacian operator (Pascual-Marqui et al., 1994). It has also been
demonstrated that the Wiener filter in Eq. (18) has an equivalent formulation of weighted
minimum norm (Hauk, 2004; Liu et al., 2006a).

It is worthwhile to emphasize that in the Wiener filter formulation as Eq. (18), the stochastic
process is referred to the spatial domain instead of the time domain and the source covariance
matrix is accordingly assumed to be time-variant.

fMRI-EEG integrated adaptive Wiener filter
Assuming there is no a priori cross-correlation between different source locations, the time-
variant source covariance matrix can be expressed as a diagonal matrix as Eq. (20).

(20)
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Recall that, at any source location, the quantification of BOLD-fMRI response as previously
described represents an estimate of the time integral of source variance (see definition in Eq.
(16)) over the ERP time period. Therefore, we introduce the fMRI-derived spatial constraints
to the sum of source variances, as expressed by Eq. (21).

(21)

where β ̂i is the quantified fMRI response at the i-th source location.

However, Eq. (21) alone is insufficient to obtain the time-variant source covariance matrix at
every time instant. The reason is obvious because the temporal variation of source variance
cannot be resolved by fMRI due to its lack of temporal resolution.

We further use a data-driven approach described as below to retrieve the temporal variation of
the source variances based on the segmented EEG data before response averaging. This
approach is based on a common practice in ERP experiments that the electrical response is
repeatedly induced by a train of stimuli (or tasks). The EEG response in each repetition is
referred to as an epoch that is usually time-locked to the onset of the stimulus.

Denote x(t,k), s(t,k) and b(t,k) as the random column vectors of EEG recordings (Nx-by-1),
source signals (Ns-by-1) and measurement noise (Nx-by-1) at the time t and in the k-th epoch.
A valid assumption is that source signals in different epochs represent independent
observations of the identical stochastic process, s(t), for any specific time t, as illustrated in
Fig. 2. Accordingly, we can compute an inverse estimate of the instantaneous source auto-
covariance if the number of epochs is sufficiently large.

By collecting signals at the time t from all Ne epochs, we define Eq. (22) to (24):
(22)

(23)

(24)

Then, we re-write the forward model in Eq. (15) in a matrix notation as Eq. (25).

(25)

The singular value decomposition (SVD) of X(t) is written as Eq. (26)

(26)

where Nq = min(Nx,Ne ), the singular vector Uq(t) is the q-th column vector in the matrix U
(t) that represents a spatial component of scalp potentials at the time t, the singular vector
Vq(t) is the q-th column vector in the matrix V(t) that represents the variation (over epochs) of
the corresponding spatial component Uq(t).

We truncate the spatial components that do not satisfy the discrete Picard condition (Hansen,
1990), since the truncated spatial components are not sufficiently smooth to be associated with
any source activity and hence are dominated by noise perturbation.
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After the truncation, we compute the maximum likelihood estimates (MLE) of distributed
sources that account for each of the Q remaining spatial components, written as Eq. (27).

(27)

where s̃q(t) is an Ns-by-1 vector that represents the estimated source distribution underlying
the q-th spatial component Uq(t) at the time t, and the regularization parameter rq can be
obtained by using the “L-curve” method (Hansen, 1992).

Combining the MLE for all Q components, we can obtain a set of source estimates for the time
t in all Ne epochs, collectively denoted as S ̃(t).

(28)

where S ̃(t) is an Ns-by-Ne matrix with each row representing the variation of estimated source
signals over epochs.

Following the definition in Eq. (16), the variance of source estimates at the i-th location for
the time t, denoted as σ̃i(t), can be written as Eq. (29).

(29)

where S ̃i(t) is the i-th row vector in the matrix S ̃(t).

Substitute S ̃(t) by Eq. (28) and re-write Eq. (29) as Eq. (30).

(30)

Since  and  for any p ≠ q, Eq. (30) can be simplified as Eq. (31).

(31)

Repeat the above procedures for all the time points during the period Ts, a time course of source
variance estimates can be computed for every source location i, collectively denoted as a vector
σĩ as Eq. (32).

(32)

Clearly, Eq. (32) contains the temporal information regarding the variation (over time) of the
source variance inversely estimated from the EEG epochs, and Eq. (21) represents the spatial
information regarding the time integral of source variance as quantified from independent fMRI
measurements. Combining Eq. (32) and Eq. (21), we derive the prior estimates of source
variance from both fMRI and EEG data, as expressed by Eq. (33).
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(33)

Once σi(t) is calculated for every source location i and every time point t, it becomes
immediately straightforward to compute the time-variant source covariance matrices based on
Eq. (20) and estimate the cortical source distribution based on Eq. (18) and Eq. (19) for every
time point individually. Qualitatively speaking, a larger value of source variance at a specific
location means that the inverse solution is more preferentially located at that location.

In contrast to the conventional Wiener filter approach (Liu et al., 1998; Dale et al., 2000) based
on time-invariant spatial constraints, the method described as above is called the “adaptive
Wiener filter” in the sense that the time-variant source covariance matrix is derived from the
combination of fMRI and EEG in a data driven manner.

