
www.elsevier.com/locate/ynimg

NeuroImage 40 (2008) 1672–1685
Spatiotemporal nonlinearity in resting-state fMRI of the human brain
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In this work, the spatiotemporal nonlinearity in resting-state fMRI
data of the human brain was detected by nonlinear dynamics methods.
Nine human subjects during resting state were imaged using single-shot
gradient echo planar imaging on a 1.5T scanner. Eigenvalue spectra for
the covariance matrix, correlation dimensions and Spatiotemporal
Lyapunov Exponents were calculated to detect the spatiotemporal
nonlinearity in resting-state fMRI data. By simulating, adjusting,
and comparing the eigenvalue spectra of pure correlated noise with
the corresponding real fMRI data, the intrinsic dimensionality was
estimated. The intrinsic dimensionality was used to extract the first few
principal components from the real fMRI data using Principal
Component Analysis, which will preserve the correct phase dynamics,
while reducing both computational load and noise level of the data. Then
the phase-space was reconstructed using the time-delay embedding
method for their principal components and the correlation dimension
was estimated by the Grassberger-Procaccia algorithm of multiple
variable series. The Spatiotemporal Lyapunov Exponents were calcu-
lated by using the method based on coupled map lattices. Through
nonlinearity testing, there are significant differences of correlation
dimensions and Spatiotemporal Lyapunov Exponents between fMRI
data and their surrogate data. The fractal dimension and the positive
Spatiotemporal Lyapunov Exponents characterize the spatiotemporal
nonlinear dynamics property of resting-state fMRI data. Therefore, the
results suggest that fluctuations presented in resting state may be an
inherent model of basal neural activation of human brain, cannot be
fully attributed to noise.
© 2008 Elsevier Inc. All rights reserved.
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Introduction

Functional magnetic resonance imaging (fMRI) has emerged as a
useful and noninvasive technique for the study of structure-function
⁎ Corresponding author.
E-mail address: iap@zju.edu.cn (X. Xie).
Available online on ScienceDirect (www.sciencedirect.com).

1053-8119/$ - see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.neuroimage.2008.01.007
relationship in the human brain. Using magnetic resonance tech-
niques, researchers have found that it is possible to indirectly detect
changes in blood-oxygenation levels that are a result of neuronal
activation. In the past decade interest in this novel research field
increased rapidly. Most of the work concentrated on the detection or
the estimation of brain regions involved in specific cognitive or
sensor-motor tasks.

The complex behavior of the hemodynamic response is a global
phenomenon and the reconstruction of the dynamics recorded in
fMRI data should make use of the vast amount of spatial infor-
mation acquired (Laird et al., 2002). Spatiotemporal electroence-
phalography (EEG) and magnetoencephalography (MEG) signal
analysis can achieve higher performance by combining spatial and
temporal approaches (Lee and Kim, 2006; Uhl et al., 1998; Pezard
et al., 1996). Compared with EEGs of low spatial resolution, fMRI
data offer millimeter spatial resolution (1 to 4 mm) with temporal
resolutions of the order of seconds. It can offer more spatial
information than EEG/MEG. Hence, spatiotemporal analysis by
fMRI will produce an important analytic tool for brain research
(McIntosh et al., 2004).

Conscious rest has been widely used as a baseline condition in
neuroimaging experiments such as positron emission tomography
(PET) and functional magnetic resonance imaging (Gusnard and
Raichle, 2001). In most cases, rest state is defined as a state that
differs from the active state both in terms of conditions (open/
closed eyes, absence/presence of a stimulus input) and instructions
given to the subject (Wicker et al., 2003). A rest state can therefore
be used in a wide variety of experiments. However, it is an ill-
defined mental state because it may vary both from one subject to
another and within the same subject (Luca et al., 2006; Wicker
et al., 2003).

Extracting information from resting-state is a challenging work,
because the signals of interest are contaminated by physiological
noise, such as breathing, cardiac activity (Thirion et al., 2006) and
scan noise. Many methods are introduced to analyze resting-state
fMRI data, such as Fourier Transformation (Cordes et al., 2001),
Correlation Analysis (Hampson et al., 2002; Cordes et al., 2001;
Lowe et al., 1998), Principal Component Analysis (Worsley et al.,
2005; Zuendorf et al., 2003), and Independent Component
Analysis (Luca et al., 2006; Bartels and Zeki, 2005). However,
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the majority of methods developed for resting-state fMRI data
analysis so far are linear in nature.

Recently, the analysis of human EEGs with methods based on
nonlinear dynamics and chaos theory has become increasingly
popular (Lehnertz and Elger, 1998; Pezard et al., 1996). One of the
most important contributions of nonlinear dynamics to the general
view of the physical world is the message that irregular and
seemingly unpredictable behaviors do not necessarily have to be
attributed to some random external inputs to the systems, but on the
contrary can be the result of completely deterministic dynamical
systems (nonlinearity is a necessary). This new paradigm offers a
possible new way to the analysis of many irregular time series,
which have been regarded only as stochastic signals before the
breakthrough of nonlinear dynamics (Galka, 2000). The application
of nonlinear dynamics analysis tools to characterize time series may
provide a more complete description of EEG recordings (Stam,
2005; Lee et al., 2001). It has been regarded as an important advance
in understanding the underlying mechanism of brain electrical
activities. It has been realized that if chaos could be demonstrated in
a natural system, such as the human brain, it might provide a much
simpler explanation for the occurrence of complex behavior than
usual stochastic models (Lee et al., 2001). The presence of nonlinear
or deterministic chaotic behavior in various physiological and
pathological states has been postulated, but also disputed (Freeman,
2000; Stam et al., 1995). Therefore, detection of nonlinearity is
important and should be the first step before any nonlinear analysis.

Even though there is an effort to study nonlinear dynamics of
brain activities using EEG, very little research has been done in
applying methods of nonlinear dynamics to fMRI data, particularly
during resting state of the human brain. Recently, the nonlinear
dynamics analysis of fMRI data of the human brain has begun to
attract many researchers. An extension of the delta-epsilon approach
is applied to fMRI data to evaluate whether a time course of a
candidate voxel provides additional information concerning the time
evolution of reference voxel time series (LaConte et al., 2004). The
nonlinearity arising from the finite dimensional dynamics are then
characterized using patterns of singularities in the complex plane.
A finite embedding dimension is a measure of the determinism of
the system, which can be quantified using information theoretic
measures like Lempel-Ziv complexity (Deshpande et al., 2006).
Using spatial embedding of fMRI data, local spatiotemporal chaos in
baseline (Deshpande et al., 2005) has been reported. However, most
works on nonlinear analysis to fMRI data are taken voxel by voxel
based on single time series (Gautanma et al., 2003), as is tradi-
tionally done in the nonlinear signal processing literature. On the
other hand, though recent studies (Vazquez and Noll, 1998; Birn
et al., 2001; Bandettini et al., 2002; Pfeuffer et al., 2003; Huettel,
2004) indicate the nonlinear nature of fMRI response to some
stimulation and many nonlinear models between stimulations and
their fMRI responses are established (Wager et al., 2005; Harrison
et al., 2003; Friston et al., 2000; Buxton et al., 1998), these results are
obtained by means of stimulations and their fMRI responses.
However, in resting-state of the human brain, there are no significant
stimulations. Hence, it is difficult to detect the nonlinearity by way
of stimulations and their fMRI responses.

