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Abstract
Although DTI can provide detailed information about white matter anatomy, it is not yet
straightforward enough to quantify the anatomical information it visualizes. In this study, we
developed and tested a new tool to perform brain normalization and voxel-based analysis of DTI
data. For the normalization part, manually placed landmarks ensured that the visualized white matter
tracts were well-registered among the populations. A standard landmark set in ICBM-152 space and
an interface to remap them to subject data were integrated in the procedure. After landmark
placement, highly elastic non-linear Large Deformation Diffeomorphic Metric Mapping (LDDMM)
was driven by the landmarks to normalize the brainstem anatomy of normal subjects. The approach
was then applied to delineate brainstem tract abnormalities in patients with left chronic Middle
Cerebral Artery (MCA) stroke. The voxel-based comparison between control and patient groups
identified abnormalities in the ipsilesional corticospinal tract and contralesional cerebellar peduncles.
We believe that this tool is useful for regional brain normalization of patients with severe anatomical
alterations, such as stroke, brain tumor, and lobectomy, for whom standard automated normalization
tools may not work properly.
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Introduction
Diffusion tensor imaging (DTI) can reveal detailed anatomy of the brain white matter (Basser
et al., 1994; Catani et al., 2002; Makris et al., 1997; Mori et al., 2005; Pajevic and Pierpaoli,
1999; Wakana et al., 2004) by visualizing various white matter tracts that cannot be identified
by conventional MRI. This, in theory, would enable one to evaluate the anatomy of specific
white matter tracts. For example, before and after brain damage, such as that caused by stroke,
trauma and/or neurosurgery, it is often important to know the status of functionally important
tracts (e.g., those responsible for motor, visual, and speech functions) (Luft et al., 2005). Until
the advent of DTI technology, this type of tract-specific analysis was difficult to perform on a
daily clinical basis.

The orientation of individual tracts in DTI images can be visualized through a color-coded
orientation map (Makris et al., 1997; Pajevic and Pierpaoli, 1999). Once a tract of interest is
identified, important clinical information could be derived from a quantitative analysis of the
tract properties, such as shape and size, and MR parameters such as diffusion anisotropy,
average diffusion constant, and relaxation parameters (Glenn et al., 2003; Pagani et al., 2005;
Partridge et al., 2004; Stieltjes et al., 2001; Virta et al., 1999; Wilson et al., 2003; Xue et al.,
1999). The most straightforward approach is to manually delineate each specific tract directly
on color-coded maps. Alternatively, pixels that belong to a specific tract system can be semi-
automatically grouped using a region-growing tool, such as tractography (Basser et al., 2000;
Conturo et al., 1999; Mori et al., 1999; Parker et al., 2002; Poupon et al., 2000). These types
of manual or semiautomated methods for tract delineation are currently widely used, and are
often denoted as “tract-specific MR quantification” (Pagani et al., 2005; Xue et al., 1999).

An alternative to tract-specific approaches is voxel-based analysis, in which brains are
normalized to a template brain and compared in a voxel-by-voxel manner (Ashburner and
Friston, 2000; Wright et al., 1995). This is a very effective approach to evaluate a large amount
of data in a systematic manner without a hypothesis about which tracts might be affected. The
application of this approach to DTI data is, however, not straightforward. Similar to other
methods, the first issue is the quality of the normalization. Corresponding anatomical locations
between the template and the subject need to be well-aligned in the template space after the
normalization, which is not always guaranteed because of substantial anatomic differences
between subjects. One of the advantages of DTI is that it can reveal very convoluted white
matter anatomy. However, unless the normalization quality is high enough to align these white
matter structures, the rich anatomic information provided by DTI cannot be fully appreciated.
A second issue is related to the fact that the anatomic DTI information is stored as a tensor
field, not a scalar field. Thus, algorithms are needed to judge the quality of image alignment
based on tensor properties (Cao et al., 2005; Zhang et al., 2006). In addition, transformation
of the brain shape must be accompanied by re-orientation of the tensor. Algorithms for the
automated normalization of tensor fields have been postulated, but are not widely available
(Alexander et al., 2001; Xu et al., 2002). In this study, we introduce a landmark-based tool for
normalization of DTI data. In this approach, corresponding structures revealed by DTI are
manually identified by placing landmarks and a highly elastic non-linear transformation was
driven by the landmarks using a Large Deformation Diffeomorphic Metric (LDDMM) (Miller
et al., 2002).
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As a first application, we investigated tract anatomy in the brainstem of a group of middle
cerebral artery stroke patients. Even though primary lesion sites in these patients can be readily
delineated by hyperintensities in conventional T2-weighted images, it is generally not
straightforward to predict the functional outcomes. Development of image-based markers of
functional outcome or predictors of rehabilitation response would have a significant impact on
patient care. The hypothesis of this study is that the detailed analysis of white matter anatomy
enhances our ability to predict functional outcome in stroke patients. We are especially
interested in brainstem anatomy because all important motor and sensory pathways penetrate
this area and can be clearly delineated by DTI. Secondary lesions in the corticospinal tract and
the medial lemniscus may accurately reflect the motor and sensory functional status of the
patient, respectively. Toward this long-term goal, we first need to establish a tool for group-
based anatomical analyses of DTI, which is the main goal of this paper. As an initial feasibility
study, quantitative assessment of secondary lesions in the brainstem of a small group of stroke
patients was performed.

