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Abstract

Activation patterns identified by fMRI processing pipelines or fMRI software packages are 

usually determined by the preprocessing options, parameters, and statistical models used. Previous 

studies that evaluated options of GLM (General Linear Model)-based fMRI processing pipelines 

are mainly based on simulated data with receiver operating characteristics (ROC) analysis, but 

evaluation of such fMRI processing pipelines on real fMRI data is rare. To understand the effect 

of processing options on performance of GLM-based fMRI processing pipelines with real fMRI 

data, we investigated the impact of commonly-used fMRI preprocessing steps; optimized the 

associated GLM-based single-subject processing pipelines; and quantitatively compared univariate 

GLM (in FSL.FEAT and NPAIRS.GLM) and multivariate CVA (Canonical Variates Analysis) (in 

NPAIRS.CVA)-based analytic models in single-subject analysis with a recently developed fMRI 

processing pipeline evaluation system based on prediction accuracy (classification accuracy) and 

reproducibility performance metrics. For block-design data, we found that with GLM analysis (1) 

slice timing correction and global intensity normalization have little consistent impact on fMRI 

processing pipelines, spatial smoothing and high-pass filtering or temporal detrending 

significantly increases pipeline performance and thus are essential for robust fMRI statistical 

analysis; (2) combined optimization of spatial smoothing and temporal detrending improves 

pipeline performance; and (3) in general, the prediction performance of multivariate CVA is 

higher than that of the univariate GLM, while univariate GLM is more reproducible than 

multivariate CVA. Because of the different bias-variance trade-offs of univariate and multivariate 
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models, it may be necessary to consider a consensus approach to obtain more accurate activation 

patterns in fMRI data.
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Introduction

Over the past one and a half decades, functional MRI (fMRI) has emerged as a powerful 

neuroimaging tool to study brain functions. In recent years, the potential of fMRI in 

diagnosing brain diseases has been identified (Sabatini et al., 2000; Bookheimer et al., 2000; 

Haslinger et al., 2001; Lipton et al., 2003; Machulda et al., 2003; Muller et al., 2003; 

Rombouts and Scheltens, 2005). As a non-invasive procedure, fMRI has become a critical 

step in preoperative surgical planning (Fernández et al., 2003; Stippich et al., 2007a; 

Bookheimer, 2007; Tharin and Golby, 2007), and fMRI analysis for individual patient has 

been used for presurgical mapping which assists neurosurgeons and neuroradiologists in 

maximizing surgical outcomes while minimizing surgical risks. In addition, fMRI has 

become a potential tool for central nervous system drug development (FitzGerald et al., 

1997; Stein et al., 2001; Borsook et al., 2006; Becerra and Borsook, 2006).

With the advance of fMRI technology, various statistical models and methods have been 

developed to analyze fMRI data in order to meet the demands of growing fMRI applications. 

The statistical methods in fMRI analysis can be classified into two categories: (1) univariate 

statistical methods such as the univariate general linear model (GLM) (Friston et al., 1994; 

Friston et al., 1995a; Friston et al., 1995b; Worsley et al., 1995) which characterizes region 

specific responses at each voxel based on assumptions; and (2) multivariate methods such as 

principal component analysis (PCA) (Andersen et al., 1999; Friston et al., 1999; Friston et 

al., 2000; Hansen et al., 1999; Laiand et al., 1999), canonical variates analysis (CVA) 

(Bullmore et al., 1996; Friston et al., 1995c; Worsley et al., 1997) and independent 

component analysis (ICA) (McKeown et al., 1998; Biswal et al., 1999; McKeown et al., 

2000) which are often exploratory and data-driven, and have the potential to identify 

activation patterns that may reveal neural networks and functional connectivity of the brain.

A number of software tools such as Statistical Parametric Mapping (SPM) (Friston et al., 

1996), Analysis of Functional NeuroImages (AFNI) (Cox, 1996), FMRIB Software Library 

(FSL) (Smith et al., 2004) have been developed and widely used for functional 

neuroimaging data analysis. However, these methods and software implementations often 

lack rigorous evaluation, and the fMRI analysis results generated by these software packages 

often lack careful validation. Various analysis models and/or software tools with the same 

functional neuroimaging dataset and similar parameter settings may identify different 

activation regions or spatial patterns in the brain and generate different statistical parametric 

images (SPIs) (Poline et al., 2006). There is little consensus on which fMRI processing 

pipeline, including a series of preprocessing steps and statistical analysis, or software 

package best detects brain activations and should be used in fMRI analysis. Consequently, 
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the problem of lack of fMRI processing pipeline evaluation and result validation hinders the 

further development of optimal fMRI applications. Further, the incompatibility of various 

fMRI software tools has made it more difficult to compare numerous fMRI results (Fissell et 

al., 2003) and has become a large obstacle to collaborative efforts in fMRI studies 

(Skudlarski et al., 1999; Rex et al., 2003).

