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Abstract
Spatial patterns of brain atrophy in mild cognitive impairment (MCI) and Alzheimer’s disease
(AD) were measured via methods of computational neuroanatomy. These patterns were spatially
complex and involved many brain regions. In addition to the hippocampus and the medial
temporal lobe gray matter, a number of other regions displayed significant atrophy, including
orbitofrontal and medial-prefrontal grey matter, cingulate (mainly posterior), insula, uncus, and
temporal lobe white matter. Approximately 2/3 of the MCI group presented patterns of atrophy
that overlapped with AD, whereas the remaining 1/3 overlapped with cognitively normal
individuals, thereby indicating that some, but not all, MCI patients have significant and extensive
brain atrophy in this cohort of MCI patients. Importantly, the group with AD-like patterns
presented much higher rate of MMSE decline in follow-up visits; conversely, pattern classification
provided relatively high classification accuracy (87%) of the individuals that presented relatively
higher MMSE decline within a year from baseline. High-dimensional pattern classification, a
nonlinear multivariate analysis, provided measures of structural abnormality that can potentially
be useful for individual patient classification, as well as for predicting progression and examining
multivariate relationships in group analyses.
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Introduction
Alzheimer’s disease (AD) is the most common dementia, with incidence rates doubling
every five years after the age of 65. It is estimated that half of the population above 80 years
may have symptomatic AD, and that this number will grow rapidly as life expectancy
increases, and as the baby boomers’ generation moves into the high risk age group. The
psychological and financial cost of AD is tremendous and rapidly rising. Although there is
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currently no disease-modifying treatment, many potential treatments are being tested, some
of which may have significant side-effects. It is therefore becoming clear that effective and
well-targeted treatment necessitates early diagnosis of the disease.

Currently, definitive diagnosis of AD can be made if an autopsy documents the presence of
the characteristic neuritic β-amyloid plaques and neurofibrilatory tangles in the appropriate
brain regions in an individual with a history of progressive dementia. Therefore, there has
been a keen interest in the neuroimaging community to develop imaging-based biomarkers,
especially of early AD stages (Braak et al., 1998), as well as for predicting individuals that
are likely to progress to AD and are therefore good candidates for therapy. Magnetic
resonance imaging (MRI) can potentially play an important role as diagnostic tool, mainly
because it is widely available and part of the American Academy of Neurology standard
clinical evaluation for individuals with symptoms of dementia. MRI helps measure spatial
patterns of atrophy, and their evolution with disease progressions, which are surrogate
markers of the underlying neurodegenerative AD pathology.

The neuroimaging literature is rich in studies measuring volumes of regions of interest
(ROIs) known to be affected by AD, especially of the hippocampus and the entorhinal
cortex (Kaye et al., 1997; Jack et al., 1999; Convit et al., 2000; Killiany et al., 2000;
Dickerson et al., 2001; Chetelat et al., 2002; Visser et al., 2002; Stoub et al., 2005; De Leon
et al., 2006); more complex shape properties of hippocampal ROI’s have also been
investigated (Csernansky et al., 2005). However, the pattern of AD pathology is complex
and evolves as the disease progresses, starting mainly in the hippocampus and entorhinal
cortex, and subsequently spreading throughout most of the temporal lobe and the posterior
cingulate, finally involving extensive cortical regions, especially parietal, prefrontal and
orbitofrontal. Therefore, measuring volumes of a few structures cannot capture the spatio-
temporal pattern of brain atrophy in its entirety. Moreover, measurements of hand-drawn
ROIs are not easily reproducible within and across different raters. Finally, the pattern of
atrophy associated with AD does not necessarily follow predetermined anatomical
boundaries.

During the past decade, methods of computational neuroanatomy, such as voxel-based and
deformation-based analysis, have gained attention in the neuroimaging community
(Davatzikos et al., 2001; Thompson et al., 2001; Chetelat et al., 2002; Ashburner et al.,
2003; Karas et al., 2004; Pennanen et al., 2005; Bozzali et al., 2006; Saykin et al., 2006; Xie
et al., 2006; Whitwell et al., 2007), because they allow for the complete evaluation of
structural and functional brain images, without the need to make a priori assumptions about
the size, extent, and number of regions to be measured. Instead, these methods apply voxel-
by-voxel evaluation of the images, and identify potentially complex spatial patterns of brain
atrophy.

