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Abstract
In this fMRI study, we explore the connectivity among brain regions in a shape-from-motion task
using the causal mapping analysis of Structural Equation Modeling (SEM). An important distinction
of our approach is that we have adapted SEM from its traditional role in confirmatory analysis to
provide utility as an exploratory mapping technique. Our current approaches include (I) detecting
brain regions that fit well in a hypothesized neural network model, and (II) identifying the best
connectivity model at each brain region. We demonstrate that SEM effectively detects the dorsal and
ventral visual pathways from the covariance structure in fMRI data, confirming previous
neuroscience results. Further, our SEM mapping methodology found that the two pathways interact
through specific cortical areas such as the superior lateral occipital cortex in the perception of shape
from motion.

Keywords
functional magnetic resonance imaging; shape from motion; structural equation modeling; effective
connectivity

Introduction
Functional Magnetic Resonance Imaging (fMRI) has become a successful investigative tool
in basic and clinical neuroscience since the discovery of the Blood Oxygenation Level
Dependent (BOLD) effect in 1992 (Ogawa et al.). Historically, the primary focus of fMRI
researchers has been on localization of neural activity for particular tasks, even though their
neuroscientific interest is often in the distribution of activity across different brain regions.
Recently, more attention has been paid to the detection of causal interactions between cortical
areas (McIntosh et al., 1994; Büchel and Friston, 1997; Goncalves and Hall, 2003; Penny et
al., 2004; Zhuang et al., 2005; Smith et al., 2006).
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However, ascertaining causal connectivity across cortical areas from fMRI data encounters
three challenges. First, most current analysis methods, such as Independent Component
Analysis and Principal Component Analysis, can reveal patterns of activity across multiple
spatial regions, but are not able to provide directional information on the interaction between
these regions. Second, the observed temporal latency of the BOLD response between different
brain areas cannot be used to estimate the temporal order of neural activities. This is due to the
fact that the local hemodynamic response, which depends on the local physiology, could be
regionally specific, and thus blur or delay the temporal evolution of BOLD signals at different
brain sites. The third challenge is that many traditional analysis methods fail to provide a
complete account of interactions if more than two brain regions are involved. That is, one
region can affect another directly or indirectly, i.e. via a third party in the model, and can be
affected by several regions. As a result, correlation of two areas could include both direct and
indirect effects, and most existing fMRI analysis methods based on correlations cannot tease
these apart. For this type of “many-body problem” in neural interactions, a powerful statistical
method has been utilized for functional neuroimaging research - structural equation modeling.

Structural equation modeling (SEM) is a statistical technique that is able to examine causal
relationships between multiple variables. The parameters in the SEM are connection strengths
or path coefficients between different variables, and reflect the effective connectivity in our
neural network model. Each path in the model has direction, and a solvable model must have
more than two variables. Parameters are estimated by minimizing the difference between the
observed covariances and those implied by a structural or path model. Since SEM solves the
whole path model at once, the solution will give the causal direction between multiple regions
of interest (ROIs). Therefore the three challenges mentioned above can be overcome.

SEM was initially developed and applied in biology, psychology, economics, and other social
sciences (Wright, 1920). In 1994, hypothesizing a connectivity model based on prior
knowledge of anatomy and connectivity, McIntosh and Gonzalez-Lima (1994) applied SEM
to PET data, demonstrating the dissociation between ventral and dorsal visual pathways in
object and spatial vision. SEM was also used to characterize connectivity changes within the
motor system of Parkinsonian patients (Grafton et al., 1994). Büchel and Friston (1997) used
SEM analysis in an fMRI study to investigate the nonlinear interactions among V1, V5,
posterior parietal cortex, and prefrontal cortex. Maguire et al. (2001) compared the structural
equation models between human brains with and without bilateral hippocampal damage during
a memory retrieval task. More recently, SEM was used as an exploratory approach to
exhaustively compare all possible model combinations among a set of ROIs in an fMRI study
of bimanual motor coordination (Zhuang et al. 2005). Another recent study investigated the
effect of voxel selection on the application of SEM to an fMRI study of the visual areas V1,
V2 and V5 (Goncalves and Hall, 2003).