Materials and Methods
Subjects

The study was approved by the Institutional Review Board and written, informed consent,
including a HIPAA-compliant data sharing agreement, was obtained from all subjects. Twelve
healthy adults, who were free of current and past medical or neurological disorders, participated
in the study as controls (mean age, 32 +/− 10.54 years; seven males, five females). For stroke
studies, six patients (mean age, 55.23 +/−12.86 years; three males, three females) with chronic
infarction in the territory of the left middle cerebral artery (MCA) participated.

Image acquisiton
A 1.5T MR unit (Gyroscan NT, Philips Medical Systems) was used. DTI data were acquired
using a single-shot, echo-planar imaging (EPI) sequence with sensitivity encoding (SENSE,
parallel-imaging factor of 2.5 (Pruessmann et al., 1999)). The imaging matrix was 96 × 96 with
a field-of-view of 240 × 240 mm (nominal resolution, 2.5 mm), zero-filled to 256 × 256 pixels.
Transverse sections of 2.5 mm thickness were acquired parallel to the anterior commissure-
posterior commissure line. A total of 50–55 sections covered the entire brain and brainstem
without gaps. Diffusion weighting was encoded along 30 independent orientations (Jones et
al., 1999), and the b-value was 700 s/mm2. Five additional images with minimal diffusion
weighting (b ≈ 33 s/mm2) were also acquired. The scanning time per dataset was approximately
six minutes. To enhance the signal-to-noise ratio, imaging was repeated three times.

Data processing
The DTI datasets were transferred to a personal computer running a Windows platform, and
were processed using DtiStudio (www.MriStudio.org or mri.kennedykrieger.org) (Jiang et al.,
2006). Images were first realigned with Automatic Image Registration (Woods et al., 1998)
using the minimally diffusion-weighted image as a template to remove any potential small bulk
motion that may have occurred during the scans. The six elements of the diffusion tensor were
calculated for each voxel using multivariant linear fitting. After diagonalization, three
eigenvalues and eigenvectors were obtained. For the anisotropy map, fractional anisotropy
(FA) was used (Pierpaoli and Basser, 1996). The eigenvector associated with the largest
eigenvalue was used as an indicator of the fiber orientation. We also created an averaged
diffusion-weighted image (aDWI) by adding all of the diffusion-weighted (b = 700 s/mm2)
images. This image was used to drive the initial affine image registration for all subjects in this
study.
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Normalization and landmark sets
The entire registration process was performed using our in-house software called Landmarker
(Xin Li, Hangyi Jiang, and Susumu Mori, www.mristudio.org or mri.kennedykrieger.org). The
interface of the Landmarker is shown in Fig. 1. For the anatomical template, the JHU-DTI atlas
(lbam.med.jhmi.edu) was used, which was created by linearly normalizing DTI data from 28
healthy subjects to the ICBM-152 template. In this study, we first normalized our subject DTI
data (both controls and patients) into this template using the 12-mode affine transformation.
This initial alignment was performed using the aDWI images for the entire brain, which brought
the brainstem close to that of the template. The subsequent landmark placement was performed
using color-coded orientation maps. We defined a “standard landmark set” in the color-coded
orientation map of the JHU-DTI atlas. This set consisted of 53 landmarks strategically defined
on easy-to-define structures (the MNI coordinates and an anatomical description of these
landmarks can be downloaded from our website, www.mristudio.org/wiki/installation). The
initial affine transformation was based on Automated Image Registration (AIR) (Woods et al.,
1998) using[S1] the ratio image uniformity (RIU) cost function (Woods et al., 1998). Then the
normalized color-coded map from each subject was loaded to Landmarker, where the standard
landmark set is displayed in the atlas, which provides visual guidance for landmark placement
(upper images in Fig. 1). The same landmarks are copied for each subject and moved to the
corresponding structures (bottom images in Fig. 1). In principle, landmarks are defined using
imaging planes perpendicular to the tracts being identified. In the brainstem, there are only a
small number of tracts running along the right-left axis, which are defined using the mid-sagittal
plane. The majority of the tracts run along the inferior-superior axis and, thus, axial planes are
used. Any mismatch between the standard landmarks and subject anatomy can be immediately
appreciated (Fig. 2 inset C,D). Landmarker allows fine adjustment of the landmarks to the
corresponding structures, which typically takes about 15 min. If an ith landmark defined on
the template, Li

