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Abstract
This paper describes the construction of a computational anatomical atlas of the human hippocampus.
The atlas is derived from high-resolution 9.4 Tesla MRI of postmortem samples. The main subfields
of the hippocampus (cornu Ammonis fields CA1, CA2/3; the dentate gyrus; and the vestigial
hippocampal sulcus) are labeled in the images manually using a combination of distinguishable image
features and geometrical features. A synthetic average image is derived from the MRI of the samples
using shape and intensity averaging in the diffeomorphic non-linear registration framework, and a
consensus labeling of the template is generated. The agreement of the consensus labeling with manual
labeling of each sample is measured, and the effect of aiding registration with landmarks and
manually generated mask images is evaluated. The atlas is provided as an online resource with the
aim of supporting subfield segmentation in emerging hippocampus imaging and image analysis
techniques. An example application examining subfield-level hippocampal atrophy in temporal lobe
epilepsy demonstrates the application of the atlas to in vivo studies.

1 Introduction
The hippocampus is a structure of acute interest in neuroimaging. It is primarily associated
with encoding of episodic memory, but is also believed to play an important role in both
encoding and retrieval of other types of long term memory (Squire et al., 2004; Moscovitch et
al., 2006). Hippocampal neuropathology is of vital interest in the study of dementia, epilepsy,
schizophrenia and other neurological and psychiatric disorders. However, the complex
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anatomy of the hippocampus poses challenges to image-based computational morphometry
techniques. The hippocampus is formed by two interlocking folded layers of neurons, the cornu
Ammonis (CA) and the dentate gyrus (DG), which are further subdivided into subfields and
are believed to subserve different functional roles. Non-uniform neuron loss across the
hippocampal subfields has been reported in neurodegenerative disorders (West et al., 2004;
Bobinski et al., 1997; Braak and Braak, 1991), as has a non-uniform rate of neuroplasticity
(Eriksson et al., 1998; Kuhn et al., 1996; van Praag et al., 2002). However, it is very difficult
to distinguish the boundaries between hippocampal layers in clinical MRI modalities, since
the voxel resolution of ≈ 1mm3 (isotropic) is larger than the thickness of the DG. The layered
structure of the hippocampus can be appreciated in specialized T2-weighted sequences with a
limited field of view and highly anisotropic voxels (Zeineh et al., 2003), although partial
volume effects are significant in the anterior and posterior of the hippocampus, where the main
axis of the structure curves with respect to the imaging plane. Emerging MRI technologies,
including multi-coil designs and 7 Tesla human scanners, yield in vivo images with
significantly improved resolution, and subfield differentiation is quickly becoming a reality
(Van Leemput et al., 2008; Cho et al., 2008; Li et al., 2008; Bernasconi et al., 2008).

Traditionally, morphometry studies have represented the hippocampus as a homogeneous gray
matter structure with a blob-like shape (Carmichael et al., 2005; Fischl et al., 2002; Hsu et al.,
2002; Jack et al., 1995; Kelemen et al., 1999; Pitiot et al., 2004; Shen et al., 2002; Styner et
al., 2004; Shenton et al., 2002). However, some of the more recent studies have focused on
detecting disease-related structural and functional differences in the hippocampus at the
subfield level (Zeineh et al., 2003; Wang et al., 2006; Apostolova et al., 2006; Kirwan et al.,
2007; Mueller et al., 2007). In order to differentiate between subfields, investigators either
label the subfields for each of the subjects in a given study or, in the studies that employ large
deformation diffeomorphic metric mapping (LDDMM) computational anatomy techniques
(Miller et al., 2006), label the template to which subjects’ images are normalized (Csernansky
et al., 2005; Wang et al., 2006). In either case, the knowledge of where the subfields lie in
image space is based on low-resolution in vivo imagery and the use of references, such as the
Duvernoy (2005) atlas. However, emerging imaging modalities are making it possible to
delineate hippocampal subfields in vivo with greater reliability. Van Leemput et al. (2008)
leverages 3 Tesla multi-coil imaging at 0.4 × 0.4 × 0.8mm resolution to automatically label
major hippocampal subfields with excellent accuracy. As 7 Tesla imaging becomes more
common, even greater accuracy in subfield resolution will be possible.

The present paper is premised on the belief that a detailed atlas of the hippocampus based on
postmortem high-resolution MRI would prove highly complementary to morphological studies
that leverage computational anatomy methods. Postmortem imaging allows the hippocampus
to be imaged in laboratory conditions, with greater field strength, smaller field of view and
longer acquisition time, yielding high-contrast images with voxels about 100 times smaller in
volume than in typical in vivo imaging. Indeed, Wieshmann et al. (1999) points out that a
twenty-fold increase in resolution over current in vivo modalities is needed to distinguish the
layers of the hippocampus reliably. Our approach involves MRI of brain samples containing
the intact whole hippocampus at 9.4 Tesla, using overnight scans to achieve good contrast at
high resolution. While others have imaged portions of the hippocampus at even higher
resolution (Wieshmann et al., 1999; Fatterpekar et al., 2002; Chakeres et al., 2005), to the best
of our knowledge, this is the first work to collect images of the entire structure with isotropic
or nearly isotropic voxels 8–12nl in volume. We manually label hippocampal subfields relying
on a combination of discernable intensity and shape features. To combine data from different
samples, we apply an implementation of the unbiased image averaging algorithm by Avants
and Gee (2004), which is based on diffeomorphic Lagrangian frame image registration.
Registration accuracy is evaluated in terms of subfield label alignment in atlas space.

Yushkevich et al. Page 2

Neuroimage. Author manuscript; available in PMC 2010 January 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In addition to describing the postmortem atlas, this paper demonstrates a possible approach for
leveraging the atlas in in vivo hippocampal morphometry studies. The atlas is used in
combination with conventional geometric and image-based computational anatomy techniques
to assess hippocampal atrophy in temporal lobe epilepsy (TLE). Atrophy is evaluated by
estimating the asymmetry between the hippocampus contralateral to the side of seizure in TLE
and the ipsilateral hippocampus. The postmortem hippocampus atlas allows us to estimate
atrophy on a subfield-specific basis, and our experimental results suggest that atrophy across
subfields in non-uniform.