Computer simulations
The performance of the proposed method was evaluated in a series of computer simulations.
The simulation setting was based on a realistically-shaped head volume conductor and cortical
surface models that were constructed from high resolution T1-weighted MR images of a human
subject (256 slices, matrix size: 256×256, voxel size: 1×1×1 mm3). The electrical
conductivities of the scalp, skull and brain were set to be 0.33, 0.0165, and 0.33 S/m,
respectively (Lai et al, 2005; Oostendorp et al, 2000; Zhang et al, 2006). The cortical current
density source model consisted of around 7,000 current dipoles evenly placed on the cortical
surface. 128 electrodes with a standard montage were co-registered to the boundary element
head model. Fig. 3 shows the head model, cortical surface model and the electrodes used in
the simulation setting.

Based on the above settings, we simulated current source signals, BOLD fMRI signals and
EEG recordings. We computed the inverse solutions from the simulated data using three
algorithms. The detailed procedures are described step by step as follows.

1) Current source activities. 3 current dipoles were placed on 3 selected locations on the
folded cortical surface. To simulate the source activity, representative waveforms were
assigned to these dipole sources such that the source signals were simulated to be
temporally uncorrelated or correlated, or to be transient or sustained, or to have the same
frequency but different phases or the same phase but different frequencies, or to have time
courses obtained in a real experiment.

2) BOLD-fMRI responses. The BOLD-fMRI signals were generated from the simulated
current sources. The source waveforms were repeated every 500 ms for a total of 30 s. For
each source location, the BOLD signal was simulated by convolving the time course of
source power with a gamma-function HRF suggested by (Boynton et al., 1996), written
as Eq. (34).

(34)

where n = 3, τ = 1.25 sec and ε = 2.5 sec as in the default settings of a widely used fMRI
analysis software - BrainVoyager QX (BrainInnovation, Netherlands).

The spatial distribution of the simulated BOLD signals was then convoluted with a gaussian
spatial kernel with a given full-width-half-maximum (FWHM). Here the FWHM was chosen
to be 4 mm, which represented a reasonable value consistent with the known spatial resolution
of fMRI according to previous experimental studies (Engel et al., 1997). Gaussian white noise
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(GWN) was added into the simulated BOLD time courses so that the BOLD response had a
signal-to-noise ratio (SNR) equal to 10.

3) EEG recordings. From the simulated spatiotemporal current source distributions, we
further simulated scalp EEG signals at 128 electrodes using the BEM-based forward
calculation (Hämäläinen and Sarvas, 1989; He et al., 1987). 250 trials of EEG data were
simulated as the summation of the forward solution and GWN. The SNR in each trial was
around 0.6 and the ERP signal averaged from all the trials had a SNR equal to 10.

4) Source imaging. Finally, we reconstructed the spatiotemporal source distribution based
on the simulated EEG alone using the minimum-norm algorithm (Hämäläinen and
Ilmoniemi, 1984), or based on both the simulated fMRI and EEG using time-invariant
(Liu et al., 1998; Dale et al., 2000) or time-variant spatial constraints (as proposed in this
paper).

Visual Stimulation Experiment
To assess the applicability of the proposed adaptive Wiener filter algorithm, we also employed
real fMRI and EEG data collected during a preliminary experiment with a unilateral
checkerboard visual stimulus.

The experiment was conducted with a healthy subject (male, age 22) under the approval of the
institutional review board (IRB) at the University of Minnesota. Informed consent was obtained
from the subject before the experiment. The experiment included 2 separate sessions with the
identical visual stimuli for the EEG and fMRI data collection respectively. The visual
stimulation was a rectangular checkerboard within the lower left quadrant of the visual field;
the checkerboard pattern was reversed at 2 Hz. In the EEG experiment, 6-second breaks without
stimulation were randomly inserted into the otherwise 4-minute continuous visual presentation,
such that the subject had a break about every 20 seconds on average to avoid the neural
adaptation. In the fMRI experiment, the visual stimuli were presented in six 30-second blocks
separated by seven 30-second resting blocks without stimulation. The stimuli delivered through
a DLP projector were back-mirrored to the subject inside the MRI scanner. For both EEG and
fMRI experiments, the subject was instructed to always gaze at a central fixation point.