In addition to voxel-based analysis methods, techniques for high-dimensional pattern
classification have begun to find their way to the literature of neuroimaging of AD (Lao et
al., 2003; Lao et al., 2004; Liu et al., 2004; Adeli et al., 2005; Tandon et al., 2006; Li et al.,
2007), aiming to provide computational tools that classify individuals, based on their MRI or
PET scans, rather than determining statistical group differences. The current study builds
upon previous work in (Davatzikos et al., in press, 2006), which used a limited sample of
patients with MCI and cognitively healthy individuals to construct classifiers that separate
the two groups. The current study, however, emphasizes 1) application to a larger sample
from the ADNI study; 2) inclusion of AD patients, in addition to healthy and MCI
individuals; 3) a different methodological design, in which structural differences between
healthy individuals and AD patients are used to construct a high-dimensional classifier,
which is subsequently applied to MCI patients, rather than emphasizing differences between
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MCI and controls. This approach allows us to determine MCI subgroups that have structural
profiles similar to AD or to healthy individuals. Most importantly, it allowed us to further
associate these structural profiles with Mini Mental State Examination (MMSE) scores and
their 1-year change in follow-up examinations, and demonstrate their prognostic value, an
issue of very high importance currently in the AD literature.

In particular, the current study pursues a voxel-based morphometric analysis of cognitively
normal individuals, individuals with MCI, and AD patients, using an atlas warping approach
used to generate regional tissue density maps that reflect the regional distribution of brain
tissue. The hypothesis was that this approach would allow us to quantitatively capture
complex spatial pattern of brain atrophy that can potentially serve as sensitive and specific
imaging signatures of MCI and AD. The classification analysis also offers one possible way
to classify an entire pattern of atrophy to MCI or cognitively normal individuals (CN), and
potentially to predict whether an MCI subject will eventually develop AD, using
longitudinal follow-ups.

Materials and Methods
Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu\ADNI). The goal of ADNI is
to recruit 800 adults, ages 55 to 90, to participate in the research -- approximately 200 CN
older individuals to be followed for 3 years, 400 people with MCI to be followed for 3 years,
and 200 people with early AD to be followed for 2 years. For up-to-date information see
www.adni-info.org.

Participants
All ADNI participants with structural MR images available on the ADNI web site as of
February 2007 (the latest scan was from December 19, 2006) were part of this analysis. This
included 66 CN individuals (mean age ± std. deviation 75.18±5.39), 88 MCI patients
(76.38±7.60), and 56 AD patients (77.40±7.02), whose MRI scans were analyzed. The
MMSE scores (mean ± std. deviation) of each group at baseline were 29.08±0.97,
26.78±1.91, and 23.07±1.83, respectively. The groups were relatively well-balanced in
terms of gender (50%, 36%, 57% women in each of the 3 groups, respectively). MMSE
scores from the subset of participants that had completed 3 follow-up exams by the end of
this study in June 2007 were also included in the analysis, and used as a measure of disease
progression.

Images
The datasets included standard T1-weighted MR images acquired sagittally using volumetric
3D MPRAGE with 1.25 × 1.25 mm in-plane spatial resolution and 1.2 mm thick sagittal
slices (8° flip angle). Most of the images were obtained using 1.5 T scanners, while a few
were obtained using 3T scanners: 8 CN, 11MCI, and 8 AD patients. Detailed information
about MR acquisition procedures is available at the ADNI website.

Image Analysis
Images were first preprocessed according to previously validated and published techniques
(Goldszal et al., 1998). The pre-processing steps included 1) alignment to the AC-PC plane;
2) removal of extra-cranial material (skull-stripping); 3)Tissue segmentation into grey
matter (GM), white matter (WM), and cerebrospinal fluid (CSF), using a brain tissue
segmentation method proposed in (Pham and Prince, 1999); 4) High-dimensional image
warping (Shen and Davatzikos, 2002) to a standardized coordinate system, a brain atlas
(template) that was aligned with the MNI coordinate space (Kabani et al., 1998); 5)
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formation regional volumetric maps, named RAVENS maps (Goldszal et al., 1998;
Davatzikos et al., 2001; Shen and Davatzikos, 2003), using tissue preserving image warping
(Goldszal et al., 1998). RAVENS maps quantify the regional distribution of GM, WM, and
CSF, since one RAVENS map is formed for each tissue type. In particular, if the image
warping transformation that registers an individual scan with the template applies an
expansion to a GM structure, the GM density of the structure decreases accordingly to insure
that the total amount of GM is preserved. Conversely, a RAVENS value increases during
contraction, if tissue from a relatively larger region is compressed to fit a smaller region in
the template. Consequently, RAVENS values in the template’s (stereotaxic) space are
directly proportional to the volume of the respective structures in the original brain scan.
Therefore, regional volumetric measurements and comparisons are performed via
measurements and comparisons of the respective RAVENS maps. For example, patterns of
GM atrophy in the temporal lobe are quantified by patterns of RAVENS decrease in the
temporal lobe in the stereotaxic space.

