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Abstract
We utilized a discrete dynamic Bayesian network (dDBN) approach (Burge et al., 2007) to determine
differences in brain regions between patients with schizophrenia and healthy controls on a measure
of effective connectivity, termed the approximate conditional likelihood score (ACL) (Burge and
Lane, 2005). The ACL score represents a class-discriminative measure of effective connectivity by
measuring the relative likelihood of the correlation between brain regions in one group versus
another. The algorithm is capable of finding non-linear relationships between brain regions because
it uses discrete rather than continuous values and attempts to model temporal relationships with a
first-order Markov and stationary assumption constraint (Papoulis, 1991). Since Bayesian networks
are overly sensitive to noisy data, we introduced an independent component analysis (ICA) filtering
approach that attempted to reduce the noise found in fMRI data by unmixing the raw datasets into a
set of independent spatial component maps. Components that represented noise were removed and
the remaining components reconstructed into the dimensions of the original fMRI datasets. We
applied the dDBN algorithm to a group of 35 patients with schizophrenia and 35 matched healthy
controls using an ICA filtered and unfiltered approach. We determined that filtering the data
significantly improved the magnitude of the ACL score. Patients showed the greatest ACL scores in
several regions, most markedly the cerebellar vermis and hemispheres. Our findings suggest that
schizophrenia patients exhibit weaker connectivity than healthy controls in multiple regions,
including bilateral temporal and frontal cortices, plus cerebellum during an auditory paradigm.
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INTRODUCTION
fMRI data analysis often focuses on the study of functional specialization, which is the inquiry
of particular brain regions and their localized functions (Cohen and Tong, 2001). Currently,
the most popular method of analyzing and understanding fMRI data is the general linear model
(GLM) (Friston, 1994). In the context of fMRI analyses, the GLM represents an application
of studies geared towards functional specialization. It effectively finds where task-related
regions of the brain might be, but does not provide answers to the inter-relationships between
these regions or in other words, their effective connectivity (Petersson et al., 1999a, b). The
study of schizophrenia can benefit from this approach. Schizophrenia is a disorder with an
unknown etiology and pathophysiology that is further complicated by its symptomatic
heterogeneity (Pearlson, 2000). The substantial base of neuroimaging literature that deals with
this disorder suggests that its associated cognitive deficits are not localized to a single brain
region, but represent a more diffuse cognitive dysfunction (Ross et al., 2006). Thus, locating
specific brain regions that behave abnormally in schizophrenia might be insufficient to
understand the underlying basis.

To determine effective connectivity within fMRI images, tools such as structural equation
modeling and dynamic causal modeling (Friston et al., 2003; McIntosh and Gonzalez-Lima,
1994) can be used to identify interactions between different brain regions. However, most of
these implementations require the selection of a limited number of brain regions for analysis
and are constrained by fundamental assumptions regarding the form of correlations between
these regions of interest (Burge et al., 2007). In order to overcome these obstacles, a recently
developed approach was created using discrete dynamic Bayesian networks (dDBN) applied
to fMRI data (Burge and Lane, 2005; Burge et al., 2007). Bayesian approaches have been used
with fMRI data to answer questions related to causality, connectivity, and optimal model
selection (Friston, 2005; Friston et al., 2002). For our purposes, the dDBN approach was
utilized to determine a locally optimal structure that discriminated patients with schizophrenia
from healthy controls based on a measure of effective connectivity termed the approximate
conditional likelihood score (ACL) (Burge and Lane, 2005).

Although the resulting structure from the dDBN analysis should accurately represent class-
discriminative structures, this process is often complicated by physiological/artifactual noise
in fMRI data. The advantages of using ICA as a preprocessing step have been shown in previous
fMRI studies to be a beneficial tool in reducing noise-related artifacts. These types of noise
can be found using independent component analysis (ICA) (Calhoun et al., 2001b). ICA is a
statistical and computational data-driven technique that attempts to discover hidden factors
underlying sets of random variables, measurements or signals. It assumes that the fMRI data
are linear mixtures of independent source signals and attempts to extract maximally
independent signals and their mixing coefficients. The driving principle behind ICA is that
these independent source signals represent coherent groupings of fMRI activations, often
referred to as component maps, that are considered to be functionally relevant (Calhoun et al.,
2001c). Another advantage of ICA is the ability to reconstruct the fMRI data from a subset of
these component maps. Thus, by implementing ICA on our fMRI dataset, we were able to
locate components that represented noise/artifacts, remove them from our analysis and
reconstruct an fMRI dataset. This new dataset was analyzed using our dDBN algorithm and
its results were compared with our original analysis that did not include the ICA filtering
approach.