The EEG signals collected from a 64-channel system (BrainAmp MR 64 plus, BrainProducts,
Germany) with a 1000-Hz sampling rate were sequentially subject to the ocular artifact
rejection, band-pass filtering (0.3 – 40 Hz), segmentation with respect to the stimulus onsets,
pre-stimulus baseline correction, linear trend removal. After these preprocessing steps, the data
in 380 segmented epochs was averaged to yield the visual evoked potentials (VEP). The
anatomical MRI and fMRI data were collected in a 3-T MRI system (Siemens Trio, Siemens,
Germany). The whole-head T1-weightd MR images (matrix size 256×256, 1mm slice
thickness) were acquired using the Turboflash sequence (TR/TE = 20 ms/5 ms). The T2*-
weighted fMRI data was acquired from 16 axial slices (matrix size 64×64, 5mm thickness)
covering the visual cortex using the echo planar imaging (EPI) sequence (TR/TE = 1000 ms/
35 ms). The MRI and fMRI data were analyzed using BrainVoyager QX (Brain Innovation,
Netherlands). The EPI volumes underwent several preprocessing steps including three-
dimensional motion correction, slice scan time correction and linear trend removal. Then, the
fMRI data was aligned with the anatomical MR images. The fMRI activation map was obtained
by statistical analysis using a general linear model (Friston et al., 1994).

Three cortical current density imaging algorithms were applied to image the cortical responses
on the hemisphere (right) contralateral to the stimulation (left). The 90% fMRI-weighted
Wiener estimation (Liu et al., 1998; Dale et al., 2000) and the proposed algorithm used both
EEG and fMRI data, whereas the minimum-norm algorithm used the VEP data lone.
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RESULTS
BOLD-fMRI simulation and quantification

Fig. 4 shows the simulated BOLD fMRI signals and the quantified fMRI maps. The simulated
fMRI responses were induced by a 30-sec block of stimuli with an ISI of 500 ms (Fig. 4.A).
The electrical current sources were located at the lateral occipital sulcus (blue), the medial
occipital dorsal area (red) and the intraparietal sulcus (green) on the right hemisphere (Fig.
4.B, right). Representative source locations were selected to be within the sulcal fundus, the
sulcal wall and the gyral crown, respectively. The source waveforms shown in corresponding
colors were simulated as 3 temporally uncorrelated gauss functions (Fig. 4.B left). After
applying a 2-D spatial gauss smoother with a given FWHM (Fig. 4.C), the simulated BOLD
responses emerged within 3 extended regions. The noise-contaminated fMRI signals
surrounding the “red” source are plotted in Fig. 4.D). These time courses had a similar shape
as the predictor signal (Fig. 4.E) such that they could be fitted with the predictor signal simply
after scaling. The quantified fMRI response at each cortical location was precisely the scaling
factor that allowed for the best fit between the scaled predictor signal and the measured BOLD
response. This scaling factor was also found approximately proportional to the averaged BOLD
signal change at the steady state with stimuli relative to the resting state without stimuli.

The map of quantified fMRI responses is shown in Fig. 4.F). Three activated regions were
revealed. The extent of these regions depended upon the fMRI spatial resolution (or
specificity), which was inversely proportional to FWHM. With an increasingly larger FWHM,
the fMRI response extended from a point source to a larger region, in which the quantified
values of fMRI responses became gradually smaller than the time integral of corresponding
source powers (Fig. 4.G). According to Eq. (33), the time-variant spatial constraint at any
specific cortical location is proportional to the quantified fMRI response. Therefore, the
observed effect of FWHM also implies that the lower specificity of fMRI give rises to weaker
fMRI constraints to the EEG inverse solution.

Time-variant spatial constraints
Fig. 5 illustrates an example of probing the temporal change of source variance based on the
segmented EEG epochs. To simplify the illustration, let us look closely at a period of time
while a single source is activated.

The source location and waveform is displayed in Fig. 5.A). Since the ERP signal after response
averaging had a SNR of 10, the EEG data in every epoch had an average SNR of 0.6. Fig. 5.B)
shows the SVD components obtained from the data at the 40-ms latency in all the epochs. Only
3 components with largest singular values are shown. The singular value for the first
decomposed component was found to be much larger than those for the second and third
components. Clearly, the first spatial component1 more likely represented the scalp potential
field generated by internal brain sources, whereas the second and third spatial components
attributed to external recording noises. The first temporal component2, which reflected the
variation of the global field strength over epochs, had a DC offset with small variation.
However, dramatic oscillations around 0 were observed in the second and third temporal
components. Based on these observations, we inferred that the first SVD component contained
the scalp potential field arising from the source activity at 40 ms, as well as its variation over
epochs. Applying the discrete Picard condition also ended up with the same conclusion that

1The spatial components are the left singular vectors in Eq. (26).
2The temporal components are the right singular vectors in Eq. (26). Although called “temporal”, they are actually not the signals over
time but rather the signals at the same latency over epochs.
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only the first component at this time instant satisfied the Picard condition while all other
components should be truncated.

For a better understanding of this conclusion and its implication, it is worthwhile to mention
an important feature of SVD. With the singular value gradually decaying from its maximum
value toward zero, both the left and right singular vectors necessarily tend to have more and
more oscillations. Therefore, if the signal is less variable over epochs than the noise, which are
the case in practical ERP studies, then the SVD component(s) with the largest singular value
(s) mostly reflect the variance of source activities instead of that of the noise. On the other
hand, these components also tend to be spatially smooth and more likely to satisfy the Picard
condition. Accordingly, the DC line shown in Fig. 5.B) indicates that the source signal at 40
ms is repeated over epochs with little variation.