The RAVENS approach has been extensively validated (Goldszal et al., 1998; Davatzikos et
al., 2001) and applied to a variety of studies (Resnick et al., 2000; Resnick et al., 2001; Kim
et al., 2003; Resnick et al., 2003; Resnick et al., 2004; Beresford et al., 2006; Beresford et
al., 2006; Gur et al., 2006; Stewart et al., 2006; Driscoll et al., 2007). It bears similarities
with the “optimized VBM” approach (Good et al., 2002), except it uses a highly conforming
high-dimensional image warping algorithm that captures finer structural details. Moreover,
it uses tissue-preserving transformations, which ensures that image warping absolutely
preserves the amount of GM, WM and CSF tissue present in an individual’s scan, thereby
allowing for local volumetric analysis.

Statistical analysis and pattern classification
Group comparisons were performed via voxel-based statistical analysis of respective
RAVENS maps that were normalized by intra-cranial volume and smoothed using 8 mm
full-width at half-maximum (FWHM) smoothing kernel. Group comparisons involved
voxel-by-voxel t-tests applied by the SPM2 software
(http://www.fil.ion.ucl.ac.uk/spm/software/spm2). Comparison for multiple corrections
utilized the false discovery rate (FDR) method (Yekutieli and Benjamini, 1999), as
implemented in the SPM software. In addition to the group analyses, we perform individual-
patient analysis, aiming to classify individual scans belonging to CN, MCI, or AD
participants. This analysis is important because it directly relates to our ability to use
quantitative MRI analysis for individual diagnosis, rather than to identify statistical
differences between two potentially overlapping groups. Toward this end, we applied a
high-dimensional pattern classification approach, which has been published and used in
various neuroimaging studies (Fan et al., 2005; Fan et al., 2007; Fan et al., 2007, in press;
Davatzikos et al., in press, 2006). This approach considers all brain regions jointly, and
identifies a minimal set of regions whose volumes jointly maximally differentiate between
the two groups under consideration, on an individual scan basis. Leave-one-out cross-
validation is used to test this classification scheme on datasets not used for training, and
obtain a relatively unbiased estimate of the generalization power of the classifier to new
patients. The pattern classification method provides a structural phenotypic score (SPS). For
a classifier constructed from the CN and AD groups, positive SPS implies AD-like brain
structure, and vice-versa. The classifier that was determined to maximally distinguish
between CN and AD participants was subsequently applied to the MCI group.

We also utilized the standard region of interest (ROI) method to analyze the volumes of the
hippocampus and the entorhinal cortex via a template warping method that has been
previously published and validated (Shen and Davatzikos, 2002; Shen et al., 2002), in order
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to determine whether conventional ROI measurements are sufficient for classification of
individual scans with high sensitivity and specificity.

SPS and rates of MMSE change
Since at this stage of the study, the clinical outcome is not yet available for most of the
participants, we evaluated associations between the SPS determined from the MRI and rates
of changes of the MMSE scores, which were calculated for those MCI individuals (n=38)
that had at least 3 examinations (baseline plus 2 follow-ups, 18 months). These rates of
change were computed separately for the two subgroups identified by the pattern
classification: the MCI_CN (n=16) and MCI_AD (n=22) subgroups. Conversely, we divided
the MCI participants into two groups, the progressors (MCI_PR) and the non-progressors
(MCI_NPR). (We stress that strictly speaking, this categorization does not reflect progression
to AD, but progression of the MMSE scores towards relatively lower values.) We then
evaluated whether the pattern classification approach can separate MCI_PR from MCI_NPR,
knowing that this is an extremely difficult task due to the noise that is inherent to the
measurement of rate of change of MMSE, especially from 3 measurements within 1 year,
but also because short-term MMSE decline does not necessarily imply clinical progression
to AD. One of the caveats in this analysis was that it is difficult to define a threshold for
MMSE rate of change that would define the subgroups MCI_PR and MCI_NPR. We cannot
use a threshold of 0, because we know that even CN individuals display some decline.
Therefore, we decided to examine a range of possible thresholds on MMSE rate of change,
and test the group separability within that range. The hypothesis was that very low or very
high thresholds would lead to non-separable subgroups (since they would lump together
progressors and non-progressors into the same class), and somewhere in the small negative
range (small rate of MMSE change) we should find maximal separability.