T, is moved to a new location, Li
S, in the subject brain, the difference vector

can be defined by . From the 53 , a deformation field was calculated and the
subject image (tensor field) was transformed to the template space using landmarked-based
LDDMM (Miller et al., 2002).

The LDDMM algorithm computes a transformation φ:Ω → Ω between two image spaces,
where Ω ⊆ R3 is the 3D cube on which the data is defined. The transformation computed by
LDDMM is generated as the end point φ = ϕ1 of the flow of smooth time-dependent vector
fields vt with the ordinary differential equation ϕ̇t = vt ○ ϕt, t ∈ [0,1] where ϕ0 (x) = x, x ∈ Ω.

The smoothness of the vector fields vt is required to ensure that the computed transformation
is a diffeomorphism. This is enforced with a regularization term based on constraints induced
by a suitable Sobolev norm, denoted ||v||V. This leads to the following generic inexact matching
problem

whereD(φ) is a matching term between the transformed source and target data.

The goal of this algorithm is to interpolate a given landmark correspondence xk → yk, k = 1,
…, N into a dense relation defined on the image space. The matching term in this case is
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In our study, σ was set to 1, meaning all landmarks received the same weighting.

The problem can be reduced to a finite dimensional matching problem, and solved with a
shooting algorithm that solves the associated Euler-Lagrange equation (Allassonnière et al.,
2005). In this finite dimensional reduction, the velocity is expressed as a linear combination

of the form . The kernel  defines the
influence of the landmark on the deformation of the whole space, with a parameter, α. In this
study, the α was set to 0.002. This means the effect of each landmark is reduced to 50% over
22 pixels (mm). The 53 landmarks in this study covered brainstem volumes of approximately
35,000 mm3. Each landmark covers anatomical regions with a 7 mm sphere, on average, and
is separated from others by approximately 14 mm. Therefore, transformation of each pixel is
influenced by the weighted sum of 3–4 nearby landmarks. This also means that any brain
regions further than 22 mm from the brainstem are not registered. Based on the approximate
size of the brainstem (approximately 3×3×4 cm), landmark density, and the registration
parameter, our study is designed to normalize the overall shapes, sizes, and orientations of the
brainstem, but not the fine anatomical features significantly smaller than a 10 mm scale. As
discussed further in the Discussion section, any anatomical differences smaller than this size
would remain in the transformed image and be detected by voxel-based analysis. These
parameters (landmark density and kernel), of course, can be adjusted, depending on the
biological questions being asked in each application study.

After the LDDMM-based image transformation, the transformation matrix was applied to the
tensor field using the method postulated by Xu et al. (Xu et al., 2003) and Zhang et al. (Zhang
et al., 2006). The entire normalization procedure is also incorporated in Landmarker. The
transformation takes about 15 minutes using a 2.66 MHz Intel processor.

