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Abstract
Developments in multi-channel radio-frequency (RF) coil array technology have enabled functional
magnetic resonance imaging (fMRI) with higher degrees of spatial and temporal resolution. While
modest improvement in temporal acceleration has been achieved by increasing the number of RF
coils, in parallel data acquisition techniques, the maximum attainable acceleration is intrinsically
limited only by the amount of independent spatial information in the combined array channels. Since
the geometric configuration of a large-n MRI head coil array is similar to that used in EEG electrode
or MEG SQUID sensor arrays, the source localization algorithms used in MEG or EEG source
imaging can be extended to also process MRI coil array data, resulting in greatly improved temporal
resolution by minimizing k-space traversal during signal acquisition. Using a novel approach, we
acquire multi-channel MRI head coil array data and then apply inverse reconstruction methods to
obtain volumetric fMRI estimates of blood oxygenation level dependent (BOLD) contrast at
unprecedented whole-brain acquisition rates of 100 ms per sample. We call this combination of
techniques magnetic resonance Inverse Imaging (InI), a method that provides estimates of dynamic
spatially-resolved signal change that can be used to construct statistical maps of task-related brain
activity. We demonstrate the sensitivity and inter-subject reliability of volumetric InI using an event-
related design to probe the hemodynamic signal modulations in primary visual cortex. Robust results
from both single subject and group analyses demonstrate the sensitivity and feasibility of using
volumetric InI in high temporal resolution investigations of human brain function.
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INTRODUCTION
Hemodynamically based fMRI (Belliveau et al., 1991; Belliveau et al., 1990; Kwong et al.,
1992; Ogawa et al., 1990) is typically limited to a temporal sampling period of two to four
seconds if whole brain coverage is desired. Most fMRI data acquisition methods employ an
EPI technique that utilizes many phase encoding steps and multiple read-out gradients.
Consequently, this reliance on gradient encoding results in long image acquisition times and
relatively loud acoustic noise related to the requisite rapid gradient switching. Here, we
demonstrate the use of a novel volumetric imaging method, called Inverse Imaging (InI), which
uses minimal phase encoding to achieve an order-of-magnitude improvement in BOLD-
contrast temporal resolution. Its minimal dependence on encoding gradients allows extremely
short image acquisition times, with an associated trade-off involving somewhat reduced and
spatially-varying spatial resolution.

The temporal resolution of MRI is limited by the time required to traverse k-space during signal
acquisition. The collection of volumetric MRI data continues until the completion of k-space
traversal in multiple 2D k-spaces or in a single 3D k-space. Classical gradient-echo or spin-
echo image acquisition methods collect data from one k-space line during each excitation. Thus
the total acquisition time for traditional 3D MRI data acquisition is the product of the number
of slices and the number of phase encoding steps. In contrast to gradient-echo or spin-echo
imaging, both echo-planar imaging (EPI) (Mansfield, 1977) and spiral imaging (Blum et al.,
1987) utilize fast gradient switching to achieve 2D k-space traversal in a single RF excitation.
With current state-of-the-art EPI or spiral imaging techniques, one 2D single slice image can
be collected in approximately 80 ms, allowing whole head coverage with 3 mm isotropic
resolution in two to four seconds. Small improvements in temporal resolution can be achieved
by optimizing k-space sampling schemes and reconstruction methods: e.g., instead of
completing the k-space traversal for every measurement, MRI data acquisition can be
accelerated by coordinated alterations of in k-space trajectories and their associated image
reconstruction algorithms, as in partial-k space sampling (McGibney et al., 1993).
Alternatively, a priori information-based methods can improve the temporal resolution of MR
dynamic measurements (Tsao et al., 2001).

Recently, parallel imaging methods have been introduced to reconstruct images using spatial
information derived simultaneously from multiple coil array channels The techniques
employed include k-space SMASH (Sodickson and Manning, 1997), k-space GRAPPA
(Griswold et al., 2002) and image domain SENSE (Pruessmann et al., 1999), all of which share
a similar theoretical background (Sodickson and McKenzie, 2001). While parallel MRI can
accelerate data acquisition rates by reducing total k-space traversal at the cost of reduced signal-
to-noise ratio (SNR), the resulting net acceleration rate is limited both by the number of array
coils and the specific phase-encoding scheme employed.

Prior information can be incorporated by combining EPI with parallel MR imaging (Golay et
al., 2000; Preibisch et al., 2003; Schmidt et al., 2005; Weiger et al., 2002), resulting in fMRI
detection sensitivity improvements with sensitivity encoded parallel MRI techniques (Lin et
al., 2005b). Prior-informed parallel MRI has been explored using a fixed regularization
parameter with empirical singular value decomposition truncation (King, 2001; Sodickson,
2000). Incorporation of prior information can suppress noise amplification in parallel MRI
reconstruction (Lin et al., 2002; Lin et al., 2005b; Lin et al., 2004; Tsao et al., 2002) and
traditional parallel MRI has been used to solve under-determined ill-posed problems (Katscher
and Manke, 2002; Tsao et al., 2003). However, either only minor acceleration has been
achieved (4-fold acceleration using a 2-channel array in cardiac imaging) (Katscher and Manke,
2002), or the reconstruction process has depended on incorporation of low-resolution prior
image information (Tsao et al., 2003; Tsao et al., 2005).
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More extreme accelerations in MRI acquisition rates have been achieved by reconstructing
each image from a single echo. For example, single-echo-acquisition (SEA) was achieved using
a dedicated 64-channel linear planar array that eliminated phase encoding, instead using the
spatial information obtained from an array of long and parallel coils. This planar pair element
design proved to be crucial for achieving well-localized field sensitivity patterns (McDougall
and Wright, 2005). In other work, Hennig developed the one-voxel-one-coil (OVOC) MR-
encephalography technique, obtaining a reconstructed image by computing the product of a
full FOV reference scan and the accelerated acquisition scan where traditional phase and
frequency encoding can be selectively omitted. This approach uses simultaneous multi-channel
acquisition with multiple small receiver coils sampled such that the signal received by each
coil is read out separately. The effective voxel size observed by each receiver channel is
determined by the sensitive volume of the corresponding coil element and the source spatial
distribution is estimated by constrained reconstruction using images from each separate coil
as references (Hennig et al., 2007). A similar reconstruction algorithm termed HYPR was also
proposed in the context of MR angiography (Mistretta et al., 2006). Nevertheless, none of these
approaches explicitly formulate the relationship between the spatial information contained in
the different channels of a RF coil array with full gradient encoding or with minimal gradient
encoding. Nor do they provide algorithms to estimate the significance of task-related signal
changes that would allow dynamic statistical inferences to be made from a highly temporally
resolved data set.