In this work, the nonlinearity in resting-state fMRI signals of
the human brain was detected using two methods which are usually
used to characterize the essence of a nonlinear dynamical system.
One is the correlation dimension analysis which analyzes
quantitatively the nonlinear fractal property of fMRI data of the
human brain. Another is the Spatiotemporal Lyapunov Exponent
(STLE) analysis which characterizes the nonlinear chaotic property
of fMRI data of the human brain.

Because various dynamical quantities of the reconstructed set or
phase-space are the same as those of the underlying attractor (Kantz
and Schreiber, 1997), provided that embedding dimension is
suitably large, an appropriate phase-space reconstruction has to be
carried out before estimating the correlation dimension of fMRI data
using Grassberger-Procaccia algorithm. The so-called “appropriate”
is that the reconstructed set not only comprises essential information
and noise-free, but also has appropriate calculation quantity and as
less redundancy as possible. So knowing the essential number of
signal components is a key step for popular fMRI data post-
processing.

In order to estimate accurately the number of essential signals for
the resting-state fMRI data of the human brain, i.e. the intrinsic
dimension, a method based on an autoregressive noise model of
order 1, AR(1) noise model, was used to estimate the intrinsic
dimensionality of fMRI data and cubic spline interpolation was
introduced to the estimate of AR(1) coefficient ϕ. According to the
estimated intrinsic dimensionality, the principal components of
fMRI data were extracted by Principal Component Analysis (PCA)
method. The phase-space was reconstructed using the time-delay
embedding method for their principal components. In the recon-
structed phase-space, the correlation dimension of spatiotemporal
series was estimated using Grassberger-Procaccia algorithm. The
important result of fractal correlation dimension characterizes
quantitatively the nonlinear fractal property of resting-state fMRI
data of human brain.

On the other hand, the global coupled STLE, which is based on
coupled map lattices (CML), was introduced to analyze spatio-
temporal series of fMRI data in resting-state of human brain. The
result of positive STLE, which characterizes the chaotic nonlinear
dynamical property, was also obtained.

In the end, two kinds of surrogate data generated from raw
fMRI data were introduced to test the nonlinearity in resting-state
fMRI data of human brain.

Material and methods

Correlation dimension analysis

Correlation dimension
The correlation dimension is a method aiming at practical ap-

plications where the geometrical object has to be reconstructed from
a finite sample of data points which mostly contain some errors as
well. The Grassberger-Procaccia algorithm (Kantz and Schreiber,
1997; Hegger and Kantz, 1999), which is the most popular method
to estimate the correlation dimension, is based on an appropriate
phase-space reconstruction. One of the most popular methods for
phase-space reconstruction is time-delay embedding (Bianciardi
et al., 2007; Perc, 2005; Cellucci et al., 2003; Hegger and Kantz,
1999). Given a scalar time series x(t), a sequence of vectors y(t)=
(x(t),x(t+τ),⋯,x(t+[m−1]τ)) is formed, where m is embedding
dimension and τ is the delay time. Thus, a phase space of m dimen-
sions is reconstructed by this sequence of vectors. Under quite
general circumstances the attractor formed by delay embedding is
equivalent to the attractor in unknown space in which the underlying
dynamical system is living if the embedding dimension m of the
delay coordinate space is sufficiently large.

Meanwhile it is assumed that there are only a finite number of
points which are generated by a dynamic system. After phase space
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reconstruction, My vectors (denoted by yi, i=0,1,…,My−1) are
reformed. The next step of correlation dimension estimation is to
calculate the correlation integral (such an approximation of corre-
lation integral will be termed correlation sum). Due to the existence
of temporal correlations in the fMRI data, Theiler correlation sum
(Small, 2005) is calculated. That is, those pairs of points which are
close in time are excluded. The correlation sum is started after a
time (W) which is determined by the average correlation time, i.e.
the time when the autocorrelation function has decayed to 1/e.
Since there are only a finite number of points, the Theiler cor-
relation integral is approximated by

C eð Þ ¼ 2

My �W
� �

My �W � 1
� �X

i

X
j NiþW

Q e�jjyi � yjjj
� � ð1Þ

where Θ is the Heaviside step function, Θ(x)=0 if x≤0 and Θ(x)=1
if xN0. The correlation sum just counts the pairs (yi, yj) whose
distance (denoted by ‖•‖) in phase space is smaller than ε. In the
limit of an infinite of the data (My→∞) and for a small given ε, a
power law (Kantz and Schreiber, 1997) will be expected to scale
C(ε).

C eð Þ~ed2 ð2Þ
Thus, the correlation dimension can be defined by

d2 ¼ lim
eY0

logC eð Þ
loge

ð3Þ

In practice, a typical correlation integral plot will contain a
“scaling region” over which the slope of logC(ε) remains relatively
constant (Galka, 2000). A common way to examine the slope in the
scaling region is to numerically differentiate (or fit a line to) the
plot of logC(ε) against logε. This ought to produce a function
which is constant over the scaling region, and its value on this
region should be the correlation dimension.