After repeating the SVD analysis to every time instant, we plotted the largest singular value
as a function of time shown in Fig. 5.C). For several representative time points (from 10 to 70
ms stepped by 10 ms), the corresponding first spatial component was also displayed along the
plotted time course. The source amplitudes at 10 and 70 ms were very small as shown in Fig.
5.A). The decomposed spatial components at these 2 latencies also appeared to be too noisy
to satisfy the Picard condition. At other selected time points, the spatial patterns appeared to
be similar and the resultant inverse solutions of these spatial patterns should also be spatially
consistent to each other. These results demonstrate that the spatial component(s) with largest
singular value(s), if satisfying the Picard condition, reflect the potential fields projected from
the source space to the sensor space and contain the information on where the source is most
likely located at the latency of interest.

By comparing Fig. 5.C) with Fig. 5.A), we also noticed that the temporal change of largest
singular values was in general agreement with the time course of the real source amplitude.
This finding further supported our previous argument that the principal SVD components
nicely isolated the signal from the noise.

While the spatial component(s) with largest singular value(s) indicate the source locations at
different latencies, the time course of largest singular values represents the temporal variation
of source amplitude. In addition, the decomposed spatial components had the field strength
equal to 1 because the singular vectors were always unitary vectors. According to Eq. (27) and
Eq. (31), the absolute amplitudes of source estimates for the principal SVD components should
be proportional to the largest singular values. Therefore, the similarity between Fig. 5.A) and
5.C) further justify the plausibility of estimating the time-variant source variance from the
segmented epochs.

To assess the accuracies of the estimated time-variant source variances in both time and space,
Fig. 6 summarizes the results of source variance estimation based on the EEG or the
combination of fMRI and EEG. The source configuration and stimulation protocol used here
were identical as in Fig. 4. 3 temporally uncorrelated (Fig. 6.B) sources were selected from the
cortex (Fig. 6.A) to generate the BOLD fMRI and EEG signals. The quantified fMRI map with
a 4-mm FWHM is shown in Fig. 6.D).

The MLE of source variances were computed from the segmented epochs. Fig. 6.E) plots the
time courses of the source variance MLE at each of 3 source locations respectively. The shape
of these time courses agreed with the corresponding source waveforms with mild distinction.
The maximal source variance MLE arrived at exactly the same latencies (40, 100 and 160 ms)
as the real source activities. 2 “bumps” were observed in the estimated time course of the
“green” source, which was caused by the cross-talks in the inverse solution from the “blue”
and “red” sources respectively. However, the absolute values of the estimated source variances
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tended to be much smaller than those of the real source signals, except for the “red” source
which was located at the gyral crown.

Fig. 6.F) shows the spatial distribution of the source variance MLE at 3 peak latencies (40, 100
and 160 ms) identified from Fig. 6.E). From the segmented EEG, the estimated map of source
variances clearly spread out and the spatial maximum was not correctly localized to the original
location of the source that was activated at the corresponding time instant. Fig. 6.C) shows the
spatial distribution of the mean MLE of source variance averaged over the entire time period.
This spatial distribution is qualitatively consistent with the quantified fMRI map (Fig. 6.D),
although Fig. 6.C) exhibits spatial ambiguities and biases.

All these results based on the EEG alone demonstrate that the temporal change of source
variances could be well retrieved from the segmented EEG epochs, but the absolute values of
source variance were usually underestimated or significantly biased due to the ill-posed nature
of the EEG inverse problem.

We further derived a set of time-variant spatial constraints by combining the “static” constraint
from the fMRI and the “dynamic” constraint from the EEG based on Eq. (33). Fig. 6.G) shows
the spatial distribution of the fMRI-EEG derived source variances at 3 peak latencies. In
contrast to Fig. 6.D), Fig. 6.G) provided more accurate spatial prior constraints for each of 3
latencies respectively than the time-invariant spatial constraints based on the fMRI alone. The
fMRI false-positives that occurred in the time-invariant fMRI constraints were successfully
excluded from affecting the subsequent inverse solution. As opposed to Fig. 6.F), Fig. 6.G)
also provided more localized and accurate prior constraints than those based on the EEG alone,
by taking advantage of the high-spatial resolution of fMRI.

fMRI-EEG integrated source imaging with fMRI false positives
Following the example used in Fig. 6, we further imaged the cortical current density distribution
at 3 peak latencies (40, 100 and 160 ms) using 3 algorithms: the proposed adaptive Wiener
filter, the Wiener estimation using a time-invariant fMRI constraint and the minimum-norm
estimation based on the EEG alone. Fig. 7.A) shows the reconstructed current density
visualized on the cortical surface. Obviously, the use of time-variant spatial constraints in the
adaptive Wiener filter algorithm resulted in the most accurate imaging results among all 3
algorithms. As shown in the top row in Fig. 7.A, 3 focal sources were revealed at each of 3
latencies respectively without showing any interference among them, in agreement with the
fact that all 3 sources were temporally uncorrelated. The conventional Wiener filter also
identified 3 sources with high spatial resolutions, benefiting from the use of fMRI spatial
constraints. However, spurious sources were clearly observed at 40 ms and 100 ms. On the
other hand, the minimum-norm solution without using any fMRI constraint had a low spatial
resolution as often experienced in the EEG (or MEG) source imaging.