To determine effective connectivity differences between patients and controls, we analyzed a
dataset consisting of 35 subjects with paranoid schizophrenia and 35 matched healthy controls,
performing an auditory oddball task. Our hypothesis was that the ACL scores for healthy
controls would be higher than that of patients, based on previous studies that have shown
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aberrant connectivity and synchrony in schizophrenia patients (Friston and Frith, 1995; Garrity
et al., 2007; Kim et al., 2007; Schlosser et al., 2003). We further hypothesized that the class-
discriminative families found from both the original analyses and the ICA filtered approach
would represent significant ROIs that characterize schizophrenia during this auditory paradigm
and that these regions would be consistent with previous studies that have implicated areas
such as the bilateral temporal lobes, bilateral parietal lobes, thalamus, and cerebellum (Kiehl
et al., 2005; Kim et al., 2007; Laurens et al., 2005).

METHODS
Participants

Thirty-five outpatients with schizophrenia (30 males) and thirty-five matched healthy controls
(30 males) provided written informed consent and volunteered for the study at Hartford
Hospital. Healthy controls were free from any Axis I disorder, as assessed with the SCID
(Structured Clinical Interview for DSM-IV-TR screening device (First et al., 1995). Patients
met criteria for paranoid schizophrenia (subtype 295.30) in the DSM-IV based on a structured
clinical interview and review of the case file. All participants were right handed and there were
no significant group differences in age (patients, 38 ± 11 years, range 18–59; controls, 37 ± 12
years, range 18–55). Intelligence estimates were determined from NART (National Adult
Reading Test (Nelson, 1982)) scores; healthy controls (n=17, 22 ± 7 points) scored higher than
patients (n=26, 35 ± 15 points; t(41)=3.1323, p < .005). To determine the presence/absence of
psychotic symptoms, the mean PANSS (Positive and Negative Syndrome Scale (Kay et al.,
1987)) scores for patients were determined (n=28, 66 ± 19.6). Medication information was
available for 24 patients; 13 were taking atypical antipsychotic medications, 4 were on typical
antipsychotic medications, 2 were taking both atypical and typical medications, and three were
on no medications at all. Four participants from the patient group were omitted from analysis,
as they demonstrated extremely poor performance on the auditory oddball task (more than ten
total incorrect responses in either targets or novels for both sessions). Two additional
participants were omitted for excessive head motion (greater than one and a half voxel-length
(6mm) in translation or (4 degrees) in rotation). All participants had normal hearing (assessed
by self-report) and were able to carry out both tasks successfully during practice, and during
the scanning session.

Task: Auditory Oddball
Two runs of auditory stimuli were presented to each participant by a computer stimulus
presentation system (VAPP: http://nilab.psychiatry.ubc.ca/vapp/) via insert earphones
embedded within 30 dB sound attenuating MR compatible headphones. The standard stimulus
was a 500 Hz tone, the target stimulus a 1000 Hz tone, and the novel stimuli consisted of non-
repeating random digital noises (e.g., tone sweeps, whistles). The target and novel stimuli each
occurred with a probability of 10%. The non-target stimuli occurred with a probability of 80%.
The stimulus duration was 200 ms with a random 1000, 1500, or 2000 ms inter-stimulus
interval. All stimuli were presented at approximately 80 decibels and all participants reported
that they could hear the stimuli and discriminate them from the background scanner noise. The
headphones were designed to work with the head restraint system in order to minimize head
movement.

An MRI compatible fiber-optic response device (Lightwave Medical, Vancouver, B.C.) was
used to acquire behavioral responses. Prior to entry into the scanning room, each participant
performed a practice block of 10 trials to ensure understanding of the instructions. The
participants were instructed to respond as quickly and accurately as possible with their right
index finger when they heard the target stimulus and not to respond to the non-target stimuli
or the novel stimuli.