From clinical point of view, fMRI is not a fully established diagnostic neuroimaging method 

today. This is mainly due to a lack of standardization and guidelines, and the lack of 

licensing of important hardware and software components (Stippich, 2007b). In order to 

solve the bottleneck problem in fMRI applications, it is crucial to explore methods to 

evaluate, compare, optimize and standardize heterogeneous fMRI processing pipelines. The 

most widely used approach to fMRI result validation and pipeline performance evaluation is 

the receiver operating characteristic (ROC) method. Since there is not easily measurable 

ground truth in real fMRI data, ROC analysis often requires simulation. Considerable work 

has been done to evaluate fMRI preprocessing steps and statistical methods with ROC 

approach on simulated data (Skudlarski et al., 1999; Gavrilescu et al., 2002; Lange et al., 

1999; Lukic et al. 2002; Della-Maggiore et al., 2002; Beckmann et al., 2004). In particular, 

Skudlarski et al. (1999) found that the removal of intensity drifts by temporal detrending and 

high-pass filtering is beneficial to fMRI analysis, but temporal normalization of the global 

image intensity and low-pass filtering do not improve analytical power. Moreover, Lukic et 

al. (2002) and Beckmann et al. (2004) reported evidence that multivariate data analytical 

approaches may outperform the widely used univariate GLM technique. However, the 

effectiveness of standard ROC analysis depends on how well the simulated data 

approximates the real data. To try to overcome simulation-dependent biases, several 

modified ROC methods were developed to work with real fMRI data and approximate true 

positive ratios (TPR) and false positive ratios (FPR) in various ways (Le and Hu, 1997; 

Genovese et al., 1997; Maitra et al., 2002; Nandy et al., 2003; Liou et al., 2006). For 

example, the modified ROC curves that Nandy et al. (2003) proposed depend on the 

proportion of active voxels for TPR and the fraction of voxels detected to be active in a 

separate rest-state data set for a FPR. Liou and Maitra, using a mixed multinomial 

distribution approach introduced by Genovese et al. (1997), focus on the “reproducibility of 

a voxel defined as the degree to which the active status of the voxel, in responding to 

stimuli, remains the same across replicates implemented under the same conditions” (Liou et 

al., 2006). These approaches produce ROC curves that contain an unknown model bias 

characteristic of all attempts to measure reproducibility by our group and others. The 

fundamental problem of using approximated TPR and FPR, or reproducibility, as ground 

truth in ROC analysis for real fMRI data (where ground truth and model bias are generally 

not knowable) ultimately hinders the accuracy of all these modified ROC methods. We have 

attempted to overcome some of these limitations by focusing on the joint optimization of 

two metrics: (1) a global reproducibility measure based on comparing independent SPIs 

(Strother et al., 1997), and (2) a potentially unbiased predictive learning, or generalization 

measure, based on the accuracy of the estimated modeling parameters for predicting the 

experimentally defined brain states in a cross-validation framework (Stone, 1974; Larsen 

and Hansen, 1997).
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Guided by statistical learning, the nonparametric prediction, activation, influence and 

reproducibility resampling (NPAIRS) approach was proposed (Strother et al., 2002) to 

evaluate fMRI processing pipelines on real fMRI data based on prediction accuracy and SPI 

reproducibility. A detailed description can be found in Strother et al. (2002) and Laconte et 

al. (2003) regarding the NPAIRS approach and its metrics. Briefly, in the NPAIRS 

approach, fMRI data is split into 2 independent halves (on subjects, sessions, or runs): the 

training set and the test set. For example, in this study we use a within-subject split defined 

by the two available runs per subject. Prediction accuracy is obtained by applying model 

parameters estimated in the training set (e.g., run 1) to the test set (e.g., run 2), cross-

validating (in this study by swapping the definition of the training set to run 2 and the test 

set to run 1), and averaging the prediction accuracy estimates (in this study two per subject). 

Prediction accuracy (p) is measured as the average posterior probability of each fMRI 

volume’s true class membership (i.e., predicted baseline or activation brain state) in the test 

set based on the training set parameters and Bayes formula (Mardia et al., 1979; Strother et 

al., 2002). For each independent pair of split-half data sets the resulting SPIs’ reproducibility 

is defined as the correlation (r) between all pairs of spatially aligned voxels in the brain. In 

general the average, or median, of the distribution of such correlation values is obtained 

from the independent SPIs of many split-half resamplings of the fMRI data (e.g., in this 

study there is one split and one correlation value per subject). Reproducible SPIs can be 

obtained from arbitrary data analysis approaches on a Z-score scale (Strother et al., 2002) in 

the NPARIS approach.

The NPAIRS approach was implemented in the NPAIRS software package (http://

neurovia.umn.edu/incweb/download_home.html), which also provides models such as GLM 

and PCA/CVA for statistical analysis. Utility of the NPAIRS framework has been 

demonstrated by a number of single-subject and group analyses in functional neuroimaging 

(Strother et al., 2002, 2004; Kjems et al., 2002; Shaw et al., 2003; LaConte et al., 2003; 

Chen et al., 2006). However, there are some limitations to the existing software 

implementation of the NPAIRS approach, an Interactive Data Language (IDL)-based 

NPAIRS package. The main limitations of the NPAIRS package are (1) lack of system 

interoperability, which makes it difficult to evaluate modules in other software packages, 

and (2) lack of a GLM prediction measure, which hinders the evaluation of GLM-based 

pipelines. Hence, a Java-based pipeline evaluation system has been developed to allow the 

evaluation of GLM and CVA-based heterogeneous fMRI processing pipelines with the 

NPAIRS approach (Zhang et al., 2008).