While SEM is an effective method to ascertain path directions and coefficients from the
covariance structure in fMRI data, in the current literature it is mostly applied using a few fixed
models or fixed variables (ROIs in functional neuroimaging). Because these fixed models or
ROIs need to be predefined based on existing knowledge, unknown brain areas cannot be
explored using these methods. The present work uses SEM in an exploratory analysis to derive,
on a voxel-by-voxel basis, the most significant path model and the corresponding path weights,
such that we can generate maps corresponding to model statistical indices, especially in those
areas in which the activation pattern is unknown.

To study neural interactions and test SEM methodology, we need an experimental paradigm
that (1) is well-informed by neuroscience, providing knowledge of which brain regions are
involved and allowing comparison of our statistical results with previous neuroscientific
results; and that (2) explicitly modulates the interactions among brain regions, including
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different directions and strengths among these interactions, which can be tested by SEM. To
satisfy these criteria, in this study we applied SEM with an fMRI paradigm to derive the
effective connectivity in the human visual system.

There exist many neurological studies on the organization of the human visual cortex (Felleman
and Van Eesen, 1991; Zeki et. al., 1991; Tootell et al., 1998; Sunaert et. al., 1999). It is now
widely accepted that the human visual cortical areas are organized into two functional
pathways, the occipitotemporal pathway, or “ventral stream”, and the occipitoparietal pathway,
or “dorsal stream”. The ventral stream plays a specific role in object recognition and
identification (‘what’), with the main cortex for identification of object shape located in the
lateral occipital complex (LO) (Malach et al., 1995; Martin et al., 1996; Kanwisher et al.,
1996). Meanwhile, the dorsal stream is involved in visual perception of the movement and
location of objects relative to the observer (‘where’), with the major cortex for perception of
the visual movement located at the midtemporal lobe (MT) or V5 area (Ungerleider and
Mishkin, 1982). These well separated functional pathways provide a good test platform for
SEM.

The integration of low-level image features into coherent visual shapes is still an important
topic in visual perception. In a shape-from-motion (SFM) task, three-dimensional (3D) object
shapes can be perceived using patterns of random-dot motion without explicit shape
information based on contours (Wallach and O’Connell, 1953; Koenderink and Van Doorn,
1986; Siegel and Andersen, 1988; Treue et al., 1991). The phenomenon of SFM indicates that
the motion information, which is processed in the dorsal pathway, can be transferred forward
and be used in the object recognition, which is performed in the ventral stream (Malach et al.,
1995; Kriegeskorte et. al., 2003). Ungerleider and Mishkin pointed out that the act of perceiving
shape from motion suggested cross-talk between the dorsal and the ventral visual pathways
(Ungerleider and Mishkin, 1982). Previous human fMRI studies (Jiang et al., 2002; Murray et
al., 2003; Kourtzi et al., 2003; Kriegeskorte et al., 2003) have investigated this topic, but the
focus has been on one or two regions, such as MT+ (Jiang et al., 2002), LO (Kourtzi et al.,
2003; Kriegeskorte et al., 2003), or superior lateral occipital cortices (Murray et al., 2003). The
analysis method in these papers does not provide a comprehensive picture at the macroscopic
level, and the interpretation of their results was based on the assumption of connectivity
between the individual detected regions.

In this paper, we used fMRI data from a shape-from-motion task to test the feasibility of SEM
analysis in effective connectivity detection at a macroscopic level that includes multiple brain
regions. SEM was applied as a mapping method rather than a confirmatory method to identify
the best connectivity model at each brain region.