Multivariate data, such as spatiotemporal series, can be assumed
to be either independent realizations of the same observable in a
given system or different observables of a single attractor measured
simultaneously (Dhamala et al., 2002). Within the general frame-
work, multivariate data can be treated in very much the same way as
scalar time series. With embedding each time series separately, the
Theiler correlation sum algorithm can be easily extended to multi-
variate data. Thus, for multivariate data which are composed of
K numbers of time series, the multivariate Theiler correlation sum
can be written as

CMT eð Þ ¼ 2
MT �Wð Þ MT �W � 1ð Þ

XMT

j¼1

XMT

i¼jþWþ1

Q e� jjYi � Yjjj
� �

ð4Þ
where both Yi and Yj belong to the set of all the delayed vectors
Y ¼ x1i

� �M1

i¼1; x2i
� �M2

i¼1; N ; xKi
� �MK

i¼1

n o
, if x 1;2; N ;Kð Þ

i denotes the delay
vectors constructed from individual time series and M1, M2, ⋯, MK

are the numbers of delayed vectors in the reconstructed space for
K time series (MT=M1+M2+⋯+MK). As in scalar time series, the
correlation sum ofmultivariate data also counts the probability of the
pairs (Yi,Yj) whose distance in the reconstructed phase space is
smaller than ε. The correlation dimension d2 is then determined
from the “scaling region” plateaus (corresponding to different
embedding dimension m) in the plot of dlog2[CMT

(m,ε)]/dlog2 (ε)
against log2(ε) by the same procedure as scalar time series. Within
this “scaling region”, the correlation sum is well described by a
power law. Although there lacks a fundamental mathematical
understanding, the validity (Dhamala et al., 2002) of the phase-space
reconstruction from multiple series has been checked with
mathematical models and multiple channel EEG data.

Principal Component Analysis
Although the input dimensionality of fMRI data may be quite

high (e.g., 600 images for 64×64×5 voxels), the meaningful struc-
ture of these data has many fewer independent degrees of freedom.
On the other hand, direct estimation of the correlation dimension
for fMRI data will become very difficult because of the massive
calculation quantity. Therefore, dimensionality reduction, namely
finding meaningful low-dimensional structures hidden in their
high-dimensional observations, is a key step to deal with large
volumes of high-dimensional data.

Principal Component Analysis (PCA) is a common method to
reduce the dimensionality and to extract important modes of activity
frommassive data such as fMRI data of the human brain (Cordes and
Nandy, 2006). Implementation of PCA (Kantz and Schreiber, 1997;
Hegger and Kantz, 1999) amounts to a search for the direction of
maximum variance in the data, followed by an orthogonal projection
of the data onto a subspace spanned by direction vectors with highest
variance. Algorithmically, PCA calculate an eigenvalue decomposi-
tion of the sample covariance matrix R of M×N real matrix X (for
fMRI data, M is the number of time points and N is the number of
voxels). Since the covariance matrix R is a real symmetric matrix, its
eigenvalues are real and its eigenvectors are orthogonal.

PCA is also easily implemented by singular value decomposition
of the data matrix (Dhamala et al., 2002; Thirion et al., 2006; Reidl
et al., 2007). For aM×N real matrix X, singular value decomposition
is to factorize the matrix X into the product of matrices U, S, V such
as X=USVT, where both U and V are orthogonal matrices of sizes
M×M andN×N respectively, and S is aM×N diagonal matrix with the
singular values σ1≥⋯≥σmin (M, N)≥0.

PCA is essentially a linear method. The reconstruction itself is
just a linear combination. It has been indicated (Dhamala et al.,
2002) that PCA can extract qualitatively nonlinear dynamical
features from experimental time series. Hence, taking the first few
principal components will preserve the correct phase dynamics in
the reconstructed space while it reduces the noise level of the data.
At the same time, due to reducing the dimensions of the data, the
calculation quantity is decreased significantly.

Intrinsic dimensionality estimation
In order to preserve the correct phase dynamics in reconstructed

space, a key step to use the popular tools like PCA for fMRI data
post-processing is to determine the number of essential components,
i.e. the intrinsic dimensionality of fMRI data. A method (Cordes and
Nandy, 2006) based on an autoregressive noise model of order 1 is
used to detect the number of signal components in fMRI data.

Typical fMRI data are composed of signals from specific cog-
nitive and other physiological processes contaminated by noise,
which arises from several different sources such as thermal noise
and scanner noise. Hence, fMRI data can be described by the noise
linear mixing model

xi ¼ Asi þ gi; i ¼ 1; N ;N ð5Þ

where i represents the voxel, N is the number of voxels, xi is the
observed time course with M time points at voxel i, A is the M×p
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dimensional mixing matrix, si is the signal vector with p com-
ponents at voxel i, and ηi is the noise vector which follows a
multivariate Gaussian distribution with zero mean and covariance
matrix ∑. X=[x1,…,xN] is the observation matrix. Though the
number of “true” biological components of the signal may be less
than M (i.e. pbM ), due to the presence of noise and N being larger
than M, X is always a matrix of full rank M. This means that the
dimensionality of full data is always larger than the number of
“true” components.

It is shown (Maxim et al., 2005) that noise in a voxel time series
of fMRI data is not uncorrelated but has an autoregressive
structure, even when the data have been acquired with the subject
“at rest”, and the autoregressive linear time invariant models (AR)
are usually used to model the fMRI noise. Although the variability
of autocorrelation among voxels suggests that it might be suitable
for adapting the order of AR process to each individual time series,
it is proved (Cordes and Nandy, 2006) that modeling the noise by
an AR(1) process seems to work well and leads to consistent
intrinsic dimensionality estimates for simulated data, water phan-
tom data and also preprocessed real data (having corrected motion
artifacts and detrended signal drifts).

Correlated Gaussian noise η(t), satisfying an AR(1) noise
model, is defined by:

g tð Þ ¼ /g t � 1ð Þ þ e tð Þ ð6Þ
where ϕ is the AR(1) coefficient and ε(t) is a random variable with
Gaussian distribution N(0,σ2).

Simulation (Cordes and Nandy, 2006) shows that within the
scope of ϕ ∈[0, 0.3], λ(k), the k-th eigenvalue of the sample co-
variance matrix R, can be approximated by an exponential function

k kð Þ ¼ ae�bk ; ka 1; M½ � ð7Þ
where a(ϕ) and b(ϕ) are the coefficients. Small deviations from the
exponential behavior only occur for very small k (kb10) or very
large k (kNM−10). Cordes and Nandy also indicate that both the
coefficients a(ϕ) and b(ϕ) can also be fitted by exponential
functions for the AR(1) coefficient ϕ∈[0,0.3] and typical fMRI
parameters (the number of voxels N=20,000 and the temporal size
M =160).
Fig. 1. A typical coefficients a(ϕ) against ϕ and b(ϕ) against ϕ for correlated Gau
samples). ϕ is the AR(1) coefficient.
Nevertheless, for small N, we find that neither a(ϕ) against ϕ nor
b(ϕ) against ϕ can be accurately parameterized by an exponential
function. As N=20000, Fig. 1 suggests that the points of loga(ϕ)
against ϕ fall near a straight line for ϕ∈[0.05,0.30], i.e. the plot of
a(ϕ) against ϕ can be accurately parameterized by an exponential
function within this scope of ϕ. The plot of b(ϕ) against ϕ is the
same. However, as N=1539, both the plot of loga(ϕ) against ϕ
and logb(ϕ) against ϕ are nonlinear for ϕ∈[0.05,0.30] as shown
in Fig. 2. In other words, neither the coefficients of a(ϕ) against
ϕ nor the coefficients of b(ϕ) against ϕ can be accurately fitted
by an exponential function. This implies that the method based on
an exponential function cannot obtain an accurate estimate of the
AR(1) coefficient ϕ on condition that N is small.