Statistics[S2] for voxel-based analysis
Group comparison between normal population (n = 12) and the six patients with a stroke of
the left MCA were performed using voxel by voxel nonparametric Wilcoxon rank sum test
(Matlab, The Mathworks, Inc., Natick, MA, USA) without[S3] applying a smoothing filter. To
avoid type one error in multiple comparison, we set the false discovery rate (FDR) at 0.05
(Genovese et al., 2002). The threshold for p value (FDR = 0.05) was 0.0082.

Measurements of intra and inter-rater variability of landmark placement
The 53 landmarks used in this study were placed three times on one of the normal[S4] subjects
by two experienced (W. Z. and S.M.) and one inexperienced rater to measure the intra and
inter-rater variability of landmark placement. The inter-rater variability was measured from
the distances between the multiple placements; (dist (L1, L2)+dist(L1, L3)+dist (L2, L3))/3, in
which L1–3 are landmark locations after three trials. The same equation was also used for the
inter-rater variability among three raters. This measurement was repeated using data from three
subjects and the averaged results are reported.
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Results
The intra-rater variability was 0.82 ± 0.71 mm with no significant difference between the
experienced and inexperienced raters. The inter-rater variability was 0.89 ± 0.76 mm.

Fig. 3 shows averaged maps at three different axial brainstem levels created from the 12 normal
subjects after linear (affine) and non-linear (landmark-based LDDMM) registration to the JHU-
DTI template. Each averaged map after the non-linear registration is noticeably crisper,
defining individual brainstem structures more clearly than the one produced by the linear
registration.

The images from the six left-MCA stroke patients were normalized to the JHU-DTI template
using the same method as that used for the control subjects. In Fig. 4A–4D, T1, T2 (b0 image),
FA, and color-coded orientation maps of a stroke patient with a left MCA infarct are compared
at the same slice levels for demonstration purposes. Although atrophy of the pons is apparent
in the T1-weighted image at the left side of the brainstem, detailed assignment of the origin of
the neuroanatomical deficit to the pons can only be appreciated by the anisotropy-based images
(Fig. 4C and 4D), where reduced size and loss of FA in the CST (indicated by red arrowheads)
can be visually appreciated. These images exemplify the efficacy of DTI for detection of
abnormalities in specific white matter tracts. Fig. 4E and 4F compare the results of the linear
and non-linear approaches for voxel-based analysis, in which data from one of the six patients
was normalized and, at each pixel, the FA value from the patient was compared to the average
FA value obtained from the 12 normal subjects. In these figures, pixels with FA differences (a
patient vs 12 controls) of more than two standard deviations are color-coded and overlaid
without a geometrical filter. The better registration of intra-white matter structures by the non-
linear transformation leads to delineation of the entire CST with substantially lower FA values.

Fig. 5 shows the result of a non-parametric Wilcoxon Rank Sum Test for a group analysis
between the normal population (n = 12) and the six patients with a stroke of the left MCA. The
group results are consistent with the single-subject data shown in Fig. 4; FA of the ipsilateral
CST and the contralateral MCP and ICP are significantly affected by the left MCA stroke. To
confirm these results we also manually delineated the CST at the mid-pons level in each subject
and measured the sizes (the number of pixels) and FA values (Table 1). The manually
delineated results clearly indicate that the ipsilesional (left side) CST is smaller and has a lower
FA than that in the control subjects.

Discussion
DTI provides unique information about white matter anatomy and can delineate the
degeneration of specific distal white matter tracts in stroke patients, as shown in Fig. 4C and
4D. The decrease of diffusion anisotropy of the corticospinal tract after stroke, due to Wallerian
degeneration and correlation with motor functions, has been reported in the past (Khong et al.,
2004; Moller et al., 2007; Mukherjee, 2005; Pierpaoli et al., 2001; Thomalla et al., 2004;
Werring et al., 2000). This is an exciting quantitative advantage of this MR technique, because
the availability of such an unbiased sensitive marker of anatomical change may provide us with
a better understanding of the impact of infarctions on brain anatomy and functions. To further
elaborate on this type of anatomic/function correlation study, group-based analyses are the
essential next step. One of the widely used quantification tools for MRI is manual ROI
placement. While it is a valid approach, it has significant limitations. The ROI placement is
inherently subjective and time-consuming. Reproducibility of the size and locations could also
be an issue, depending on the structures of interest. In addition, the ROI-based approach is
usually hypothesis-driven and focused on pre-determined brain areas. This approach also
leaves many brain regions unexamined.
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To assist the ROI-based analyses, voxel-based template-referenced analyses are powerful
methods. Although these approaches have been used widely for T1 and T2-weighted images,
application to DTI poses a unique challenge. DTI data consists of tensor fields (as opposed to
scalar fields for conventional MRI) and white matter tracts revealed by the tensor field need
to be well-registered after normalization to fully exploit the delineated anatomical information.
After simple linear normalization, this condition is not guaranteed. This can be clearly seen in
Fig. 2C, where landmarks placed at specific white matter tracts of an atlas image (Fig. 2A) are
not aligned to the corresponding structures in the linearly-normalized subject image (Fig. 2C).
This leads to blurred structures in population-averaged images after linear normalization (Fig.
3) and reduced sensitivity to detect lesions in patients (Fig. 5).