Mathematically, the maximum acceleration possible with parallel MRI acquisition is limited
by the available independent spatial information encoded by the coil array elements. This limit
manifests itself as a problem in solving an over-determined linear system. Increasing the
number of channels can thus increase MRI sampling rates. To this end, dense head coil arrays
consisting of 16 (Bodurka et al., 2004; de Zwart et al., 2002; de Zwart et al., 2004), 23, 32 and
90 elements (Wiggins et al., 2005a; Wiggins et al., 2005b) have been constructed in support
of a range of parallel acquisition applications. In addition, a dedicated 64-channel linear planar
array has been developed to achieve 64-fold acceleration (McDougall and Wright, 2005).
Notably, the geometric configuration of our 32-channel head array is remarkably similar to
that used for electrode and super-conducting quantum interference (SQUID) sensor arrays in
modern EEG and MEG systems (Hamalainen et al., 1993). While the MEG sensors detect
magnetic fields generated by neural currents (Hamalainen et al., 1993), MRI detects oscillating
electromagnetic fields from magnetization precession (Haacke, 1999). In addition, while MEG
derives all of its spatial information from the geometry of the detectors, current accelerated
MRI methods still rely heavily on gradient encoding.

We have generalized parallel MRI reconstruction techniques to exceed the limitations
encountered when utilizing an under-determined linear system by introducing single-shot
volumetric MR Inverse Imaging (InI), an approach that employs an over-determined linear
system in order to achieve dramatically reduced acquisition times. We demonstrate the use of
single-shot volumetric InI in supporting dynamic spatially-resolved statistical inference in a
functional neuroimaging experiment. Inspired by MEG and EEG source localization
techniques, we use a generalization of prior-informed parallel MRI (Lin et al., 2005b; Lin et
al., 2004) and an adaptation of MEG reconstruction methods to MRI, to reduce the whole-brain
sampling time by minimizing the k-space traversal time. Rather than relying on gradient
encoding, InI derives spatial information by solving the inverse problem utilizing information
from all array channels. Thus, given the constraint imposed by the need to use echo times (TE)
that are optimal for BOLD-contrast, InI can complete k-space traversal and acquire sufficient
data for whole-brain image reconstruction in under 100 ms. Although we have previously
shown the feasibility of a 2D InI implementation (Lin et al., 2006), we now demonstrate its
application to functional imaging studies employing 3D whole-brain coverage and event-
related designs (Rosen et al., 1998). Event-related fMRI is a widely utilized neuroimaging

Lin et al. Page 3

Neuroimage. Author manuscript; available in PMC 2009 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



method to study not only spatial but also temporal activity of hemodynamic changes secondary
to the neuronal events. Compared to the classical block-design fMRI, the timing information
available in the event-related fMRI allows for the study of both transient and steady states of
cerebrovascular responses. This experimental technique mitigates the difficulty of potential
bias originated from the contexts or the history of previous stimuli events. Event-related fMRI
also enables the analysis of data using post-hoc categorization (Wagner et al., 1998). In some
experimental designs, such as “odd-ball” experiments, can only be implemented using event-
related fMRI rather than block-design (Friston, 2007). All reasons described above encouraged
us to study the feasibility of 3D InI acquisitions and reconstructions using event-related fMRI
design.

The principal novelty of our method is its combination of dense coil arrays with a linear
estimation approach, allowing the transition from a largely gradient encoded to a largely
detector encoded image, thereby achieving an order-of-magnitude speedup in the frame rate
of dynamic whole-brain MRI. In the following sections, we present the data acquisition strategy
and mathematical algorithms underlying InI, which allow extension of the technique to include
event-related, 3D functional imaging designs with whole-brain coverage. We next demonstrate
the technique’s capabilities in measuring the spatiotemporal properties of the hemodynamic
response to brief visual stimuli using a 100 ms temporal sampling rate on a 3T scanner with a
32-channel coil array. In comparison with conventional EPI, 3D InI exhibits comparable
sensitivity and adequate spatial resolving power in detecting visual task-related activity when
performance is examined at both the single subject and group levels.

METHODS
Participants

Five healthy participants were recruited for the study. Informed consent approved by the
Institutional Review Board was obtained from each participant.

Task
Our participants were asked to maintain fixation at the center of a tangent screen while viewing
a high-contrast visual checkerboard reversing at 8 Hz. The checkerboard subtended 20° of
visual angle and was generated from 24 evenly distributed wedges (15° each) and eight
concentric rings of equal width. The stimuli were generated using the Psychtoolbox (Brainard,
1997; Pelli, 1997) and presented using Matlab (Mathworks, Natick, MA). The checkerboard
stimuli were presented for 500 ms duration and the onset of each checkerboard presentation
epoch was randomized with a uniform distribution of inter-stimulus intervals varying from 3
to 16 s. Thirty-two visual stimulation epochs were presented during each of four 240 s runs,
resulting in a total of 128 visual stimulation epochs per participant.

Image data acquisition
MRI data were collected on a 3T MRI scanner (Tim Trio, Siemens Medical Solutions,
Erlangen, Germany). We used a custom-built 32-channel head array receive coil (Wiggins et
al., 2006) and a body transmit coil. The array consisted of 32 circular surface coils tessellated
evenly to cover the whole brain. Functional imaging included standard BOLD-contrast imaging
using conventional EPI techniques as well as volumetric InI.

Functional imaging—Using 3D InI, each acquired volume was obtained at a particular time
instant by the combination of EPI frequency encoding along the inferior-superior direction and
phase encoding along the anterior-posterior direction. Figure 1 shows a schematic diagram of
the spatial encoding procedure used to combine EPI and InI. The spatial information in the
left-right direction was recovered during the InI reconstruction computation.