Kim et al. Page 3

Neuroimage. Author manuscript; available in PMC 2009 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://nilab.psychiatry.ubc.ca/vapp/


Imaging Parameters
Imaging was implemented on a 3T Siemens Allegra MR system. Conventional spin-echo T1
weighted sagittal localizers were acquired to view the positioning of the participant’s head in
the scanner and to graphically prescribe the functional image volumes. Functional image
volumes were collected with a gradient-echo sequence (TR=1500 ms, TE=27 ms, FA=60°,
FOV= 22 × 22 cm, 64 × 64 matrix, 4 kHz bandwidth, 3.44 by 3.44 mm in plane resolution, 4
mm slice thickness, 1 mm gap, 29 slices acquired axially) effectively covering the entire brain
(145 mm) in an ascending manner. There were two runs of 255 time points each, prefaced by
a 9 second rest block allowing T1 effects to stabilize.

Data Analysis: Pre-processing
Data was preprocessed using SPM2 (http://www.fil.ion.ucl.ac.uk/spm/). Images were
realigned using INRIalign – a motion correction algorithm unbiased by local signal changes
(Freire and Mangin, 2001; Freire et al., 2002). Data was spatially normalized (Ashburner and
Friston, 1999) into the standard Montreal Neurological Institute space and spatially smoothed
with a 10×10×10 mm3 full width at half-maximum Gaussian kernel. The data (originally
collected at 3.44×3.44×5 mm3) was slightly sub-sampled to 3 mm3, resulting in 53×63×46
voxels and a fifth-order infinite impulse response Butterworth low-pass filter of 0.25 Hz was
applied to remove high-frequency noise.

Discrete Dynamic Bayesian Structure Search
Here we provide a general overview of the dDBN approach to fMRI data. See (Burge and Lane,
2005; Burge et al., 2007) for more details. BNs are graphical models that concisely represent
joint probability dependencies among a set of variables (RVs): X1, X2…,Xn. These variables
are depicted as nodes within the Bayesian graphical model and links between these nodes
represent dependencies between these variables. In our analyses, the variables that pertain to
our nodes are all the neuroanatomical regions of interests (ROIs) determined by the automated
anatomical labeling (AAL) atlas, a total of 116 distinct brain regions that include right/left
associations (Tzourio-Mazoyer et al., 2002). Relationships between nodes are between
parent and child nodes, where a single child node and a set of parents nodes Pa(Xi), constitute
a family. Families can be uniquely identified by their child node, so that the number of families
resulting from the analyses is equal to the number of ROIs specified by the atlas. Since our
analysis consisted of 116 ROIs, this resulted in 116 families where ROIs could appear as parent
nodes more than once between families, but were uniquely constrained by the child nodes
within our atlas. The maximum number of parent nodes is set a priori to n and for our analysis
we chose n = 3.

In a discrete Bayesian approach (dBN), the values that RVs can represent are limited to discrete
values. To perform this discretization, we averaged the voxels composing with each ROI
together to represent the ROI for that particular time point. These values were quantized to 2-
bit values, corresponding to one of four possible states (Very low, Low, High, and Very high)
(Burge et al., 2007). Thus, a subject’s dataset would be represented as a discretized set of 116
ROI time courses. The advantages of a discrete approach allows for a conditional probability
table to capture all the possible relationships found between the parent and child nodes. The
disadvantage is seen in the loss of precision due to the discretization of our RVs. Thus a sacrifice
in specificity is made to allow for the expression of complex non-linear RV dynamics.

A dDBN is a specialization of a dBN that models temporal processes and explicitly models
time points in an fMRI dataset. Although it would be ideal to model every time point in this
dataset, the task quickly becomes computationally infeasible. We make the Markov order 1
and assume stationarity to deal with this intractability (Papoulis, 1991). The resulting graphical
topology of a dDBN then is a topology that consists of two columns of ROIs where each column
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represents a time frame (t and t+1). The time frames are averaged across the entire time series
and the columns become a succinct representation of temporally consecutive RV dynamics.
Parent nodes occupy time column t while child nodes occupy time t + 1 with the constraint
that links point only forward in time. In Figure 1, we show a simplified hypothetical
representation of several 1-bit discrete ROIs, their graphical topology, and an example of their
associated conditional probability tables.

