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Abstract
The role of genetics in driving intracortical relationships is an important question that has rarely
been studied in humans. In particular, there are no extant high-resolution imaging studies on
genetic covariance. In this article, we describe a novel method that combines classical quantitative
genetic methodologies for variance decomposition with recently-developed semi-multivariate
algorithms for high-resolution measurement of phenotypic covariance. Using these tools, we
produced correlational maps of genetic and environmental (i.e. nongenetic) relationships between
several regions of interest and the cortical surface in a large pediatric sample of 600 twins,
siblings, and singletons. These analyses demonstrated high, fairly uniform, statistically significant
genetic correlations between the entire cortex and global mean cortical thickness. In agreement
with prior reports on phenotypic covariance using similar methods, we found mean cortical
thickness was most strongly correlated with association cortices. However, the present study
suggests that genetics plays a large role in global brain patterning of cortical thickness in this
manner. Further, using specific gyri with known high heritabilities as seed regions, we found a
consistent pattern of high bilateral genetic correlations between structural homologues, with
environmental correlations more restricted to the same hemisphere as the seed region, suggesting
that interhemispheric covariance is largely genetically mediated. These findings are consistent
with the limited existing knowledge on the genetics of cortical variability as well as our prior
multivariate studies on cortical gyri.
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Introduction
The development of non-invasive technologies for the acquisition of neuroanatomic
information has revolutionized our ability to study human brain structure in vivo. Over the
last several decades, magnetic resonance imaging (MRI) in particular has greatly expanded
our understanding of the neural substrates of many psychiatric and neurological diseases,
neurogenetic syndromes, typical human neurodevelopment, and aging. But with a few
notable exceptions (e.g. Lerch et al., 2006; Worsley et al., 2005), the vast majority of the
work on anatomic MRI to date has been univariate. The interrelationships between different
regions are fundamentally important, however, given the compartmentalization of essential
neural functions and the formation of complex neural networks. Many neuroanatomic
circuits, such as the limbic system, perceptual and motor systems, and networks involved in
higher cognition, language, and mood might be expected to result in morphological
correlations between related regions. In addition to simply knowing which regions are
associated, knowing what forces drive these observed correlations in brain structure also is
of great neurodevelopmental interest; are associations between cortical regions generated via
shared genetic factors, or rather environmental (i.e. nongenetic) effects that similarly
influence different neuroanatomic structures?

Many research modalities such as axon tracing studies, diffusion tensor imaging, positron
emission tomography, and functional magnetic resonance imaging have actively pursued
methods on generating maps of neuroanatomic interrelatedness (Ramnani et al., 2004).
Multivariate analyses in high-resolution structural data are particularly challenging,
however, given the extremely large number of voxels and subsequent immense
computational requirements (the so-called “curse of dimensionality”) for traditional
multivariate approaches. Recently, semi-multivariate methods for high-resolution mapping
of cortical correlations have been proposed that provide a work around to the problem of
multidimensionality, by calculating correlations between all voxels and a target region of
interest (ROI) (Lerch et al., 2006; Worsley et al., 2005). These semi-multivariate
approaches, in particular, are easily integrated into quantitative genetic analyses.

In this article, we describe a statistical genetic extension to these maps of neuroanatomic
relatedness. Using a similar global strategy, we use structural equation modeling (SEM) to
determine which regions are structurally related and to assess the relative contribution of
genetic or nongenetic factors to these relationships.

Methods
Subjects

Subjects were recruited as part of an ongoing longitudinal study of pediatric brain
development at the Child Psychiatry branch of the National Institutes of Mental Health
(NIMH). Recruitment was performed via local and national advertisements and participants
were screened via an initial telephone interview, parent and teacher rating versions of the
Child Behavior Checklist (Achenbach and Ruffle, 2000), and physical and neurological
assessment. Exclusion criteria included psychiatric diagnosis in the subject or a first degree
relative, and head injury or other conditions that might have affected gross brain
development. Twin zygosity was determined by DNA analysis of buccal cheek swabs using
9–21 unlinked short tandem repeat loci for a minimum certainty of 99%, by BRT
Laboratories, Inc. (Baltimore, MD). Twins were included in the analysis only if quantifiable
MRI scans free from motion or other artifact were obtained on both twins at the same age.
Written assent from the child and written consent from a parent were obtained for all
participants. The study protocol was approved by the institutional review board of the
NIMH.
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The resultant sample consisted of 600 children (mean age 11.1, SD 3.4, range 5.4–18.7),
including 214 MZ and 94 DZ twins reared together, 64 singleton siblings of twins (1–2 per
family), 116 members of entirely singleton families (2–5 members per family), and 112
unrelated singletons. The distribution of subjects and basic demographic information are
given in Table 1. [Table 1 about here]