Since in the NPAIRS package a prediction measure was not available to GLM-based 

pipelines but only to CVA-based pipelines, the scope of our previous research using (p, r) 

plots was largely restricted to the evaluation of CVA-based pipelines (Laconte et al., 2003; 

Shaw et al., 2003; Strother et al., 2004; Chen et al., 2006; Zhang, 2005). In this study, with 

the Java-based fMRI processing pipeline evaluation system, we (1) evaluated the impact of a 

series of preprocessing steps: slice timing correction, motion correction, spatial smoothing, 

temporal filtering (including two forms of high-pass filtering: Gaussian-weighted running 

line smoother of FSL and cosine basis set detrending which is close to the SPM approach to 

high-pass filtering) and global intensity normalization on GLM-based single-subject 

processing pipelines; (2) optimized the associated GLM-based single-subject processing 
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pipelines (3) quantitatively compared the performance of fMRI processing pipelines with 

univariate GLM (in FSL.FEAT and NPAIRS.GLM) and multivariate CVA (in 

NPAIRS.CVA) in single-subject analysis.

Methods

fMRI and MRI Data

This study used a BOLD fMRI dataset, in which a block design parametric static force task 

was applied to 16 normal subjects who were scanned on a 1.5-T Siemens scanner. Two 

fMRI runs per scan session were acquired with an EPI BOLD sequence [TR = 3986 ms; TE 

= 60 ms; FA = 90°; Matrix, 64 × 64; FOV = 220 × 220 mm; number of slices, 30; number of 

time points, 135; voxel dimensions, 3.44 × 3.44 × 5 mm; slab thickness, 150 mm; 

orientation, oblique transverse (axial), 20°; shift mean, 6.4 mm (center of slice relative to 

magnet isocenter); imaging time per procedure, 9 min]. In each run, there were six baseline 

periods, which alternated with five activation periods during which a static force was 

applied to a force transducer held by the subject between the right thumb and forefinger with 

randomly assigned force levels (200g, 400g, 600g, 800g, 1000g) monitored via a visual 

feedback loop. Each baseline and activation epoch lasted for 45s and the fundamental 

frequency of the block design was 0.011Hz. More details of this data set are available from 

LaConte et al. (2003).

Data Analysis Environment

We employed a Java-based fMRI processing pipeline evaluation system (Zhang et al., 2008) 

which integrates YALE (or RapidMiner), a machine learning environment, into Fiswidgets, 

a fMRI pipeline environment (Fissell et al., 2003). In this environment we implemented a 

GLM prediction measure by applying the GLM prediction algorithm (Kjems et al., 2002) to 

evaluate heterogeneous fMRI processing pipelines. The preprocessing software used was 

Visualization and Analysis Software Tools (VAST*), an IDL-based software library 

developed at the VA Medical Center in Minneapolis. The preprocessing software and the 

IDL-based NPAIRS package were integrated into Fiswidgets through the Java wrappers that 

Fiswidgets provides. FMRI processing pipelines were built and run on the Fiswidgets 

GlobalDesktop. Some adaptations were made for modules that were not completely 

incorporated into Fiswidgets, e.g., FSL.FEAT (Image Analysis Group, FMRIB at Oxford). 

FSL.FEAT was run in batch mode with parameter files through the Unix command widget 

that Fiswidgets provides.

Preprocessing

Slice timing correction was performed by the FSL.slicetimer. High-pass temporal filtering 

was realized by applying the high-pass filter in FSL.FEAT. Temporal detrending was 

achieved by specifying a linear combination of cosine basis functions in the GLM design 

matrix and retaining the residuals and desired effects of the GLM model as the detrended 

data (Strother et al., 2004). Spatial smoothing was implemented through convolution with a 

2D (within-slice) Gaussian kernel. Global intensity normalization was performed by 

dividing the intensities of each fMRI volume by its volume mean.

ZHANG et al. Page 5

Neuroimage. Author manuscript; available in PMC 2014 December 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Motion correction was carried out with AIR.alignlinear applying a 6-parameter rigid body 

transformation to align each fMRI volume with the first volume of the first run in order to 

remove head motion. AIR.alignlinear was also used in the mean fMRI-to-structural MRI 

transformation (6-parameter). The intra-subject alignment from individual fMRI space to 

structural MRI space was derived by multiplying the fMRI motion correction transformation 

and the mean fMRI-to-structural MRI transformation. The fMRI volumes were then 

resampled to the individual MRI space by applying the derived transformation to each fMRI 

volume and projecting it into the subject’s structural MRI space. Inter-subject alignment was 

performed for pipeline optimization and evaluation of analytic models. The inter-subject 

alignment transformation was derived by combining the intra-subject alignment 

transformation with a structural MRI-to-MNI152 (Montréal Neurological Institute template) 

transformation using a 7th order polynomial warp in AIR5.03 (Woods et al., 1998). The 

fMRI volumes were then aligned to the MNI template brain through inter-subject alignment.