The time courses of source estimates at these 3 source locations using different algorithms are
plotted (in solid lines) in Fig. 7.B) in comparison with the real source waveforms (in dashed
lines). Note that the real and estimated waveforms are plotted in different scales as indicated
at the left and right axes respectively. Among all 3 algorithms, the source waveforms
reconstructed by using the adaptive Wiener filter were the closest in both shape and absolute
amplitude to the real source waveforms. The estimated time courses using the conventional
Wiener filter were clearly more accurate than the minimum-norm solution; however compared
to the adaptive Wiener filter, obvious positive and negative “bumps” were observed obviously
at 40 ms and slightly at 160 ms, which were essentially because of the fMRI false positive
priors that amplified the cross-talks among sources in the inverse solution.
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fMRI-EEG integrated source imaging with fMRI false negatives
We further investigated the performance of the proposed adaptive Wiener filter approach in
dealing with the fMRI missing sources (i.e. fMRI false negatives). Again, 3 sources were
selected from the cortical surface (see Fig. 8.A). The source waveforms consisted of 2 gauss
functions (for the “red” and “green” sources) that were temporally uncorrelated and a short-
duration pulse (for the “blue” source) with smaller peak amplitude (see Fig. 8.C).

Since the “blue” source had an almost transient and smaller activity that was insufficient to
induce a large and sustained BOLD response, we could not identify this source from the map
of quantified BOLD responses (Fig. 8.B) and hence the “blue” source behaved as an fMRI
invisible source. This fMRI invisible source became problematic in the conventional Wiener
estimation of current density. At 40 ms when the “blue” source was activated and reached its
peak amplitude, the source activity at (or around) the “blue” source location could not be
imaged, as shown in the middle row of Fig. 8.D). Instead, the spurious activity at an
instantaneous fMRI false positive region (around the “green” source) was observed. At the
other 2 latencies, spurious source activities with small amplitudes still emerged in the estimated
current density distribution when the Wiener filter algorithm with a time-invariant spatial
constraint was used.

Although the “blue” source was transient, the EEG-based source imaging could still detect this
source activity due to the high temporal resolution of EEG. But again, the imaged source
distribution had a low spatial specificity. By taking full advantage of the temporal information
from the EEG, the adaptive Wiener filter could clearly image and localize the “blue” source
activity at 40 ms, as well as the other 2 source activities at 100 ms and 160 ms respectively.

The superiority of the adaptive Wiener filter was further confirmed by its ability to estimate
the waveforms of both fMRI visible and invisible sources. As shown in Fig. 8.E), only the
adaptive Wiener filter approach could recover the transient source activity in the estimated
source time courses, without sacrificing the estimation accuracies to other sustained source
activities.

Reconstructing source activities with complicated temporal dynamics
To assess the applicability of the proposed adaptive Wiener filter approach to reconstructing
the source activities with complicated temporal dynamics, we simulated 3 source activities
with a variety of temporal features. These 3 sources were located at the same locations as in
the previous stimulations. Then we compared the source waveforms estimated by using the
adaptive Wiener filter approach (in solid lines) with the originally simulated source waveforms
(in dashed lines). The results are summarized in Fig. 9.

In Fig. 9.A), all 3 sources had gauss-function time courses that were overlapped over time. The
shapes of the reconstructed source waveforms were close to gauss functions and the onset and
peak latencies were also consistent with the simulated real source activities. However, slightly
more fluctuations were observed in the reconstructed waveforms than in the real source
waveforms.

In Fig. 9.B), a transient source activity (“red”) was included in addition to two overlapping
gauss-function waveforms (“blue” and “green”). The “red” source was also an fMRI invisible
source which occurred at the time point when both the other two sources were also active. In
this situation, the time courses of both the fMRI visible and invisible sources were also well
reconstructed.

In Fig. 9.C), the “green” source was a transient source temporally overlapping with a sustained
“red” source. The “red” source also had a short-duration peak around the same time when the
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sustained “blue” source reached its peak amplitude. Clearly in this situation, both the fMRI
false positives and false negatives existed with and without overlaps over time. Nevertheless,
we could still estimate the source waveforms that were consistently accurate for both the
sustained and transient source activities.

In addition, we simulated 3 rhythmic activities that had the same frequency but different phases
(Fig. 9.D) or the same initial phase but different frequencies (Fig. 9.E). In both situations, the
frequency and phase information were well reflected in the estimated source waveforms
without significant distortion, whereas we also observed distinctions in absolute amplitudes
between the estimated and real source waveforms

In Fig. 9.F), we simulated the source activities by using the “realistic” dipole source waveforms
estimated from a real ERP data set acquired in a visual experiment. In this case, the source
activities had fairly complicated temporal features. The estimated source waveforms were
highly correlated with the simulated real source waveforms, without loosing even detailed
temporal dynamics.