When the structure of a dDBN (i.e., the set of links in a dDBN) is unknown, it must be searched
for. Determining an optimal dynamic Bayesian structure is an NP-hard (Chickering, 1994)
problem and a locally optimal structure is often determined instead. The initial structure is
frequently determined by utilizing a greedy search algorithm that iteratively pairs a single
parent with a child node. When the maximum number of parents have been added (i.e., for our
analysis this was set to 3), the final structure is determined. To score these structures, we utilize
the ACL score developed by Burge et. al. The ACL score represents a quantitative measure of
the class-discriminative qualities found between two classes of data (e.g., patients and
controls). For example, a strong dependency found between two variables within the patient
group would have a high ACL score only if those same variables had a weak dependency in
the healthy control group and vice versa. For further details, a summary of the dDBN algorithm
is listed in Table 1. Formulas related to this particular scoring metric as well as determining
the optimal graphical topologies are listed in Table 2.

Filtering with Independent Component Analysis
The ICA was performed using the GIFT toolbox, version 1.3c (http://icatb.sourceforge.net).
For a full discussion of the methods implemented in ICA we refer the reader to these articles
(Calhoun and Adali, 2006; Calhoun et al., 2003; Calhoun et al., 2001a; Calhoun et al.,
2001b). The goal of ICA is to split the fMRI datasets into a number of independent components
that represent a linear combination of significant signal sources. The optimal number that ICA
used to split the fMRI datasets into a final set of spatially independent components was first
determined using a modified minimum description length (MDL) algorithm (Li et al., 2007),
which was found to be 29. Since group ICA requires that all subjects are analyzed at once, a
method for data compression using principal component analysis (PCA) allowed the datasets
to be loaded into memory at one time. This allowed us to concatenate the subjects into a large
matrix where a group spatial ICA is then performed using the infomax algorithm (Bell and
Sejnowski, 1995).

The key point here for our analysis is that ICA is capable of finding noise and movement related
signal sources which are known to show characteristics of independence (McKeown et al.,
1998). To determine which components were related to noise we correlated each ICA
component spatial map with prior probabilistic maps of grey matter, white matter, and cerebral
spinal fluid (CSF) within a standardized brain space provided by MNI templates in SPM5.
Those that had high correlation values (R2) with these maps were considered noise-related
components and removed from the analysis in the same process used in a previous study
(Stevens et al., 2006). The ability of ICA to reconstruct these datasets allowed the creation of
a new fMRI dataset that contained none of the noise components that we removed. These
datasets were then analyzed again using the dDBN algorithm and its results were compared
with our first analysis with the unmodified datasets.

Score Validation and Robustness
Fourier Bootstrapping Score Validation—It is important to consider that the correlations
between our random variables (i.e., parent to child) might be due to chance. To remedy this,
we utilize a Fourier bootstrapping method (Prichard and Theiler, 1994) to create a surrogate
ROI time series that contains higher order correlations found in the original fMRI data (first
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and second order moments-nonlinear correlations are not preserved). This validation method
was applied as a measure of confidence in the previous paper by Burge et. al. The surrogate
time series represents a non-parametric null hypothesis against which to test the likelihood that
a given ACL score occurred by chance. In other words, if the ACL score is significantly
diminished over multiple datasets, then the score on the actual data is most likely not due to
chance. The parent and child nodes of interest from the surrogate datasets are the high scoring
ACL families that were found from the original datasets. Each dDBN family’s score (non-
filtered and ICA filtered) on the surrogate data is inferred not by individual parent-child
relationships, but the entire family as a whole. Their representative z-score is the number of
standard deviations of their ACL score on the true data versus the surrogate datasets. For our
method, 35 surrogate datasets were generated by our Fourier bootstrapping procedure to
calculate a set of z-scores for each family and repeated over 50 iterations. A family was
considered to be significantly relevant to our analyses if its z-score was greater than 2. Families
that did not meet this threshold were removed and not considered for further discussion.