Lin et al. Page 4

Neuroimage. Author manuscript; available in PMC 2009 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



InI reconstruction requires collection of a reference scan that provides information about the
entire 3D volume. With this reference scan data, also called the forward operator, accelerated
acquisition is enabled by replacing time consuming spatial encoding, dependent upon gradient
switching, with an alternative approach utilizing an image reconstruction algorithm.

The reference scan was implemented using a single-slice echo-planar imaging (EPI) readout
approach. Specifically, we excited one thick sagittal slab covering the entire brain (FOV 256
mm × 256 mm × 256 mm; 64 × 64 × 64 image matrix), setting the flip angle to the Ernst angle
of 30°. Partition phase encoding was used to obtain the spatial information along the left-right
axis (inter-aural line). The EPI readout had frequency and phase encoding along the superior-
inferior and anterior-posterior axes respectively. We used 100 ms TR, 30 ms TE, 2604 Hz
bandwidth and a 10 s total acquisition time for the reference scan.

InI functional data acquisition used the same volume prescription, TR, TE, flip angle, and
bandwidth as the reference scan. The principal difference was that the partition phase encoding
was removed. The full volume was excited like in the reference scan, and the spins were
spatially encoded by a single-slice EPI acquisition. This resulted in a projection image along
the left-right direction. The InI reconstruction algorithm, described in the next section, was
then used to estimate the spatial information along the x–y axis. In each run, we collected 2,400
measurements after collecting 32 measurements in order to reach the longitudinal
magnetization steady state. A total of four runs of data were acquired from each participant.

To validate the InI functional results, conventional EPI data, using conventional BOLD-
contrast detection methods, was also collected using identical stimulus and presentation
paradigm timing. EPI functional data acquisition used TE = 30 ms, TR = 2 s, flip angle = 90°,
FOV = 220 mm, 24 slices, slice thickness = 4 mm with 20% gap).

Structural imaging—In addition to the EPI and InI functional data, anatomical MRI data
for each participant were obtained in the same session using a high-resolution T1-weighted 3D
sequence (MPRAGE, TR/TE/flip = 2530 ms/3.49 ms/7°, partition thickness = 1.33 mm, matrix
= 256 × 256, 128 partitions, FOV = 21 cm × 21 cm). Using these data, the location of the gray-
white matter boundary was estimated with an automatic segmentation algorithm to yield a
triangulated mesh model with approximate 340,000 vertices (Dale et al., 1999; Fischl et al.,
2001; Fischl et al., 1999). The spatial registration between the EPI data or InI reconstructed
data and the anatomical data was done by using SPM5 (http://www.fil.ion.ucl.ac.uk/spm/),
estimating a 12-parameter rigid body transformation between the EPI mean image or
volumetric InI reference scan and MPRAGE anatomical study. Note that the actually
accelerated InI acquisitions were not spatially registered using this tool. The registration matrix
was subsequently applied to each time instant of the EPI or InI hemodynamic estimates, to
transform the neural activity estimates for each functional run to an inflated cortical surface
space (Dale et al., 1999; Fischl et al., 1999). The transformed results were also spatially
smoothed with a 3D Gaussian kernel with 10 mm full-width-half-maximum (FWHM).

Image reconstruction
Both reference scans and InI scans use EPI read-out, which demonstrate classical Nyquist ghost
artifact in the phase-encoding direction (anterior-posterior direction in our implementation).
To correct this artifact and to make consistent measurements between reference and InI scans,
we performed the same phase correction algorithm in each reference (with partition encoding)
and InI (without partition encoding) image at all channels of the coil array respectively.
Specifically, 64 interleave EPI read-outs were acquired in the frequency encoding direction
(superior-inferior direction) without phase encoding blips to estimate the k-space shift between
even and odd echoes along the frequency encoding direction. Such an echo-shifting was then
corrected by appending a compensation phase to the even echoes to avoid N/2 Nyquist ghost.
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The InI acquisition and reference scans were processed using 2D and 3D fast Fourier
transformations from the k-space domain to the image domain, respectively. The reference
scan in each channel of the coil array was synthetically averaged across partitions to simulate
the InI acquisitions by making projection images along the partition encoding direction in each

channel of the coil array, such that  the simulated InI acquisition at location ρ⃑ and
channel i , is calculated as

[Eq. 1]

. Here ρ⃑ represents the spatial location indices across different partition phase encoding steps
with the same frequency and phase encoding numbers, indicated by the spatial index r ⃑, and
Ai (ρ⃑) represents the reference scan image from location ρ⃑ and channel i . These simulated data
were compared with the InI acquisition at each time instant to separately investigate the phase
difference between the simulated InI projection image from the reference scan and the actually
acquired InI projection image at each time instant. The global phase difference, θi(t) , for
channel i at time instant t, is given by

[Eq. 2]

where di (r ⃑,t) represents the signal from the InI acquisition with spatial location r ⃑, time t and
channel i of the coil array. Phase information is important in the subsequent InI reconstruction
since phase may change dramatically over continuous scans as a result of scanner instabilities
such as gradient coil heating. We corrected this discrepancy in phase between the actual
accelerated InI acquisition and the simulated InI acquisition from the reference scan by
subtracting θi(t) for different channel and time instant separately.

After pre-processing of the whole time series in the InI projection acquisitions, now we tried
to estimate the hemodynamic response function (HRF) in each projection images across all
channels of the coil array. This effort reduces the size of data in time-domain dramatically
without affecting the subsequent image-domain image reconstruction. From a list of the
stimulus onset times, we constructed a vector p⃑ with entries containing a one indicate the
occurrence of stimuli during each 500 ms stimulation period, and all other entries contain zeros.
A contrast matrix D was constructed from the convolution between the p⃑ vector and the
hemodynamic response function H ,

[Eq. 3]

, where ⊗ denotes the linear convolution.