Statistical Analysis

For the processing pipelines tested, univariate GLM analysis was carried out with 

FSL.FEAT and NPAIRS.GLM, both applied to split-half runs within the Java-based 

NPAIRS pipeline evaluation framework. In FSL.FEAT, the default square waveform with 

default options was used to convolve with the default (single) gamma hemodynamic 

response function (HRF) and no temporal derivative was added. In NPAIRS.GLM, since 

convolution was not available in the NPAIRS package, no HRF convolution (nor temporal 

derivative) was applied.

For multivariate NPAIRS.CVA, the baseline-activation transition volumes were dropped to 

improve the model cost function as described in LaConte et al. (2003). NPAIRS.CVA is 

based on PCA which reduces the input data dimension, controls model complexity and 

avoids singular covariance matrices. In NPAIRS.CVA, fMRI data was first decomposed 

using PCA, and a reduced number of principle components (PCs) were then passed to CVA 

where the within- (W) and between-class (B) covariance matrices were constructed. We 

used a two-class CVA, or Fisher Linear Discriminant, with baseline and activation volumes 

assigned to the two separate classes (Mardia et al., 1979). The matrix W−1B was 

decomposed with a further PCA where the single PC obtained maximizes the ratio of 

between-class mean variance to the pooled within-class variance. The number of PCs can be 

optimized to control model complexity and tradeoff prediction with reproducibility as 

outlined in LaConte et al., (2003) and Strother et al. (2002, 2004).

Evaluating the Impact of Preprocessing Steps

The impact of preprocessing steps including slice timing correction, motion correction, 

spatial smoothing, temporal detrending and global intensity normalization was evaluated for 

NPAIRS.GLM-based pipelines. Only the impact of temporal filtering was evaluated for 

FSL.FEAT-based pipelines.

To avoid testing preprocessing steps in isolation, a set of preprocessing options in a range of 

settings (Table 1) were set to evaluate each preprocessing step tested. For example, as 

shown in Table 1, the impact of slice timing correction was tested by turning it on and off in 
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pipelines with motion correction, 0 and 2 pixel spatial smoothing, and cosine detrending 

settings of all half and full cycles up to the following cutoff cycles {1.0, 1.5, 2.0, 3.0}, 

where one cycle has a period of 69 s. However, to limit the total number of combinations, 

tested parameters were dropped from further testing when no significant effect was found.

We used a prediction accuracy (p) vs. reproducibility (r) plot to evaluate the performance of 

the functional neuroimaging data processing pipelines outlined above. As it is unclear 

whether one metric is to be preferred over another we gave an equal weighting (1:1) to p and 

r measures in this study to calculate the Euclidean distance between the (p, r) pair of the 

pipeline tested and the optimal values of (1, 1) for perfect prediction accuracy and 

reproducibility.

The mean distance change (deltaM) across the 16 individually processed and tested subjects 

was used to measure the impact of each preprocessing step tested. This was defined as the 

difference of the mean distance across all subjects to perfect prediction and reproducibility 

(1,1) calculated by subtracting the mean distance with the step from that without the step. It 

can be expressed as:

(1)

where D̄ is the mean distance between the (p, r) performance of the pipeline tested and (1, 

1); pi0 and ri0 are the prediction accuracy and reproducibility without the preprocessing step 

tested for the ith subject, pi and ri are the ones with the preprocessing step for the ith subject; 

and N is the total number of subjects in the dataset. Note that improved pipeline 

performance implies either pi > pi0 and/or ri > ri0, and that deltaM = D̄0 − D̄ >0. To compare 

the relative impact of the preprocessing steps tested, relative variation was further computed 

through dividing mean distance change (deltaM) by its standard deviation.

Optimizing Single-Subject Preprocessing Steps

For NPAIRS.GLM and FSL.FEAT-based, single-subject pipelines the optimization of 

preprocessing steps based on the spatial smoothing and temporal filtering results from the 

evaluation of the impact of the different steps was performed on inter-subject aligned data. 

For pipelines with NPAIRS.GLM the parameters were: (1) spatial smoothing with in-plane 

Gaussian full-width-half maximum (FWHM) = 0, 1.5, 2, 4, 6 pixels multiplied by the in-

plane pixel size (3.44 mm2), and (2) temporal detrending, cosine cycle of 0 and ≤ 1, 1.5, 2, 

3. For FEAT, the spatial smoothing options were FWHM = 2, 4, 6 pixels and high-pass 

filtering cutoffs were 176 seconds (similar to 2 cosine cycles in a run) and 128 seconds 

(similar to 3 cosine cycles in a run). The impact of such optimization on GLM-based 

pipelines was examined with both NPAIRS performance metrics, and between subject 

reproducibility (BSR).

