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Abstract

Objective—Decreased dopamine transporters (DAT) in the basal ganglia were shown in patients
with human immunodeficiency virus (HIV) associated dementia. Therefore, we assessed the
relationship between striatal DAT and dopamine D2 receptors (D2R) availability and cognitive
performance, and whether cocaine abuse, a common co-morbid condition in HIV patients, would be
associated with further decreases in DAT and D2 receptors.

Methods—35 HIV-positive subjects [24 without (HIV) and 11 with a history of cocaine-
dependence (HIV+Coc)] and 14 seronegative controls (SN) were evaluated with PET to measure
DAT using [C-11]cocaine and D2R using [C-11]raclopride (availability of DAT or D2R estimated
with Bmax/Kd), and a battery of neuropsychological tests.

Results—Compared to SN controls, both HIV subject groups had lower DAT in putamen (HIV
+Coc: —16.7%, p=0.003; HIV: —12.2%, p=0.02) and only HIVV+Coc showed lower DAT in caudate
(—12.2%, p=0.04). Lower D2R in both regions of both HIV groups were accounted by the greater
nicotine use. Lower DAT, but not D2R, in putamen and caudate were associated with poorer
performance on multiple neuropsychological tests, corrected for the effects of age, education,
intelligence, mood, and nicotine use. Furthermore, a structural equation model (SEM) indicated that
lower average dopamine function (both DAT and D2R) were related to poorer overall function on
neuropsychological tests (p=0.05).

Interpretation—Reduced dopaminergic function may contribute to cognitive dysfunction in HIV
patients with or without additional cocaine abuse. These findings suggest that these HIV patients
may benefit from treatments that enhance dopamine function or protection from dopamine cell injury.
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Human immunodeficiency virus (HIV) associated dementia is characterized by cognitive as
well as motor deficits, hence the term HIV-cognitive motor complex (HIV-CMC)(American
Academy of Neurology AIDS Task Force Working Group, 1991).Clinical observations
suggested that patients with HIV-CMC may have dopaminergic deficits, such as decreased
attention and working memory (Law et al., 1994; Miller et al., 1990), hypersensitivity to
dopamine blockers (Factor et al., 1994), and decreased cerebrospinal fluid (CSF) dopamine
(Berger et al., 1994) and its metabolite homovallinic acid (Larsson et al.). Some patients with
HIV dementia also developed acute onset parkinsonism and dystonia when treated with
dopamine antagonists (Hriso et al., 1991). Collectively, these findings suggest that
dopaminergic system might be especially vulnerable to the effects of HIV brain infection.

Neuropathology confirmed that HIV has the propensity to invade the basal ganglia (Kure et
al., 1990), which have the highest density of dopaminergic synapses. Neuronal injury may
result from HIV neurotoxic proteins and a complex cascade of cytokines, excitotoxins, and
free radicals triggered by HIV-infected or immune-stimulated brain macrophages and
astrocytes (Kaul et al., 2001). Magnetic resonance imaging (MRI) also demonstrated atrophy
in the caudate (Jernigan et al., 2005), and positron emission tomography (PET) illustrated
hypermetabolism during early stages but hypometaoblism at later stages in the basal ganglia
of HIV patients with dementia (Rottenberg et al., 1996).

A preliminary PET study found that HIV patients with mild dementia, but not those without
dementia, showed decreases in presynaptic dopamine transporters (DAT) (Wang et al.,
2004). The current study aims to determine the relationship between decreased DAT and
cognitive function in HIV patients, and whether a history of cocaine-dependence might further
impact the dopaminergic system in HIV-infected individuals.

Since the neurotoxic effects of HIV might lead to injury in the dopaminergic terminals, we
hypothesized that: 1) HIV patients will show decreased DAT availability, and only moderately
decreased postsynaptic D2 receptor (D2R) binding, which would validate the prior
observations (Wang et al., 2004); 2) the decreased DAT would be associated with poorer
cognitive performance in these HIV patients; 3) HIV patients with a history of cocaine-
dependence would show further decreases in DAT and D2R availability compared to those
without a history of drug abuse.