Materials and Methods
fMRI experiment

Seven subjects participated in this study according to the guidelines set forth by the institutional
review board at Emory University. Informed consent was obtained from all subjects. Of these,
five were male and two were female with age ranging from 18 to 31 years. All were right-
handed with normal vision and no neurological deficits.

MR data were acquired on a 3T Siemens Trio whole body scanner. Anatomical scans were
acquired using a T1-weighted MPRAGE sequence (TI/TR/TE/Flip angle: 800ms/25ms/6ms/
15°; matrix: 256×256×140; FOV: 256×256×140 mm3). Functional data were then collected
using a gradient echo EPI sequence (TR/TE/Flip angle: 1s/32ms/65°; slice thickness: 5.5 mm
without gap; matrix: 64×64; FOV: 20×20 cm2). Fourteen oblique coronal slices were acquired
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to cover the occiptal, parietal and temporal lobes, with 300 images collected for a scan time of
5 minutes per run, matched to the visual task described below.

Subjects viewed visual stimuli in a block design paradigm that included the following
conditions: 3D SFM, static shape contours, random moving dots, static random dots and
fixation, each lasting 20s and repeated 3 times. The block-design fMRI scans were repeated
twice for each subject. The order of the blocks was randomized. The pictures of random dots
for visual presentation were exactly the same among the conditions of SFM, random moving
dots and static random dots: white random dots uniformly spread on the black background with
a small fixation cross at the center. The only difference between the SFM and random moving
dots conditions was the display sequence. With a certain display sequence of dots, the subject
can identify a cube or cylinder shape. In contrast, with other orders of presentation, or in the
random moving dots condition, no shapes can be seen (Figure 1). The cube or cylinder contours
were added on the random dots background during the static shape contour block.

The subject’s viewing angle of the rear screen when lying inside the scanner was approximately
16.5°. Stimuli were projected on the rear screen, with full display size of 34cm × 26cm. The
visual stimuli consisted of 600 dots and a central fixation cross. The dots and the cross were
displayed in white over a black background. The dots (six pixels) were round with a radius of
0.07° visual angle. All pictorial stimuli were displayed using Presentation (version 0.50,
Neurobehavioral Systems).

Exploring with a fixed structural equation model
For each fMRI data set, head motion was corrected and activated areas were detected using
BrainVoyager (Maastricht, Netherlands). Activation maps of V1/V2 areas were obtained using
a t-test between all visual stimulus conditions (including SFM, random moving dots, static
shapes and static random dots) and fixation baseline, with statistical significance p<0.001
(corrected for multiple comparisons) and a minimum cluster size of 5 voxels. Aided by the
anatomical landmarks such as the lingual gyrus and the calcarine sulcus, we selected the
activated areas that were closest to the coordinates cited in other studies to localize V1/V2
(Büchel and Friston, 1997; Goncalves et al., 2003).

MT+ was identified by a similar t-test between the motion conditions (SFM and random
moving dots) and the static conditions (static shapes, static random dots and fixation), as well
as by the anatomical landmarks published in the previous studies. Similarly, the LO area was
detected by a t-test between shape conditions (SFM and static shapes) and all other conditions
(random moving dots, static random dots and fixation). The time series of the voxels from each
subject’s identified ROIs were first averaged, and then normalized into percentage scale by
subtracting and dividing by the mean, and finally concatenated between both fMRI runs to
create an intra-subject time series for each voxel.

To explain the whole analysis procedure, we will start with one model as an example. In this
model, two visual pathways start from the unknown region to LO and MT+ area (Figure 2,
Model 1) in each hemisphere. The normalized time courses from LO and MT+ areas were
treated as two observed variables. The signal from each voxel within the hemisphere except
the marked MT+ and LO areas was regarded as the third observation in the current structural
equation model, and was evaluated with the SEM statistics.