Interpolation is usually used to estimate the value of a function
between known data points without knowing the actual function.
Cubic spline interpolation (Burden and Faires, 2001) is a useful
technique to interpolate between known data points due to its stable
and smooth characteristics. They are generally well behaved and
continuous up to the second order derivative at the data points. In this
work, after obtaining the plot of coefficient b(ϕ) against ϕ, we
introduced cubic spline interpolation to estimate the AR(1)
coefficient ϕ corresponding to the tail eigenvalues of the covariance
matrix for fMRI data.

The algorithm to estimate the intrinsic dimensionality is carried
out by the following steps:

Step 1. Construct a(ϕ) and b(ϕ) by simulation data in noise space.
The a(ϕ) and b(ϕ) are constructed by using the simulation
data of pure Gaussian noise with AR(1) covariance
structure. The simulation data has the same M and N as
the corresponding fMRI data. All ϕ coefficients are within
the scope of [0,0.5]. Their interval is 0.05. Thus the plot of
a(ϕ) against ϕ and the plot of b(ϕ) against ϕ are obtained.

Step 2. Determine the proper ϕγ corresponding to fMRI data. In
order to determine the proper ϕγ corresponding to fMRI
data, the eigenvalue spectrum of real fMRI data is
calculated. The tail eigenvalues of real fMRI data, excluding
the very last 10 eigenvalues (due to the presence of
colinearities in the data, the last few eigenvalues can be
close to zero, and should therefore be excluded from the
ssian noise corresponding to an AR(1) model (600 time dimension, 20,000



Fig. 2. A plot of coefficients a(ϕ) against ϕ and b(ϕ) against ϕ for correlated Gaussian noise corresponding to an AR(1) model. ϕ is the AR(1) coefficient and
ϕ∈[0, 0.5]. The time dimension is 600 and the number of voxels is 1539.
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purpose of dimensionality estimation), are fitted to λ(k)=
aγe

−bγk, and the coefficients aγ and bγ can be obtained.
Assuming that the tail eigenvalues of the covariance matrix
of real fMRI data will have no contributions for the signals,
the proper ϕγ at the point of obtained coefficient bγ
corresponding to fMRI data, which is also the AR(1)
coefficient, can be estimated by interpolating within the
constructed points of (b(ϕ), ϕ) using cubic spline
interpolation.

Step 3. Adjust the eigenvalue spectrum of the simulated AR(1)
noise data. With the proper coefficient ϕγ estimated from
fMRI data in step 2, the simulated AR(1) noise data are
generated again using the same M and N as the
corresponding fMRI data. Because of the variance normal-
ization of each series, the tail eigenvalues for real fMRI data
will always be smaller by a shift Δ than the corresponding
simulated AR(1) noise eigenvalues due to the fact that real
data contain both signal and noise (Cordes and Nandy,
2006). The shift Δ can be determined from the tail
spectrum, and the eigenvalue spectrum of the simulated
AR(1) noise data can be properly adjusted. Thus, the
adjusted eigenvalue spectrum of the simulated AR(1) noise
data is compared to the eigenvalue spectrum of cor-
responding fMRI data.

Step 4. Estimate the intrinsic dimensionality. After adjusting the
eigenvalue spectrum of the simulated AR(1) noise data, the
number of eigenvalues of real fMRI data that are larger than
the simulated noise eigenvalues defines the dimension of the
signal space. We can get the estimation of the intrinsic
dimensionality by counting the number of eigenvalues of
real fMRI data that are larger than the simulated noise
eigenvalues from k=1 to the first intersection between the
adjusted eigenvalue spectrum of simulated noise data and
the eigenvalue spectrum of real fMRI data.

Spatiotemporal Lyapunov Exponent

A method (Ricard and Jordi, 1995) based on coupled map
lattices (CML), which widely used as models of spatiotemporal
chaos in physical, chemical and biological systems, is introduced to
evaluate numerically a Spatiotemporal Lyapunov Exponent when
very short time series are obtained from a spatially distributed
dynamical system. This method has been proved equal to detecting
nonlinear attribution of a spatial evolution with common short time
series.

A dynamical system is given by a set of nonlinear equations as
follow:

xjnþ1 kð Þ ¼ Fj
A xn kð Þð Þ þ Cj

g xn kð Þð Þ ð8Þ

where j=1, … ,s, x=(xn
1, … ,xn

s) and Fμ
j (x), Cγ

j (x)∈C2(U). U is a
compact set and U⊂Rs. This set of maps is then defined on a two-
dimensional lattice

K2 Lð Þ ¼ k ¼ n; bð Þj1Vn; bVLf g ð9Þ

If we have a time series defined as the set:

Cj kð Þ ¼ X j
1 kð Þ; N ; x j

M kð Þ� � 8kaK2 Lð Þ ð10Þ

using the lagging method, we can construct new m-dimensional
sets as follow:

Cj
m kð Þ ¼ x j

1 kð Þ ¼ x j
i kð Þ; N ; x j

iþm�1 kð Þ� �� � ð11Þ

where i=1,…, M−m+1 and m is an embedding dimension. Now
we consider the global set defined as the union of all local
orbits:

Cm Kð Þ ¼ [
kaK Lð Þ

Cj
m kð Þ ð12Þ

This set is then constructed by (M− (m−1))L2-points.
For each vector Xi

j(k), we search those lattice points h∈Λ2(L),
(h≠k) such that the inequality

jjX j
i kð Þ � X j

i hð Þjj¼
Xiþm�1

u¼i

x j
u kð Þ � x j

u hð Þ� �2" #1=2

be ð13Þ



1677X. Xie et al. / NeuroImage 40 (2008) 1672–1685
can hold. Here ε is the maximum initial separation. Then the Spa-
tiotemporal Lyapunov Exponent will be evaluated by:

ks mð Þ ¼ 1
Np

XM�m

i¼1

X
k;hð Þ

ln
jjX j

iþ1 kð Þ � X j
iþ1 hð Þjj

jjXj
i kð Þ � X j

i hð Þjj

" #
ð14Þ

where Np is the total number of bk,hN pairs.
Here, STLE can be regard as an index of the spatiotemporal

coupling between voxels of fMRI data. The Lyapunov exponents
are related to the average rates of divergence of nearby
trajectories in phase space. System that exhibits a limit cycle or
torus as its attractor exhibits no positive Lyapunov exponents.
When at least one Lyapunov exponent is positive, then the system
at hand is chaotic, and the initial sphere will evolve to some
complex ellipsoid structure reflecting the exponential divergence
of nearby initial conditions along at least one direction on the
attractor.