Participants were recruited from the local community and each signed a written informed
consent approved by our institution. We enrolled 35 HIV subjects, 24 without a history of drug
use (HIV) and 11 with a history of cocaine-dependence (HIVV+Coc), and 14 healthy
seronegative controls (SN). Each subject was evaluated with a neuropsychiatric examination
[including assessments for HIV disease severity (see Table 1)], screening blood tests (complete
blood count, chemistry panel, thyroid hormones, protime/prothrombin time, hepatitis A, B &
C serology, and HIV test if the status is not known), urine tests (urinalysis, drug screen and
pregnancy test if female), and an electrocardiogram.

All HIV subjects fulfilled these inclusion criteria: 1) age >20 years; 2) seropositive for HIV
and had some cognitive deficits either by subjective complaints, clinical evaluations or on
neuropsychological testing; 3) CD4<500/mm? within the past six months; 4) on no
antiretrovirals or stable on a regimen for at least 8 weeks prior to the study; 5) able to provide
written informed consent; 6) education level>8t grade. 7) HIV+Coc subjects also fulfilled
DSM-IV criteria for cocaine-dependence for at least 2 years, but had been abstinent from
psychostimulant use >one month. In contrast, HIV subjects did not fulfill DSM-IV criteria for
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any drug dependence. SN subjects fulfilled inclusion criteria 1, 5, 6 and had to be seronegative
for HIV, and on no medications except for vitamins. Subjects were excluded if they had: 1)
past or present history of psychiatric illness which may confound the analysis of the study (e.g.,
schizophrenia, major depression); 2) presence of opportunistic brain lesions; 3) confounding
neurological disorder; 4) severe hepatic or renal dysfunction; 5) present or past history of drug
dependence (except for cocaine in the HIV+Coc group) or nicotine usage more than one pack
per day; 6) positive urine toxicology screen or positive pregnancy test if female; 7) head trauma
with loss of consciousness >30 minutes.

PET scanning

PET scans were performed with a Siemens EXACT HR+ (Knoxville, TN) tomograph
(resolution 4x4x4.5 mm FWHM, 63 slices). Each subject received two tracers, [11C]raclopride
and [*1C]cocaine. Procedures for subjects positioning and scanning protocol were described
previouslyll. Briefly, for [C-11]raclopride, dynamic scans were started immediately after
intravenous injection of 3-8 mCi (specific activity, >0.25 Ci/umol, at time of injection) for 60
minutes®. For [C-11]cocaine, dynamic scans were started immediately after intravenous
injection of 3-8 mCi (specific activity, >0.25 Ci/umol, at time of injection) for 54 minutes.

Data Analysis

Regions of interest (ROI) in basal ganglia (caudate, putamen and ventral striatum) and
cerebellum in both hemispheres were drawn directly on an emission image that represented
the sum of images obtained 10-60 minutes for [C-11]raclopride, and 10-54 minutes for [C-11]
cocaine. ROIs for basal ganglia were obtained bilaterally from three planes where they were
best identified. Right and left cerebellar regions were drawn in three planes, 1.0, 1.4 and 1.8
cm, above the canthomeatal line. These regions were then projected onto the dynamic images
to generate time activity curves for striatum and cerebellum. Average values for the basal
ganglia and cerebellar regions were computed from three slices, and the two hemispheres were
averaged. The measure Bmax/Kd, the ratio of the distribution volume in basal ganglia to that
in cerebellum minus 1, was obtained using a graphical analysis method without blood sampling
technique for reversible systems [Logan Plots (Logan et al., 1994)].

Neuropsychological evaluations

The neuropsychological tests were performed within one month of the PET studies and
evaluated: 1) gross motor function (Timed Gait); 2) fine motor coordination (Grooved
Pegboard Test); 3) immediate and delay memory function: Rey Auditory Verbal Learning
Tests; 4) attention and psychomotor speed: Symbol Digit Test, Trail-making Tests A and B;
5) executive function: Stroop Color Interference Tests; 6) California Computerized
Assessment Package (CalCAP—customized version, which includes evaluation of working
memory, psychomotor speed and reaction times). In addition, mood and depressive symptoms
were assessed with Center for Epidemiologic Studies-depression scale (CES-D), and
premorbid verbal intelligence quotient (V1Q) was estimated from the National Adult Reading
Test (NART).