For the assessment of the overall model fit, the goodness of fit index (GFI) and the adjusted
goodness of fit index (AGFI) are the most commonly used fit indices in SEM analysis. For our
purpose, AGFI is a more appropriate index of fit than GFI, in that AGFI accounts for the number
of degrees of freedom in the model (see Equations 1 and 2; Byrne, 1994; Gerbing and Anderson,
1993; Hu and Bentler, 1999). These indices are derived by
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(1)

where tr indicates the trace operation, S is the covariance matrix, and Σ is the estimated S;

(2)

where p the number of observations, and df the degree of freedom in the model.

The SEM software Lisrel 8 (Jöreskog and Sorbom, Scientific Software International Inc.,
Chicago, IL) was used to estimate the statistical significance of model fitting with the
experimental data at each voxel. The AGFI value found in the SEM analysis was marked on
the image voxel when two statistical significance thresholds in the model were reached at that
point. First, a threshold of 0.90 was chosen for the overall model significance, represented by
the AGFI. Second, the significance of each path, or the t value of each estimated path coefficient
in the model was thresholded at 1.96, which corresponds to a probability level of 0.05 for the
given degrees of freedom. The algorithm was implemented in Matlab (MathWorks, Natick,
MA).

Exploring the best model at each voxel
The approach of AGFI mapping from one model can be extended to compare a range of possible
models at each voxel, in order to identify voxels in the brain corresponding to a particular
connectivity model or path. Among 13 cortical visual areas, 62 connectivity pathways were
identified by previous neuroscience studies (Felleman and Van Essen, 1991). According to our
topic and interests, six anatomically available connection models were assumed as in Figure
2. As an example, in the second model, we defined three variables and two paths: V1/V2, one
unknown area, MT+ area, the path from V1/V2 to MT+, and the path from V1/V2 to the
unknown area. The third model was similar to the second one, except that MT+ was replaced
by LO. The purpose of selecting the first three models was to verify the feasibility of this
method.

In the fourth and fifth models, two paths start from V1/V2 to LO and MT+ areas. One unknown
variable is in the middle of the path either from LO to MT+ or from MT+ to LO (Figure 2,
purple and blue models). In Model 6, the unknown area receives paths both from MT+ and
LO, with MT+ and LO receiving inputs from V1/V2 area. The reason for including Models 4,
5 and 6 is to investigate the interaction between the two visual pathways and to identify
unknown areas that may process and integrate very specific visual information into the shape
perception.

Similar to the analysis of Model 1 described above, SEM was first used to estimate the statistical
significance of each model’s fit with the observed activity in each voxel under consideration.
Next, for each voxel the six models were sorted by their AGFI with a significance threshold
of t-value (>±1.96) on each path. Finally, for each voxel, the best-fit model and its
corresponding AGFI value were saved and displayed in the color-coded Model Index Map
(MIM).

Using BrainVoyager (Maastricht, Netherlands), each subject’s brain was inflated into a smooth
cortical surface. The statistical maps from the SEM, including the MIMs, were projected onto
the inflated cortices of each subject for the easy visualization of the activation areas on one
surface. For each model, the location of the voxel with peak activity in terms of highest AGFI
value was identified, and the corresponding Talaraich coordinates were recorded. The time
course from that voxel was retrieved, and fed back into the best fitting structural equation model
to calculate the path coefficients for that model.
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Results and Discussion
In this experiment, the activity of visual areas was observed using a t-test contrasting all visual
conditions combined versus fixation for seven subjects individually. A subset of activated areas
was located at V1/V2 areas. As illustrated in Figure 3, an ROI was selected based on the
detected activity and anatomic landmarks of V1/V2 areas. The activity of the LO area was
detected using a t-test between the 3D shape processing tasks (SFM and static shape) and all
other conditions, and the activity of MT+ area was observed based on the test between motion
perception (SFM and moving dots) condition and all other conditions. All t-test results were
thresholded at p<0.001, corrected for multiple comparisons.