In some sense, correlation dimension is often used to indicate
what a system is not, too. Noise has an infinite correlation
dimension and thus has a correlation dimension equal to the
embedding dimension. On the other hand, a limit cycle or torus
system has integer correlation dimension. Therefore, a finite and
non-integer correlation dimension is an indicator that the under-
lying system is dominated neither by noise nor by a limit cycle or
torus orbit.

Surrogate data

The most popular method used to identify the nonlinearity of raw
data is a statistical approach utilizing the technique of surrogate data
(Schreiber and Schmitz, 2000; Hegger and Kantz, 1999; Kantz and
Schreiber, 1997). Since this technique is introduced methodologi-
cally into nonlinear dynamics, it has been widely used through
nonlinear data processing (Stam, 2005; Lee et al., 2001; Stam et al.,
1995). Surrogate data are artificially generated that mimic some
Fig. 3. List of procedures applied to the fMRI data. After standard slice-time corre
(1) Eigenvalue spectra analysis. In this part, the eigenvalue spectra for the covariance
The intrinsic dimensionalities of the fMRI data were estimated by themethod based on
interpolation. After extracting important modes of activity from fMRI data by use of P
phase-space was reconstructed by the time-delay embedding for the principal comp
calculated. (3) Spatiotemporal Lyapunov Exponent analysis. In this part, Spatiotem
calculated to fMRI data. In order to test the nonlinearity in the fMRI, surrogate data
properties of the data under study. They can be gained by many
methods.

In order to test the null hypothesis that the data are independent
random numbers, surrogate times series can be simply obtained by
randomly shuffling the measured data (Kantz and Schreiber, 1997;
Schreiber and Schmitz, 2000; LaConte et al., 2004), which take on
exactly the same values as the data, just in random temporal order. If
there is significant difference of the nonlinear property between the
data and their shuffles, the hypothesis of independent random
numbers can be rejected.

Another surrogate for nonlinearity test is designed to test the
null hypothesis that the signal consists of linearly filter Gaussian
noise (Lee et al., 2001). The surrogate data should have the same
power spectrum and autocorrelation function as the raw data under
study (Schreiber and Schmitz, 2000). It can be gained by
randomizing the phase of original raw signal (Schreiber and
Schmitz, 2000; Lee et al., 2001). Firstly, compute the Fourier
spectrum of the raw data using Fourier transformation (FT). The
Fourier spectrum is complex amplitude at each frequency. Secondly,
randomize the phase of the complex amplitude, i.e. each complex
amplitude is multiplied by eiφ, where φ is independently chosen
from [0,2π] for each frequency. Then a new complex spectrum in the
frequency domain, which has the same absolute values as the Fourier
spectrum of the raw data, can be obtained. Thirdly, generate the
surrogate data. The new Fourier spectrum is transformed back into
the time domain by inverse Fourier transform (IFT) and the result is
the surrogate data, which is a realization of linear stochastic process
with the same power spectrum as the raw data. If there is significant
difference of the nonlinear property between the data and their
surrogate data, the hypothesis of linearly filter Gaussian noise can
also be rejected.

For surrogate test, multivariate data can also be treated verymuch
the same way as scalar time series (Schreiber and Schmitz, 2000).
Moreover, we can decide either to keep or to destroy their cross-
correlations between two time series. If all time series are applied the
same permutations, their cross-correlations can be retained.
cting and realigning, there were three process parts for fMRI data analysis.
matrix of the fMRI datasets were analyzed (2) Correlation dimension analysis.
AR(1) noise model which the AR(1) coefficient was estimated by cubic spline
rincipal Component Analysis according to the estimated intrinsic dimensions,
onents and then the correlation dimension based on multivariate series was
poral Lyapunov Exponents, bases on coupled map lattices (CML), were also
generated from fMRI data were introduced in any analysis part.



Fig. 4. Eigenvalue spectrum for real resting-state fMRI data of a single subject using all 600 time frames (dashed line). The solid lines correspond to the
eigenvalue spectra of its 116 surrogate data generated by randomizing its temporal order. The left shows the very first 30 eigenvalues. The right shows the rest.
The last 10 eigenvalues are not shown.
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Data acquisition and analysis

Single-shot gradient echo planar imaging (EPI) data were
acquired from nine healthy volunteers in resting state with closing
eyes, stopping thinking if any idea came up. The data were obtained
on a 1.5T PHILIPS MEDICAL SYSTEMS Gyroscan NT scanner
(TR=700 ms, Flip Angle=70 deg and FOV=23 cm, with 5
transection slices covering the visual cortex and other 5 transection
slices covering the motor cortex, 5 mm slice thickness, matrix size:
64×64). After discarding initial scans (to allow for magnetic
saturation effects) each time series was comprised of 600 scan
images.

The data were preprocessed using SPM2 (http://www.fil.ion.
ucl.ac.uk/spm/software/spm2) software. All time-series were slice-
time corrected, which corrected differences in image acquisition
time between slices, and realigned, which corrected for movement-
related effects. A mask containing only brain voxels was generated
Fig. 5. Eigenvalue spectrum for real resting-state fMRI data of a single subject usin
spectra of its 116 surrogate data generated by Fourier transform with the same powe
right shows the rest. The last 10 eigenvalues are not shown.
by a threshold. In order to retain as much information as possible,
no further preprocess was done.

Fig. 3 summarizes the analysis steps to detect the nonlinearity
of the resting-state fMRI data.

Results and Discussion

Eigenvalues of covariance matrix for real fMRI data (Figs. 4, 5)

The eigenvalue spectra of the covariance matrix R for real fMRI
data were firstly calculated. To obtain estimates of significance, two
kinds of surrogate data were generated as described in above
paragraph. Fig. 4 shows the eigenvalue spectrum for real resting-
state fMRI data of a single subject and the eigenvalue spectra of its
116 surrogate data (pb0.01) generated by randomizing their
temporal order. The left shows very first 30 eigenvalues of the
eigenvalue spectra. The right shows the rest of eigenvalues. The last
g all 600 time frames (dashed line). The solid lines correspond to eigenvalue
r spectrum as the raw data. The left shows the very first 30 eigenvalues. The

http://www.fil.ion.ucl.ac.uk/spm/software/spm2
http://www.fil.ion.ucl.ac.uk/spm/software/spm2


Fig. 6. Eigenvalue spectra for real resting-state fMRI data of a single subject using all 600 time frames (solid line). The dashed line of left plot corresponds to
eigenvalue spectrum of pure AR(1) noise forM=600 where the AR(1) parameter was estimated from data using the method introduced in the paper. The dashed
line of right plot corresponds to its tail-adjusted eigenvalue spectrum of pure AR(1) noise forM=600. The last 10 eigenvalues are not shown. The central plot of
the figure is the zooming of detail in a smaller area of i∈[300,500].
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10 eigenvalues are not shown in the figure. Fig. 5 shows the
eigenvalue spectrum for real resting-state fMRI data of the same
subject and the eigenvalue spectra of its 116 surrogate data generated
by randomizing the phase of the Fourier spectrum. The left shows
the very first 30 eigenvalues of the eigenvalue spectra. The right
shows the rest. The last 10 eigenvalues are also not shown in the
figure.