Image Acquisition
All subjects were scanned on the same GE 1.5 Tesla Signa scanner using the same three-
dimensional spoiled gradient recalled echo in the steady state (3D SPGR) imaging protocol
(axial slice thickness = 1.5 mm, time to echo = 5 msec, repetition time = 24 msec, flip angle
= 45 degrees, acquisition matrix = 192 × 256, number of excitations = 1, and field of view =
24 cm). Figure 1 provides an example of the raw data that was acquired. A clinical
neuroradiologist evaluated all scans and no gross abnormalities were reported.

Image Analysis
The native MRI scans were registered into standardized stereotaxic space using a linear
transformation (Collins et al., 1994) and corrected for non-uniformity artifacts (Sled et al.,
1998). The registered and corrected volumes were segmented into white matter, gray matter,
cerebro-spinal fluid and background using a neural net classifier (Zijdenbos et al., 2002).
The white and gray matter surfaces are fitted using deformable surface-mesh models and
non-linearly aligned towards a standard template surface (Kim et al., 2005; MacDonald et
al., 2000; Robbins et al., 2004). The white and grey matter surfaces are resampled into
native space and CT is measured in native-space millimeters using the linked distance
between the white and pial surfaces at each of 40,962 cortical points throughout the cortex
(Lerch and Evans, 2005; MacDonald et al., 2000). In order to improve the ability to compare
populations, each subject’s cortical thickness map blurred using a 30mm surface based
blurring kernel, which respects anatomical boundaries, chosen to maximize statistical power
while minimizing false positives (Lerch and Evans, 2005).

Cortical points are assigned to specific regions using a probabilistic atlas (Collins, et al.
1999). These methods have been validated using both manual measurements (Kabani, et al.
2001) and a population simulation (Lerch and Evans 2005), and have been used in studies of
Alzheimer’s disease (Lerch, et al. 2005) and normal development (Shaw, et al. 2005),
among others. Statistical results from structural equation modeling analyses of cortical
thickness at each point (see Statistical Methods, below) are projected upon the smoothed
brain template using software developed by the Montreal Neurological Institute. Descriptive
statistics for mean cortical thickness by study group are provided in Table 1. Group
differences in mean (F3,597 = 2.00 p = 0.11) and variance (Brown Forsythe test F3,597 =
2.27, p = 0.07) were not statistically significant despite the large sample size.

Statistical Analysis
Our overall analytic approach is similar to many of the MACAAC (Mapping Anatomical
Correlations Across the Cerebral Cortex ) methods described in Lerch et al. which calculate
Pearson cross-correlations between a target ROI and all cortical vertices (Lerch et al., 2006).
The present methods differ in that 1) data records were based on families rather than
individuals and 2) variance decomposition for each vertex were computed using SEM in Mx
(Neale et al., 2002), a linear algebra interpreter and numeric optimizer commonly used in
quantitative genetics (Neale and Cardon, 1992).

The parsing of variation into subcomponents is possible because of the known differences in
genetic relatedness between different types of family members. Both simple arithmetic
approaches (e.g. Falconer estimation) and SEM can be used to estimate genetic variance and
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covariance in this manner. In the univariate case, for example, differences between MZ and
DZ cross-twin correlations can be used to estimate the variance attributable to genetic
factors across all vertices via the formula:

Where VARA is a Nv × 1 vector of genetic variances equal in length to the observed
measurements (e.g., in our case, Nv = 40962), νi is the measured cortical thickness for the ith
vertex, and subscripts 1 and 2 denote twin number. NMZ and NDZ, μMZ and μDZ, and j and k
are the number of twin pairs, means, and twin pair index for MZ and DZ groups,
respectively. This formulation is more simply and familiarly expressed as VarAi = 2(coviMZ–
coviDZ) for the ith vertex; the variance analog of the Falconer estimation for heritability
(Falconer and Mackay, 1996). A similar procedure can be employed to estimate the genetic
covariance between two phenotypes of interest by comparing the cross-twin, cross-trait
covariances between MZ and DZ groups rather than the within-trait covariances. For the ith
vertex, in order to calculate the genetic covariation with a seed ROI the formula can be
modified to:

which simplifies to CovA (Vi , ROI) = 2(CovMZ (Vi1, ROI2 ) – CovDZ (Vi1, ROI2 )). These
simple formulations have some important limitations. The calculation of genetic covariance
shown above, for example, effectively ignores half of the available information on cross
twin covariance. Though including this information is possible, several other problems with
this approach remain, including 1) these statistics do not easily generalize to more than two
individuals per family group, 2) no information regarding the relative precision of the MZ
and DZ correlations is incorporated, which are dependent both on sample size and
correlation magnitude, 3) generating test statistics to determine whether covariation is
statistically important is not straightforward, and 4) the addition of covariates, such as age
and sex, is difficult. Thus, in order to estimate genetic and environmental covariances, we
employed SEM as described below.

Although conceptually similar to the above formulae, SEM-based approaches provide a
straightforward solution to these problems and were used in the present study. Family
relationships were modeled using a statistical genetic extension of the Cholesky
decomposition (e.g., Figure 2), which factors any symmetric positive definite matrix into a
lower triangular matrix postmultiplied by its transpose (Neale and Cardon, 1992). This
approach allows for the covariance between two phenotypes to be decomposed into
covariance resulting from genetic, shared environmental, or unique environmental sources
but places few a priori constraints on the data. The variance in observed variables (denoted
as rectangles in Figure 2) are modeled to be mediated by latent additive genetic (A.), shared
environmental (C.) or unique environmental (E.) sources of variance (circles) with latent
variances standardized to unity.

This model is identified since the correlation between genetic factors is perfect in MZ twins,
but, on average, ½ between DZ twins and singleton siblings. In the path diagram shown in
Figure 2, single-headed arrows are causal, double headed arrows represent correlations, with
values on causal arrows (e.g. a1, a2, and a3) representing freely estimated parameters. The
expected covariances of this model produce nine simultaneous equations from which the
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values of the nine free parameters (a., c., e.) can be estimated. In practice, the expected
covariance matrices varied from 2 × 2 to 10 × 10 depending on the number of members in
the family (i.e. 1–5). The addition of siblings of twins and a large sample of siblings from
singleton families (i.e. families with no twins) provided substantially increased power to
detect genetic signal due to a greater number of observed covariance statistics (Posthuma et
al., 2000;Posthuma and Boomsma, 2000). This extended design assumes that the shared
environment operates similarly in both twins and singleton births, with respect to the
phenotype of interest. In our sample, families contained a twin pair and up to three
additional siblings, or singleton families with up to five members in total. Consistent with
our univariate analyses (Lenroot et al., 2007), the role of the shared environment was
minimal for all seed regions, and following the rules of parsimony it was removed from the
findings reported below.

Optimization was performed using maximum likelihood (ML) (Edwards, 1972), which
produces unbiased estimates of model parameters. From the parameter estimates
calculations of the genetic and unique environmental covariance (covG and covE) between
an ROI and all vertices could be determined. In addition, the genetic and environmental
correlations were calculated by standardizing the decomposed variance-covariance matrices:

ML also allows for straightforward hypothesis testing, since the removal of parameters of
interest from the original model produces nested submodels in which the difference in ML
generally follows a χ2 distribution, with degrees of freedom equal to the difference in the
number of free parameters (Neale and Cardon, 1992). Thus, probability maps indicating
regions of significant covariances could be constructed.

Assessment of Global Covariation
We first wanted to determine how genetic factors contribute to global covariation patterns.
MACAAC algorithms include a measure of correlational strength (MACAAC-strength),
which is the average correlation between vertex i and all other vertices:

Unfortunately, this approach is computationally demanding, as correlations for all pairwise
combinations of vertices must be calculated. The computational cost is magnified with
SEM, as numeric optimization must be performed for each pairwise combination of vertices.
However, it has been demonstrated that use of global mean cortical thickness as a target ROI
provides a reasonable approximation for the average correlation across all j (Lerch et al.,
2006). This approach represents a special case of the general bivariate method of comparing
a single ROI to a large vector of vertices.

Therefore, we employed our general bivariate SEM using mean global cortical thickness as
the target ROI (μG). In addition to modeling the variances as described previously, we also
simultaneously adjusted for mean effects of sex and age on the phenotypes of interest. Sex
effects were estimated using a linear model and age was estimated using a cubic model,
based on prior evidence of age interactions with cortical thickness (Lenroot et al., 2005).
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The resultant parameter estimates provide measures of the dominant forces driving
interrelationships in cortical thickness. These findings provide similar information to that
which would be gleaned from examining the dominant eigenvalues of a principle component
analyses on the Nv × Nv (40962 × 40962) covariance matrix, after decomposing the matrix
into genetic and environmental subcomponents.