Results
Region of interest Volumetry

The volumes of the hippocampus (left + right) against the entorhinal cortex (left + right),
after normalization by intra-cranial volume (ICV), are shown in Figure 1 as a scatter plot.
AD and CN are relatively well separated, although classification accuracy would not be
clinically sufficient, in terms of providing adequate sensitivity and specificity on an
individual patient basis. Volumes of the MCI group completely overlap with both groups,
especially the AD group. We also constructed SVM classifiers using these volume
measurements. The classification accuracy computed via the leave-one-out cross-validation
was 82.0%, 76.0%, and 58.3%, for AD vs. CN, MCI vs. CN, and AD vs. MCI, respectively.

Voxel-based Analysis of RAVENS maps
Statistically significant results from the CN vs. AD comparisons via voxel-based statistical
analysis are shown in Figure 2. These maps display the t-statistic of voxel-wise t-tests,
however only the clusters with p-values corrected for multiple comparison above p=0.05
were obtained. SPM2 (FDR multiple comparison correction) was used for all voxel-based
analyses. Figure 2 indicates severe GM atrophy in the AD group, and less pronounced WM
atrophy mainly located around the hippocampus. Apparent WM atrophy in the anterior
periventricular region is due to periventricular leukoareosis that tends to be segmented as
GM, due to its darker T1 signal.

Statistically significant findings from the voxel-based comparisons between the CN and
MCI groups are shown in Figure 3. The pattern of atrophy is similar to the one in Figure 2,
except less pronounced, as indicated by the values of the t-statistic. No significant WM
group differences were found, after correction for multiple comparisons, therefore the WM
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regions shown were determined without multiple comparison correction at the p<0.001
level.

Figure 4 shows the statistically significant findings from the MCI vs. AD comparison. Even
smaller regional volumetric differences were found in this group comparison. Since the
differences between MCI and AD were relatively small and almost disappeared after
correction for multiple comparisons, Figure 4 also displays the results prior to FDR
correction.

Pattern Classification
The pattern classification approach was initially applied separately to each group
comparison: 1) AD vs. CN; 2) MCI vs. CN; and 3) AD vs. MCI. The classification accuracy
was determined via the leave-one-out (LOO) cross-validation to be 94.3%, 81.8%, and
74.3%, respectively, for the 3 comparisons. Because LOO was applied, these are estimations
of classification accuracy of a new individual’s scan and therefore of direct diagnosis
relevance. These classifiers’ receiver operating characteristic (ROC) curves are shown in
Figure 5 (these ROC curves were determined using LOO). These classifications’ respective
AUCs (area under the ROC curve) were 96.5%, 84.6%, and 75.9%.

Subgrouping of MCI participants and follow-up MMSE scores
In order to further investigate the patterns of brain atrophy in the MCI participants, the
classifier built from the AD and CN groups was applied to MCI participants. As described in
the Methods section, this classifier provides SPS that is positive for AD-like structure and
negative for CN-like structure. Figure 6 shows the distribution of the SPS’s of all MCI
participants, further indicating that the majority of the MCI participants displayed AD-like
structural profiles. MCI participants were further divided into the ones that had positive SPS
(AD-like patterns) and the ones that had negative SPS (CN-like patterns). We refer to these
two groups as MCI_AD (57 MCI participants) and MCI_CN (31 MCI participants),
respectively. These two subgroups were then compared via voxel-based analysis of their
RAVENS maps. Statistically significant regional volumetric differences are shown in Figure
7.

Figure 8 shows the group differences between MCI_AD and CN participants via voxel-based
statistical analysis. It is worth noting that the group differences in WM RAVENS maps were
even stronger than group differences between AD and CN participants. Figure 9 shows the
group differences between MCI_CN and AD participants via voxel-based statistical analysis.
The group differences between MCI_CN and AD participants are similar with those between
CN and MCI_AD. Almost no significant group differences were found between MCI_CN and
CN participants via voxel-based statistical analysis: only a small region in the medial
orbitofrontal cortex passed the p=0.05 threshold, after FDR correction for multiple
comparisons. Similarly, no group differences between MCI_AD and AD participants reached
significance, after FDR correction.