We used a finite-impulse response (FIR) basis for the HRF and thus H is a discrete delta
function with different delay indicating the HRF at a specific time instant. Specifically, H
modeled a HRF of 30 second duration with six second pre-stimulus baseline of 100 ms TR.
Thus H is an identity matrix of dimension 300 (i.e., nh = 300). In addition to the phase drift
θi(t), we appended the design matrix D with two confound vectors within each run to account
for linear drift and constant confounds. Additionally, we also included a time series from the
mean of the magnitude projection image in each channel as a confound vector attempting to
explain the potential physiological noise (respiration and cardic pulse). The estimation of GLM
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coefficients for channel i and time instant τ of the InI acquisition was computed by least square
fitting

[Eq. 4]

where the superscript H indicates the transpose and complex conjugate. HRF estimation,
hi(r ⃑,τ), was then extracted from entries of βi(r ⃑,τ) vector corresponding to FIR basis function
while all other contribution corresponding to confounding vectors was discarded in the
subsequent analysis.

The minimum-norm estimate (MNE) provided the reconstructed image x(ρ⃑,τ) of 3D volumetric
index ρ⃑ and time index τ , which can be expressed as

[Eq. 5]

where C is the noise covariance matrix of the array, λ(r ⃑) is the regularization parameter, and
WMNE(r ⃑) is the inverse operator for the InI location index r ⃑ . A(r ⃑) and h(r ⃑,τ) indicate the
vertically concatenated Ai(ρ⃑) and hi(r ⃑,τ) spatial index r ⃑ and time index τ across all channels in
the coil array. The regularization parameter was calculated from a pre-defined signal-to-noise-
ratio (SNR) as

[Eq. 6]

Here Tr(•) indicates the trace of the matrix. This choice of regularization parameter followed
our original 2D InI reconstruction algorithm and was inspired by the analogy between InI
reconstruction (Lin et al., 2006) and distributed source modeling in MEG (Lin et al., 2005a).
We used SNR = 5 in this study. Such a choice of SNR was derived from our previous InI study
(Lin et al., 2006). Sensitivity of MNE reconstruction in InI was investigated in our previous
study, which showed that the regularization parameter affects InI reconstructions moderately
if it changes within ±10 fold. Our choice of regularization parameter should be within that
range.

Statistical modeling
InI data—To allow statistical inference from the results of the InI time series reconstruction,
we estimated the noise in the baseline by applying the MNE inverse operator to the baseline
InI data. Then, dynamic statistical parametric maps were derived as the time-point by time-
point ratio between InI reconstruction and this baseline noise estimates, given by

[Eq. 7]

where diag(•) is the operator to construct a diagonal matrix from the input argument vector.
Here x(ρ⃑,τ) represents estimated signal vector and diag(WMNE(r ⃑)CWMINE(r ⃑)H) denotes
estimated noise vector. Both vectors have the dimension of the number of sources to be
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resolved. The division denotes the element-wise division. Dynamic statistical parametric maps
(dSPMs) t(ρ⃑,τ) should be t distributed under the null hypothesis of no hemodynamic response
(i.e., x(ρ⃑,τ) = 0) (Dale et al., 2000). When the number of time samples to calculate the noise
covariance matrix C is quite large, the t distribution approaches the unit normal distribution
(i.e., a z-score).

EPI data—The statistical modeling of the conventional EPI BOLD-contrast data was
implemented using a general linear model (GLM) with a design matrix based on the same finite
impulse response (FIR) model (c.f. Eq. 3 and Eq. 4). Using least square fitting, we estimated
the strength of the FIR HDR at each voxel at each voxel and each time instant, and the residuals
in GLM led to an estimate of baseline variability. Taken together, the t-statistics of the evoked
hemodynamic response were calculated for each image voxel at each time instant.

Here we want to emphasize that InI image reconstruction had separate processing for HRF
estimation in the projection images in all channels of the coil array (time domain) and
restoration of 3D spatial information using MNE (spatial domain). However, EPI data had only
time domain HRF estimation. In the time domain estimation of HRF, both InI and EPI data
used the same finite-impulse-response (FIR) basis in the GLM estimation of HDR and thus
the results are comparable. The use of FIR basis function has no prior assumption on the shape
of HDR. This is different from the traditional use of parameterized models to estimate canonical
HDR using, for example, Gamma functions. Compared to traditional EPI reconstruction, the
only additional processing in InI reconstruction is the MNE in the spatial domain to convert
the 2D projected images into 3D volumetric images.

To compare the similarity of InI and EPI reconstructions, InI dSPMs of t-statistic maps were
averaged between 3–7 s after stimulus onset. The center of mass of this temporally averaged
t-statistic map from the InI TINI(ρ⃑) and EPI t-statistics maps TINI(ρ⃑) were calculated separately:

[Eq. 8]

Here ‖•‖ denotes the Euclidean norm.

Spatial resolution analysis
We performed numerical simulations to evaluate the spatial resolution and localization
accuracy of our InI reconstructions. The reference data for the forward operator A(ρ⃑) and noise
covariance matrix C . The simulation procedure started from creating a source vector x(r ⃑), with
r ⃑ asset to unit activity and other locations set to zero. We then estimated the idealized
measurements from all coil array channels by computing the product of the forward operator
A(ρ⃑) and x(r ⃑).

[Eq. 9]

We created 100 realizations of synthetic noise with spatial coloring according to the noise
covariance matrix:

Lin et al. Page 8

Neuroimage. Author manuscript; available in PMC 2009 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



[Eq. 10]

where ε(r ⃑) is the noise vector with complex values following a Gaussian distribution of zero
mean and unit variance. Uc and Sc are the singular vectors and singular values of the noise
covariance matrix. At a specified SNR, the noise n(r ⃑) was scaled and subsequently added to s
(r ⃑) to generate the synthetic measurements d(r ⃑):

[Eq. 11]

Then we followed Eq. 5 to obtain the data covariance matrix, the inverse operator, and the
noise normalized inverse operator:

[Eq. 12]

. The InI reconstruction obtained with this procedure is equivalent to the point spread function

of the simulated source x(ρ⃑) . Both  were scaled to a maximum of 1.

Similar to procedures used in MEG/EEG source analysis (Dale et al., 2000; Liu et al., 1998;
Liu et al., 2002), we estimated the average point spread function (aPSF) at each location to
quantify the spatial spread of the reconstruction:

[Eq. 13]

where |di(ρ⃑)| indicates the distance between source location i and source location ρ⃑ .

 represents vector entries in the InI reconstruction 
exceeding 0.5 and l is the number of voxels to be spatially resolved by the InI reconstructions.
This procedure allows estimation of the full-width-half-maximum (FWHM) of the point spread
function. A 3D map of the spatial distribution of the average point spread function, aPSF, for
either MNE or MNE dSPM estimates can be obtained by repeating the calculation across the
whole source space, the 256 × 256 × 256 mm FOV and 4 mm isotropic spatial resolution.