The improved registration quality provided by a nonlinear method, compared to linear
registration, is an expected result. Recently, automated non-linear registration tools for DTI
have been actively developed, including the widely used, tract-based spatial statistics (TBSS)
method (Chiang et al., 2008; Smith et al., 2006; Verma et al., 2005; Yushkevich et al., 2008;
Zhang et al., 2006). This may invoke the question of the usefulness of the time-consuming,
landmark-based method. In the past, it has been shown that careful manual-based approaches
can improve registration quality, compared to fully automated methods (see, e.g., (Kirwan et
al., 2007)). Nonetheless, it is important to carefully evaluate the cost-benefit relationship of
manual landmark-based methods for each specific application. If both methods lead to
comparable accuracy, there is no reason to use the landmark-based method. As a general
guideline, the landmark-based method excels in applications in which: 1) the region of interest
is localized, because dense landmarks can be flexibly targeted to such regions; and 2) there are
severe anatomical and/or intensity differences among subjects, because such differences could
mislead non-linear automated algorithms. These applications include stroke, brain tumor, or
lobectomy. Other examples include studies of brain development (both human and animal) in
the early neonatal stages during which there is a large amount of contrast and structural change
and automated non-linear registration methods are not expected to work properly. Even in such
cases, landmarks could be placed at easy-to-identify structures throughout the development
stages, and could quantitatively characterize brain shape changes (Zhang et al., 2003). In the
present study, we tested non-linear normalization of the brainstem (regional normalization) in
stroke patients. The group analysis results for the stroke patients clearly indicate abnormalities
in the ipsilesional corticospinal tract and contralesional cerebellar peduncles. These
abnormalities in the contralesional cerebellar pathways are fully expected because they cross
the midline (decussate) at the pons level. This tool can be applied to other regions of the brain,
as well as the entire brain, but a landmark set must be created and tested to determine the
reproducibility of each set. Our brainstem landmark set (53 landmarks), with anatomical
descriptions, can be downloaded from our website (www.mristudio.org/wiki/installation) for
testing.

To facilitate this time- and labor-consuming process, we developed software and established
a “standard landmark” set for the brainstem studies. The software provides an interface that
allows remapping of the 53 standard landmarks within approximately 15 min by an experienced
operator. In our current tool (Landmarker), there is room for several improvements. First, there
is the issue of landmark-placement reproducibility. The intra- and inter-rater variability in
landmark placement would lead to lower sensitivity to detect differences between groups. It
is, therefore, important to measure test-retest reproducibility of landmark placement. In this
study, the intra and inter-rater reproducibility was approximately 1 mm. This high
reproducibility is due to the small size of the tracts used as anatomical landmarks. If this
approach is used in the cerebral hemisphere which has less density of distinctive anatomical
features, the reproducibility would be worse. Although, in theory, the placement errors could
be measured once for the given standard landmark set and incorporated in image normalization
and statistical procedures, our current tool does not incorporate such features. Please note that
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the sparse anatomical features and difficulty of reproducible structure identification could also
influence the accuracy of automated approaches. Another important issue that is not addressed
in this paper is the difficulty of identifying corresponding points along tubular-shaped tracts.
In such cases, landmark placements must rely on nearby anatomical clues to identify
corresponding locations in the tract. Anisotropic cost functions, which have fewer penalties
for a mismatch tangential to the structure, may be necessary to further improve the registration
quality.