Statistical Analysis

Analyses of covariance (ANCOVAs) were performed to evaluate group differences in clinical
variables (Table 1), using StatView and SAS packages (both SAS Institute, Cary, NC). These
analyses were adjusted for possible confounders (age, education, VIQ, CES-D, MMSE, and
nicotine use). To determine whether PET and neuropsychological variables showed increasing
abnormalities with the number of brain insults (from SN to HIV to HIV+Coc), a “trend test”
was performed, by adjusting p-values for correctly-ordered variables for the probability of
obtaining the predicted ordering by chance (i.e. dividing p-values by 6, since there are 6
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possibilities of ordering 3 values) (Howell, 2001). For these trend-tests, a correction for
multiple comparisons using the Simes procedure (Simes, 1986) was applied for
neuropsychological measures, but not for the dopamine variables, because of a priori
knowledge (Wang et al., 2004). For variables that showed a significant effect on the trend test,
multiple linear regression analyses were also performed, to explore the relationships between
DAT and D2R availabilities (Bmax/Kd), clinical variables (CD4, viral load, length of
abstinence (log), HIV dementia scale and ADC stage), and neuropsychological measures. Age,
VIQ and nicotine use were included as covariates in these analyses, since they may affect
neuropsychological and dopamine measures (Volkow et al., 1996a;Volkow et al., 2000).

Furthermore, a structural equation model (SEM) was created in SAS to evaluate the possible
effect of dopamine variables on neuropsychological function. To minimize the number of
variables in the SEM, principal component analyses (PCA) were performed for the PET (left
and right hemisphere combined) and the neuropsychological data. The first two of the PET,
and the first four of the neuropsychological, principal components were then used as “measured
variables” in the SEM. The SEM model involved two “latent” variables, one of which
(“dopamine function™) which was assumed to have a causal relation to the dependent latent
variable “cognitive function”. A chi-square test was used to determine how well the
experimental data were modeled by the SEM.

Subject characteristics and clinical assessments

Table 1 shows no differences in the three subject groups with respect to age or gender
proportion. However, SN subjects had higher education than HIV subjects. The two HIV
groups had similar duration of HIV diagnosis, CD4 count, nadir CD4 count, plasma viral loads,
HIV dementia scale scores and the AIDS dementia staging. Although none of the participants
were clinically depressed or required antidepressants, both HIV groups had more depressive
symptoms than the SN group, as measured by the CES-D (p=0.006). Compared to the SN, both
HIV groups had slightly lower scores on the MMSE. The HIV group also had marginally lower
Karnofsky scores than HIVV+Coc.

All but one HIV subjects, who was medication-naive, were treated on stable antiretroviral
medications. The average duration of treatment on current regimen was 24.5+22.8 months.
Nine HIV subjects had undetectable plasma viral load (4 in HIV+Coc group and 5 in HIV
group). Two HIV subjects and one HIV+Coc subject also had history of hepatitis C but were
treated and had no liver dysfunction. None of the subjects had resting tremor or postural
instability. However, 3 HIV and 3 HIV+Coc subjects had mild bradykinesia and 2 had mildly
increased rigidity.

All HIV+Coc subjects had used cocaine daily, with average use of 158+93 months (median:
136 months; range: 60-384 months), mean usage of 1.45+1.2 grams/day (median: 1 gram/day;
range: 0.2—4 grams/day), and last used cocaine 59.8+74 months ago (median: 24 months; range:
1-204 months). One HIV+Coc subject also used methamphetamine on the weekends (2-3
days/week) for 5 years and another HIV+Coc subject used methamphetamine and MDMA on
rare occasions. Five HIV+Coc, one HIV and one SN subjects also used marijuana (<once/
week). Six HIV+Coc, 5 HIV, and 5 SN subjects also used alcohol regularly but did not fulfill
criteria for abuse or dependence. Lastly, half of the HIV subjects smoked nicotine [HIV: 12/24
(4 were past smokers); HIV+Coc: 6/11] and only 2 SN smoked nicotine (1 past smoker).
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Dopamine transporter and receptor levels (Table 2, Figure 1 and Figure 2)