Since InI is an intrinsically ill-posed inverse problem, the reconstructed image may not be the
original spatial distribution of spins contributing to the actual measurements. Thus the analysis
of localization accuracy on the discrepancy between the reconstructed sources and the original
sources is desired. Quantification of localization accuracy was done by calculating the shift
between the center of mass of InI reconstruction and the simulated source:
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[Eq. 14]

A 3D SHIFT metric map for MNE and MNE-dSPM was generated in each simulation. Since
the inverse operators depend on the SNR (and the measurement data), the SNRs were
parametrically varied from 0.1 to 100. Figure 2 illustrates the procedure of spatial resolution
analysis using simulations. The implementation of the image reconstruction and statistical
analysis procedures were done with Matlab.

RESULTS
Spatial resolution analysis of simulated datasets

Spatial resolution—Figure 3 shows the spatial distribution of aPSF at different SNRs (SNR
= 0.5, 1, 5, and 10). We observed global reductions in the aPSF for MNE reconstructions at
higher SNRs. In particular, deep brain regions show a larger aPSF metric. This matches the
physical intuition that at center of the head coil the B1 fields from all channels are less spatially
disparate as well as the SNR is lower than that at periphery and thus the spatial resolution
becomes worse. Quantitatively, the MNE-dSPM inverse still has an average aPSF of 8.64 mm
when SNR is higher than 1. At extremely high SNR (SNR >50), MNE can provide an excellent
spatial resolution (average aPSF of 0.15 mm). To translate the aPSF into a measure of spatial
resolution, the point spread function reported here should be spatially convolved with the
nominal spatial resolution of the fully gradient encoded scan. Thus, for example, the average
spatial resolution at SNR=5 is approximately 8.7 mm with a standard deviation of 6.5 mm (see
Table 1).

Spatial accuracy—The SHIFT metrics derived from MNE were shown in Figure 4. MNE
is characterized by sporadic high SHIFT metrics at low SNRs (SNR =0.5 and 1). Larger errors
occurred at source locations in deep brain areas. On average, the localization accuracy is higher
than 5 mm when SNR is higher than 1. Details of the aPSF and SHIFT metrics are listed in
Table 1.

Single subject results
Raw traces of InI acquisitions from three channels close to the occipital lobe, parietal lobe, and
frontal lobe were shown in Figure 5. Clear cardiac and respiratory fluctuations were observed
in the phase and magnitude plots of the time series from each RF coil channel. Figure 5 also
shows that acquired InI images indeed had significant phase drifting at respiratory fluctuation.
This supports the requirement of phase correction in Eq. 2. To illustrate the quality and
consistency of the InI reconstruction, we show the difference magnitude images between

simulated InI acquisitions  from reference scan and the those images of the mean of
actually accelerated InI acquisitions in Figure 6. The discrepancy between the simulated and
actual InI acquisitions was quantified as the percentage error with respect to the simulated InI
acquisitions in each channel of the coil array separately. We observed that all 32 channels show
a discrepancy of less than 10%. Note that the number of channel is arbitrary and it does not
imply spatial location of each RF coil. This implies that the reference scan suffices an accurate
forward operator for the subsequent inverse operator derivation and volumetric image
reconstruction.
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To illustrate the spatial resolution of InI reconstruction, we performed InI reconstruction using
the average InI acquisitions across time. The results are shown in Figure 7, which includes
magnitude images of InI reconstructions and sum-of-squares reference images across 32-
channels of the coil array at central 12 contiguous axial slices. Compared to the reference
images, InI reconstructions preserved some features, including boundary, cerebral hemisphere
boundary, and the contours of the whole brain. However, localized image features and contrasts
are different. In the context of fMRI, we are interested in the time-domain contrast-to-noise
ratio, rather than the spatial-domain contrast-to-noise ratio. Also, using univariate general
linear model, the analysis treats different image voxel separately. Thus we tolerated such spatial
heterogeneity and proceeded with time-series analysis.

Figure 8 shows two series (2.0 to 2.9 s and 6.0 – 6.9 s post stimulus) of functional activity
estimated by InI dSPM overlaid on the sum-of-squares images from the reference scans at eight
axial slices from a representative participant. The InI dSPM t-statistic maps were rendered on
an inflated brain surface where light gray indicates gyri and dark gray indicates sulci. We used
a critical threshold of t = 2 (uncorrected p-value = 0.028). The maps show a progressive
activation in response to the reversing checkerboard around the calcarine sulcus. Starting from
the most posterior part of the occipital lobe, the activity spreads anteriorly, superiorly, and
inferiorly. Peak activity was observed between three and five s after stimulus onset. This
response started to decrease approximately six seconds after stimulus onset

The area showing a positive visual response in the first three seconds after stimulus onset was
used to define a region of interest (ROI) in the primary visual cortex (V1). The average values
and standard deviations of this ROI time course are shown in Figure 9. Without utilizing any
specific model of the hemodynamic response, InI measures revealed a sharp BOLD-contrast
signal peak at four s after stimulus onset. We also observed a post-stimulus undershoot between
10 and 24 s after stimulus onset. The pre-stimulus interval shows fluctuations around the
baseline.

To compare InI with conventional EPI reconstruction, we compared data from the same
participants studied with both techniques. Figure 10 shows the t-statistic maps from both InI
and EPI acquisitions using an inflated cortical surface model. We averaged the InI dSPM t-
statistics between three and five second after stimulus onset in order to match the two-second
TR of the EPI acquisition from the same V1 ROI. To compensate for the differing sensitivity
of the two methods, critical thresholds were chosen as t < 2 (uncorrected p-value <0.028) and
t < 4 (uncorrected p-value <10−4) for InI and EPI respectively in order to show similar size
and pattern of cortical activity.