The distribution of the eigenvalues is directly related to the
amount of correlations of the multivariate data set (Müller and
Baier, 2005). If all N time series are noncorrelated, the nondiagonal
elements of the covariance matrix R tend to zero when the time of
the data tends to infinity. In that case the spectrum of R is
completely degenerate and all the diagonal elements λi =1 ∀i. If all
N time series are perfectly correlated, all the elements of R tend to
one. Only one eigenvalue of this matrix is nonzero, i.e. λmax=N.
For real fMRI data, the distribution of the eigenvalues is between
these two extremes. It suggests that real fMRI data is neither
perfectly noncorrelation, nor perfectly correlation. In Fig. 4, the
surrogate data generated by randomizing temporal order, which all
the eigenvalues are distributed around 1, are almost noncorrelation
between N time series and close to random noise. Because of
significant differences of eigenvalue spectra between real fMRI
and their surrogate data, fluctuations of resting-state fMRI data of
the human brain, therefore, cannot be fully attributed to random
noise. It is also shown that there is some correlation between all N
time series of fMRI data. It is the correlation that is usually used to
detect functional connection in resting-state human brains (Luca
et al., 2006; Lahaye et al., 2003; Hampson et al., 2002; Lowe et al.,
1998).
Table 1
The intrinsic dimensionality of fMRI data

Subject 1 Subject 2 Subject 3 Subject 4

Motor slices 18 22 23 27
Visual slices 27 24 37 35

Note. Motor slices describe all transection slices covering the motor cortex and vi
Intrinsic dimensionality estimation (Table 1, Fig. 2, Fig. 6)

After constructing the simulated pure AR(1) noise data with the
same time dimension and voxel number as fMRI data, the typical
coefficients a(ϕ) and b(ϕ), ϕ∈[0,0.5], were constructed. Because
the tail eigenvalue spectrum of the sample covariance matrix of
fMRI data was also fitted to λ(k)=aγe

−bγk, the coefficients aγ and
bγ corresponding to the fMRI data were obtained. Assuming that the
tail eigenvalues of the covariance matrix of fMRI data would not
have any contribution for the signals, the proper ϕγ at the obtained
coefficient bγ corresponding to fMRI data, which is also the AR(1)
coefficient, can be estimated from the plot of b(ϕ) against ϕ using
cubic spline interpolation. Fig. 6 (left plot) shows the eigenvalue
spectrum of fMRI data for one subject together with the eigenvalue
spectrum of simulated AR(1) noise generated by using the estimated
ϕγ corresponding to the same fMRI data. From Fig. 6 (left plot), it is
shown that the tail eigenvalues for real fMRI data will always be
smaller by a shift Δ than the corresponding simulated AR(1) noise
eigenvalues. The eigenvalue spectrum of real fMRI data for the
same subject together with the adjusted eigenvalue spectrum of AR
(1) noise is also shown in Fig. 6 (right plot). The intrinsic dimen-
sion was estimated by counting the number of eigenvalues of real
fMRI data that are larger than the corresponding adjusted noise
eigenvalues from k=1 to the first intersection between the ad-
justed noise eigenvalue spectrum and the real fMRI data eigenvalue
spectrum.

The intrinsic dimensionalities of real fMRI data of nine subjects
could be estimated by the above method. The results are shown in
Table 1.
Subject 5 Subject 6 Subject 7 Subject 8 Subject 9

20 21 21 32 24
39 37 38 35 33

sual slices all transection slices covering the visual cortex.
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In order to compromise between essential information preserva-
tion and appropriate calculation quantity, there is an important
problem howmany components should be taken from fMRI data for
estimating the correlation dimension. The intrinsic dimensionalities
of the real fMRI data in resting-state of the human brain, which are
shown in Table 1, indicate that all numbers of essential components
are less than 40 for nine subjects. For example, the intrinsic
dimensionality is 18 for the first subject. Namely, 18 components are
enough to extract important modes of activity from fMRI data for the
first subject. From a point of view which information of fMRI data is
retained, it is enough to estimate the correlation dimension using
these 18 components too. However, if there is no exceptionally large
data set available, the correlation dimension estimate cannot be
achieved because of “boundary effects (edge effects)” (Raab and
Kurths, 2001, Galka, 2000) and “finite-size effects” (Raab et al.,
2006). The boundary effects result in decreasing of d2(ε,m) for large
distances ε, and the finite-size effects make awkward or tremendous
fluctuations of d2(ε,m) for small distances ε. These two kinds of
effects will make the scaling region narrowed, even disappeared, so
that no estimation of the correlation dimension can be obtained. On
Fig. 7. The upper left is the correlation sums for the principal components of resting
the plot of log2C(ε) against log2ε at the same scope of embedding dimensions. T
correlation dimensions with the embedding dimensions.
the other hand, for estimating the correlation dimension, the larger
the amount of data is, the better the result is, but the larger the
calculation quantity is as well. Too much amount of data will result
in horrible calculation quantity. Because the maximum intrinsic
dimension of nine subjects is 39 and less than 40, therefore, it is
reasonable to calculate the correlation dimension using 40 com-
ponents extracted from fMRI data of each subject. It assures not only
including all the necessary components of fMRI data and having
enough large data set for estimating the correlation dimension, but
also having proper calculation quantity.