Since the left and right hemisphere DAT and D2R densities were not different, values from
the two sides were averaged to minimize multiple comparisons. The trend tests demonstrated
a significant compounding effect of HIV or HIVV+Coc on the DAT and D2R densities in the
putamen and to a lesser degree in the caudate, but not in the ventral striatum (Figure 1 and
Figure 2, and Table 2). These findings were essentially unchanged when we covaried for age,
education, VI1Q, CES-D and MMSE. We also evaluated the possible effect of nicotine smoking
on these PET variables. While nicotine use had no effect on DAT in these three brain regions,
the group effect on D2R became non-significant in the caudate and putamen (p-value=0.11 for
both regions). The p-values for nicotine use independent of the group status were 0.08 and 0.02
for the caudate and putamen, respectively. The same results were obtained when we controlled
for each covariate one at a time and when all the covariates were included in the model at once.

Correlation between dopamine transporters and clinical variables

These correlations were limited to variables that showed a significant group effect or trend test
in Table 1 and Table 2 (at p<0.05). Subjects with higher DAT (Bmax/Kd) in the putamen
performed better on the MMSE (p=0.01). Additionally, caudate D2R density declined with
age (p=0.03). DA variables did not correlate with other clinical variables, including CES-D,
Karnofsky or ADC scores, length of abstinence from cocaine use (log), or measures of systemic
disease (CD4 counts, log viral load).

Neuropsychological test performance (Table 3 and Table 4)

The two HIV-infected groups performed more poorly on many cognitive tasks, typically worst
in the HIV+Coc group; 13/22 of these tests showed group effects even after correction for
multiple comparisons (Table 3 and Table 4). Worsening performance were observed for
Symbol Digit Modality task (trend test: p=0.0003) and Stroop Color-Word Interference tasks
(Color: p=0.008; Word: p=0.004; Interference: p=0.02), with the slowest performance in the
HIV+Coc group. Worsening cognitive performance also was observed on Timed Gait, two of
the Auditory Verbal Learning tests (after interference and delayed), Trail A & B, and several
CalCAP tests (that involve working memory and greater attention). No differences were found
between HIV subjects who were smokers and HIV non-smokers on any of the cognitive tests.

Correlation between dopamine transporters and cognitive function

The correlation analyses were limited to variables that showed significant group trend tests (at
p<0.05). Figure 3 shows the simple regression analyses that showed the strongest relationship
between DAT and the cognitive measures. When age, VIQ and nicotine were included as
covariates, lower DAT in the putamen remain significantly correlated with poorer performance
on multiple neuropsychological tests: verbal memory (AVLT recall after 5 trials: p=0.037,
AVLT recall after interference: p=0.005*; AVLT delayed recall: p=0.011), and psychomotor
tasks (Symbol Digit: p=0.010; Trail A: p=0.044). Lower putamen DAT also was associated
with slower reaction times on several CalCAP tasks that involve working memory (sequential
numbers: 1-back, p=0.002*, 1-increment, p=0.011, 2-back, p=0.004*). Similarly, lower
caudate DAT density was associated with poorer performance on AVLT-interference
(p=0.019) and Symbol Digit Modalities (p=0.032), and two CalCAP tasks that involved
working memory (sequential numbers: 1-back, p=0.020 and 2-back, p=0.030). P-values
marked with a asterisk were significant after correction for multiple correlations.

SEM of PET and neuropsychological data

The SEM analysis was based on the results of the PCAs (Figure 4). The DA measures were
represented by the first two PCs of the PET data, which captured approximately 86% of the
total variance. The first PC had near-identical loadings for all six DA variables, and therefore
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reflects the average DAT and D2R level (“DA_status”). The second PC essentially represents
the difference between DAT and D2R (“DA_balance”).

The first 4 PCs of the 22 neuropsychological variables captured 69% of the total variance (PCL1.:
41%, PC2: 13%, PC3: 8%, PC4: 7%). The first PC reflected the “average

performance” (“NP_avg”) across all NP tasks, with better performance on a given task resulting
in a higher value on the first PC. The second PC had strong weightings from variables in
Memory and Learning tasks, and was denoted NP_mem. The third PC represented a measure
of executive function (NP_exe), while the fourth represented motor function (PC_mtr).