Differing detection sensitivity between InI and EPI were quantified by examining the t-value
maxima, the t-value baseline standard deviation, and the z-score transform of the t-values in
primary visual cortex of each participant (see Table 2). Generally, EPI was associated with
higher peak t-values compared to InI. However, the baseline variability of the EPI t-values was
also higher than InI. The overall InI z-score transform of the t -values is thus higher than EPI.
We noticed that the standard deviation of baseline t-statistics does not equal to 1 in V1 ROI.
The reason for such a result is because we calculated the averaged t-statistics within V1 ROI
first and then we calculated the standard deviation. The averaging within the V1 ROI certainly
improves the noise fluctuation because of averaging across voxels within the ROI. This
explained why the reported standard deviation of the t-statistics in the baseline period is less
than 1.

The distances η between the centers of mass of the EPI and InI reconstructions from five
participants are listed in Table 3. On average, the spatial localization of InI and EPI peak
activities differs by 5.2 mm. This localization discrepancy was quite stable among all five
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participants. The maximum distance is 6.8 mm and minimal distance is 3.4 mm, both of which
are within 2 mm difference compared to the average.

Group results
Figure 11 shows single frames of InI dSPM t-values averaged over five participants at 100 ms
temporal resolution. The shape of this group average time series is very similar in character to
the individual participant time series shown in Figure 9, demonstrating the stable performance
of InI acquisition and reconstruction techniques. Notably, the negative t-values observed in the
single participant, shown in Figure 9, disappeared in this group average, implying that the
signal decrease, as evidenced by the negative t-values, may be an individual or temporally
variable effect. The individual frames of this group average show progressive increasing
activity starting at 2.7 s after the stimulus onset (critical threshold t < 2; uncorrected p-value
<0.028). The signal returned to baseline approximately 6.0 s after stimulus onset.

The time course of the InI dSPM t-values from the group average are shown in Figure 12. The
shape of the hemodynamic response in the group average is similar to that observed in
individual participants (see Figure 3). We observed a reduced variability along the time course,
potentially resulting from averaging multiple participants. The peak activity was found at 4.5
s after stimulus onset and the post-stimulus undershoot was observed between 10 s and 24 s
after stimulus onset in the group average.

DISCUSSION
We have shown that single-shot volumetric InI methods can achieve an order-of-magnitude
acceleration in hemodynamic response sampling by combining dense head coil array parallel
data acquisition with distributed source modeling. Applying volumetric InI to study the visual
system using an event-related design, we found that the method is both sensitive and reliable,
as demonstrated in the individual participant and group average results. Localization accuracy
was examined by comparing the InI and conventional EPI task-related activity in primary visual
cortex, with the comparison revealing a good spatial match (approximately 5 mm) between the
two methods. Our results in the visual cortex activation show faster BOLD response compared
to conventional EPI. This is comparable to results from literature (Janz et al., 1997; Pfeuffer
et al., 2002). In comparison to previous studies, InI methods exhibit two principal advantages.
First, they allow collection of whole-brain volumetric data using single-shot EPI acquisition,
while previously it was only possible to obtain one single 2D image at high temporal resolution
(20 ms). Volumetric acquisition is more attractive to neuroscientists primarily interested in
investigating whole-brain spatiotemporal activity patterns. By sampling the entire brain,
volumetric InI can avoid the need for tedious manual slice prescription based on the prior
anatomical scans required to identify target brain areas. Second, our approach combines
volumetric InI and event-related fMRI design (Rosen et al., 1998), a commonly employed
experimental approach in functional neuroimaging studies. We found that volumetric InI
acquisition and reconstruction had sufficient sensitivity to reliably detect task-related activity
in primary visual areas with high temporal resolution. We also found that this study we had
reduced false positive activation compared to our first attempt of InI (Lin et al., 2006) (see
Figure 8). This is because the current implementation has better matching between the reference
scan and the InI scan: both scan used the same 3D RF excitation, frequency encoding, and
phase encoding. The only difference is that the reference scan had partition encoding steps,
but InI scans did not. The improved matching between the reference scans and the InI
acquisitions, as quantified in Figure 6, helps to generate a better reconstruction with higher
sensitivity and reduced false positive activation.
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Sensitivity and statistical degree of freedom
The difference of SNR and sensitivity of EPI and InI have been analytically and empirically
reported in our results. Both methods used BOLD contrast. However, due to different image
reconstruction algorithm and sampling rate, EPI and InI have different sensitivity and degree
of freedom. Compared to EPI, InI has an additional step of solving an inverse problem. Both
EPI and InI time series modeling and statistical inference used the same general linear model.
Using an MNE inverse operator in InI reconstruction resulted in a “decreased” sensitivity (as
reported in the reduced peak t-statistics) as well as “decreased” detection variability (as
reported in the reduced baseline t-statistics variation). This is due to the spatial smoothing
intrinsic to the minimum L-2 norm inverse operator. Such a smoothing effect was analyzed
quantitatively in the average point spread function simulations Note that InI and EPI also have
different degrees of freedom, since they are of different sampling rates. We are aware of the
potential temporal correlation inside the acquisitions. However, a further detail analysis on
such correlation is beyond the scope of this study and we will pursue it in the near future.

Physiological Noise
One limitation in BOLD-contrast fMRI detection sensitivity is physiological noise originating
from cardiac and respiratory fluctuations (Kruger and Glover, 2001). It has been shown that
physiological noise sources are the dominant limiting factor in high-field fMRI (Giove et al.).
Traditional EPI takes approximately two to four seconds to acquire a full 3D brain volume and
therefore lacks sufficient temporal resolution to resolve the physiological noise which then
becomes aliased into the recorded time series. It will be possible to utilize the high temporal
resolution of InI to improve the sensitivity of BOLD-contrast fMRI by acquiring single-shot
multiple-echo datasets at 10 Hz sampling rates. Due to this rapid sampling rate, volumetric InI
data can satisfy the Nyquist sampling criterion and thereby allowing more effective digital
filtering strategies to isolate and reduce cardiac and respiratory sources of noise. These
reductions in temporal noise will result in improved detection of the relevant effects of interest
in the experimental design.