Using NPAIRS performance metrics and BSR to assess the impact of pipeline optimization 

is described in (Zhang, 2005). Briefly, the optimized pipeline was compared with the best 

performing non-optimized (penultimate) pipeline in order to examine the impact of pipeline 

optimization. In the BSR approach, the number of activated voxels (Z > 3) common to each 
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pair of subjects relative to the average number of activated voxels between both subjects 

was measured and this procedure was repeated for all possible pairs of subjects to obtain a 

conjunction matrix. The BSR for all 16 subjects was measured as the average of the 

conjunction matrix values for all possible pairs (Shaw et al., 2003). Based on the pipeline 

optimization results of the 16 subjects, an optimized BSR matrix (16 × 16) was formed. The 

non-optimized BSR matrices were calculated using the SPIs generated by the non-optimized 

pipelines and they were ranked by mean BSR across all subject pairs to obtain the best 

performing non-optimized pipeline (or the penultimate pipeline). The distribution of 

pairwise BSR values for the penultimate pipeline was then compared with that from the 

optimized BSR matrix using a Wilcoxin matched-pairs rank sum test to see whether average 

group homogeneity improved after optimization.

Evaluating heterogeneous pipelines

In this study, the evaluation of the heterogeneous pipelines across four models 

(NPAIRS.GLM, NPAIRS.CVA with #PCs=5, NPAIRS.CVA with optimized #PCs (#PCs 

tested = 2, 5, 10 and 25), and FSL.FEAT) was performed at 2, 4, 6-pixel smoothing levels, ≤ 

2 cosine detrending (for NPAIRS.CVA and NPAIRS.GLM) or 176 second high-pass 

filtering (for FSL.FEAT), with intra- and inter-subject alignment. The combination of the 

pipeline choices together with 4 types of statistical models formed 24 pipelines in total.

In order to compare relative pipeline performance across heterogeneous models, 

classification accuracy was employed as a measure of prediction performance (Stone, 1974; 

Bullmore et al., 1995; Lautrup et al.,. 1994). Classification accuracy is defined as: 

. The threshold of posterior probability was set as total 

number of scans 0.5, which is used to determine an fMRI volume’s class membership based 

on posterior probability (i.e., if posterior probability >= 0.5, the fMRI volume belongs to the 

class; otherwise, not). Mean classification accuracy (defined as the average classification 

accuracy across all the subjects in the dataset) and mean reproducibility (i.e., the average 

SPI reproducibility across all the subjects) was calculated to make the mean classification 

accuracy vs. mean reproducibility plot.

Results

Evaluating the Impact of Preprocessing Steps

The impact of the preprocessing steps tested using NPAIRS.GLM- or FSL.FEAT-based 

pipelines with intra-subject or inter-subject alignment is presented in Table 2. As defined in 

the Methods, the mean distance change is a result of turning on and off a preprocessing step 

and deltaM > 0 implies improved performance. The bold numbers in Table 2 represent 

statistical significance better than p<0.05, calculated using a Wilcoxin matched–pair, rank-

sum test across subjects.

Table 2 indicates that slice timing correction, global intensity normalization and motion 

correction all have significantly negative impacts across subjects but only when no 

detrending is applied. This indicates the overall importance of detrending in the processing 

pipeline and the potential for interactions between steps. Spatial smoothing, temporal 
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detrending and high-pass filtering were found to significantly improve the performance of 

all GLM-based pipelines.

Table 3 summarizes the impact of GLM-based evaluation on inter-subject aligned data, for 

2-pixel smoothing, and ≤ 2-cosine detrending or 128s temporal filtering. The relative 

variation results demonstrate that spatial smoothing has the largest impact among 

preprocessing steps, followed by temporal detrending and/or high-pass filtering. The much 

higher standard deviation of slice timing and motion correction across the 16 subjects 

demonstrates that the impact of these steps may be quite heterogeneous across subjects 

compared with the more homogeneous response to smoothing and temporal filtering. 

Compared with results of CVA-based pipelines (Zhang, 2005), the significant positive 

impact of preprocessing steps: spatial smoothing, temporal detrending and high-pass 

filtering, and the insignificant average impact of slice timing correction and global intensity 

normalization are consistent across the univariate GLM and multivariate CVA models, 

which suggests that such effects are model independent.

Optimizing Single-Subject Preprocessing Steps

Table 4 (A) summarizes the pipeline optimization results from NPAIRS.GLM and 

FSL.FEAT-based pipelines. In Table 4(A) GLMNPAIRS outperforms FEATFSL (i.e., smaller 

Dmin) for 13/16 subjects, and the optimized preprocessing options vary considerably from 

subject to subject. For example, the optimized FWHM values for spatial smoothing across 

the 16 subjects vary from 2 to 6 voxels. Table 4 (B) demonstrates that pipeline optimization 

with NPAIRS.GLM and FSL.FEAT improves pipeline performance significantly compared 

with the next-best-performing, nonoptimized pipeline. Table 4(C) shows that on average 

pipeline optimization improves the BSR significantly compared with the average of the best 

and worst nonoptimized conjunction matrices (Avg. Mean Diff. BSR<0 implies BSR 

improvement), but not for the best non-optimized BSR conjunction matrix (indicated by 

Mean Diff. BSR). This is consistent with the corresponding results on NPAIRS.CVA-based 

pipelines in (Zhang et al. 2008a). This may suggest a minor gain in group homogeneity (i.e., 

the improved common activation detection across all subjects) with individual pipeline 

optimization, in agreement with the results of Shaw et al. (2003).