The SEM model involved the independent “latent” variable “dopamine function”, which was
assumed to have a causal relation to the dependent latent variable “cognitive function” (Figure
3). The independent latent variable was measured by the two PCs DA_Status and DA_Balance,
while the dependent latent variable was measured by the 4 PCs NP_avg, NP_mem, NP_exe
and NP_mtr.

The model showed an excellent fit to the data (goodness of fit index = 0.958, Chi-Square =
5.32, df = 8, p = 0.72). Two paths involving measured variables, from “Cognitive Function”
to NP_avg, and from “Dopamine Function” to DA_Status, were significant (t = 8.61, p<0.001,
and t = 8.33, p<0.001). The causal relation from “dopamine function” to “cognition function”
was significant at p=0.05. The positive path coefficients from DA_Status via dopamine and
cognitive function to NP_Avg indicate that reduced dopamine transporters and receptors are
related to poorer overall cognitive function.

Discussion

Lower densities of dopamine transporters and receptors are related to poorer cognitive function,
even after accounting for the independent effects of age, nicotine use and VIQ on these
measures. Therefore, decreased dopaminergic function may contribute to HIV-associated
cognitive deficits. The current study confirms prior observation of lower presynaptic DAT
availability in the putamen of HIV patients (Wang et al., 2004). We additionally found lower
postsynaptic D2 receptors in both the caudate and putamen in our HIV subjects, which were
accounted for by the greater nicotine use in these subjects. Psychostimulant abuse (primarily
cocaine), however, led only to a trend for further minimal decreases in DAT, and no additional
decreases in D2R, in the caudate and putamen of these HIV subjects. Regardless of HIV status
or cocaine use history, lower DAT availability was associated with poorer performance on tests
that involve motor, psychomotor, attention and working memory function, while lower binding
for D2R which occurs with aging and with nicotine use also contributed to slower motor
function. Together, these findings suggest that HIV infection is associated with dopaminergic
deficit that underlie the poorer cognitive performance.

Neuropathology of decreased dopamine markers in HIV

Decreased DAT indicates injury or alteration to presynaptic dopaminergic nerve terminals,
while decreased D2R reflect changes postsynaptically (Volkow et al., 1996b), primarily on
striatal GABAergic and cholinergic neurons (Scheel-Kruger, 1986) as well as on astroglia
(Khan et al., 2001). Postmortem studies demonstrated decreased dopamine and homovallinic
acid in the caudate of HIV patients, suggesting loss of nigrostriatal dopaminergic neurons
(Sardar et al., 1996), and neuronal loss (up to 25%) in the substantia nigra (Reyes et al.,
1991). Decreased dopamine in the putamen and frontal cortex, but not in the substantia nigra,
were also observed in a Simian immunodeficiency virus (SIV) model during the early
asymptomatic phase (Czub et al., 2001). In contrast, a postmortem study of 6 individuals with
HIV-encephalitis found increased presynaptic messenger RNA for DAT (Gelman et al,
2006); however, the protein level may not reflect the binding capacity of the transporter as
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measured in our PET study. Furthermore, this postmortem study also found decreased
postsynaptic D2R in HIV patients as observed in the current study, although nicotine use status
was not discussed in the study (Gelman et al, 2006).

HIV proteins (e.g. Tat and gp120) also can cause toxicity to dopaminergic neurons in vitro and
in rodent models (Nath et al., 2000). Imaging studies of HIV patients demonstrated that basal
ganglia, brain reigons with the highest density of dopaminergic synapses, had altered glucose
metabolism (Rottenberg et al., 1996), reduced volumes (Jernigan et al., 2005), and increased
gadolinium-enhancement, which suggested increased blood-brain barrier permeability and
viral entry in these regions (Avison et al., 2004). Neuropathological indeed showed high HIV
viral burden, multinucleated giant cells and glial-microglial infiltrations, in the basal ganglia
(Kure et al., 1990) which may injure the dopaminergic neurons and hence decreased
dopaminergic synapses. Unlike the earlier study (Wang et al., 2004), plasma viral load did not
correlate with DAT levels in the current study. The lack of correlation might be due to the
undetectable plasma viral loads in 9 of the HIV subjects, who may not have equally effective
viral suppression in their brains. As reported, plasma or even CSF viral load may no longer
correlate with cognitive function in HIV patients treated with potent antiretrovirals (Cysique
et al., 2005). Surrogate markers for brain injury, such as these dopaminergic tracers that
correlate well with cognitive function may be more useful to monitor brain injury and treatment
effects in HIV patients with cognitive deficits.