Structural Robustness—Generally, a method can be considered robust if by applying a
similar dataset, the results are also similar. In our approach, a structure can be considered robust
if after removing a number of datasets and running another structure search, the same parent-
child relationships continue to appear. To determine robustness, we chose a sample size of 5
subject’s datasets to remove from the original 35 datasets for both groups and repeated this
process six more times, removing an entirely different subset each time. This process is similar
to k-fold cross validations that utilize a leave-one-out method of removing a dataset to testing
a given hypothesis. Here, the robustness value was calculated based off the parent-child links
found from the original results. If that same parent-child relationship was seen throughout all
seven reductions, the link was then considered 100% robust. If that same link was seen only
in three of the seven reductions, the link would then be considered 43% robust.

RESULTS
High scoring families that did not pass a confidence measure of z = 2 (i.e., p < .05) from the
Fourier bootstrapping procedure were considered insignificant and removed for further
discussion. The top five families with the highest ACL scores that passed our confidence
measure were considered to be representative of significant differences between patients and
healthy controls. An example of the two highest scoring families for both groups are shown in
Figure 2, where t represents the parent nodes and t+1 refer specifically to child nodes. The
parent that is listed first among the family represents the ROI that contributed most followed
by the second and third respectively (see Table 3). Also of interest was the number of times
any one specific ROI appeared as a parent among the families that were found from each
analysis. For example, if a particular parent ROI appeared multiple times among the top five
highest scoring families, we believed that ROI played a substantial role in the characterization
of differences between each group during this auditory paradigm (see Table 4). All the
correlations found between parent ROIs and child ROIs were found to be stronger going
forward in time, which suggests causal relationships, but to determine explicit causality would
require further validation measures that we did not perform.

The ICA filtering approach produced a total of 29 components where 14 out of those 29
components were considered noise/artifacts and removed before back-reconstruction of the
fMRI data. Five of the spatial components maps that were removed are shown in Figure 3, to
show an example of the various patterns of noise activity found using ICA.
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Patients – ACL families and parents
The unfiltered approach found the children of the five highest scoring families to be regions
associated with the cerebellar vermis and cerebellar hemispheres. The top scoring family was
composed entirely of regions within the vermis while the second family consisted mostly of
regions within the cerebellum. The ROI that appeared most as a parent for this analysis was
the vermis_10, the anterior region of the vermis followed by the left cerebellum_10, located
within the anterior end of the cerebellum. The top ten ROIs that appeared most often were
mostly regions found within the cerebellum and more specifically areas such as the vermis.

The ICA filtered approach found more variation in the children of the top scoring families than
the non-filtered approach. The left superior temporal gyrus was the child for the highest scoring
family followed by the left cerebellum_9 gyrus. The ROI that appeared most often for this
analysis was the vermis_7, in the mid-region of the vermis followed by the right cerebellum_10,
similar to the second-place ROI found in the unfiltered approach, but on the opposite side of
the brain. Bilateral amygdala was identified among this group of highly occurring parents,
which was not the case using the unfiltered approach.

Controls – ACL families and parents
The unfiltered approach found the children of the top two highest scoring families to be
associated with bilateral regions within the rectus while the other three high scoring families
were also associated with various frontal and temporal regions. The ROI that appeared most
consistently as a parent was left Heschl’s gyrus, followed by the left putamen.

The ICA filtered approach found the children of the top five families to be similar to the
unfiltered approach with the left medial frontal orbital region to be the only differing child.
The parents of the common families between the two approaches were also identical, except
for the family that consisted of the right cerebellum_crus1 which replaced the left superior
frontal gyrus with the left supramarginal gyrus. The ROI that appeared most often as a parent
was the left pre-central gyrus, followed by the right pallidum. The highest appearing parent
ROIs for this analysis differed significantly from the unfiltered approach as well as their
respective number of appearances, which was significantly lower.

DISCUSSION
We hypothesized that the ACL score would be significantly lower for schizophrenia patients
than controls based on previous research showing aberrant connectivity and synchrony in this
population. A high ACL score implies that the relationship found in one class of data (patients)
is due to the weakness of that same relationship in another class of data (controls) and vice
versa. Our results are consistent with our hypothesis, where we found large differences in the
ACL scores for all between-group comparisons of their families. Healthy control ACL scores
exceeded those of patients by a factor of four. The large score difference between the two
groups indicates that healthy controls exhibit this particular measure of effective connectivity
more consistently than do schizophrenia patients.