Evaluation of Heterogeneous Pipelines

The mean classification accuracy vs. mean reproducibility plot in Figure 1 illustrates that the 

pipelines with NPAIRS.GLM (blue) and NPAIRS.CVA at optimized #PCs (green) 

outperform those with NPAIRS.CVA at fixed 5 PCs (red) and FSL.FEAT (orange). Further, 

we see from Figure 1 that, in general, CVA-based pipelines ranging from CVA with fixed 5 

PCs (red) to those with optimized #PCs (green) have higher classification accuracy than 

GLM-based pipelines (blue for NPAIRS.GLM, orange for FSL.FEAT), but are less 

reproducible than GLM-based pipelines for the cases tested.

Discussion

In previous studies of fMRI pipelines with the NPAIRS approach (Laconte et al., 2003; 

Shaw et al., 2003; Strother et al., 2004; Chen et al., 2006; Zhang, 2005a), due to the 
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limitations of the IDL-based NPAIRS package used, the research scope was largely 

restricted to CVA-based pipelines with modules within the NPAIRS package. The present 

study extended these previous studies by obtaining prediction accuracy for GLM-based, 

single-subject fMRI processing pipelines across software packages with a Java-based 

processing pipeline evaluation system (Zhang et al., 2008). The findings of this study, based 

on a single block-design, static-force dataset should be generalized to other datasets with 

care, but provide a view of how various fMRI processing pipeline options influence fMRI 

processing performance (in prediction accuracy and SPI reproducibility metrics) across 

heterogeneous analytic models and software packages.

Evaluating the Impact of Preprocessing Steps

The finding of a significant positive impact of spatial smoothing, high-pass filtering and 

temporal detrending on GLM-based pipelines in this study are consistent with what was 

observed in our previous studies (LaConte et al., 2003; Zhang, 2005) with CVA-based 

single-subject fMRI processing pipelines, and in previous ROC analyses on simulated 

block-designed and event-related data (Skudlarski et al., 1999; Della-Maggiore et al., 2002). 

The nonsignificant impact of slice timing correction and global intensity normalization on 

GLM-based pipelines is consistent with observations for CVA-based pipelines (Zhang, 

2005), and ROC findings on simulated block-designed data (Skudlarski et al., 1999). These 

results suggest that the relative importance of many preprocessing steps may be ranked 

using NPAIRS results from real data, and are similar for both univariate GLM and 

multivariate CVA approaches.

However, we have demonstrated that motion correction can significantly improve the 

performance of CVA-based pipelines (Zhang, 2005), but its impact on the same data set is 

significantly negative without any temporal detrending or not significant for GLM-based 

pipelines (Table 2). Previous ROC analysis findings (Skudlarski et al., 1999) indicate that 

motion correction may not change the relative efficiency of the steps in GLM-based fMRI 

data analysis. Jezzard et al. (2001) further pointed out that when subject motion is stimulus 

uncorrelated, motion correction makes the activation analysis more sensitive; but when the 

motion is stimulus correlated, motion correction reduces the statistical power and the 

apparent level of activation. While it is unclear exactly what is causing this differential 

sensitivity to motion correction we suspect significant stimulus coupled motion negatively 

impacts the GLM results, but may be removed by the PC denoising associated with CVA on 

a PCA basis set.

Pipeline Optimization

The individually optimized spatial smoothing and temporal detrending choices for GLM-

based, single-subject fMRI processing pipelines optimization in this study are only a small 

set of possible pipeline options and parameter choices, chosen based on previous research 

and our initial impact evaluation (Laconte et al., 2003; Shaw et al., 2003; Strother et al., 

2004; Zhang, 2005). Compared with optimization results of CVA-based pipelines (Zhang, 

2005) based on spatial smoothing, temporal detrending and #PCs for PCA/CVA, these 

results demonstrate that such pipeline optimization significantly improves pipeline 

performance regardless of the univariate-or-multivariate model (GLM or CVA) and the 
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software package used (FSL or NPAIRS). This result reflects what is already common 

practice in the field that it is important to include spatial smoothing and temporal 

detrending/filtering in fMRI processing pipelines. Furthermore, the prediction-

reproducibility framework provides a quantitative means of evaluating the relative 

importance of such processing steps. These results demonstrate that the level of spatial 

smoothing chosen is the most important processing choice made, and that the significant 

positive impact of such pipeline optimization is somewhat model independent.

Further, the positive impact on the averaged between-subject reproducibility (BSR) across 

GLM- and CVA-based pipelines suggests a minor gain in group homogeneity (i.e., the 

improved common activation detection across all subjects) independent of univariate GLM 

and multivariate CVA models. This supports previous results showing that aggregating the 

individually optimized data in a random effects group analysis may result in improved group 

results (Shaw et al., 2003).