Relationship between decreased dopamine markers and cognitive dysfunction

The greater reduction of DAT in the putamen than in the caudate of HIV patients parallels that
observed in patients with Parkinson’s disease (Miller et al., 1997), although the magnitude of
the DAT loss is significantly less in HIV patients. In contrast, cocaine users without HIV do
not show decreased DAT in either regions (Wang et al., 1997), while methamphetamine users
showed greater decreases of DAT in caudate than in putamen, both on PET (caudate:—28%;
putamen:—21%)(Volkow et al., 2001) and in postmortem studies (caudate:—61%; putamen:
—50%) (Moszczynska et al., 2004). Because of the mildly decreased DAT, only few HIV
patients had signs of mild parkinsonism; as a group, however, they performed slower on tasks
that involve motor, psychomotor function, attention and working memory. Similar to patients
with Parkinson’s disease (Marie et al., 1999), the severity of cognitive deficits correlated with
reduced DAT in both putamen and caudate. Our findings are also consistent with
neuropathology findings that density of microtubule-associated protein (reflecting neuronal
cell bodies and dendrites) and synaptophysin (measure of presynaptic terminals) in the putamen
predicted antemortem cognitive impairment (Moore et al., 2006). Additionally, decreased D2R
in the caudate and putamen in our HIV patients correlated with slower gross and fine motor
function, which appears to be partly related to aging.

Using structural equation modeling (SEM), we evaluated a model in which a latent variable
“cognitive function”, assessed by neuropsychological testing, was assumed to be driven by the
latent variable “dopamine function”, assessed by the PET measurements (Figure 3). The
analysis demonstrated that the overall structural equation model was consistent with the
experimental data. The latent variable “dopamine function” was represented by the average of
all six dopamine variables measured, and the latent variable “cognitive function” was
represented by the average of all individual neuropsychological z-scores. In contrast, none of
the three specific cognitive domains extracted by the PCA (memory/learning, executive
function, and motor) showed a major influence of the dopamine variables. Therefore, across
these three different groups, the level of subcortical dopamine status appears to affect
predominantly the overall cognitive function, rather that any specific cognitive domain.
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Cocaine abuse may further contribute to dopamine deficits and cognitive dysfunction

Compared to SN and HIV subjects, the HIV+Coc group showed only a small trend for further
reduction of DAT and DA D2R in both the caudate and putamen. The further reduction in
dopamine markers also associated with greater cognitive dysfunction in the HIV+Coc subjects,
despite comparable plasma viral burden and degree of immunosuppression (CD4 count)
relative to the HIV subjects without drug abuse. These further small reductions in dopamine
markers might have resulted from both direct and indirect effects from cocaine. Although
cocaine abuse is associated typically with decreased D2R (Volkow et al., 1999), but no change
or even upregulation of DAT (Mash et al., 2002; Wang et al., 1997), it has been shown to
enhance HIV viral replication both in vitro and in vivo in mice (Roth et al., 2002; Scheller et
al., 2000) and in an SIV model (Czub et al., 2004), hence leading to greater neuronal toxicity
and decreased binding of DAT. Lastly, cocaine can also suppress the immune system
(macrophage killing (Lefkowitz et al., 1996), down regulation of cytokines (Mao et al.,
1996), which indirectly allow the virus to replicate and cause brain injury.