Limits to spatial resolution
InI solves an ill-posed inverse problem in image reconstruction. The limited spatial resolution
from all channels of the coil array may not be able to provide a stable and unique solution for
image reconstruction. This deficiency in independent coil information leads to limits in spatial
resolution. Among all inverse solution alternatives, we want to bring a caution on the nominal
spatial resolution and the actual image resolution. For example, using a classical equivalent
current dipole (ECD), the spatial resolution can be regarded as infinitely high. However, this
does not adequately reflect the physical resolution set by the measurement. The reconstructed
InI images using MNE algorithm preserved some low-resolution image figures (Figure 7). This
matches to the well-known spatial smoothing effect in a minimum- ℓ norm solution. Previously,
we estimated that 2D InI usingin MNE reconstruction has a spatial resolution ranging between
5 mm and 16 mm, depending on the measurement SNR and the coil geometry (Lin et al.,
2006). From our results, we can see that volumetric InI provides reasonable spatial accuracy
relative to conventional EPI acquisition. However, a more systematic and extensive study of
all factors modulating the spatial resolution, including SNR, coil geometry, field strength, and
regularization parameters, will be required in order to quantify the factors influencing spatial
variations in resolving power.

The spatial resolution is spatially-varying because the amount of independent spatial
information from all channels in a coil array is varies among the image voxels within the field-
of-view. Notably, in peripheral cortical areas the spatial resolution is higher and at the center
of the brain the spatial resolution is lower (Lin et al., 2006). In volumetric InI, anisotropic
spatial resolution effects only appear in the InI dimension (L-R direction in this study), while
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the other two spatial dimensions (A-P and S-I directions) still retain isotropic spatial resolution
because gradient encoding is used. To improve the spatial resolution, there are two alternatives.
First, increasing the number of channels in a coil array can provide more independent spatial
information. However, the benefit of increasing channels will reach a plateau as the
consequence of electromagnetic theoretical limitations (Ohliger et al., 2003; Wiesinger et al.,
2004). In addition, at high field more independent spatial information can be obtained from
the same geometry of a coil array as the consequence of a shorter wavelength. This implies
that higher spatial resolution can be obtained at 7T, using the existing 32-channel coil array
geometry and MNE reconstruction algorithm. Second, we can ameliorate the spatial blurring
using other inverse reconstruction kernels, as discussed in the following section.

Reconstruction alternatives
The volumetric InI technique solves an ill-posed inverse problem to obtain reconstructed
images, using the MNE solution to estimate the spatial distribution of task-related activity. In
MEG and EEG distributed source modeling, spatial filters using linear constraint minimal
variance (LCMV) beamformers have been also investigated extensively (Hillebrand and
Barnes, 2005; Robinson, 2004; Sekihara et al., 2002; Van Veen et al., 1997). In contrast to
MNE, the LCMV approach minimizes the point spread function of the inverse operator,
resulting in LCMV results that are more focal compared to MNE. However, one disadvantage
of LCMV is its inefficient detection and separation of coherent sources (Van Veen et al.,
1997). Interestingly, it has been shown that MNE and LCMV are mathematically related to
each other; the difference residing in the fact that MNE is model-driven while LCMV is data-
driven during the estimation of the data covariance matrix (Mosher et al., 2003).

Under the interpretation of Bayesian estimation theory, both LCMV and MNE use L-2 norm
prior models to solve an inverse problem. Thus it may be possible to replace the L-2 norm
model by an L-1 norm model to achieve a narrower point spread function in InI image
reconstruction. The reason that the L-1 norm model has a higher spatial resolution (a narrower
point spread function) is that the probabilistic distribution of L-1 norm follows a bi-exponential
distribution and the L-2 norm model follows a normal distribution. Moreover, the bi-
exponential distribution has a more concentrated probability around the mean compared to the
normal distribution (Uutela et al., 1999). L-1 norm models have been previously studied in the
context of MEG and EEG source localization under the term of “minimum-current estimate”
MCE (Lin et al., 2005a; Matsuura and Okabe, 1995; Uutela et al., 1999). In future work, we
will investigate the comparative spatial localization accuracy of the LCMV inverse and MCE
approaches using InI data.

Spatial distortion
In this study we employed a single-shot volumetric InI acquisition with an EPI readout. Thus,
the reconstructed projection image contains the expected EPI artifacts, including intra-voxel
signal loss due to spatially inhomogeneous susceptibility distribution and geometrical
distortion along the phase encoding direction due to its intrinsically slower bandwidth.
Correction of these artifacts has been studied extensively. For example, to mitigate these
artifacts, we can use field mapping to investigate the spatial distribution of the off-resonance
effects and then use this information to reduce the susceptibility artifacts (Chen et al., 2006;
Chen and Wyrwicz, 1999; Zeng and Constable, 2002). It is also possible to use parallel imaging
techniques with EPI acquisitions to limit geometric distortion (Weiger et al., 2002), by
systematically skipping multiple integer lines in the continuous sampling of different phase-
encoding lines and then reconstructing the skipped phase encoding lines using spatial
information embedded inside different array channels. Thus the effective bandwidth in the
reconstructed image will be wider and will thereby reduce the distortion. Note that here the
spatial information from the coil array channels is in an orthogonal direction between EPI phase
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encoding (anterior-posterior axis) and InI encoding (left-right axis). Thus the implementation
of this approach will not reduce the available spatial information in the InI reconstructions,
while SNR loss is a price that must be paid for reduced data sample numbers and changes in
the parallel MRI reconstruction geometrical factor (g-factor).

Time-resolved functional imaging
The brain is a highly dynamic system. Consequently, detection and localization of static
patterns of regional functional specialization will not be sufficient to fully understand the neural
mechanisms underlying complex behavior. Nevertheless, current fMRI research mainly relies
on methods that are most sensitive to these stationary patterns of task-related activity.
Volumetric InI allows functional imaging measurements at high sampling rates over extended
brain volumes using minimal gradient encoding. To our knowledge, this is the most rapid
whole-brain fMRI achieved to date and this relatively high sampling rate may, in future work,
enable the measurement of relative brain activity onset times and thereby provide a better
understanding of the dynamic driving relationships among interacting neural subsystems
across the whole brain. This goal cannot be achieved with conventional EPI methods due to
their limited spatial coverage and temporal resolution.