Heterogeneous Pipeline Evaluation

Since GLM is the most widely used univariate method in fMRI analysis and CVA is a 

typical multivariate fMRI analysis method, the evaluation and comparison of these two 

methods (or models) across fMRI software packages has practical meaning. As indicated in 

Figure 1 univariate GLM is not perfect—it has relatively similar SPI reproducibility, but 

lower prediction accuracy than CVA. A possible reason for the slightly better SPI 

reproducibility in GLM (in Figure 1) is that it fits the data at each voxel using a fixed, 

nonadaptive design matrix that avoids the model overfitting problem and generates slightly 

biased, but lower spatial variance results and hence somewhat higher reproducibility. In 

addition, the GLM prediction measure used in this study is based on the algorithm described 

in (Kjems et al., 2002; Zhang et al., 2008). A limitation of the algorithm is that it uses a 

product of individual voxel prediction estimates based on the assumption that the voxels in 

fMRI data are independent. However, voxels are not independent due to local spatial 

autocorrelation and long-range network interactions. Univariate GLM ignores these spatio-

temporal covariance structures, compared with the adaptive covariances estimated in CVA, 

leading to lower prediction accuracy. An improved algorithm measuring prediction 

performance of GLM that avoids such an assumption remains to be investigated. In addition, 

Friston et al. (2003) proposed the posterior probability map, which provides another way to 

obtain GLM prediction measures.

In contrast, multivariate CVA is built on a PCA basis and adapted to the spatio-temporal 

covariance structure in the data to find a linear combination of variables that maximally 

discriminates the two groups (baseline and activation) identified by prior knowledge of the 

brain states of the image volumes. Therefore, it is not surprising that prediction for CVA is 

somewhat higher than for GLM given that CVA is designed to maximize prediction. The 

fact that CVA has a slightly lower reproducibility than GLM-based models suggests that 

adapting the covariance structures to the data may somewhat overfit producing higher model 

variance and lower reproducibility. This tradeoff between prediction and reproducibility as a 

function of #PCs used to build the CVA model is clearly seen in LaConte et al. (2003). 

These differential performance results probably reflect different bias-variance tradeoffs and 
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neither is obviously better than the other. If the goal is prediction of image-volume brain 

states, an emerging experimental approach in fMRI, then CVA or some other predictive 

modeling technique (e.g., Support Vector Machines) may be preferred (LaConte et al., 

2005). On the other hand, if the goal is local regional signal detection then the higher 

reproducibility across runs provided by GLM-based pipelines may be preferred.

In Figure 1, it is interesting to note that changing the time-course model had little impact on 

the SPI reproducibility for a given smoothing level compared with moderate changes in 

prediction performance: (1) In NPAIRS.CVA, baseline-activation transition volumes were 

dropped, which improves the predicted label accuracy by removing the transition image 

volumes that are difficult to classify; (2) In FSL.FEAT, the transition volumes were kept and 

convolution with the HRF was performed (that blurred and delayed the hemodynamic 

response), which mismatches the predicted GLM labels with the experimental volume labels 

that were not time-shifted producing lower prediction values; (3) In NPAIRS.GLM, the 

transition volumes were kept and convolution with the HRF was not performed leaving a 

closer, but still imperfect match between the experimental volume labels and predicted GLM 

response. By only calculating prediction on non-transition image volumes or by shifting the 

baseline-activation label structure these values can be improved, but this requires an 

additional modeling assumption to estimate the extent of the shift, particularly for TRs 

shorter than the 4s of this study. These results suggest that across these different models 

with their different temporal assumptions, the two NPAIRS performance metrics may be 

relatively uncoupled, reinforcing the use of the prediction vs. reproducibility performance 

plot. Our data also suggests that statistical reliability as measured by reproducibility is not a 

strong function of the details of transition block modeling, a issue we return to below.

Why NPAIRS

The NPAIRS approach was proposed, as an alternative to simulations with the ROC 

approach, for evaluating the performance of fMRI processing pipelines with real fMRI data 

(Strother et al., 2002). NPAIRS, like an ROC, uses measures from two conceptually 

orthogonal domains (prediction in the time domain and reproducibility in the space domain), 

providing two partially related metrics that are compared in a 2D plot such that a single 

corner of the 2D graph represents ideal modeling characteristics; for NPAIRS perfect 

prediction (p = 1) and infinite global SNR (r = 1); for ROCs the optimal corner of the plot is 

where TP=1 and FR=0.

Given the smoothly varying nature of fMRI regressors typically employed in GLM models 

with delayed peaks and post-stimulus undershoot, the notion of classifying fMRI volumes 

according to their brain states (such as baseline and activation) may seem quaint (see 

discussion above). However, classifying fMRI volumes makes sense within the NPAIRS-

CVA framework because classification provides a constraint that helps to control potentially 

increased bias through simply trying to maximize reproducibility by manipulating design 

matrix regressors or preprocessing parameters, e.g., spatial smoothing. When testing a GLM 

model in this framework the typical smoothly varying GLM regressors with HRFs may still 

be used to model each split-half data set (e.g., our FSL model). In terms of SNR represented 

by the GLMNPAIRS and FEATFSL reproducibility z-scores little seems to be lost by treating 
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the transition volumes in different ways. This is particularly likely to hold true when the 

transition volumes represent only a small fraction of the total active or baseline block length, 

e.g., in this case there are 2–3 transition volumes (dropped for NPAIRSCVA) from blocks of 

10–11 images each (TR = 4 s; see LaConte et al., (2003) for details). This result is supported 

by unpublished simulations of a block-design experiment of this type where dropping 

transition volumes compared with results using exact HRF-models reduces signal detection 

by < 6% based on ROC measurements. A simple two-class classification metric with 

dropped transition volumes may be less useful with shorter TRs and shorter blocks, or 

certainly for single-event studies. It will then be necessary to adopt alternative prediction 

measures such as the mean-square error on the complete HRF time-course in a cross-

validation framework, as used by Kay et al. (2007).