SPS and rate of MMSE change
As discussed in Methods, rates of change of the MMSE scores were calculated separately
for the two subgroups identified by the pattern classification: the MCI_CN (n=16) and
MCI_AD (n=22) subgroups. The rate of MMSE score annual decrease of the former group
was significantly smaller than that of the latter group with p value 0.028. The average rate of
MMSE score annual decrease (mean ± std. deviation) was -0.30± 3.13 for the former group
and -2.31± 3.07 for the latter group. The correlation coefficient between the relationship of
the SPS and the rate of MMSE change was -0.39 (p =0.0155). The distributions of the scores
during baseline and follow-ups are shown in Figure 10, and a regression plot in Fig. 11.
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In Methods, we discussed the categorization of the MCI cohort into progressors and non-
progressors: MCI_PR and MCI_NPR, via thresholding their rates of MMSE change at various
thresholds. The classification results, after leave-one-out cross-validation, which were
obtained from these two subgroups are shown in Fig. 12, for different values of the threshold
on MMSE rate of change. These results indicate that maximal separation between MCI_PR
and MCI_NPR is obtained for a threshold close to -1, which is in agreement with our
expectations. The classification rate obtained at that threshold was 87% and the area under
the curve was 0.86.

Discussions and Conclusion
This study utilized computational neuroanatomic methods to quantify cross-sectional
patterns of brain atrophy in a relatively large sample of cognitively normal elderly
individuals, and in patients with MCI and AD. Spatially complex spatial patterns of brain
atrophy were measured, and were found to be consistent with known patterns of AD
pathology from histological studies. MCI patients had significant temporal lobe atrophy,
especially in the hippocampus, superior, inferior temporal gyrus, and uncus, as well as
medial GM atrophy, especially in the posterior cingulate and adjacent precuneous, and the
medial aspect of the uncus. Additional GM atrophy was measured between MCI and AD
patients, particularly in the hippocampus, the entorhinal cortex, and the middle and inferior
temporal gyrus. The pattern of atrophy also included the WM surrounding the hippocampus,
and the ventricles, albeit at much lower significance, compared to GM atrophy.

The complexity of this pattern of atrophy suggests that perhaps more sophisticated methods
for measuring structural brain changes in MCI and AD can be helpful for diagnosis and
prognosis of the disease, compared to the most common approach that has been taken up to
date in the neuroimaging literature (Kaye et al., 1997; Convit et al., 2000; Killiany et al.,
2000; Dickerson et al., 2001; Chetelat et al., 2002), namely to examine volumes of a small
number of structures typically of the hippocampus and the entorhinal cortex. This is further
bolstered by histopathological studies (Braak et al., 1998) that have investigated the pattern
of deposition of β-amyloid plaques and tau-pathology during the progression of AD, as well
as with studies of magnetization transfer that indicated a more than expected widespread
distribution of brain pathology (Van der Flier et al., 2002). The results of the current study
also demonstrated that sole measurements of the hippocampus and the entorhinal cortex are
not sufficient for separating the three groups from each other, not even AD from CN, with
clinically adequate sensitivity and specificity, since hippocampal and entorhinal cortex
measurements were highly overlapping between MCI and AD or CN (Fig. 1). Overlap was
also observed between AD and CN.

Perhaps the most exciting finding of the current study is that the MCI subgroup identified by
the classifier as AD-like showed a markedly faster rate of subsequent MMSE decline,
whereas the group that had similar SPS to CN showed minor MMSE decline. Related was
the converse finding, namely that MCI individuals whose MMSE scores decreased relatively
more rapidly were relatively well distinguishable from the ones that shown no decline or
relatively small decline similar to that of CN individuals. This finding indicates that the SPS
score determined through pattern analysis and classification has predictive clinical value,
which would render it a significant biomarker for early AD stages and for individuals that
are good candidates for treatment. Importantly, the SPS scores were derived using a single
cross-sectional MRI scan, and not from longitudinal scans, which renders them more
practically feasible from a logistical as well as from a financial point of view.