Because of the relative sluggishness of the fMRI BOLD-contrast time course, it has been argued
that improving the temporal resolution of fMRI might not reveal more information about brain
dynamics. However, it is becoming increasingly clear that this popularly held view is incorrect,
possibly resulting from a paucity of practical methods allowing ultrafast fMRI recordings in
large brain volumes. For example, using limited spatial coverage, high temporal resolution
fMRI (TR = 100 ms per slice or 400 ms per volume) can detect spatially distinct differences
in neural activity onset times that can then be correlated with reaction time in order to localize
the cortical areas active in the different phases of sensorimotor integration (Menon et al.,
1998). In addition, fMRI experiments using jittered inter-stimulus-interval manipulations have
detected millisecond-scale interactions among neural systems (Ogawa et al., 2000). However,
no direct measurements of BOLD-contrast signals at high temporal resolution with spatial
coverage of the entire brain have been achieved previously. Using volumetric InI, it may be
possible to adapt time-resolved imaging techniques to experimental designs probing mutual
interactions among a spatially distributed set of participating functionally specialized regions.

Future development
Motion correction is a critical process to improve detection power of fMRI. However, Motion
correction on InI data is difficult because the acquisitions have only projection images. Such
reduction of one dimensional spatial information poses a technical difficulty of utilizing post-
processing method to do, for example, rigid body transformation, an intrinsic 3D processing.
Thus currently InI may not have the optimal sensitivity due to motion artifacts. A potential
method to mitigate this motion artifact issue is using navigator echoes during acquisition to
correct motion effects on the flight at a moderate cost of temporal resolution (van der Kouwe
et al., 2006). Even though volumetric InI allows dramatic improvement in sampling rates, it is
still constrained by the need to use the optimal TE for detection of BOLD-contrast effects
(approximately 30 ms at 3T). At higher field strengths, such as 7T, the optimal TE for BOLD-
contrast would be 20 ms or less, allowing further acceleration of volumetric InI, possibly to
50 ms whole-brain sampling times. In addition, there are two potential approaches to mitigate
the temporal resolution limitations: First, we may use different contrast mechanisms, such as
steady-state free precession (SSFP), where TE is usually less than 5 ms (Miller et al., 2003;
Miller et al., 2006). However, SSFP contrast is challenging at high field because of its high
SAR from RF excitation. Second, we may use an echo-shifting technique to reduce the TR
(Golay et al., 2000; Liu et al., 1993), as demonstrated in our previous 2D InI study (Lin et al.,
2006). Both alternatives are capable of reducing the sampling time to around 20 ms. The
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resulting higher temporal resolution may allow study of relative cortical activity timing on an
extraordinarily fine time scale, thereby facilitating study of the complex interactions among
regionally specialized neural subsystems responsible for the mediation of complex behavior.
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Figure 1.
The 3D InI spatial encoding scheme implemented using a 32-channel array of coils. One thick
sagittal slice was spatially encoded using an EPI sequence, allowing resolution of the spatial
information in both the anterior-posterior (A-P) and superior-inferior (S-I) directions. The
inverse problem was solved based on minimum-norm estimates along the left-right (L-R) axis.
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Figure 2.
A schematic diagram of procedure for spatial resolution analysis using synthetic data to
calculate average point spread function and SHIFT metric.
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Figure 3.
The distribution of spatial resolution (quantified by average point spread function) of
reconstructions at different SNRs (SNR = 0.5, 1, 5 and 10). Only central 24 axial slices of total
64 slices in a brain volume are shown here.
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Figure 4.
The distribution of localization accuracy (quantified by the SHIFT metric) of reconstructions
at different SNRs (SNR = 0.5, 1, 5 and 10). Only central 24 axial slices of total 64 slices in a
brain volume are shown here.
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Figure 5.
The time series of the phase of mean InI acquisitions from three channels of the 32-channel
array.
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Figure 6.
Difference magnitude images between the simulated and actually accelerated InI acquisitions
from fully gradient-encoded reference scan at 32 channels. The difference between two was
quantified by the percentage error labeled in the individual simulated image.
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Figure 7.
(Top) InI reconstructed images from actually accelerated scan using MNE inverse operator.
(Bottom) InI reconstructed images from fully gradient encoded reference scan using sum-of-
squares algorithm.
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Figure 8.
Single subject results showing successive frames of InI MNE-dSPM t-values superimposed
on the sum-of-squares images from the reference scan at eight axial slices. The critical threshold
used is t = 2.0 (uncorrected p-value = 0.028)
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Figure 9.
Single subject InI dSPM and the location of the primary visual cortex (V1) ROI (inset). The
time course shows the average (dark blue) and the standard deviation (light blue vertical error
bars) of the InI dSPM t-values within the V1 ROI. The average EPI t-values for the V1 ROI
are shown in red and the associated standard deviations are shown in light brown.
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Figure 10.
Single subject medial and ventral views of thresholded InI and EPI activity estimates seen in
response to a 500 ms duration reversing checkerboard. The critical thresholds were chosen as
t < 2 (uncorrected p-value <0.028) and t < 4 (uncorrected p-value <10−4) for the InI and EPI
displays respectively.
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Figure 11.
Single frames of the InI dSPM t-values in visual cortex averaged across five participants shown
from the medial aspect of the left hemisphere using an inflated brain surface model. The critical
threshold was t < 2.0 (uncorrected p-value < 0.028).
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Figure 12.
Group average InI dSPM. The time courses show the average (dark blue) and the standard
deviation (light blue vertical error bars) of the InI dSPM t-values within the primary visual
cortex ROI. The average EPI t-values in the primary visual cortex ROI with associated standard
deviations are shown in red and light brown.
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Table 1
The average (avg.) and standard deviation (std.) of average point-spread-function (aPSF) and SHIFT metrics for MNE-
dSPM at different SNRs..

aPSF SHIFT

SNR avg. (mm) std. (mm) avg. (mm) std. (mm)

0.1 26.87 9.94 25.69 15.46

0.5 11.00 3.76 6.56 4.35

1 8.64 3.42 4.54 3.37

5 4.66 2.54 2.24 1.89

10 2.98 2.18 1.52 1.49

50 0.15 0.58 0.09 0.36

100 0.01 0.13 0.01 0.09
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Table 3
Euclidian distances between the estimated primary visual cortex centers of mass for EPI and InI activity in the five
participants. Peak activity localization is strongly concordant between the two imaging techniques.

Participant ID distance (mm)

1 4.0

2 6.8

3 5.7

4 6.2

5 3.4

average (mm) : 5.2
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