2 Methods and Materials
2.1 Specimens and Imaging

Formalin-fixed brain specimens (≥21 days) from three autopsy cases with no abnormal
neuropathological findings were studied. Hemispheres were separated from the cerebellum
and brain stem, and samples containing the intact hippocampus and not larger than 70mm in
diameter were extracted from each hemisphere by making two incisions: the first, orthogonal
to the midsagittal plane and parallel to the main axis of the hippocampus, passing through the
corpus callosum; the second, parallel to the midsagittal plane, removing the lateral-most third
of the sample.

Images of five hippocampus samples (3 right, 2 left) were acquired on a 9.4 Tesla Varian 31cm
horizontal bore scanner (Varian Inc, Palo Alto, CA) using a 70mm ID TEM transmit/receive
volume coil (Insight Neuroimaging Systems, Worchester, MA). Samples were placed in leak-
proof bags and wrapped with plastic to fit snugly inside the coil. 1 Scanning parameters varied
slightly across the samples and are listed in Table 1. All acquisitions used the standard multi-
slice spin echo sequence with TR between 4s and 5s, and TE 26ms. An oblique slice plane was
chosen to cover the hippocampus with as few slices as possible, requiring around 130 slices
with 0.2mm slice thickness for most images. The phase encode direction was from left to right
and the readout direction followed the long axis of the hippocampus. Four of the samples were
scanned at 0.2mm×0.3mm×0.2mm resolution using 34–45 averages to achieve good contrast;
these scans were acquired overnight. One sample was scanned at 0.2mm × 0.2mm × 0.2mm
isotropic resolution with 225 averages over 63 hours.

2.2 Manual Segmentation
Reconstructed MRI images of each of the samples were segmented by one of the authors (JP)
manually. The laminar structure of the hippocampus is clearly observable in these images (Fig.
1). With the help of the Duvernoy (2005) atlas and the labeling of the hippocampus in MRI
slices by Fatterpekar et al. (2002), we were able to consistently identify four layers in the
hippocampus: the high-intensity layer in the CA formed by the stratum oriens and the pyramidal
cell layer; the low-intensity layer in the CA formed by the stratum radiatum, stratum
lacunosum-moleculare and the vestigial hippocampal sulcus; the stratum moleculare of the
dentate gyrus, and the dentate hilus (referred to as CA4 by some) 2 The layers of the dentate
gyrus are the most difficult to tell apart, while the contrast between bright layers of the CA,
the dark layers of the CA and surrounding structures is very well pronounced. The boundaries
between the different subfields in the pyramidal cell layer of the cornu ammonis (CA1, CA2
and CA3), as well as between CA and the subiculum, are not visible, and separation has to be
made based on position and shape, rather than intensity. Perhaps the most difficult areas to

1As an alternative, placing the sample in Fomblin (Ausimount, Thorofare, NJ, USA) liquid was attempted; however because of the
complex structure of the hippocampus, we were unable to prevent air bubbles from becoming trapped inside the sample, which would
cause severe imaging artifacts.
2There is some debate as to whether this innermost region of the hippocampus should be considered a part of the dentate gyrus, as
advocated by Amaral (1978), or a part of the cornu ammonis, as in (Duvernoy, 2005).
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segment were the transitions between subfields towards the head and the tail of the
hippocampus.

Based on our ability to consistently identify substructures in the hippocampus, we selected five
labels for the segmentation: CA1; a label that combines CA2 with CA3; the dentate hilus (i.e.,
CA4); stratum moleculare of the dentate gyrus; and the label combining stratum radiatum,
stratum lacunosum-moleculare and the vestigial hippocampal sulcus (i.e., the prominent ‘dark
band’ in the MRI images). A schematic of the labels is shown in Fig. 2.

Labeling was performed using ITK-SNAP (Yushkevich et al., 2006b), an open source image
segmentation tool that allows simultaneous tracing in three orthogonal view planes and
provides feedback via three-dimensional rendering of the segmentation. Most of the time was
spent tracing the subfields in the coronal plane, with verification in the sagittal plane. In most
of our images the hippocampus occupies over 200 coronal slices, making segmentation
extremely labor-intensive, requiring about 40 hours of tracing and editing per image.

2.3 Reliability Analysis
Given the difficulty of segmenting the hippocampus at high resolution, it was deemed
impractical to perform reliability analysis, as is commonly done, by having multiple raters
make multiple segmentation attempts. Instead, a limited reliability study was performed, in
which a subset of five coronal slices was selected in each hippocampus image for repeated
labeling. Two slices were selected in the head of the hippocampus, two in the midbody of the
structure, and one in the tail. Rater JP segmented each of the slices a month after the completion
of the five full hippocampus segmentations. Rater DM segmented the same slices
independently after having been trained by JP. Dice overlap between segmentation attempts
was used to assess intra-rater and inter-rater reliability.

2.4 Atlas Generation
Combining image data from multiple samples into a common atlas allows us to generate a
model of “average” hippocampal anatomy, to boost signal-to-noise ratio, and to study
variations in hippocampal structure across subjects. In building an atlas, we follow the work
of Guimond and others (Guimond et al., 2000; Davis et al., 2004; Avants and Gee, 2004) by
searching for a synthetic image that can be nonlinearly registered to each of the input images
with minimal total deformation. Our normalization algorithm belongs to the family of large
deformation diffeomorphic registration techniques (Christensen et al., 1997; Joshi and Miller,
2000; Beg et al., 2005; Miller et al., 2006) and is called Symmetric Normalization (SyN) (Avants
et al., 2008). It uses a greedy symmetric approach, where, given an image match metricΠ,
registration of images I and J seeks a pair of diffeomorphic maps φ1, φ2 that minimize

(1)

Symmetric diffeomorphic maps from I to J and from J to I are given, respectively, by
 and . By implementing a symmetric approach that searches for two coupled

diffeomorphisms, SyN simultaneously generates forward and inverse maps between I and J,
while the greedy implementation allows for reduced memory use and relatively fast
convergence. SyN implements a multi-resolution scheme and our experiments used three levels
of resolution, where images were smoothed and subsampled by factors of 4, 2 and 1 in each
dimension. The step size is determined by the Courant-Friedrichs-Lewy (CFL) condition which
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restricts changes to the diffeomorphism to be sub-voxel, in this case, half a voxel in size. To
reduce the number of parameters that influence the results and require tuning, optimization at
each resolution level continues until there is no reduction in the metric value over several
gradient descent iterations. In this way, we find a “best fit” diffeomorphism between the
images, given the similarity metric. This philosophy is the natural diffeomorphic extension of
basic rigid registration. For speed, linear interpolation of all data is used. Thus, the only
parameters that influence outcome are choice of similarity terms, time-step (restricted under
the CFL condition) and multi-resolution strategy.