Correlation dimension estimation (Table 2, Fig. 7­9)

Before estimating the correlation dimension, PCA was
implemented to extract a few components from fMRI data. Based
on the confirmed intrinsic dimensionalities, 40 properly compo-
nents were extracted from real fMRI data (the first component was
excluded because it did not represent those involved in the
functional dynamics but the variance due to drift of the baseline).
The extraction of useful principal components not only retains the
-state fMRI as the embedding dimension m is from 2 to 25. The upper right is
he lower left is the local slopes d[ε] against log2ε. The lower right is the



Table 2
The correlation dimension of fMRI data

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9

Motor slices 4.19±0.11 3.63±0.03 5.60±0.19 6.46±0.37 5.73±0.24 9.34±0.24 8.65±0.27 8.81±0.07 8.57±0.33
Visual slices 4.44±0.07 3.70±0.08 4.78±0.11 4.86±0.02 4.46±0.04 3.71±0.02 2.70±0.11 3.64±0.07 4.51±0.06

Note. Motor slices describes all transection slices covering the motor cortex and Visual slices describes all transection slices covering the visual cortex.
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principal information including in fMRI data, but also reduces both
computational load and noise level in the signals. Out of the
extracted principal component set, a phase space was reconstructed
with a time-delay embedding scheme for embedding dimensions m
from 2 to 25, as well as proper delay times τ. Each subject has a
delay time τ itself, which was determined by using mutual infor-
mation method (Kantz and Schreiber, 1997), and all components
have the same τ for one subject. With the delay vectors constructed
from 24000 data points (40 components×600 time points), the
correlation dimension could be estimated.

Fig. 7 is the plots of correlation sum C(ε) against log2(ε), log2C
(ε) against log2(ε), d(ε,m) against log2(ε), and d(m) against m for
fMRI data of one subject. At reconstructed phase space with
embedding dimensions m=2 to 25, the plots indicate power law
behavior of the correlation sum with most of the length scale ε. A
scaling behavior is apparent as shown in the plot of local slopes [d(ε,
m)] against log2(ε). The values for d(m) can be read off in scale
region. From the plot of local slopes [d(ε,m)] against log2(ε), it can
also be shown that statistical fluctuations (finite-size effects and
noise) distort the scaling behavior below this length scale, and the
decreases (boundary effects) destroy the scaling behavior above this
length scale. At sufficiently high embedding dimensions, a
saturation value appears from this scaling region as shown in Fig.
7 (lower right). The saturation value is defined as the correlation
dimension d2.

Table 2 shows the correlation dimensions of resting state fMRI
data of nine subjects. All subjects have the nature of non-integer
correlation dimensions.

To test nonlinearity, two kinds of multivariate surrogate data
were generated from the principal component sets, as described in
Fig. 8. The left is the local slopes d[ε] against log2ɛ of surrogate data gained by per
slopes d[ε] against log2ε of surrogate data gained by randomizing their phases in
surrogate data.
above paragraph, and their correlation dimensions were calculated
as well. Fig. 8 shows the local slopes d(ε,m) against log2(ε) for one
of 20 surrogate data (pb0.05). The comparison of correlation
dimensions between fMRI data and two kinds of surrogate data is
shown in Fig. 9. For fMRI data, there are significant scale region and
saturation of d(m) as the embedding dimension m increases. But for
two kinds of surrogate data, there are no scale region and saturation
of d(m).

The apparent differences of correlation dimensions between
fMRI data and their surrogate data, as well as fractal correlation
dimensions shown in Table 2, indicate that the resting state fMRI
signals cannot fully attribute to: (1) white noise; (2) filtered noise;
(3) linear stochastic process. Therefore it can be concluded out that
there is nonlinear fractal behavior in fMRI signals and dominant
deterministic dynamical structure governing the human brain.

Although estimation of the correlation dimensions can give us
useful measures to expect the order parameters of brain dynamics
(Dhamala et al., 2002), successful correlation dimension estimation
requires stationary time series, sufficient amount of data set with
noise-free, appropriate choice of the parameters for phase space
reconstruction. Unfortunately, for fMRI data, these conditions can
not be fulfilled completely, and the estimates of dimension may not
reflect the true dimensions of the brain dynamics. However, it is
demonstrated (Galka, 2000) that the “traditional” correlation di-
mension estimation may already yield reasonable information
about the temporal evolution of the dynamics, and this fact implies
that the correlation dimension in various conditions encountered in
medical and physiological research at least contain qualitatively
useful information about the underlying process. Here, it can be
considered that the estimated correlation dimensions contain rea-
muting as the embedding dimension m is from 2 to 25. The right is the local
the Fourier domain. There is apparently no scale region for the multivariate



Fig. 9. The comparison of the correlation dimension of fMRI, surrogate data
generated by permuting and surrogate data generated by Fourier transform.
For fMRI data, there is a significant saturation of d(m) as embedding
dimension m increases. But for two kinds of surrogate data, there is no
saturation of d(m).
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sonable and useful information about brain dynamics of resting
state and spatiotemporal nonlinearity in rest-state fMRI data of the
human brain is detected.
Spatiotemporal Lyapunov Exponent analysis (Table 3, Fig. 10)

The STLEs were calculated to the slices numbered by 2, 3, and
4 of the resting state fMRI data for the human brain. The embed-
ding dimension m=8, and ε=0.02. The STLEs of nine subjects are
shown in Table 3. The most important characteristic is that all the
STLEs are positive.

To test the nonlinearity of coupling between voxels of fMRI data,
the time evolutions of the STLEs were calculated to 25 surrogate
data (pb0.05) generated by twomethods. One kind of surrogate data
was obtained by randomly shuffling the measured data, and keeping
simultaneously their cross-correlations between voxels in order to
retain the information of linear coupling. The other kind of surrogate
data was gained by randomizing the phase of the Fourier spectrum of
real fMRI data, and keeping simultaneously the cross-correlations
between voxels in order to maintain their linear correlations, too. In
fact, the second sets of surrogate data retain the same covariance
matrix as the corresponding fMRI data. They can be used to test not
only the nonlinear correlations between voxels, but also the non-
linearity in each voxel time series itself. The results for one subject
were shown in Fig. 10. The significant differences of the STLEs
Table 3
The STLE of fMRI data in resting state brain

Subject 1 Subject 2 Subject 3 Subject 4

Slice2 of SCMC 0.1782 0.1503 0.2283 0.2774
Slice3 of SCMC 0.2297 0.1505 0.2150 0.2694
Slice4 of SCMC 0.2259 0.1516 0.2177 0.2562
Slice2 of SCVC 0.1754 0.1050 0.2206 0.2494
Slice3 of SCVC 0.2006 0.1456 0.2263 0.2499
Slice4 of SCVC 0.1750 0.1749 0.2246 0.2428

Note. SCMC means slice covering the motor cortex and SCVC means slice cover
between fMRI data and their surrogate data, as well as the positive
STLEs (shown in Table 3) which characterize the nonlinear chaotic
property of fMRI data, indicate that resting state fMRI signals
cannot fully attribute to: (1) white noise; (2) filtered noise; (3) linear
stochastic process; (4) linearly coupled.