The maximal likelihood parameter estimates for the analyses were then projected onto the
brain surface. In order to gain a thorough understanding of the strength of relationships, both
covariances and correlation maps were constructed. Correlations have the advantage of
standardizing the relationships between variables, but can be deceptive when covariances
are very small. Additionally, probability maps testing for the significance of genetic and
environmental effects on cortical associations (H0: rG = 0 and H0: rE = 0, respectively) were
constructed. A priori, we expected that these analyses would produce a large number of
moderately significant voxels with few highly significant, voxels and a high level of
clustering of significant voxels. Thus, the risk of type I error associated with multiple testing
was controlled by setting a relatively lenient false discovery rate (FDR) of .10 (Genovese et
al., 2002), with η0 calculated by bootstrap (Storey, 2002).

Analyses of target ROIs
We also examined covariances with respect to more localized ROIs. The seed ROIs were
determined using a probabilistic atlas was used to assign cortical points to specific
neuroanatomic regions (Collins et al., 1999), which roughly corresponded to cerebral gyri
and were based on the sulcal definitions of Ono (Ono et al., 1990). The mean CT for this
region was then calculated. In these studies, we controlled for global effects by including μG
as a covariate in addition to age and sex.

Our previous research has suggested that many of the most heritable vertices in the cortex lie
in superior and inferior frontal gyri (SFG and IFG, respectively), supramarginal gyrus
(SMG), superior parietal lobule (SPL), and the superior temporal gyrus (STG). Because we
are primarily interested in the formation of genetically mediated cortical networks, we used
these ROIs as seed regions for the generation of covariance maps.

Results
Global Covariation

Genetic correlations with global mean cortical thickness (μG) approached unity and were
substantially higher than environmental correlations, though both had similar patterns. The
genetic correlations were uniformly high except in the superior parietal lobule and the
occipital pole (Figure 3). The regions with the strongest genetic correlations were the frontal
cortex, SMG, STG, and in parieto-temporal cortex centered on the angular gyrus and
continuing into lateral temporal lobe. Most primary somatosensory cortex, primary motor
cortex, and primary visual cortex had lower genetic correlations with μG. The most notable
differences in pattern between the two measures were that genetic correlations in the frontal
poles, left SMG and STG, and inferior pre- and postcentral gyri bilaterally were among the
highest in the brain, while environmental correlations were unremarkable in these regions.
Probability maps (not shown) were uniformly significant, with 86% and 99% of all vertices
significantly correlated with μG via genetic and environmental factors, respectively, at an α
of .05. Correlational patterns for both genetic and environmental correlations were
remarkably similar to measures of phenotypic cross correlations reported by Lerch et al.,
with the genetic correlational maps more similar in magnitude.
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Correlations with target ROIs
When modeling relationships with target ROIs, striking differences were observed between
the genetic and environmental correlations. Figures 4 and 5 provide surface renderings of
the results of analyses using several seed ROIs. In general, we observed that both
environmental correlations and covariances tend to be greatest in regions in close spatial
proximity to the seed, gradually decreasing with greater distance along the cortical surface.
Environmental correlations were almost entirely unilateral, with some notable exceptions.
The most obvious of these were environmental correlations between the superior frontal
gyrus and its contralateral homologue, though correlations remained highly asymmetrical.
Environmental correlations appeared almost entirely positive.

Genetic correlations, in contrast, were typically bilateral and were occasionally negative.
Genetic correlations were high spatially proximal to the seed itself, but also in and near the
corresponding gyrus in the contralateral hemisphere. To varying degrees, we observed the
general pattern of bilateral genetic correlations in the contralateral homologue for both left
and right SFG, IFG, SMG, and SPL target ROIs. In many cases, the genetic correlations
were, in fact, stronger in the contralateral hemisphere. Negative genetic correlations were
most commonly observed between distal structures, such as between frontal ROIs and the
occipitotemporal cortex. We also observed some differences in the pattern of genetic
correlations when the ROI seed was in the left or right hemisphere, particularly for the IFG.
Though the genetic correlations were strong bilaterally in both cases, they were very high
between RIFG and the entire frontal lobe, while genetic correlations to LIFG were more
restricted to inferior frontal and orbitofrontal cortex.