The AGFI maps from Model 1 were determined and displayed in Figure 4 (red model). The
results for all seven subjects demonstrated significant AGFI (>0.900) areas located in V1/V2,
which is consistent with the well-known anatomical model of the two visual pathways. Table
1 lists the results of fitting Model 1 to the time courses of two representative voxels from a
single subject. The first time course was retrieved from a voxel where the fitting was significant
(in the detected red region of Figure 4), and the second was from a voxel where the fitting was
not significant.

The Model Index Maps (Figure 4) show that Model 1 was the best fit for area V1/V2.
Meanwhile, Model 2 fit best in LO for all seven subjects, and fit best in the inferior occipital-
temporal area (IO/IT) for three of the seven subjects. Model 3 was the best model in MT+ (V5)
area for all seven subjects, and was the best model in the mid-lateral parietal lobule for four
subjects.

Model 4 was found to be the best fitting model in the left dorsal occipital regions (DO) for
three subjects, and to be the best fitting model in the right dorsal occipital regions for four
subjects. Almost found on all subjects, Model 5 had the best fit in the superior lateral occipital
region (SLO), which was at the middle of the path from MT+ to LO. Model 6 did not fit any
subject’s data well, implying that no cortical area was the converging point of two paths from
MT+ and LO.

Table 2 presents the regions of peak AGFI value, on the left and right hemispheres respectively,
for different models, their inter-subject averaged Talaraich coordinates, the number of subjects
who exhibit the active region in the model, the inter-subject average of standardized path
coefficients, and the average AGFIs. Table 2 shows that the AGFIs from the first five models
are all high, above 0.948, which indicates a good fit for these models. Table 3 presents the
Talaraich coordinates of the ROIs derived from localization of visual areas, and shows the
results of SEM analysis specifically from these ROIs. Comparing the Talaraich coordinates
listed in Tables 2 and 3, we can see that the detected regions from Models 1-3 and the
corresponding pre-defined ROIs are extensively overlapped. However, the difference of SEM
results between the model-identified regions and the corresponding ROIs indicates that they
are not fully overlapped, for the reason that the statistics behind the ROI localization and SEM
analysis are different in nature.

As an example, the single-voxel results in Table 1 indicate that Model 1 generated statistically
significant result from one subject’s data at a sample voxel in V1/V2, but the fit did not reach
statistical significance at a sample voxel in other areas. A previous study using a similar voxel-
based SEM analysis on one subject’s data also demonstrated the validity of this approach
(Goncalves and Hall, 2003). However, in that study, the SEM analysis was performed on just
a few ROIs, rather than employed as a mapping method. In our study, the areas identified by
SEM are consistent across seven subjects (Figure 4 and Table 2). It is important to note that
with several models applied to more than 50,000 voxels, chance alone is bound to produce
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some significant results. The consistency of our findings across seven subjects lends support
to the validity of our method.

The resulting maps from Models 1, 2 and 3 match with the known functional anatomy of the
visual system. Area V1/V2 is the starting point of two visual pathways, which were mapped
in Model 1. The detected areas from Model 2 are mostly in the ventral visual pathway, such
as in the LO and IO/IT areas. The areas in Model 3 are located in the dorsal visual areas
including MT+ and parietal cortex, which is also consistent with previous literature. The two
primary visual pathways starting from V1/V2 to MT+ and LO were found consistently in the
three independent model fittings. The results of the first three models verified that our mapping
method of SEM can detect the paths in the visual system.