Registration of postmortem MRI is challenging because images have different fields of view
and because there are many unique local intensity features in each image (vessels,
hyperintensities, imaging artifacts) that make finding one-to-one correspondences difficult. To
boost registration accuracy, we introduce two kinds of manually generated aids: landmarks
and rough binary masks of the hippocampus. Landmarks are placed at the two ends of each
digitation in the head of the hippocampus (digitations are folds that can be seen in the right
column of Fig. 1), as well as at the anterior-most point of the head and posterior-most point of
the tail. Landmarks are incorporated into SyN by adding an additional term to the optimization
criterion, as described in (Avants et al., 2008). SyN thus optimizes the prior (landmark)
correspondence term simultaneously with the appearance term, leading to a different solution
than an unguided normalization, in particular in the vicinity of the landmarks. Additional details
of this approach are given in the Appendix.

Binary masks are generated in a fraction of the time required for the subfield segmentation
because they are traced in the axial plane, where the hippocampus occupies the fewest slices,
and because they are drawn roughly and made to include a layer of several pixels around the
hippocampus. Both the landmarks and the masks require about an hour each to generate for
every sample. When building an atlas from a larger postmortem dataset, it would be much more
cost-effective to generate these registration aids than full manual segmentations. To incorporate
masks into the registration, we apply a dilation operation to the masks with the radius of a few
(5) voxels, and multiply the image by the mask. This causes the registration algorithm to line
up mask boundaries, while also lining up the image intensity edges associated with the
boundary between the hippocampus and surrounding tissues which remain slightly inside the
mask. Also, in the presence of a mask, for all similarity metrics, the gradient value is multiplied
by the mask value. Thus, information outside of the mask (represented by value zero) has no
direct influence on the registration solution.

Initial linear alignment of hippocampus images based on image intensity alone proved difficult
in postmortem data. Instead, affine alignment was performed by landmark matching, followed
by matching of binary masks. Subsequent atlas building involved the following algorithm
(Avants and Gee, 2004): (1) use SyN to register every image to a template; (2) average the
intensity of all registered images; (3) average the initial velocity fields υ→(x, 0) of the maps
from the template to each of the images and generate a shape distance minimizing
diffeomorphic update to the template shape; this step is known as shape averaging (Avants and
Gee, 2004); (4) repeat step 1 using the new shape average as the template. To make group-
wise registration unbiased, Avants et al. (Avants and Gee, 2004) suggest using the intensity
average of affine-registered images as the initial template. However, this requires a substantial
number of images, so that the features common to all images are more prominent than the
variation across images. Since in our case the number of samples is small, we choose one of
the samples as the initial template. We use the normalized cross-correlation image match
metric, which is robust to intensity inhomogeneity present in our data.

A consensus segmentation of the atlas is generated by warping the manual segmentations to
the atlas and using the STAPLE algorithm (Warfield et al., 2004) to assign a label to each
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voxel. To examine the quality of alignment, we report the overlap in template space between
the STAPLE segmentation and each of the individual segmentations.

3 Results
Fig. 1 shows coronal and sagittal slices through MRI images of each of the five samples used
to construct the postmortem atlas. These images have good contrast, and the edges separating
the hippocampus from adjacent tissue are well pronounced (e.g., unlike in clinical MRI, the
amygdala is clearly separated from the hippocampus). A number of imaging artifacts are also
evident: intensity inhomogeneity; hyperintensity and small amounts of distortion at tissue-air
boundaries; ringing artifacts are also present in some images.

Segmentations of two of the samples are shown in two and three dimensions in Fig. 3. In one
of the samples, the amygdala and the subiculum were segmented in addition to hippocampal
subfields, shown in Fig. 4.

Overlap-based reliability analysis is given in Fig. 5. The repeatability of the segmentation by
rater JP was high, while the inter-rater reliability was significantly lower for CA1 and CA2/3
and approximately the same for the other subfields. Lower reliability for CA2/3 is probably
due to the differences in how far into the head of the hippocampus each rater would extend the
CA2/3 label: JP did not label CA2/3 in roughly the anterior two fifths of the hippocampus (as
seen in Fig. 3), while DM did label CA2/3 in the anterior hippocampus.

Atlases generated by diffeomorphic averaging with and without masks and landmarks are
shown in Fig. 3. Notice that the atlases have image characteristics and shape similar to those
of the input images. This is particularly noticeable in the 3D renderings of automatically
generated consensus segmentations, where the folds in the anterior hippocampus are clearly
visible.

To simultaneously analyze the agreement between subfield labels across segmentations and
normalization quality, we measure the overlap between the consensus segmentation of each
atlas with the warped segmentations of individual samples. We emphasize that the subfield
segmentations are not used during atlas building, although for some of the atlases, we guide
registration with binary masks of the whole hippocampus, which are generated in an hour or
less, and in the axial plane. For each subfield, Fig. 6 plots the average Dice overlap (Dice,
1945) for each subfield between the segmentation of the subfield in each individual, warped
to atlas space, and the consensus segmentation of the subfield in the atlas, obtained using the
STAPLE algorithm (Warfield et al., 2004). Based on the overlap, the atlas built using
deformable registration with masks but without landmarks has the best consistency. Average
overlap is nearly 90% for CA1, which is the largest subfield and nearly 80% for the dentate
hilus (DG:H), which is smaller, but also the least hollow of the subfields. When the dentate
gyrus is considered as a single structure by combining the dentate hilus with the stratum
moleculare, the overlap increases to 83%. For the thinner layers, the dentate’s stratum
moleculare and the dark band formed by SR, SLM and VHS, the overlap is below 70%.
However, since these layers are very thin, even a small misalignment results in large overlap
error.