The results in Fig. 9 all demonstrate good performances of the proposed adaptive Wiener filter
algorithm to accurately estimate the source activities with a high temporal resolution, based
on simulated fMRI and EEG data.

Experimental results
In response to the unilateral visual stimulation (Fig. 10.A), the activated cortical areas at the
contralateral hemisphere were revealed in the fMRI activation map (Fig. 10.B). The fMRI
activation map indicated a dorsal visual pathway covering V1, V2, dorsomedial areas (such as
V3 and V7), intraparietal sulcus (IPS) as well as medial temporal (MT) area (also known as
V5). The top row of Fig. 10.C shows the time course of global field power of VEP, which
indicates three VEP peak latencies (76, 112 and 212 ms). The 2nd through 4th rows of Fig. 10.C
show the reconstructed contralateral CCD distribution using three imaging algorithms,
respectively. From the CCD images reconstructed by only using the VEP data, the dorsal
pathway was seen gradually extending from lower-tier visual areas to high-tier visual areas.
By using our proposed adaptive Wiener filter to integrate the fMRI and EEG data, a consistent
sequence of activities was observed with a much enhanced spatial resolution, showing the
pathway starting from V1/V2 and then V3/V3a and finally V5/V7 and IPS. The observed
cortical visual pathway was generally in agreement with the well-known hierarchical
organization of the visual system (Felleman and Van Essen, 1991). In contrast, the imaging
results obtained by using the conventional 90% fMRI-weighted approach also had an improved
spatial resolution compared to the EEG-alone source imaging. However, it imposed a false
positive source region in and around V1/V2 at the latency of 212 ms, whereas a more likely
high-tier EEG source around V5 observable from the EEG data was missed.

DISCUSSION
The proposed adaptive Wiener filter method on the fMRI-EEG integration significantly differs
from the existing methods in two important aspects: 1) quantifying the fMRI response as
proportional to the time integral of EEG source power, 2) estimating the time-variant source
covariance matrices from both fMRI and EEG data. Our pilot simulation results have
demonstrated that the proposed method is capable of handling the mismatches between
locations of fMRI activations and EEG source activities at any time instant (including fMRI
false positives and false negatives), as well as probing the millisecond temporal dynamics of
source activities. Our preliminary experimental application also suggests a robust performance
of improved spatial resolution (relative to the EEG-alone inverse estimates) and temporal
resolution (relative to the fMRI).
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In previously reported fMRI-EEG multimodal neuroimaging studies, the fMRI data analysis
yields an fMRI activation map, which is then used to constrain the EEG inverse solutions in a
subsequent step; however, the pixel values in the fMRI activation map have not been rigorously
given any quantitative interpretation that is also physically relevant to the following step of the
fMRI-constrained EEG source imaging or localization. In contrast, the fMRI data in the present
study are quantified as well-defined physical constraints to the EEG inverse solutions. The
time integral (over the ERP period) of source power is constrained to be proportional to the
quantified fMRI response for each source location. In this sense, the proposed fMRI
quantification method also represents a more specific inference regarding underlying neural
activities. Existing fMRI analysis methods are often used to quantify the level by which the
BOLD signal is statistically correlated to the designed protocol of tasks of interests. Based
upon such a statistical analysis, inferences are often made voxel by voxel regarding how likely
a region in the brain is involved in the neural computation underlying the tasks. Clearly, such
an inference is conceptual rather than physical. In the present study, we quantitatively relate
the fMRI signal over a time scale of seconds to the averaged electrical signal over a much
shorter time scale of tens of milliseconds. In short, we suggest using the proposed fMRI
quantification method in all fMRI-EEG multimodal neuroimaging studies, or even in fMRI
studies.

The proposed fMRI quantification method relies on an assumption that the relationship
between neural activity and fMRI response is linear. Although such an assumption is commonly
made in the fMRI analysis and interpretation, the nonlinear aspect of fMRI response has also
been observed, such as under repetitive stimulation (Janz et al, 2001). The nonlinearity may
arise from the neural and/or hemodynamic adaptation or habituation (Janz et al, 2001), or the
vascular refractory effect (Cannestra et al, 1998), or the interplay of multiple factors. However,
our recent investigation of neurovascular coupling based on the VEP and CBF data under
graded brain suppression shows that the linear model is still a good approximation of
neurovascular coupling relationship, although it contains a subtle nonlinear component (Zhang
et al, 2007). Furthermore, the nonlinearity of fMRI response is probably less of concern in
most experiments combining ERP and fMRI (as discussed in this paper), where the adjacent
stimuli (in ERP paradigms) are often required to be sufficiently separated in time to avoid the
interference among stimuli.