As described in the introduction, standard methods of analyzing BOLD fMRI are not suitable
to make definitive conclusions regarding the causal connectivity based on the observed
temporal differences in the fMRI activations as the hemodynamic response is too slow, while
the cortical interconnection exhibited by neurophysiological oscillation on the millisecond
scale can be studied by EEG or MEG (Darvas et al., 2004; David et al., 2006). The SEM
approach is also applicable in analyzing EEG or MEG data in this regard (Babiloni et al.,
2003; Astolfi et al., 2005). Some EEG and MEG studies (Schoenfeld et al., 2003; Cauquil et
al., 2006) analyzed the neural processing sequence in the SFM task that is used in the present
study, and found the interactions between ventral and dorsal visual pathways, such as between
parietal, occipito-temporal and ventral–lateral occipital cortices. However, in general, neither
EEG nor MEG has sufficiently high spatial resolution to reveal detailed cortical pathways.
Therefore, we propose based on our current results that fMRI can serve as a complementary
method for studying neural functions and neural interactions at a high spatial resolution using
voxel-by-voxel SEM.

In our present study, the time courses from ROIs indicated that the specific paradigm design
modulated the influence of the stimulus conditions on the activation of different brain areas.
This enabled the use of time series from various groups of voxels to predict the interconnection
of two visual pathways that correspond to the ventral and dorsal streams. Simple t-tests or cross
correlation are insufficient to detect areas with a complex activation pattern. However, because
activity in particular areas, which have connections to any known activated areas, must follow
a certain modulation by characteristic tasks, we can circumnavigate this problem by estimating
different structural equation models. As a demonstration, we removed the time points
corresponding to the SFM condition at each voxel and then performed the same SEM analysis
on Models 4-5. In this ad-hoc analysis, the previously detected region was no longer significant.
This supports our suggestion that the results of the SEM approach yield a certain activation
pattern which fits a causal connection model. In this way, the present exploratory SEM
application represents a new mapping method for revealing the causal influence of “latent” or
“hidden” areas, and further provides information about the connectivity at each voxel.

On the topic of shape perception from motion, all participants’ results indicated that there is
intercommunication between the two visual “streams” (Models 4 and 5), but that there is no
converging point between the two paths (Model 6), which is consistent with the known anatomy
of the visual system (Felleman and Van Essen, 1991; Zeki et al., 1991; Tootell, 1998; Sunaert
et al., 1999). According to Kourtzi (2000, 2001, 2002, 2003), shape processing with motion
information follows ventral pathways, although the LO also responds to the low-level image
features. This agrees with our Model 5, in which the information is passed from MT+ to LO.
Furthermore, Model 5 revealed the indirect effect from MT+ to LO. In other words, increased
activity in MT+ may somehow lead to correlated brain activity in the LO, despite the fact that
the two cortical areas are thought to have no direct projections.
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The detected SLO in Model 5 is in close proximity to the shape (LO) and motion (MT+) areas.
Many researchers have pointed out that SLO is an important area in the interaction between
MT+ and LO (Grill-Spector et al., 1998; Murray et al., 2003). The coding of 3-D shape from
motion is assumed to be mediated by the projections of dorsal areas onto the ventral visual
pathway through intermediate areas (Paradis et al., 2000; Kriegeskorte et al., 2003). SLO is a
good candidate for such an area according to the results from the current study, which explain
why SLO was also found activated in previous SFM studies (Murray et al., 2003). SLO appears
to be involved in “complex” structure reconstruction from motion cues, as suggested by
Murray’s and our results. The pathway from MT+ to SLO and on to LO may represent the
procedure from analyzing motion flowfield, to processing the motion parallax, and on to
reconstructing the surface structure of the motion-defined object.