One of the main conclusions of this study is that two thirds of the MCI patients of this
cohort are closer to AD than they are to cognitively normal individuals. Although previous
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MRI-based studies of MCI patients have demonstrated brain atrophy mainly in medial
temporal lobe structures (Convit et al., 1997; Jack et al., 1999; Jack et al., 2000; Xu et al.,
2000; De Santi et al., 2001; Du et al., 2001; Grundman et al., 2002; Chetelat, 2003; Karas et
al., 2004; Pennanen et al., 2005; Bozzali et al., 2006; Saykin et al., 2006; Whitwell et al.,
2007), the present study finds that brain atrophy in this cohort is already quite extensive and
involves superior, middle and inferior temporal gyri, the insula, the posterior cingulate and
adjacent precuneous, the uncus, and the peri-hippocampal WM, mainly in the MCI_AD
subgroup. Two factors might have contributed to this finding. First, the ADNI MCI
population was selected so that an adequate number of converters would be expected within
three years, so that the study would be adequately powered. Although our findings certainly
agree with this clinically-based selection of patients, Fig. 1 suggests that the volumes of the
hippocampus and entorhinal cortex of the MCI patients were highly overlapping with both
CN and AD; the cross-validated classification results obtained from these ROI
measurements also showed significant group overlap. Therefore, patient selection does not
fully explain our finding. It is likely that the identification of more widespread and complex
patterns of brain atrophy in our study is partly due to the fact that a high-dimensional
template warping mechanism was used to determine the RAVENS maps and to capture
spatial patterns of brain atrophy. This image warping algorithm has been previously found to
achieve very accurate inter-individual registration, which is of fundamental importance for
measuring subtle patterns of brain atrophy across individuals.

The similarity of a subgroup of the MCI group to AD was further supported by the
complementary analysis using high-dimensional pattern classification to determine the
optimal group separation. This analysis showed that the structural phenotypic scores of two
thirds of the MCI group were more similar to those of AD patients. Relatively recent studies
using the PIB compound have also shown a relatively widespread accumulation of amyloid
plaques in many MCI patients(Kemppainen et al., 2007). These findings further support that
AD pathology might already be at quite advanced stages by the time cognitive decline
becomes clinically detectable, at least for a subgroup of the MCI population that is
hypothesized to have significant AD pathology. Subsequent follow-up will determine
whether this hypothesis is true, however the MMSE decline in this subgroup is a significant
indicator that these patients are likely to convert to AD soon. The ability of pattern
classification to serve as a biomarker for such a group would be very important.

The finding that the majority of MCI patients seem to have AD-like structural profiles also
suggests that more emphasis should be placed on studying CN groups. Although current
clinical trials of potential treatments, including ADNI, focus primarily on MCI groups, since
MCI patients convert to AD at rates of approximately 15% annually, from a diagnostic
perspective it would undoubtedly be beneficial to study cognitively normal populations that
have less advanced AD pathology. By virtue of its ability to measure subtle patterns of brain
atrophy, the methodology adopted in our study can potentially assist in identifying
cognitively normal individuals that display patterns of atrophy that render them likely to be
in a very early preclinical AD stage. Earlier analysis using the same methodology in a
longitudinal study of normal aging demonstrated that high-dimensional pattern analysis and
classification can identify abnormal patterns of brain trophy before clinically detectable
cognitive decline (Davatzikos et al., 2006).

The finding of reduced WM volumes between MCI and CN is interesting and merits further
research. The pattern of WM atrophy was bilateral, although more pronounced in the right
hemisphere, and extended into the region adjacent to the entorhinal cortex as well as into the
superior and middle temporal gyri. Dense connections existing between the hippocampus
and the posterior cingulate, which coupled with the early changes that have been reported in
the posterior cingulate (Chetelat, 2003; Chetelat et al., 2003), might imply that changes in
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WM might provide additional markers of disease progression, something that has
traditionally not attracted much attention in the AD literature. A growing recent literature
using diffusion tensor imaging further support the importance of examining white matter
changes in AD (Bozzali et al., 2002; Moseley, 2002; Fellgiebel et al., 2004; Choi et al.,
2005; Fellgiebel et al., 2005; Fellgiebel et al., 2006; Medina et al., 2006; Naggara et al.,
2006; Ray et al., 2006; Huang and Auchus, 2007), albeit the majority of these studies have
been restricted to measuring quantities such as fractional anisotropy and diffusivity, and
therefore have not differentiated between brain atrophy and other tissue changes that can
potentially have vascular underpinnings (for example, both fractional anisotropy and
diffusivity are known to be lower in leukoareosis). More sophisticated types of analysis of
diffusion tensor images (Khurd et al., 2006; Verma and Davatzikos, 2006) can potentially
elucidate alterations of WM connectivity in AD.