In addition to the overlaps, we plot in Fig. 7 the root mean square distance between the boundary
surface of each subfield in the consensus segmentation and the corresponding boundary surface
in each of the individual segmentations warped to atlas space. This measure of boundary
displacement error is less sensitive to the thickness of structures than Dice overlap, and indeed
the difference in this error is much less across all subfields than the overlap differences in Fig.
6. Furthermore, the average boundary displacement error can be evaluated point-wise on the
boundary of each subfield in the atlas, resulting in a scalar map that can be helpful to identifying
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areas where subfield segmentation and normalization are least accurate. Fig 8 shows these
maps for each of the subfields in the “DEF-MSK” atlas. It illustrates that the greatest
disagreement in subfield labels is at two locations: the point where CA1 and the dentate gyrus
merge towards the tail of the hippocampus, and the similar merging point in the head of the
hippocampus. These points are very difficult to label consistently due to the lack of intensity
features separating CA and the dentate at the anterior and posterior ends of the dentate.
However, in the midbody of the hippocampus, the agreement is remarkably good, as is the
alignment between the folds in the anterior hippocampus.

Figs 6 and 7 clearly illustrate the improvement given by deformable registration over affine
alignment, while the benefit of masks and landmarks used in deformable registration is not
immediately apparent. To test if the use of landmarks and masking has a significant effect on
Dice overlap, we use a 4-way ANOVA with factors ‘masking’, ‘landmarks’, ‘subfield’ and
‘sample’, allowing subfield-sample and masking-landmarks interactions. When applying
ANOVA to Dice overlaps, we first normalize overlaps using the logit transform: logit(α) = log
(α) − log(1 − α). As stipulated by Zou et al. (2004), this transform maps the overlaps to the
entire real line, making Gaussian-based statistics more appropriate. However, in this particular
experiment, this transform does not affect the significance of the ANOVA findings. When
using all labels in Fig. 6, the ANOVA reports significant positive effect of masking on overlap
(F = 28.3, p < 0.0001) as well as significant negative effect of using landmarks (F = 4.25, p =
0.04). No significant interaction between landmarks and masking is detected. Furthermore,
when we exclude CA1 and its parent labels (SO+PCL, H, see Fig. 2), the effect of masking
loses significance (F = 2.82, p = 0.10) while the negative effect of using landmarks remains
(F = 5.21, p = 0.03). An equivalent ANOVA examination of boundary distances yields similar
results: significant positive effect of masking, (F = 6.07, p = 0.02) and negative effect of
landmarks (F = 4.61, p = 0.03) when considering all labels in Fig. 6; no significant effect of
masking (F < 0.001, p = 1.00) and significant negative effect of landmarks (F = 5.45, p = 0.02)
when looking only at internal subfields. These results suggest that the improvement associated
with masking is greatest along the outer boundary of the hippocampus (as one would expect,
since the mask falls very close to this boundary) while the improvement for the internal subfield
alignment is minimal. Surprisingly, the use of landmarks had a counterproductive effect,
perhaps because most of the mismatch occurs away from the anterior hippocampus where the
majority of the landmarks were placed.

4 Application to In Vivo Studies 3

This section uses a small dataset from a temporal lobe epilepsy (TLE) imaging study to
demonstrate how the postmortem hippocampus atlas may be used to analyze “standard” in
vivo T1-weighted MRI data with 1mm3 resolution. In this experiment, we test the hypothesis
that structural asymmetry between the diseased and healthy hippocampi in unilateral TLE
varies across the hippocampal subfields.

Our approach uses standard normalization techniques to estimate volume change between the
subfields in the hippocampus contralateral to the seizure focus (the “healthy” hippocampus)
and the ipsilateral (“diseased”) hippocampus. The approach combines two normalization
schemes: shape-based normalization is used to map subfield labels from the postmortem atlas
to binary segmentations of the whole healthy-side hippocampus in T1 data; and deformable
image registration is used to estimate asymmetry between the healthy and diseased
hippocampus regions. Shape-based normalization yields an approximate labeling of the
subfields in the healthy hippocampus and registration produces a field of Jacobian determinant
values. By integrating the Jacobian field over the subfield labels, we get an estimate of volume

3This section is new for the current revision. We do not use boldface for clarity.
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change for each subfield. A drawback of this approach is that it relies on manual or semi-
automatic segmentation of the hippocampus in in vivo data and is sensitive to errors in this
segmentation, which can be substantial (Carmichael et al., 2005). Sec. 5.2 discusses more
advanced potential approaches for postmortem to in vivo mapping.

4.1 Subjects, Imaging and Semi-Automatic Segmentation
Our in vivo experiment uses structural MRI data from an ongoing fMRI study of TLE. The
aims and design of the study, which was originally implemented at 1.5 Tesla, are described in
(Rabin et al., 2004). An updated protocol that uses 3 Tesla imaging is detailed in (Narayan et
al., 2005). Our experiment uses a subset of the structural MRI data collected for the TLE study,
according to the following inclusion criteria: (1) diagnosis of medically refractory TLE with
a unilateral seizure focus; (2) successful outcome, in terms of seizure control, following
epilepsy surgery; (3) absence of other neurological or psychiatric disorders; (4) imaging at 3
Tesla. Of the 12 patients that met these criteria, 5 had seizure focus in the right medial temporal
lobe (4 female/1 male; age = 36.6(11.3)) and 7 had a left medial temporal lobe seizure focus
(5 female/2 male; age = 40.0(15.4)). For each subject, the imaging data used in our experiment
consisted of a high resolution (voxel size 0.9375 × 0.9375 × 1.0mm3) T1-weighted structural
MRI scan obtained on a 3 Tesla Siemens Trio MRI scanner using an eight-channel head coil.

The hippocampus was segmented bilaterally by one of the co-authors (JP) using a combination
of landmark-driven automatic atlas-based segmentation and manual editing in ITK-SNAP. The
details of this semi-automatic segmentation protocol and reliability estimates for the TLE
dataset appear in (Pluta et al., 2008). The reported reliability is high, with 85.9% average Dice
overlap between manual and semi-automatic segmentation for the hippocampus contralateral
to the seizure focus and 83.1% average overlap for the ipsilateral hippocampus.

4.2 Shape-Based Mapping of Hippocampal Subfields from Postmortem Atlas to the Healthy
Hippocampus

Shape-based normalization is used to map hippocampal subfield labels from the postmortem
hippocampus atlas to the segmentation of the healthy hippocampus in each image. Shape-based
normalization is appropriate for mapping anatomical data between structures in situations
where image intensity does not provide sufficient cues for establishing a mapping. This is the
case for the mapping between the postmortem atlas, where the boundaries between subfields
are clearly visible, and the T1 images, where these boundaries are blurred out or invisible
because of insufficient resolution and partial volume effects. The assumption of shape-based
mapping is that the position of the subfields relative to the overall hippocampus shape is roughly
the same in the healthy in vivo hippocampus and the postmortem atlas. We recognize that this
is a strong assumption that leads to an inherent level of error in subfield boundary estimation;
however, some level of error must be accepted when estimating subfields in clinical resolution
in vivo MRI, since the data itself does not provide sufficient clues for determining subfield
boundaries.