The most prominent exceptions to these general observations were the results from analyses
using STG as a seed, which differed noticeably compared to other ROIs, particularly LSTG.
Both genetic and environmental correlations were surprisingly low. We observed virtually
no significant genetic effects when the entire LSTG was used as a seed, but significant
negative distal environmental correlations with superior and dorsal frontal regions bilaterally
and the superior parietal lobule.

Discussion
These analyses demonstrate that traditional quantitative methodologies for the assessment of
genetic variance can be integrated with novel multivariate tools for assessing cortical
connectivity at high levels of resolution. This addition allowed us to decompose phenotypic
correlations into maps of genetic and environmental relatedness.

Using these methods, we found several differences between genetically-mediated and
environmentally-mediated cortical relationships. While nearly all cortical vertices were
highly correlated with μG via shared genetic origins, global environmental correlations were
somewhat lower. Both genetic and environmental global correlations were highest in frontal
and tempro-parietal association cortex, and were virtually identical to the MACACCs map
of phenotypic correlations reported by Lerch et al. (see Figure 3). Since the MACACCs
statistic identifies voxels with the highest average global associations, it is logical that
association cortex would be most implicated. Interestingly, it appears as if this correlational
pattern is determined by both common genetic and environmental effects.

The high genetic correlations between nearly the entire cortical surface and μG are consistent
with the multivariate genetic studies on volumes, which show a single genetic factor
accounting for the majority of both total genetic variance and the total phenotypic variance
(Schmitt et al., 2007). Environmental factors appear to be somewhat more important to CT
phenotypic variance than for volumes, but global genetically-mediated CT correlations
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appear largely dominated by a single genetic factor. Such a finding is consistent with radial
models of neocortical evolution (Rakic, 1995) as well as the more recent modifications of
this hypothesis (Kriegstein et al., 2006). It is important to note, however, that genetic
covariances with μG were not uniform, but substantially higher in the frontal lobe, middle
temporal lobe, and supramarginal gyrus, particularly on the left. The discrepancy between
genetic correlations and covariances likely is due to a larger amount of genetic variance
within the pediatric population in these regions.

Seed ROIs
For most seed ROIs, we observed strong localized environmental correlations and
regionalized, bilateral genetic correlations after adjusting for μG. Strong associations
between ROIs and their contralateral homologues has been reported previously in both
phenotypic and genetic studies of intracortical correlations at the gyral level (He et al., 2007;
Schmitt et al., 2008), as well as phenotypic correlations at high resolution (Lerch et al.,
2006).

In this high resolution study, most of the covariance that we observed between the left and
right hemispheres was a result of shared genetic mechanisms. A regionalized genetic role in
bilateral cortical patterning, of course, is not a novel concept. Numerous neurogenetic
syndromes are associated with bilateral abnormalities with very specific anatomical patterns,
including several forms of polymicrogyria, Smith Magenis syndrome, Turner syndrome, and
language disorder associated with FOXP2 (, 2000; Boddaert et al., 2004; Guerrini and
Marini, 2006; Mochida, 2005; Molko et al., 2004; Piao et al., 2005; Watkins et al., 2002).
Recent anatomic MRI studies have shown that several common genetic polymorphisms
influence brain structure bilaterally and in a regionally-specific manner, including variants
of COMT, DISC1, BDNF, PCF1, and APOE (Gurling et al., 2006; Hashimoto and Lewis,
2006; McIntosh et al., 2006; Nemoto et al., 2006; Wishart et al., 2006). For example, in a
study of the apolipoprotein E gene (APOE), Wishart et al. found regionalized bilateral gray
matter reductions in frontal and temporal regions in ε4/ε3 heterozygotes relative to
individuals homozygous for the ε3 allele (Wishart et al., 2006). The aggregate effects of
many polymorphisms such as these could explain the patterns we observed in population
genetic variance in CT. Conversely, the information gleaned from studies on genetic
covariance may facilitate the identification of the genes responsible for structural brain
variation, by suggesting novel endophenotypic constructs or targets for multivariate
analysis.

The most interesting exception to bilateral genetic correlations was our analyses of STG,
which had distinctly different correlational patterns compared to other ROIs. The LSTG
target ROI had virtually no significant genetic correlations with any vertex, even those
within its confines, but significant negative environmental correlations with superior frontal
structures. Prior research on functional connectivity has shown strong associations between
the STG and dorsolateral prefrontal cortex in typically developing adults, and disruptions in
connectivity are implicated in schizophrenia (Buckholtz et al., 2007; Gur et al., 1999; Wolf
et al., 2007). The present findings would suggest that at least with respect to variation within
the typical pediatric population, anatomic associations between STG and dorsal frontal
regions may be strongly influenced by nongenetic factors.