Limitations and possible treatment approaches

First, the small sample size of the HIV+Coc subgroup coupled with the small effect size led
to the non-significant further reduction in DAT compared HIV subjects without a history of
cocaine user. Future study with a larger comparison group of HIVV+Coc subjects is needed to
determine whether cocaine (or psychostimulant) abuse is associated with further reduction in
DAT in HIV patients. Second, two of the HIV+Coc subjects also abused methamphetamine
regularly and MDMA occasionally. Methamphetamine might lead to even greater decrease in
DAT; however, the subjects with the greatest decrease in DAT had used cocaine only. Third,
our cocaine users had been abstinent for almost two years on average; more recent cocaine use
may demonstrate a larger effect on the decreased DAT in HIV patients. Fourth, our HIV
subjects had greater usage of nicotine compared to SN which appears to have accounted for
the decreased D2R, although nicotine use did not appear to affect DAT or cognitive
performance. Larger sample sizes for the subgroups (with or without nicotine use) and
preclinical models are needed to further delineate the contributory effects of nicotine smoking
on dopaminergic function in HIV patients. Lastly, some of the subjects also used marijuana
and alcohol recreationally; however, we excluded those who abused or tested positive for any
of these drugs on the days of the PET or cognitive tests.

Reduced dopaminergic function in HIV patients, with and without additional psychostimulant
abuse, in relation to poorer cognitive function suggests that these patients may benefit from
treatments that enhance dopamine function. One study found improvement on cognitive
performance in HIV patients after treatment with methylphenidate (Hinkin et al., 2001).
However, the enhancement of HIV viral replication by several dopaminergic agents (including
cocaine) suggests that cessation of psychostimulant use and alternative means to improve
dopaminergic function are needed. Memantine, an NMDA receptor antagonist, also have been
shown to prevent dopaminergic deficits, by upregulating neurotrophic factor brain-derived
neurotrophic factor (BDNF), in SIV-infected macaques (Meisner et al., 2007). However, a 16-
week trial of memantine was conducted in HIV patients and found no significant improvement
in their cognitive function, but the dopaminergic system was not evaluated (Schifitto et al,
2007). Dopamine agonists or combined treatments with antioxidants (e.g. glutathione, N-
acetylcysteine) that block the effects of dopamine-mediated HIV activation and neurotoxicity
may be useful alternatives for adjunctive or preventive therapy for HIV-associated cognitive
deficits.
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Figure 1.

Distribution volume ratio images of PET with [11C]cocaine (DA transporter) in a seronegative
control subject (SN), an HIV subject (HIV), and an HIV subject with a history cocaine-
dependence (HIVV+Coc). The images are shown at the level of the basal ganglia and are scaled
with respect to the maximum value obtained in the control subject and presented using the
rainbow scale (red color - high value, violet — low value). Bargraphs below show the DA
transporter availability (Bmax/Kd) in the two HIV subject groups and control subjects.
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Dopamine D2 Receptors (Postsynaptic) — '[C]-raclopride
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Figure 2.

Distribution volume ratio images of PET with [11C]raclopride (DA D2 receptor) in a
seronegative control subject, an HIV subject, and an HIV subject with a history of cocaine-
dependence (HIVV+Coc). Bargraphs below show the DA D2 receptor availability (Bmax/Kd)
in the two HIV subject groups and control subjects.
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Figure 3.

Bmax IKd DAT

Bmax IKd DAT

Correlations between measures of DA transporter availability (Bmax/Kd) in the putamem and
neuropsychological test performance. R and p-values reflect statistical values from simple
linear regression analyses; however, the results remained significant after covarying for age,
VI1Q and nicotine use (see results). Blue dots: seronegative controls (SN); Green dots: HIV
subjects without a history of drug abuse (HIV); Red dots: HIV subjects with a history of
cocaine-dependence (HIV+Coc).
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Chi-Square = 5.32, df= 8, p = 0.72.
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Figure 4.

Structural equation modeling showing that the dopamine function is expressed as the dopamine
status (average of dopamine transporters and dopamine receptors), which in turn affects the
cognitive function of the subjects, specifically the average performance of all
neuropsychological tests. Abbreviations for the principal components: NP-avg = average
performance of all cognitive tasks, NP-mtr = motor tasks, NP-exe = executive function, NP-
mem = memory tasks.
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