Our findings suggest a bilateral pattern of atrophy in MCI, although the right hemisphere
displayed higher magnitude and more widespread extent of atrophy of both GM and WM.
This potential asymmetry was, however, balanced with disease progression, since the pattern
of atrophy in AD was fairly symmetric. The interpretation of such asymmetries is known to
be problematic, since the true reason might be bias in patient selection rather than
differences of the underlying AD pathology. In particular, the right-more-than-left pattern
that we observed is consistent with the hypothesis that patients that report to the clinic with
memory complaints are more likely to report when they have language problems.
Accordingly, one might expect that a smaller degree of atrophy on the left hemisphere
would meet the threshold for a patient’s reporting to the clinic, compared to atrophy of the
right hemisphere that would be likely to present less obvious cognitive deficits. Put
differently, a relatively larger degree of right-hemisphere atrophy, compared to left, is likely
to be tolerated before the patient reports to the clinic. Our pattern of asymmetry is the
reverse of what another similar study reported (Karas et al., 2004). Differences between the
two studies, especially with respect to the template warping method and the patient
populations, render the two studies not directly comparable. The relatively higher sensitivity
of our methodology in detecting GM and WM atrophy (e.g. values of the t-statistic in Figs
2-3) further speak to the methodological differences between the two studies.

The comparison between the MCI_CN and MCI_AD subgroups lead to two very interesting
conclusions. First, the former group is almost entirely overlapping with CN, and the latter
overlaps almost entirely with the AD group. Although this result yet remains to be tested in
independent patient populations, it does highlight the potential of the high-dimensional
pattern classification method to detect subgroups in MCI patients, which would be of great
importance clinically. Second, the main WM differences between these two subgroups were
in periventicular tissue. This finding could imply decrease of WM via Wallerian
degeneration, however testing this hypothesis would require different imaging protocols,
and especially diffusion tensor imaging, which are not available in ADNI. It is interesting to
note, however, that the regions identified by this analysis are exactly where the bulk of
leukoareosis tends to occur in elderly individuals with or without other significant vascular
disease, and which tend to appear as gray rather than white matter in T1-weighted MR
images. The resolution and contrast of the MRI sequences used in this study doesn’t allow
us to investigate this issue. This finding raises the important issue of the potential role of
vascular pathology in AD, which has also received attention in the literature (Snowdon et
al., 1997; Schneider et al., 2003; Prins et al., 2004; Schneider et al., 2004) (Kim et al., 1998;
Lin et al., 1999; Lin et al., 1999; Bennett et al., 2000; Shi et al., 2000; Nihashi et al., 2001).
Our results suggest that one of the significant differences between the MCI_CN and MCI_AD
subgroups is likely to be periventricular leukoareosis, and further support the need to
examine vascular pathology in tandem with brain atrophy. Regardless of whether or not AD
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is pathophysiologically related to vascular disease, its clinical manifestation almost certainly
depends on the concurrent presence of vascular disease (Schneider et al., 2004).

A relatively new technique, namely high-dimensional pattern classification, was used to
analyze patterns of spatial distribution of brain tissue and integrate them into an abnormality
score, which represents how similar the entire structural profile of an individual fits that of
AD patients or of cognitively normal individuals. This approach has been recently used in
several neuroimaging studies and has shown great potential as a diagnostic tool on
individuals (Lao et al., 2004; Davatzikos et al., 2005; Fan et al., 2007; Davatzikos et al., in
press, 2006). It is a significant deviation from either ROI-based or voxel-based techniques,
which examine the brain region-by-region independently, without integrating the entire
pattern of atrophy (or functional activity (Davatzikos et al., 2005)) throughout all brain
regions together. This is very important, because although many regions generally display
significant group differences, they also significantly overlap between groups (see Fig. 1),
and therefore don’t offer sufficient sensitivity and specificity for diagnostic purposes. The
methodology used herein achieves high group separation via nonlinear multivariate
classification using support vector machines, and it has been shown to possess great
diagnostic value in neurodegenerative and neuropsychiatric disorders, and likely beyond
(Zhang et al., 2002; Davatzikos et al., 2005; LaConte et al., 2005; Mourao-Miranda et al.,
2005).