In most existing fMRI-EEG (or -MEG) integrated source imaging algorithms, the fMRI-
derived spatial constraints have to be assumed to be time-invariant within a short time period
during which the source imaging is carried out instant by instant. This is essentially because
the source temporal information cannot be resolved by fMRI. However, when the “static” fMRI
spatial information is taken as a time-invariant weighting matrix (in the fMRI-weighted
minimum norm formulation) or source covariance matrix (in the Wiener filter formulation) for
every time point, it is almost unavoidable that the imaging results would be affected by the
fMRI-EEG mismatches, which may happen at any time and also vary over time. Previous
efforts have been mainly focused upon choosing an empirical weighting factor for locations
inside the fMRI activation relative to those outside (Liu et al, 1998; Babiloni et al, 2003; Ahlfors
and Simpson, 2004). In such a way, fMRI constraints are weakened such that distortions due
to fMRI false positives and false negatives may be alleviated but perhaps never removed.
However, this type of methods, no matter what the fMRI weighting factor is chosen to be, has
a tradeoff between the robustness against invalid fMRI prior constraints and the spatial
resolution of the instantaneous inverse solution. If the fMRI weighting factor is chosen to be
1, the inverse solution is effectively the minimum norm solution; if the fMRI weighting factor
is chosen to be infinitely large, the inverse solution can be highly biased by the fMRI-EEG
mismatches. On the other hand, the proposed adaptive Wiener filter approach is aimed at
correcting fMRI-EEG mismatches in a much more fundamental way, in consideration of the
fact that the mismatches are essentially caused by the different time scales at which the fMRI
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and EEG signals are generated and collected respectively. The proposed adaptive Wiener filter
method holds the promise to remove the mismatches instead of attempting to alleviate the
resulting distortions with a cost of lower spatial resolution.

In addition, the assumption of a time-invariant source covariance matrix is also not technically
valid. A time-invariant source covariance matrix implies that the source signal at any specific
location is a stationary stochastic process over time and its sampled values at all time points
are drawn independently from an identical distribution. Such an assumption is not valid in
practice because neural networks in the brain are always carried out by source signals with
rapidly and coordinated temporal evolvement that are certainly not exchangeable over time.
In contrast, the estimation of time-variant source covariance matrices in the proposed adaptive
Wiener filter method relies on the assumption that at any time instant, the scalp potential maps
recorded in different epochs are independent observations of a stochastic process with the index
set over channels, which is a reasonable assumption when the electrical responses are
repeatedly induced over epochs by the same stimulus or task.

There are more factors other than those addressed in this paper that may also give rise to the
spatial mismatches between the fMRI activations and instantaneous source activities. The
fMRI spatial specificity and the cross-modal co-registration error may lead to a difference
between locations of neural activities and those of the detected fMRI activations (Wagner and
Fuchs, 2001). However, these factors are probably more technical rather than fundamental, in
a sense that they may be resolved (or bypassed) before applying the integrated imaging
algorithm. For example, one may use a spin-echo sequence and increase the field strength to
eliminate the contribution from large draining veins, such that the collected fMRI signals
originate exclusively from the microvasculature (Yacoub et al, 2003), resulting in an improved
fMRI specificity. One may also use advanced geometric manipulations with optimization
procedures that combine the landmark and surface point fitting procedures to ensure a good
enough co-registration of difference coordinate systems respectively for the fMRI and EEG
data.

In the present study, we assume a linear transform model to describe the relationship in time
between BOLD fMRI signals and the power of electrical responses. However, recent studies
also investigated the correlation between BOLD signals and the EEG (and LFP) power
spectrum (Mukamel et al, 2005; Niessing et al, 2005; Kilner et al, 2005). It was suggested that
the BOLD responses were positively correlated with the high-frequency components of EEG
(or LFP) signals and negatively correlated with the low-frequency components. Such an
obvious difference between the models described in time and in frequency does not necessarily
mean they are contradictory to each other. Instead, we believe that their difference only reflects
the different aspects of the hemodynamic-to-electrophysiological coupling addressed in these
two types of models. The model in time as used here describes how the BOLD signals relate
to the event-related electrical response, whereas a model in frequency describes how the BOLD
signals reflect the change of continuous electrical signals. It remains unclear how the fMRI-
EEG/MEG multimodal neuroimaging should benefit from these recently reported findings
(Mukamel et al, 2005; Niessing et al, 2005) on the correlation of BOLD signals with frequency
components of EEG power spectrum, although it is indeed desirable.

Although the singular value decomposition of the recorded EEG over epochs also allows
computing the noise covariance matrix in a time-variant manner, it may not be necessary under
most circumstances since the noise is not time-locked to the “events” and can be assumed to
be time-invariant. Therefore, one can estimate the noise covariance matrix simply from the
pre-onset part of EEG epochs. For every pre-onset time point, a covariance matrix can be
computed from the multi-channel EEG data over epochs. Then, the noise covariance matrix
can be obtained by averaging the computed covariance matrices at all pre-onset time points.
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It may also be worthwhile to mention that the information from fMRI and EEG have also been
proposed to be fused in a symmetric fashion (Trujillo-Barreto et al, 2001; Daunizeau et al,
2007), in which a common hierarchical Bayesian model are formulated for both fMRI and
EEG. These symmetric Bayesian approaches may represent another feasible way that
potentially leads to a reliable fMRI-EEG integrated neuroimaging.
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Figure 1.
Illustration of the linear system that describes the relationship between electrophysiological
signals and BOLD-fMRI responses under a train of repeated stimuli. See the detailed
description in the text.