The significant fit of Model 4 for a few subjects’ data implies that the information may be
transferred in a reversed but weaker way from the ventral visual pathway to the dorsal visual
pathway. The area MT/MT+ (V5), known to be primarily engaged in motion analysis, is also
involved in shape processing independent of the objects’ motion and receives input from LO
areas (Kourtzi et al., 2002; Jiang et al., 2002). Another possibility is that the activity of the
parietal lobule (PL, which may include IPL and LIP) also corresponds to visual motion but to
a lesser degree than MT+, as in the results from Model 3 (Figure 4). This could cause the
observed covariance between the LO and PL. The detected area may be in the middle of a path
between LO and PL areas. But this effect is probably not as robust as the causal interaction
from MT+ to LO, because not all subjects demonstrated this interaction. According to previous
studies on the human vision system (Gaska et al., 1988; Felleman and Van Essen et al.,
1991; Tootell et al., 1997; Orban et al., 1999; Sunaert et al., 1999; Murray et al., 2003), the
detected DO area in Model 4 is possibly located at V3A, which shares connections with areas
in both parietal and temporal cortices, especially one of the principal connections to/from LO
(Kim and Kim, 2005). It is also the most retinotopic motion area in humans (Tootell et al.,
1997) and is considered to be a lower tier motion area after MT+/V5 (Van Essen and Zeki,
1978; Zeki, 1978; Gattass et al., 1988). Given this, our model suggests that V3A may aid in
the integration of various cues for the perception of 3-D shape. Taken together, our findings
from Models 4 and 5 suggest complicated distributed, rather than simple hierarchical,
processing of global shapes in the visual system.

In interpreting our results, one should keep in mind the limitation of the selected models. The
SFM task also involves other visual areas and other path network models. For example, many
distinct visual areas are reciprocally connected, such as V1/V2 and MT. In this study, we
focused only on the ventral and dorsal visual pathways and on the unidirectional
intercommunications between them to reduce the model complexity. Even though our models
did not include all involved regions, as with any SEM study that examines effective
connectivity, the results are nonetheless relevant because any covariance between cortical
regions mediated by other visual structures would be indirectly reflected in our structural
equation models. Furthermore, for demonstrating the utility of exploratory SEM, the choice of
six models is sufficient.

Conclusion
An exploratory SEM analysis of fMRI data was applied to derive effective connectivity maps
in the visual system, using a shape-from-motion task. Possible connections between each brain
voxel and selected ROIs were assessed by SEM using six possible network models. For each
voxel in the analysis, the most significant model was identified; the results across voxels were
then used to generate a Model Index Map (MIM). This map reflected the overall connectivity
of the region and provided valuable information on functional networks in the brain.
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Interestingly, the SLO area was found to be connected to both dorsal and ventral visual
pathways during the visual shape and motion analysis.
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Figure 1.
Examples of visual stimuli for the random dots (left) and shape from motion (right, without
the explanatory dashed lines and rotation arrows) conditions.
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Figure 2.
The sequence of SEM path models used to explore the causal connectivity of the visual system.
For each model, the time courses from the voxels of ROIs were used to identify the unknown
voxel that best fit the model.
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Figure 3.
Representative time courses and locations of Regions of Interests (ROIs) as derived from
activation maps and anatomic landmarks, which were used in the voxel-by-voxel SEM
analysis. The depicted areas are for one subject as an example.
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Figure 4.
The resulting Model Index Maps depicting the connectivity models of the human visual system,
for the right hemisphere by subject. The color bars indicate the AGFI (Adjusted Goodness of
Fit Index) value.
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Table 1
An example of the overall fit indices inferred by the SEM for Model 1 at two voxels (with Talaraich coordinates in
units of mm) in one subject’s brain. Voxel A was selected from the red region of Figure 4, and Voxel B was selected
from outside that region.

Model 1 Voxel A (-16, -91, 2) Voxel B (-30, -75, 12)

Goodness of Fit Index (GFI) 0.990 0.765
Adjusted Goodness of Fit Index (AGFI) 0.967 0.218
χ2 / degree of freedom 2.017 94.413
 P-value for χ2 (0.001) (0.109)
Root Mean Square Error of Approximation (RMSEA) 0.0351 0.336
  P-value for test of close fit (RMSEA < 0.05) (0.997) (0.6653)
Largest standardized residual 0.0107 10.605
Normed Fit Index (NFI) 0.997 0.883
Comparative Fit Index (CFI) 0.998 0.884
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