In summary, this study used advanced quantitative pattern analysis and classification
methodologies and determined spatially complex patterns of brain atrophy in MCI and AD
patients. The MCI group was highly variable, as anticipated, but its majority overlapped
with AD patients, with regard to brain atrophy. Analysis of the follow-up scans of this
longitudinal study revealed that the group identified by pattern classification as being similar
to the AD group did indeed present significantly higher rates of MMSE decline. Further
follow-up will help reveal whether subsequent conversion of the MCI participants to AD
will be in agreement with the two structural profiles observed in this study, i.e. whether the
MCI subgroup that overlaps with AD will indeed progress to AD within the 3 year follow-
up period of ADNI.
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Figure 1.
Scatter plot of the volumes of the hippocampus (left + right) against the entorhinal cortex
(left + right) of the groups of CN, MCI, and AD, after normalization by ICV.
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Figure 2.
Voxel-based analysis of group difference between CN and AD. From left to right, group
comparison results on GM, WM, and CSF are shown. (GM, WM: CN>AD, CSF: AD>CN,
p<0.05, corrected). The color-maps indicate the scale for the t-statistic. Images are displayed
in radiological convention.
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Figure 3.
Voxel-based analysis of group difference between CN and MCI. From left to right, group
comparison results on GM, WM, and CSF are shown. (GM: CN>MCI, p<0.05, FDR-
corrected; CSF: MCI>CN, p<0.05, FDR-corrected; WM:CN>MCI, p<0.001, uncorrected).
The color-maps indicate the scale for the t-statistic. Images are displayed in radiological
convention.
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Figure 4.
Voxel-based analysis of group difference between MCI and AD. Left column shows GM
comparisons, and middle column shows WM comparisons, without correction of multiple
comparisons (MCI>AD, p<0.001, uncorrected). After FDR correction (MCI>AD, p<0.05),
significant group differences are found only in GM RAVENS maps, as shown in right
column. No significant group difference was found on CSF comparisons. The color-maps
indicate the scale for the t-statistic. Images are displayed in radiological convention.
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Figure 5.
ROC curves showing the overall classification performance in MRI-based classification of
AD from CN, MCI from CN, and AD from MCI. Their respective AUCs (area under the
ROC curve) are 0.965, 0.846, and 0.759.
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Figure 6.
Histograms of the MRI-based classification scores for MCI subjects obtained via applying
the classifiers built on AD and CN participants. 57 out of 88 MCI subjects display positive
scores, i.e. their MRI scans indicate that they possess the structural pattern characteristic of
AD.
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Figure 7.
Voxel-based analysis of group differences between MCI_CN and MCI_AD. From left to
right, group comparison results on GM, WM, and CSF are shown. (GM, WM:
MCI_CN>MCI_AD, CSF: MCI_AD > MCI_CN, p<0.05, corrected). The color-maps indicate
the scale for the t-statistic. Images are displayed in radiological convention.
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Figure 8.
Voxel-based analysis of group difference between CN and MCI_ AD. From left to right,
group comparison results on GM, WM, and CSF are shown. (GM, WM: CN>MCI_AD,
CSF: MCI_AD>CN, p<0.05, corrected). The color-maps indicate the scale for the t-statistic.
Images are displayed in radiological convention.
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Figure 9.
Voxel-based analysis of group difference between MCI_CN and AD. From left to right,
group comparison results on GM, WM, and CSF are shown. (GM, WM: MCI_CN >AD,
CSF: AD> MCI_CN, p<0.05, corrected). The color-maps indicate the scale for the t-statistic.
Images are displayed in radiological convention.
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Figure 10.
The distributions of the MMSE scores during baseline and follow-ups of MCI subgroups.
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Fig. 11.
Regression plot of the rates of MMSE change and the SPS scores at baseline.
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Fig. 12.
Classification rates and areas under the ROC curve obtained by subgrouping MCI patients
into progressors and non-progressors, according to a threshold on their rates of MMSE
change within a year. Optimal classification rate of 0.87=87% (AUC 0.86) was obtained for
a threshold around -1, i.e. if one defines progressors as the MCI patients that display rates of
change of MMSE score < -1/year. This is in agreement with the fact that even CN
individuals display some rate of decline. The red curve is a histogram of the rate of MMSE
change, the blue stars are individual MCI patients, and the numbers before and after comma
within parentheses are the correct classification rates and the AUCs.
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