We recognize that the reproducibility metric in NPAIRS is imperfect and may be improved, 

perhaps by restricting split-half comparisons to only gray matter voxels or by augmenting it 

with a voxel-based measure, such as that developed by Genovese et al. (1997). However, 

neither the approach of Nandy et al. (2003) nor that of Genovese or Liou at al. (2006) can be 

applied to this data set because they need, respectively, a separate baseline run per subject or 

at least three independent runs. Our reproducibility measure, like the others in the literature, 

contains an unknown bias. For example, the reproducibility correlation coefficient tends to 

increase with spatial smoothing as the intervoxel dependence increases because we are 

likely to be introducing bias into out modeled SPI output. A model that outputs close to a 

constant spatial pattern that is relatively independent of the input data (e.g., such as might be 

produced by a very large spatial smoothing filter) will provide highly reproducible results 

that are useless because they largely ignore the data. This is an extreme example of a bias-

variance tradeoff with very large bias and very little variance in the output. As we do not 

know where any particular model should lie on its bias-variance curve, we used an equal 

weighting between prediction accuracy and SPI reproducibility to calculate the distance to 

(p=1, r=1). More work is needed to explore other evaluation metrics and alternative weight 

ratios.

It is anticipated that once the NPAIRS approach is further refined and becomes more 

mature, it can be applied to other fMRI processing software packages and/or modules such 

as SPM, AFNI and FSL.MELODIC (ICA), which will allow quantitative evaluation of the 

performance of such fMRI processing pipelines.

Model Bias-and-variance Trade-off and Consensus Approach

As Breiman (1998) pointed out, there is a bias-and-variance trade-off involved in the 

method (or classifier) evaluation and comparison in machine learning. Prediction methods 

such as classification trees and neural networks are generally less biased, but unstable (with 

high variance); while methods such as linear discriminant analysis (LDA) and k-nearest 

neighbors (KNN) are stable (with low variance), but can be more biased. All function 

neuroimaging models lie somewhere on a data and model dependent bias-variance curve and 

the NPAIRS framework is an initial attempt to start to compare these tradeoffs for 

preprocessing pipelines and data analysis models. Since both univariate and multivariate 

models have their own limitations and strengths which are often complementary to each 
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other, fMRI analysis might best proceed by using a combination of techniques. A univariate 

model can be used for activation detection and a multivariate model used for the detection of 

network, functional connectivity. Similar views are expressed in fMRI pipeline evaluation 

(Friston et al., 1995c; Strother et al., 2002; Laconte et al., 2003). To overcome model-

dependent biases and limitations, Hansen et al. (2001) proposed a consensus map through 

model averaging and demonstrated that an enhanced ROC curve was obtained through 

model averaging in a simulated study. Such consensus methods may help to resolve the bias-

variance trade-off problem in fMRI model comparison and selection.

Conclusion

In this study, we found that for block-design fMRI data, (1) slice timing correction and 

global intensity normalization have little consistent impact on GLM-based fMRI processing 

pipelines, but spatial smoothing and high-pass filtering or temporal detrending significantly 

increased pipeline performance; (2) combined optimization of spatial smoothing and 

temporal detrending processing steps improved performance of GLM-based pipelines; and 

(3) in general, the prediction performance of CVA models is higher than that of the GLM 

models, while GLM models are more reproducible than CVA models. In addition, our 

results indicate that it may be necessary to consider a consensus approach to obtain more 

accurate activation patterns in fMRI data due to the different bias-variance trade-offs of the 

univariate GLM and multivariate CVA models.

Non-invasive fMRI has fundamentally changed the way we study the brain and the future of 

fMRI looks bright in terms of a transition from basic research to clinical applications 

(Borsook, 2006). Looking ahead, we believe that the current status in fMRI analysis (i.e., the 

lack of fMRI software evaluation and result validation) will be changed gradually and 

advances in evaluating, optimizing, standardizing and validating fMRI processing pipelines 

will eventually lead to medical licensing of fMRI software, which will help fMRI to be fully 

established as a clinical neuroimaging method.
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Figure 1. Mean Classification Accuracy plotted versus Reproducibility of pipelines comparison 
at 2, 4, 6-pixel smoothing
Pipelines in comparison: 1. NPAIRS.CVA at 5 #PCs (red); 2. NPAIRS.CVA at optimized 

#PCs (green); 3. NPAIRS.GLM (blue); 4. FSL.FEAT (orange).
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