As we all know, the contraction of the heart is approximately
periodic, i.e. the cardiac rhythm appears to be quasi-periodic, and
many biological rhythms (including cardiac rate and respiration)
are best represented mathematically as limit cycle oscillations in
differential equations (Glass and Mackey, 1988). Therefore,
breathing and cardiac activity in resting-state usually appear some
properties of the limit cycle or torus attractors. As mentioned
above, noise has an infinite correlation dimension and a limit cycle
or torus system has an integer correlation dimension. On the other
hand, a system that exhibits a limit cycle or torus as its attractor has
no positive Lyapunov Exponents. The results of finite correlation
dimensions significantly lower than the embedding dimensions,
non-integer correlation dimensions (Table 2) and positive STLEs
(Table 3) suggest that the underlying system is dominated by
neither noise nor a limit cycle or torus orbit. In other words, the
nonlinearity of fMRI data cannot be raised by respiratory move-
ment and cardiac activity. It is the intrinsic property in the resting-
state human brain.

Through analysis above, it is considered that resting-state fMRI
signals of the human brain have spatiotemporal nonlinear proper-
ties. Fluctuations at very low frequencies (0.1 Hz) presented in
resting state fMRI signals may be an inherent model of basal
neural activation in the human brain, and cannot be full attributed
to noise. This activity exhibits striking patterns of coherence
(Raichle, 2006; Thirion et al., 2006) within known networks of
specific neurons in the human brain in the absence of observable
behaviors.

Conclusion

In this work, the spatiotemporal nonlinearity in resting-state
fMRI data of the human brain was detected by nonlinear dynamics
methods. Eigenvalue spectra, correlation dimensions and Spatio-
temporal Lyapunov Exponents were calculated to demonstrate the
spatiotemporal nonlinearity in resting-state fMRI data of the human
brain.

Eigenvalue spectra analysis results of the covariance matrix for
resting-state fMRI data in the human brain suggest that fMRI data
are neither perfectly noncorrelation, nor perfectly correlation.
Because of significant differences of eigenvalue spectra between
real fMRI data and their surrogate data, fluctuations of resting-state
signals in the human brain, therefore, cannot be fully attributed to
noise, and there is a determined correlation between all time series of
fMRI data.
Subject 5 Subject 6 Subject 7 Subject 8 Subject 9

0.2030 0.1708 0.2133 0.1621 0.2451
0.2361 0.1834 0.2261 0.1940 0.2540
0.2520 0.2601 0.2488 0.1889 0.2306
0.2784 0.1694 0.2523 0.1971 0.2571
0.2571 0.1820 0.2514 0.1930 0.2614
0.2764 0.1978 0.2347 0.2107 0.2593

ing the visual cortex.



Fig. 10. The STLEs evolved with time. The left shows STLEs of fMRI data and its 25 surrogate data generated by permuting. The right shows STLEs of fMRI
data and its 25 surrogate data generated by Fourier transform. There is apparent difference between fMRI and its surrogate data.
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By simulating, adjusting, and comparing eigenvalue spectra of
proper AR(1) noise with the corresponding real fMRI data, the
intrinsic dimensionality is estimated. Then the intrinsic dimension-
ality is used to extract the first few principal components from real
fMRI data using PCA, which will preserve the correct phase
dynamics, while reducing both computational load and noise level of
the data.

In the phase-space, which was reconstructed using the time-
delay embedding method for their principal components, the
correlation dimension of spatiotemporal series was estimated by
use of the Grassberger-Procaccia algorithm. Scaling behaviors
about d(ε,m) are apparent and the saturations of d(m) can be read
off, which have the nature of non-integer correlation dimensions
for all subjects. On the other hand, the STLEs were calculated by
using coupled map lattice methods to resting state fMRI of the
human brain, and are positive for all subjects.

To test the nonlinearity, two kinds of multivariate surrogate data
were generated using randomly shuffling in time domain and
phase-scrambling in Fourier space for resting state fMRI data and
correlation dimensions and STLEs were also calculated for two
kinds of surrogate data. By comparison of correlation demensions
and STLEs, the significant differences between fMRI data and two
kinds of surrogate data lead us to conclude out that resting state
fMRI signals cannot fully attribute to: (1) white noise; (2) filtered
noise; (3) linear stochastic process; (4) linearly coupled. Therefore,
we could convince that the spatiotemporal nonlinear dynamics
property in fMRI signals is detected, and there exists the deter-
ministic nonlinear behavior in the resting state human brain.
Fluctuations at very low frequencies (0.1 Hz) presented in resting
state fMRI signals may be an inherent model of basal neural
activation of the human brain.

Further work will study the nonlinearity and the interrelation of
special regions of the human brain to reflect pathologic and/or
physiologic alterations. In order to test nonlinearity in more detail,
the surrogate data generated by wavelet analysis method (Sendur et
al., 2007; Friman and Westin, 2005; Bullmore et al., 2004;
Breakspear et al., 2003) will be used. We believe that measures of
nonlinearity with the spatial distribution of activity will ultimately
yield intensive understanding into the function of the human brain.
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Appendix

The shift Δ

Suppose that the real data comprise p signal components and
their tail eigenvalues of the covariance matrix can be fitted by an
exponent function λ0(k) = ae−bk, and k=p+1,p+2,…,M; the AR(1)
coefficient ϕγ can then be estimated using the method based on
AR(1) noise model. The corresponding simulated AR(1) noise data
can be generated using the estimated ϕγ. If the estimation is accurate
enough, the eigenvalues for simulated AR(1) noise data using the
estimated ϕγ can be fitted by an exponent function λ1(k)=aVe−bk,
which has the same b as the real dataset. The domain of definition
of λ1(k) is k= 1, 2,…,M. In order to make comparison easy, λ0(k)
is also extended to k=1, 2,…,M following the exponent function
λ0(k)=ae

−bk.
Real data contain both signal and noise and the corresponding

simulated pure AR(1) noise data contain only noise, and each time
series is normalized by its variance. Therefore, the eigenvalues of
the covariance matrices form the pattern

M ¼
XM
k¼1

aVe�bkN
XM
k¼1

ae�bk ða1Þ

Using inequality (a1), it is proved easily that the inequality
abaV can hold. Thus, we can obtain the inequality λ0(i)=ae

−bib
aVe−bi=λ1(i), ∀i∈[p+1,M]. This means that the tail eigenvalues of
covariance matrix for the real data are always smaller than the
corresponding eigenvalues for simulated pure AR(1) noise. The
shift Δ can be obtained by the mean of differences between tail
eigenvalues of real data and those of simulated AR(1) noise
data.
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