The specificity of this aberrant connectivity in schizophrenia might be elucidated further by
looking at the high-scoring families and parent appearances for healthy controls. Many of the
high-scoring families consisted of child ROIs with connections to bilateral frontal and temporal
lobes, which have been shown using different connectivity measures to be abnormal in
schizophrenia patients (Calhoun et al., 2004; Garrity et al., 2007; Winterer et al., 2003). After
ICA filtering, the second highest ACL score was found between the cerebellum and dorsal
lateral prefrontal cortex, which suggests that this connection might be impaired in patients with
schizophrenia. An interesting finding that emerged from both approaches (unfiltered and ICA
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filtered), was that the top three families were almost identical and consisted of regions mainly
in the gyrus rectus and cerebellum. The gyrus rectus is located in the medial orbital gyrus and
is considered to be an extension of the anterior cingulate onto the frontal cortex (Morecraft et
al., 1992). To our knowledge, few neuroimaging studies have associated schizophrenia with
this region with the bulk of studies focusing on volumetric differences rather than functional
ones (Nakamura et al., 2008; Spalletta et al., 2003). A study involving elderly depressed
patients found significant volumetric differences in this region, possibly suggesting that it
might be associated with the regulation of emotional affect. This might then be possibly related
to the negative symptoms of schizophrenia, though further studies will be needed to ascertain
this relationship. The cerebellum is well known from structural and functional studies to be
affected in schizophrenia patients. As well, it plays a major role in the cortico-cerebellar-
thalamus-cortical circuit (CCTCC), hypothesized (Andreasen et al., 1998; Martin and Albers,
1995) to play an important role in schizophrenia. The consistency of these three families across
both approaches implies that their relationship is not indicative of noise/artifact signals and
could represent a significant between group difference.

The class-discriminative families found in patients with schizophrenia show a large number
of regions within the cerebellum. Both approaches (filtered ICA and unfiltered), found that the
parent ROIs which appeared the most times were regions within the vermis and cerebellum,
suggesting that they play a disproportionate role in their relationships to other regions. The
unfiltered approach found almost all of its high scoring families within regions of the
cerebellum including the cerebellar vermis, while the ICA filtered approach resulted in the
appearance of a number of different regions such as the left superior temporal lobe, left
precentral gyrus, and the right superior occipital lobe in its resulting families. This is in marked
contrast to the high-scoring families identified in the control group, where the filtering approach
produced families that were almost identical to the non-filtered approach. This difference might
be due to the possibility that healthy controls are less sensitive to an ICA filtering procedure
due to the strength and consistency of their cognitive networks. However, in the context of
parent ROIs that appear most often, the cerebellum and vermis regions represent the top two
parent ROIs for both methods. Previous studies have shown the vermis to be implicated in
schizophrenia from structural and functional MRI analyses, where it was found to be
significantly reduced in patients (Okugawa et al., 2003). Functional studies have also
implicated the cerebellum as a dysfunctional area in schizophrenia (Andreasen et al., 1998;
Ende et al., 2005; Kim et al., 2007), though the vermis is not often discussed due to the frequent
use by researchers of the Talairach atlas, which does not distinguish the vermis as a distinct
brain region (Talairach and Tournoux, 1988).

Noise in fMRI datasets are considered to be an unfortunate, but consistent marker that can
confound the results of any analysis. The sensitivity of a dDBN analysis motivated us to use
ICA as a method to remove noise-related artifacts. Our results suggest that the ICA filtering
approach seems effective in dealing with patient populations such as schizophrenia, where
variability within BOLD activity tends to be greater than healthy controls (Kim et al., 2007).
The class-discriminative measures for patients with schizophrenia showed a significantly lower
score than controls and filtering seemed to have improved these scores significantly, but not
for controls. This discrepancy might be due to the possibility that noise in populations that are
highly variable (i.e., schizophrenia) have a more profound effect on the underlying BOLD
activation of interest if these underlying correlations are relatively weak. Thus, this might
account for the increased variability of top-scoring child ROIs found after ICA filtering for
patients with schizophrenia.