Shape-based normalization uses the continuous medial representation (cm-rep) method
(Yushkevich et al., 2006c, 2007, 2008b). This method represents anatomical structures using
deformable models (cm-reps, for short) that describe objects in terms of their geometric
skeletons and derive boundary representations of objects as a function of the skeletons. A cm-
rep is fitted to the binary segmentation of each healthy hippocampus in the study by maximizing
the overlap between the boundary representation and the binary image. During deformable
modeling, cm-reps preserve the branching structure of the skeleton, making it possible to fit
geometrically congruent skeletons to multiple instances of an anatomical structure, which in
turn allows one to leverage geometrical features derived from the skeleton for normalization
and shape analysis.
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A cm-rep model is defined as follows. The skeleton of a cm-rep model is a surface patch (i.e.,
a manifold with boundary homeomorphic to the unit disk in ℝ2) that is specified as a triangle
mesh. Each node in this mesh consists of a point m ∈ ℝ3 and a positive radius value R. The
mesh is constructed by recursive subdivision of a coarse mesh using Loop subdivision rules
(Loop and DeRose, 1990). The boundary of the model consists of two surface patches b+ and
b−, one on each side of the skeleton. These boundary patches are derived from the skeleton
mesh using the inverse skeletonization formula:

(2)

where ∇mR denotes the Riemannian (surface) gradient of R on m and m denotes the unit
normal to m. These first-order properties are computed using finite difference approximations
(Xu, 2004). Constraints are in place to ensure that the two boundary patches share a common
edge and do not self-intersect, thus forming a boundary of a simple region in ℝ3. These
constraints are derived in (Yushkevich et al., 2006c) and an approach towards enforcing them
on an triangle mesh is given in (Yushkevich et al., 2008b).

The interior of the cm-rep model is spanned by line segments, called spokes, which extend
from points mi on the skeleton to the corresponding points  and  on the model’s boundary
and which are orthogonal to the boundary. As argued in Yushkevich et al. (2006c) and
illustrated in Fig. 9, the spokes form a shape-based coordinate system on the interior of the cm-
rep model. In this coordinate system, each point x on the interior of a cm-rep model is assigned
a tuple (u, υ, ξ), where (u, υ) describes the position of the “tail” of the spoke passing through
x on the medial surface m, and ξ describes the relative position of the point on the spoke between
the medial surface and the boundary. The values (u, υ) at x depend on the parameterization of
m and can be changed using reparameterization. During cm-rep model fitting, the
parameterization is constrained to minimize the distortion in the area element of m(u, υ) across
the medial surface. This constraint, analogous to uniform arc length parameterization of a
curve, ensures that (u, υ) coordinates establish a degree of geometric correspondence between
different cm-rep models.

Shape-based normalization between the postmortem hippocampus atlas and the hippocampi
in in vivo data involves fitting a cm-rep model to the binary segmentation of the hippocampus
in each of the images. Then the normalization is simply the set of diffeomorphic maps that take
every point with coordinates (u, υ, ξ) in the cm-rep model fitted to the postmortem atlas to the
points with the same coordinates in models fitted to the in vivo hippocampi. Using these maps,
subfield labels can be assigned to each of the in vivo hippocampi.

4.3 Image-Based Estimation of Healthy-Diseased Asymmetry
Atrophy associated with temporal lobe epilepsy is defined as the localized rate of change in
volume estimated using image registration. The rationale for using image registration is that
some features revealing subfield boundaries may be present in the in vivo data. While it may
be difficult to match these features to the postmortem atlas, which has a different modality,
resolution and field of view, matching these features between the left and right hippocampi in
the same subject is a less difficult registration problem.

Registration is performed between the healthy and diseased hippocampi for each subject. To
initialize the registration, we use cm-rep models. We fit a cm-rep model to both hippocampi,
thus establishing a shape-based point correspondence. We then flip the diseased hippocampus
model across the MR image left-right axis and use Procrustes analysis to find a six-parameter
rigid body transformation of the flipped model that minimizes the sum of squared distances
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between points in the flipped model and the corresponding points in the model fitted to the
healthy hippocampus. This transformation gives a very good initial mapping from the
neighborhood of the diseased hippocampus to the neighborhood of the healthy hippocampus
(see the left two columns in Fig. 11). The SyN method, described above in Sec. 2.4, is then
used to compute a deformable registration between the two hippocampi. SyN generates a
deformation vector field in the space of the healthy hippocampus. This field maps each voxel
in the neighborhood of the healthy hippocampus to a point in the neighborhood of the rigidly
aligned flipped diseased hippocampus. The Jacobian of this vector field estimates the pointwise
local rate of atrophy between the healthy and diseased hippocampi. By integrating this Jacobian
field over each subfield label (computed for the healthy hippocampus in the previous section),
we get an estimate of atrophy for that subfield. We express atrophy using the asymmetry index
(AI):

where V is the estimated volume of a subfield. Positive values of the asymmetry index indicate
atrophy in the diseased hippocampus.

4.4 Experimental Results
Fig. 10 illustrates the shape-based normalization approach. It shows examples of cm-rep
models fitted to the postmortem atlas and to individual hippocampus segmentations from the
in vivo data. The average Dice overlap between the segmentations of healthy hippocampi and
the cm-rep models fitted to them was 0.921, and the average distance from the cm-rep model
boundary to the segmentation boundary was 0.230mm. For the postmortem atlas, the overlap
between the segmentation and the model was 0.946 and the average distance from the cm-rep
model boundary to the segmentation boundary was 0.126mm. The fitting accuracy is higher
for the postmortem hippocampus because its boundary is much smoother (see Fig. 10) and,
thus, easier to fit using a deformable geometric model. The subfield mapping obtained using
shape-based normalization is illustrated in the last column of Fig. 11. Image-based
normalization is illustrated in Fig. 11, which shows examples of healthy hippocampus images,
rigidly aligned diseased hippocampus images, and Jacobian determinant fields computed by
SyN image registration.