Although these findings represent a unique perspective on the genetics of brain structure, the
limitations of the analyses must be considered in order to evaluate their utility. As this
research represents a fusion of high-resolution anatomic methods as well as genetic
techniques for twin and family covariance modeling, the general caveats for both apply to
this research.
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For example, twin methods are dependent on the validity of the equal environment
assumption (EEA), which assumes that the environment influences MZ and DZ twins
similarly with respect to the phenotype of interest. Prior studies have demonstrated that the
EEA holds true for most behavioral phenotypes (Evans et al., 2002); although there are no
data on the EEA for cortical thickness, it is likely that the EEA would also hold in this case.
A second limitation is the potential for epistasis, gene × environment interactions or
epigenetic factors (e.g. DNA methylation) to influence estimates of additive genetic
covariance. Both epistatic effects as well as gene by environmental interactions would be
included in the estimates of genetic covariance, while epigenetic effects would be included
in estimates of nongenetic variance. Third, it is important to keep in mind that variance
components analyses are substantially less powerful for a given sample size compared to
analyses of the means or other more commonly-used statistics; although our sample is large
by imaging standards, it is small by the standards of population genetics. The interpretation
of the present data must be made with consideration of these limitations and the likelihood
of some false positive results given the lenient FDR threshold used and the multiple analyses
performed.

Image processing also may produce several potential biases. One limitation of particular
importance to the present study was that the use of a smoothing kernel could be partially
responsible for local environmental correlations between the seed ROIs and individual
vertices. Further, as the raw imaging data are rotated into standardized space prior to
measurement, increased similarities in brain morphology between family members may
influence measures of cortical thickness. However, the limitations of transforming raw
imaging data to a template image in an automated fashion is not specific to twin and family
studies, although in general the problem is reversed (e.g. group differences in brain
morphology may theoretically influence alignment to the template images and produce
group differences in cortical thickness). In the case of the present study, however, the image
processing methodologies have been well tested (Lerch and Evans, 2005).

Finally, as our sample was entirely derived from a pediatric population, its generalizability
to other ages is unclear. Indeed it is likely that future work on adults may find distinctly
different patterns of genetic covariance, as childhood brain structure may be more strongly
influenced by ontogenetic processes underlying brain formation itself, while adult brains
will have had more time for these effects to attenuate, as well as time for novel genetic and
experiential effects on covariance to manifest. Future directions for this work include
expanding the models reported here to address more subtle questions about genetic and
environmental etiology, such as how age, sex, or other moderators affect covariance
patterns, as well as to explore how intracortical relationships influence behavioral measures.
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Figure 1.
Example of raw T1 weighted SPGR image used in the present study. Data were acquired
using the identical pulse sequence and the same 1.5 Tesla scanner for all subjects.
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Figure 2.
Example of a path diagram describing the bivariate Cholesky decomposition used to
estimate genetic correlations between regions of interest (ROIs). The variance in observed
variables (denoted as rectangles) are modeled to be mediated by latent additive genetic (A.),
shared environmental (C.) or unique environmental (E.) sources of variance (circles) with
latent variances standardized to unity. In this example, two related family members (S1 and
S2) are shown. For families with more than two individuals, this model is easily expanded,
with families of size k generating (2k)2 informative variance/covariance relationships.
Subjects without family members in the present study are not genetically informative, but
provide useful information for the estimation of total ROI variances as well as the within-
person phenotypic covariance.
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Figure 3.
Maps of genetic and environmental relationships between global mean CT and individual
vertices. Genetic and environmental correlations (rG and rE) and covariances (covG and
covE) are shown. Both genetic and environmental correlations were highly significant
throughout the brain. Map of MACAACs statistic (lower right) is adapted from Lerch et al.
(2006).
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Figure 4.
Covariance Maps between CT and ten seed ROIs with high univariate heritability. Genetic
and environmental correlations (rG and rE), covariances (covG and covE), and probability
maps testing for significant genetic and environmental covariance (adjusted for multiple
testing with an FDR threshold of .10) are given for each seed ROI. Correlations are on the
same scale for each ROI (range -1 to 1); Scales for covariances and probability maps are
based on individual analyses.
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Figure 5.
Standardized probability maps (range 0 – .05) testing for the significance of genetic and
environmental factors between ten seed ROIs and the cortical surface.
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