Though the dDBN algorithm is capable of determining non-linear relationships between these
ROIs, it does so at the cost of precision due to the quantization of the fMRI datasets. The sheer
complexity of fMRI data does not lend itself well to simple models and thus this tradeoff of
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precision for tractability presents itself as a possible confound in our analysis. Also, the
temporal relationships that the dDBN algorithm attempts to model is limited to two consecutive
time points and can miss fundamental relationships that might exist in larger time windows,
even though these consecutive relationships are averaged across all time points. Again, this
limitation is due to the computational infeasibility of modeling a probabilistic framework that
can account for every time point within the fMRI dataset and a compromise needs to be made
between precision and tractability. Another final limitation that needs to be mentioned is the
accuracy of ICA in filtering out noise/artifactual signals. The removal of Heschl’s gyrus and
putamen as the two highest appearing parents after ICA filtering suggests that the exclusion
of certain components believed to be related to noise might concomitantly diminish important
correlations that were part of that component. It is difficult to assess fully the accuracy of this
filtering approach, but its use here was mainly a vehicle to determine which ROIs were
consistently high-scoring structures and their particular effects on measures of effective
connectivity.

To further elucidate effective connectivity relationships in schizophrenia, future studies might
focus on implementing the dDBN algorithms on larger datasets or across multiple sites. A
dDBN analysis of subjects performing multiple tasks might also determine common families
that exist regardless of the experimental task at hand. Ultimately, the dDBN method is only
one of many Bayesian approaches to fMRI data. Algorithms that can better account for the
limitations mentioned above are needed in order to determine a more accurate characterization
of effective connectivity in patients with schizophrenia.

CONCLUSION
The strength of the analysis methods used here lies in the class-discriminative nature of our
nonlinear effective-connectivity measure, the ACL score, and our ability to determine these
relationships for all ROIs within the AAL atlas. We introduced an ICA filtering approach to
remove independent noise signals that were assumed to be irrelevant to our datasets and
analyzed the resulting filtered datasets to determine the consistency of our results. We found
that healthy controls have generally stronger measures of effective connectivity, as assessed
using the ACL score, compared to patients with paranoid schizophrenia, especially in bilateral
temporal and frontal lobes and that filtering using ICA improved the ACL score for patients.
We recommend the use of ICA in filtering noise components from fMRI datasets and suggest
that the selection process should be conservative so that meaningful activation is not lost.
Furthermore, we believe that ICA filtering plays a more significant role when trying to
determine higher-level correlations (i.e, effective connectivity) which are much more sensitive
to noisy datasets. The dDBN algorithm in conjunction with ICA filtering is a powerful tool to
determine non-linear relationships between brain regions. In our study, we attempted to
dilineate meaningful structures that represent a class-discriminative measure of effective
connectivity in an attempt to better characterize the nature of schizophrenia.
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Figure 1.
An example representation of a single dDBN family. For simplicity, the ROIs are considered
to be discretized into binary values of high and low. The second column shows an example of
what a graphical topology for a single family could look like where three parent nodes (left
thalamus, right amygdala, left insula) have the strongest correlation with the unique child node
(left rectus). The third column represents the conditional probability tables for these three
parent-child links.
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Figure 2.
The figure above represents the two top scoring families for patients and healthy controls with
or without ICA for a total of eight families. ROIs within the same color represent nodes within
the same family. The ICA suffix within the legend refers to an ICA filtered approach and the
number following it refers to whether it was the highest or second highest scoring family. It is
important to note that the top two families for healthy controls without filtering and the top
family for healthy controls with filtering had the same identical parents. (Pat = Patients, Ctrl
= Healthy Controls, #1 = Highest scoring, #2 = Second highest scoring, ICA = ICA filtered
approach)
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Figure 3.
An overlay of 5 out of 14 components that were selected to represent the various types of noise
found within fMRI data using ICA. For presentation purposes, only five components were used
due to overlapping spatial patterns often found throughout these noise components. Each color
refers to a specific component that was removed for ICA filtering.
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Table 1
Summary of the dDBN algorithm using an ACL scoring metric.