The estimated asymmetry index for subfields CA1, CA2/3 and DG for each subject is plotted
in Fig. 13. Asymmetry in CA2/3 tends to be greater than in CA1; likewise, asymmetry is greater
for DG than for CA1. These trends are confirmed by paired Student’s t-tests: p = 0.0008 for
the AI(CA1) < AI(CA2/3) comparison and p < 0.0001 for the AI(CA1) < AI(DG) comparison.
The test does not detect significant differences (p = 0.31) between AI(CA2/3) and AI(DG). To
help understand the difference between atrophy across subfields, Fig. 12 projects (using
mappings computed by shape-based normalization) the Jacobian maps from all subjects in the
study into the space of the postmortem hippocampus atlas. In the coronal slices, the Jacobian
appears lower along the middle section of the hippocampus, where DG and CA2/3 are.

5 Discussion
5.1 Contributions

The main contributions of this work are (1) the acquisition and labeling of high-resolution
nearly isotropic images of the whole hippocampus; (2) a demonstration of the efficacy of large
deformation diffeomorphic mapping techniques normalizing high-resolution postmortem
imaging data; (3) a proof-of-concept experiment showing the application of the postmortem
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atlas to in vivo studies; and (4) open-source public release of a data set and an atlas that have
the potential to become valuable resources for investigators studying subfield-level
hippocampal morphometry using in vivo imaging.

From the imaging point of view, although a number of authors have imaged the medial temporal
lobe at high field and with very high resolution (Wieshmann et al., 1999; Fatterpekar et al.,
2002; Chakeres et al., 2005), there has not been an emphasis on imaging the hippocampus as
a whole at isotropic or nearly isotropic resolution, as we have done in this paper. Indeed, a
common theme in prior postmortem imaging work is the use of MRI as a neuropathology tool,
with comparisons between structures visible in MRI slices and corresponding histology slices.
This led the authors to select protocols with high in-plane resolution and thick slices. Our
principal goal in conducting the postmortem imaging study was to build a three-dimensional
model of hippocampal shape and of the spatial distribution of hippocampal subfields. The main
benefit of imaging with isotropic voxels, which has been our approach, is the ability to label
the structures in the hippocampus in three dimensions.

The computational anatomy aspect of this work, i.e., building an atlas from a set of images,
draws on existing methodology. The approach that we use, i.e., normalization via large
deformation diffeomorphic registration and atlas generation via minimization of geodesic
distance and shape averaging (Avants et al., 2008) is state-of-the-art and builds on some of the
most highly acclaimed methodology in the computational anatomy field (Miller et al., 2006;
Beg et al., 2005; Joshi and Miller, 2000; Christensen et al., 1997; Guimond et al., 2000; Davis
et al., 2004). Probably, the most common application of diffeomorphic registration techniques
is to whole-brain normalization, and the images collected in this study pose special challenges
for these techniques due to higher resolution, limited and nonuniform field of view, and
presence of various artifacts. We demonstrate that with the help of basic aids, such as masks
outlining the structure of interest, diffeomorphic techniques can perform reasonably well on
challenging data, and that without these aides, the loss in performance is moderate. Our
experience may be of benefit to other researchers seeking to apply diffeomorphic techniques
to “non-standard” imaging data, in particular ultra high-resolution in vivo imaging of
hippocampal subfields that is becoming increasingly relevant with wider availability of 7 Tesla
scanners.

The data collected and generated in this study are being made available through the NIH-
sponsored Neuroinformatics Tools and Resources Clearinghouse (NITRC) under the name
“Penn Hippocampus Atlas”. This resource includes raw imaging data, manual segmentations,
affine and deformable transforms from native image space to atlas space, atlases and consensus
segmentations. As data acquisition continues, new datasets will be continually released into
the public domain. All data thus distributed is fully anonymous. We envision Penn
Hippocampus Atlas as a resource that will contribute to the development of image analysis
pipelines that allow automatic or semi-automatic estimation of the location, size and shape of
hippocampal subfields in in vivo imaging data.

The experiment presented in section 4.4 demonstrates an application of the postmortem atlas
on in-vivo data. Hippocampal volumetry has been widely used to study atrophy in TLE patients
(Cendes, 1993; Bernasconi et al., 2003). However, as different regions within the hippocampus
are known to be affected by the disease process differently, both in terms of their histopathology
and seizure onset zones (King et al., 1997), the ability to perform subfield-level morphometry
may provide greater insight into the associated atrophy patterns. Neuronal loss in DG, as well
as in CA1 and CA3, is a common histological finding in sclerotic hippocampi (Swartz et al.,
2006; Bote et al., 2008), which may lead to the volumetric asymmetry in these subfields as
observed here (Figure 13). Greater relative atrophy in DG found here is consistent with the
fact that the neurons in the hilus of DG are considered to be amongst the most vulnerable in
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TLE (Robbins et al., 1991), and is sometimes found more consistently than atrophy in CA1/
CA3 (Swartz et al., 2006). However, other studies have found greater cellular neuropathology
in CA1 (Van Paesschen et al., 1997). The use of subfield-level deformation based morphometry
in quantifying atrophy is novel in the study of TLE, and further studies are required to fully
evaluate the efficacy of this approach. Nonetheless, subfield-specific morphometric techniques
have been shown to be useful in other clinical applications, including Alzheimer’s disease
(Mueller et al., 2007), and the proof-of-concept application presented here shows promising
preliminary results.

5.2 Potential Future Applications
This section briefly outlines possible approaches for leveraging the hippocampus atlas in in
vivo imaging studies. This section is speculative, and its intention is to simply sketch out the
range of approaches in which the atlas may be used. One of the main motivations for releasing
the atlas publicly is to allow the developers of hippocampus-aimed approaches to leverage it
in their algorithms.