Liu and He Page 23

Neuroimage. Author manuscript; available in PMC 2009 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
The source signal at any i-th location si(t) is not a stationary stochastic process over time, but
its values at any give time tj sampled in different epochs are i.i.d. Therefore s(t,k), for 1 ≤ k ≤
Ne, represents an independent observation of a stochastic process s(t) for each individual time
t(note that s(t) is a stochastic process with its index sets over source locations).
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Figure 3.
Realistic cortical source model and head volume conductor model. The head model consists
of 3 triangulated boundary meshes (shown in dark gray). 128 electrodes (shown in purple) are
coregistered to be over the scalp surface. The cortical source model is on the folded cortical
surfaces (the left hemisphere shown in blue and the right hemisphere shown in brown).
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Figure 4.
A) Stimulation protocol, B) current source waveforms evoked by a single stimulus and the
source locations on the cortex; the 3 sources are indicated by different colors, C) a gauss
function describing the spatial resolution of fMRI, D) simulated BOLD-fMRI time series at
SNR=10, E) the predictor signal (the unfilled gray box indicates the duration of the stimulation
block), F) the map of quantified fMRI responses, G) the quantified fMRI map with different
fMRI spatial resolutions as described by the FWHM (2, 4, 6 mm).
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Figure 5.
An example of the SVD analysis on the segmented epochs. A) The EEG data was simulated
from a single source activity, with the source location on the cortex shown on the left and the
source waveform shown on the right; B) the largest 3 SVD components of the data at the peak
latency (40 ms) over all the epochs. The singular values are shown in the left column, the
decomposed spatial components shown in the middle and the corresponding variations over
epochs shown in the right; C) the plot of the largest singular value as a function of time; the
spatial components associated with the largest singular value at 7 representative time points
are displayed along the plotted time course.
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Figure 6.
A) Source locations, B) source waveforms, C) the spatial distribution on the cortex of the
average MLE of source variance averaged over the entire time period, D) the map of quantified
BOLD fMRI responses, E) the time courses of the MLE of source variances at three source
locations respectively, F) the instantaneous cortical distributions of the MLE of source
variances at 3 peak latencies (40, 100 and 160 ms) identified from E), G) the instantaneous
cortical distributions of time-variant source variances derived from combination of fMRI and
EEG at the 3 peak latencies.
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Figure 7.
Source distribution reconstruction and source waveform estimation under fMRI false positives.
The source locations and simulated source waveforms are the same as used in Fig. 6. A)
Reconstructed cortical current density distribution at 3 peak latencies (40, 100 and 160 ms)
shown in 3 columns, by using 3 different algorithms: the adaptive Wiener filter (1st row), the
conventional Wiener filter using time-invariant spatial constraints (2nd row) and the weighted
minimum norm based on the EEG alone (3rd row); B) Estimated source waveforms at each of
3 source locations color-coded as in Fig. 6. The estimated waveforms are shown in solid lines
and the simulated original waveforms are shown in dashed lines. The 3 rows also correspond
to 3 algorithms as in Fig. 7.A).
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Figure 8.
Source distribution reconstruction and source waveform estimation under fMRI false
negatives. A) 3 source locations, B) quantified BOLD fMRI map, C) the simulated source
waveforms, D) Reconstructed cortical current density distribution at 3 peak latencies (40, 100
and 160 ms) shown in 3 columns, by using 3 different algorithms: the adaptive Wiener filter
(1st row), the conventional Wiener filter using time-invariant spatial constraints (2nd row) and
the weighted minimum norm based on the EEG alone (3rd row); E) Estimated source
waveforms at each of 3 source locations color-coded as in Fig. 8.C). The estimated waveforms
are shown in solid lines and the simulated original waveforms are shown in dashed lines. The
3 rows also correspond to 3 algorithms as in Fig. 8.D).
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Figure 9.
Estimated source waveforms compared to the real source waveforms with different temporal
features. 3 sources locations are the same as in Fig. 8. The originally simulated waveforms are
shown in dashed lines and the estimated source waveforms are shown in solid lines.
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Figure 10.
A) The pattern-reversal checkerboard visual stimulation, B) fMRI activation map with a
corrected threshold p<0.01, and C) the global field power of VEP and the dynamic cortical
source distribution at three VEP latencies (76, 112, 212 ms after the visual onset) imaged from
EEG alone (1st row), or fMRI-EEG integration using our proposed adaptive wiener filter (2nd
row) and the conventional 90% fMRI weighted algorithm (3rd row). Both the source images
and the fMRI activation map are visualized on an inflated representation of cortical surface.
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