1. Initialize structure BS with no links connecting nodes in column t to nodes in column t+1
2. Repeat numParents times
3.  Repeat for every node, Xi, in column t+1
4.   Repeat for every node, Xk, in column t
5.    Add Xk as a parent of Xi, i.e., insert Xk into Pa(Xi)
6.    Calculate the ACL score for Xi
7.    Remove Xk from Pa(Xi)
8.   End 4.
9.   Permanently add the parent Xk to node Xn with highest ACL score
10.  End 3.
11. End 2.
12. Empty the parent set of all but numBestToKeep of the highest scoring families
13. Return high scoring and high confidence structures

numParents refer to the chosen number of maximum parent nodes any particular child node can have. For our analysis this was set at 3.
numBestToKeep is the maximum number of families that are allowed to keep their particular structure. For our analysis, this was set to allow for all 116
ROIs to have their own families.
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Table 2
Equations for the dDBN algorithms.

P(D ∣ B) = ∏
m=1

∣D∣
P(X1 = ValD(X1, m), … , X N = ValD(X N , m))

= ∏
m=1

∣D∣
∏
i=1

N
P(Xi = ValD(Xi, m) ∣ Pai,1 = ValD(Pai,1, m), … , Pai,p = ValD(Pai,p, m))

Formula 2.1 is the data likelihood equation, the probability that a specific Bayesian network B generated an observed data point. Formula 2.1 requires
that the parameters for the dDBN have already been computed with maximum likelihood estimates. P(Xi) represents the probability that a particular child
ROI (Xi) takes on the mth data-point (where a datapoint represents an entire time-series) within dataset D (the total number of datapoints) given its parent
ROI, Pai,p where p refers to the maximum number of parents. In other words, the data likelihood can be considered a multiplicative series of probabilities
that represent the relationship between a parent and a child for a given Bayesian network (BN).

ACL(M ∣ D) =
∏d1∣D1

P(Xd1
∣ B1)

∏d2∣D2
P(Xd2

∣ B1)
•
∏d2∣D2

P(Xd2
∣ B2)

∏d1∣D1
P(Xd1

∣ B2)

The ACL score is a metric that represents a measure of difference between two Bayesian networks (BN) B1 and B2, which in our case refers to the BNs
for healthy controls and patients with schizophrenia, respectively. M refers to the model that contains both BNs. X refers to the entire set of random
variables for subject d within the larger set of datasets D1 and D2 that refer to healthy controls and patients with schizophrenia respectively. It is important
to note that P(Xd1|B1) for example is equivalent to P(D|B) from formula 2.1 above.
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Table 4
Top ten parent ROIs by appearances

Patients - No ICA Filter Appearances Patients - ICA Filter Appearances

cerebellar vermis_10 33 vermis_7 18
cerebellum_10_l 32 cerebelum_10_r 16
rectal gyrus_r 32 cerebelum_3_r 14
cerebellar vermis_1_2 19 cerebellar vermis_10 13
cerebellar vermis_8 16 cerebellum_10_l 11
cerebellum_9_r 12 amygdala_l 10
cerebellum_crus2_l 12 caudate_r 10
rectal gyrus_l 11 amygdala_r 9
cerebellum_10_r 10 cerebellar vermis_6 9
cerebellum_8_l 9 angular gyrus_l 8
Controls - No ICA Filter Appearances Controls - ICA Filter Appearances
Heschl_l 47 precentral_l 15
putamen_l 21 pallidum_r 12
precentral_l 19 occipital_sup_l 11
cingulum_mid_r 18 temporal_sup_l 9
temporal_sup_l 16 temporal_mid_l 8
occipital_mid_l 11 lingual_l 8
cingulum_post_l 10 insula_l 8
pallidum_r 10 temporal_pole_sup_r 7
insula_l 8 frontal_inf_orb_l 7
putamen_r 8 supp_motor_area_l 7

The top ten most frequently appearing parent nodes are listed here for both patients and healthy controls using a filtered ICA and unfiltered approach.
Substantial reductions of ROIs between the filtered and unfiltered approach suggests the a significant sensitivity for noisy data using a dDBN approach.
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