We envision essentially three ways to map the postmortem hippocampus atlas to in vivo data:
using shape correspondences, using image similarity, and using some combination of the two,
as we did in Sec. 4.4. Shape correspondences can be found between manual segmentations of
the hippocampus in in vivo data and segmentations in the postmortem atlas. Such
correspondences, if interpolated over the interior of each segmentation, could be used to map
subfield labels from the atlas to image space. However, the accuracy of shape-based mapping
is highly dependent on the quality of the manual segmentation, which in itself is a challenging
problem in clinical MRI, especially in the presence of neurodegeneration (Carmichael et al.,
2005). Furthermore, the interpolation of correspondences onto the interior of an object means
that the mapping of internal subfield boundaries (i.e., boundaries between subfields that are
not curves on the hippocampus boundary, such as most of the DG/CA boundary) would be
dependent solely on boundary shape cues, making inferences derived from the direct
comparison of internal subfields (e.g., DG) across subjects questionable at the least. A more
reliable approach, very similar in spirit to the approach taken in Sec. 4.4, is to use shape
correspondences to map the postmortem atlas onto the hippocampus segmentation in a in
vivo template, to which in vivo data are normalized using deformable image registration.
Integration of the Jacobian field associated with this registration over each subfield defined in
template space would yield subfield-specific volumetric features. Finally, for some less
common imaging modalities, such as T2-weighted in vivo hippocampus-specific imaging at 3
Tesla, as used in (Mueller et al., 2007; Apostolova et al., 2006; Zeineh et al., 2003), or emerging
7 Tesla imaging (Cho et al., 2008; Li et al., 2008; Bernasconi et al., 2008), it may become
possible to directly map the subfield information from the postmortem atlas to individual in
vivo images on the basis of image similarity, in particular if aids like masks and landmarks are
employed. This is the direction of our future work.

Another potential application of a detailed hippocampus atlas is to use it as a prior for
deformable model segmentation of the hippocampus in vivo. One of the problems facing model-
based segmentation is that the apparent topology of the hippocampus in clinical resolution
images can change substantially in the presence of neurodegenerative disease. Some of the
topological differences observed in in vivo modalities are due to the boundaries between
hippocampal layers not visible in the healthy adult hippocampus appearing in aging and
dementia. By inferring the topology and shape of the hippocampal layers from postmortem
data and using it as a shape prior during segmentation it may be possible to reduce the number
of possible topological configurations and thus enable better normalization of the hippocampus
between cohorts.
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5.3 Limitations
One of the limitations of this work is that the current atlas is based on a relatively small number
of samples. This causes us to combine samples from both hemispheres in a single atlas, whereas
it may be more appropriate to have separate atlases of the left and right hippocampus. Even
though we believe that in its current state the atlas can be of potential benefit to other
researchers, we intend to continue acquiring and labeling images of the postmortem
hippocampus in different clinical populations. Specifically, we plan to image the hippocampus
region in presence of Alzheimer’s disease and semantic dementia and to build atlases specific
to these neurodegenerative disorders. As more samples are added to the atlas, it will become
feasible to not only model the average hippocampus shape, but also the variation in the shape
and intensity of the hippocampus. Along with collecting more data, we aim to expand the
number of structures labeled in each sample to include those shown in Fig. 4. Having a
computational model of the relationship between the hippocampal subfields, the amygdala, the
fimbria and the subiculum will be of great benefit in in vivo applications where these structures
are partially discernable.

Furthermore, the atlas would benefit from an extensive validation of the current postmortem
image segmentation protocol. In postmortem data, a direct validation is possible by performing
histological staining of the samples. Hippocampal strata and subfields can be differentiated in
histological slices, providing a good estimate of ground truth. However, matching 2D
histological slices with possible tearing and distortion to the 3D MRI atlas will pose substantial
challenges. We have previously developed similar 2D–3D registration techniques for the
mouse brain (Yushkevich et al., 2006a), and plan to apply them to the human hippocampus in
our future work.

A possible limitation associated with applying the postmortem atlas to in vivo data is that one
must be cautious to account for morphological differences between the living brain and
formalin-fixed samples. Cutting of the samples may introduce additional deformations,
although we take care to leave at least 1cm of tissue around the hippocampus to reduce such
distortion. Nevertheless, some form of global shape correction will likely be necessary to
account for these differences.

In the current atlas, the consensus segmentation of the hippocampus does not provide
guarantees on the topology of the subfields. Indeed, as seen in Fig. 8, some of the thinner
subfields have multiple connected components. This can be corrected by deforming a template
with correct topology to the consensus segmentation using a label-by-label overlap metric.
Incorrect topology may pose difficulty for applications that require geometrical modeling of
the subfields, but does not preclude one from performing morphometry, similarly to how many
brain tissue class segmentation algorithms can be leveraged without guarantees on the topology
of the cortical mantle.
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Appendix: Incorporating Landmarks in SyN
Define {Q} as the set of points describing the landmark labels within the template space, I.
That is, Qi ∈ {Q} is the Euclidean position of some labeled point in patient space. Define
{q} as the set of points describing the landmark labels within the individual space, J. Note that
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the cardinality of {Q}, denoted n, and the cardinality of {q}, m, may not be the same. In most
cases, however, m ≈ n. Then, given I; J, {q}, {Q}, and some initial estimate for φ1, φ2, find
the shortest φ ∈ Di f f0 such that:

1. || I (φ1(x, 0:5)) − J(φ2(x, 0:5)) || is minimal,

2.
 is minimal and

3.
 is minimal.

The function, CL({p}q), represents the “closest point” operation. That is, CL returns the
smallest distance between the point set, {p} with respect to the point q. This translates to the
following variational problem, with linear operator L,

with ω a scalar and wq and wQ scalar, spatially varying weights and each φi the solution of:

(3)

In this work, we set ω = 1 as a constant,  is a Gaussian smoothed dirac delta function centered