The quality of the normalization results also depends on the number and locations of the
landmarks. The volume of the brainstem that is covered by the 53 landmarks is approximately
350 mm3, meaning each landmark represents an area of 7 mm3 of tissue, on average. The
landmark-based method cannot capture and correct morphological differences smaller than the
landmark density. This means that anatomical differences may remain after the landmark-based
transformation. If a pixel-by-pixel statistic such as that shown in Figs. 5 and 6 finds pixels with
abnormal values, it could be attributable to differences in image intensity (in this paper, it is
FA) and/or due to morphological differences (see (Ashburner and Friston, 2000) and (Smith
et al., 2006) for discussions related to this issue). Therefore, the interpretation of the results
requires a subsequent, more detailed analysis, such as a manual ROI-based method. For
example, the manual ROI-based analysis (Table 1) suggests that both size and FA value were
decreased in patients. The proposed method could, therefore, serve as a screening method to
characterize abnormal regions.

In summary, we developed an interface for landmark placement in the brainstem, followed by
LDDMM-based non-linear transformation. The software was tested on the brainstem anatomy
of a group of MCA stroke patients to test for Wallerian degeneration. We first devised a
standard landmark set consisting of 53 landmarks placed on our JHU-DTI atlas in the MNI
coordinates. Compared to linear transformation, a clear improvement was observed in
registration quality. A pixel-by-pixel comparison between the control and stroke patient groups
identified abnormalities in the ipsilateral corticospinal tract and in the contralateral cerebellar
peduncles. The software and the anatomical templates are available for downloading at
www.mristudio.org and lbam.med.jhmi.edu.
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Fig. 1.
Interface for the brain normalization tool for DTI. The software has built-in atlases as a target,
to which each subject data is normalized. It allows AIR-based linear and non-linear
transformation as an initial normalization method. The software has a control panel to allow
adjustment of the locations of the landmarks.
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Fig. 2.
An example of the landmark-based brainstem normalization. First, a standard landmark set
was established on the JHU-DTI atlas in the ICBM-152 coordinates (A), which consisted of
53 landmarks placed on easy-to-identify white matter structures in the brainstem. Subject DTI
data (B) were linearly normalized to the template (C) and the standard landmarks were
superimposed. The residual anatomical difference after the linear normalization can be
appreciated as a mismatch between the linearly normalized subject data and the standard
landmarks (C). An operator then manually adjusts these landmarks to their designated
anatomical locations in the subject data (D). With the adjusted landmarks and standard
landmarks, the software performs a non-linear transformation between the subject data and the
atlas. The insets in (C) and (D) show the magnified inset views of the medulla. In these images,
landmarks #12-#15 of 53 landmarks (see Appendix) are shown.
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Fig. 3.
Comparison of the linear (affine) and non-linear (LDDMM) transformation methods for cross-
subject registration of the brainstem. Averaged FA maps from 12 normal subjects after the
transformation are shown at three different slices at the pons (upper, middle, and lower pons).
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Fig. 4.
Detection of regions with abnormally low FA using a pixel-by-pixel comparison between a
stroke patient (A – D) and normal population data (E and F). Images in (A – D) show a T1-
weighted image (A), a T2-weighted image (b0-image) (B), an FA map (C), and a color-coded
orientation map (D) from a stroke patient. After linear (E) or non-linear (F) transformation, the
transformed FA maps were compared to the population data and pixels with lower-than-
average FA values (beyond twice the standard deviations of FA in the normal population) are
indicated by a color scale (the extent of FA difference in terms of the standard deviation). The
red arrows indicate the stroke-damaged corticospinal tract and middle cerebellar peduncle with
lower than average FA values.
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Fig. 5.
Results of a pixel-by-pixel analysis of FA values between healthy volunteers (n = 12) and left
chronic MCA stroke patients (n = 6). Images from nine slices are shown. The color scale
represents p values from a Wilcoxon Rank-Sum Test for pixels with p<0.0082, which
corresponds to p<0.05 after multiple-comparison corrections. The abbreviations are: MCP:
middle cerebellar peduncle; SCP: superior cerebellar peduncle, CST: corticospinal tract; PCT:
pontine crossing tract; ICP: inferior cerebellar peduncle; and ML: medial lemniscus.
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