at each deformed landmark with value 3 at the peak and  starts with the same value as .
We optimize this problem by gradient descent on the total energy, in the same multi-resolution
framework as used for non-landmarked SyN.
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Fig. 1.
Coronal and sagittal slices through each of the hippocampus images included in the atlas. The
acquisition parameters for these images are listed in Table 1. Image 3L has 0.2mm3 isotropic
resolution; other images have resolution 0.3 × 0.2 × 0.3mm3.
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Fig. 2.
A diagram of the partitioning of the hippocampus into labels used in this paper. The
abbreviations used in subsequent figures are in boldface. The leaf nodes in the graphs are the
labels that were actually traced in the postmortem MR images. Later in the paper, segmentation
repeatability and atlas consistency results are reported for the leaf nodes as well as for the
parent-level structures formed by merging the labels corresponding to the leaf nodes.
Abbreviations: SO = stratum oriens; PCL = pyramidal cell layer; SR = stratum radiatum; SLM
= stratum lacunosum-moleculare; VHS = vestigial hippocampal sulcus.
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Fig. 3.
Coronal, sagittal and 3D views of hippocampus images and subfield labels for samples 1R and
2L, following aaffne alignment, and for atlases computed by unsupervised deformable
registration (DEF) and mask-aided registration (DEF-MSK). Abbreviations: CA - cornu
Ammonis; DG:H - hilus of the dentate gyrus (a.k.a. CA4); DG:SM - stratum moleculare of the
dentate gyrus; SR - stratum radiatum; SLM - stratum lacunosum-moleculare; VHS -vestigial
hippocampal sulcus.
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Fig. 4.
Hippocampus segmentation, along with the adjacent amygdala and subiculum (the subiculum
label includes the presubiculum, the parasubiculum and parts of the parahippocampal cortex)
Subfield color labels are the same as in Fig. 3.
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Fig. 5.
Analysis of segmentation repeatability, given in terms of Dice overlap between the full 3D
segmentations used in constructing the atlas and repeated segmentations of a selected set of
slices by two raters. Average Dice overlap for each subfield, as well as various combinations
of subfields, is reported. See Fig. 2 for a diagram of the subfield labels appearing on the x-axis.
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Fig. 6.
Agreement between the consensus atlas labeling and segmentation of individual samples
expressed in terms of average Dice overlap computed in atlas space. Six atlas-building
approaches are compared: landmark-based and mask-based affne alignment (AFF-LM/AFF-
MSK), image-based deformable normalization (DEF), deformable normalization aided by
landmarks (DEF-LM), masks (DEF-MSK) and both masks and landmarks (DEF-LM-MSK).
See Fig. 2 for a diagram of the subfield labels appearing on the x-axis.
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Fig. 7.
Agreement between the consensus atlas labeling and segmentation of individual samples
expressed in terms of average distance between the boundaries of subfields in the atlas and the
boundaries of corresponding subfields in warped individual segmentations. Refer to Fig. 6 for
the explanation of different bars in the plot. See Fig. 2 for a diagram of the subfield labels
appearing on the x-axis.
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Fig. 8.
Surface maps of root mean square distance between each subfield in the atlas and the
corresponding subfield segmentation in each of the input images warped to the atlas. The atlas
used in this figure was constructed using binary masks and no landmarks (DEF-MSK in Fig.
6). Larger values in the maps (yellow and red) indicate lesser coherence between the atlas and
the individual segmentations. At the bottom left, all subfields in the atlas are shown together
to provide a visual reference.
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Fig. 9.
A conceptual 2D illustration of shape-based normalization via the cm-rep coordinate system.
The central curve is the skeleton m; the radial lines from the skeleton to the boundary are the
spokes; the shape-based mapping between the two models is given by the locations of
corresponding grid vertices.
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Fig. 10.
Illustration of cm-rep model fitting used for shape-based normalization. The top row shows
the cm-rep model fitted to the “DEF-MSK” postmortem hippocampus atlas (see Fig. 3), and
the other rows show models fitted to segmentations of the “healthy” hippocampus for three
subjects in the TLE study (subjects L1, R2 and L4; selected arbitrarily). The left column shows
the target structure, i.e., the segmentation of the hippocampus. The second column shows the
skeleton surface m of the fitted cm-rep model, with the color map plotting the radius function
R on the skeleton. The third column illustrates the spoke field; spokes are line segments extend
from the skeleton to the boundary, are orthogonal to the boundary and “span” the interior of
the model (see Fig. 9 for the 2D illustration of spokes). Spokes extending to boundary half
b− are shown in blue, and spokes that extend to b− are shown in red. Correspondence on the
basis of spoke fields is used to map subfield labels from the postmortem atlas to the in vivo
data. The last column shows the boundary surface b = b+ ∪ b−, which closely approximates
the surface of the target hippocampus.
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Fig. 11.
Example images from the in vivo temporal lobe epilepsy hippocampal asymmetry analysis
experiment. Each row shows data from one of the subjects in the study. The first column shows
a sagittal cross-section of the region surrounding the hippocampus contralateral to the seizure
focus (“healthy” side). The second column shows the ipsilateral (“diseased”) hippocampus
region after flipping across the midsagittal plane and rigid alignment to the healthy
hippocampus. The third column plots the logarithm of the Jacobian of the transformation
between the healthy hippocampus and diseased hippocampus computed by deformable image
registration. Negative values (blue) indicate that a small region R in the healthy hippocampus
maps to a smaller region in the diseased hippocampus; positive values (red) indicate the
opposite. The Jacobian map is restricted to the the healthy hippocampus (i.e., to the manual
segmentation). The last column shows the estimation of the location of hippocampal subfields
in the healthy hippocampus. Subfields are mapped from the postmortem atlas using shape-
based normalization.
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Fig. 12.
This figure plots the healthy/diseased asymmetry in TLE in a reference space, i.e., in the space
of the postmortem hippocampus atlas. The left column shows 5 coronal slices and a sagittal
slice through the postmortem atlas “DEF-MSK” (see Fig. 3), which is the atlas used in the TLE
experiment. The second column shows the subfield labeling of the “DEF-MSK” atlas. The
third column shows the logarithm of the Jacobian determinant of the mapping from the healthy
hippocampus to the diseased hippocampus, averaged over all subjects. This average Jacobian
map is computed by using shape-based normalization to transform the log-Jacobian maps
shown in Fig. 11 back into atlas space, followed by computing the average. Negative values
(blue) indicate local volumetric decrease (disease-associated atrophy); positive values (red)
indicate local increase in volume. The last column shows corresponding slices from the non-
masked postmortem atlas “DEF”, for the purpose of visualizing the adjacent tissues.
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Fig. 13.
Plots of volumetric asymmetry between the subfields of the healthy and diseased hippocampi
in the in vivo TLE study. Each subject is represented by a line segment, with blue lines
representing subjects with the right side of seizure and red lines corresponding to the left side
of seizure. The y-axis plots the asymmetry index, i.e., the relative decrease in volume between
the subfield in the healthy hippocampus and the same subfield in the diseased hippocampus.
The plots illustrate the following trends: asymmetry in CA2/3 greater than asymmetry in CA1
(paired Student t-test p = 0.0008) and asymmetry in DG greater than asymmetry in CA1 (paired
Student t-test p < 0.0001).
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