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Abstract
Normalization of regional measurements by the global mean is commonly employed to minimize
inter-subject variability in functional imaging studies. This practice is based on the assumption that
global values do not substantially differ between patient and control groups. Borghammer and
colleagues challenge the validity of this assumption. They focus on Parkinson’s disease (PD) and
use computer simulations to show that lower global values can produce spurious increases in
subcortical brain regions. The authors speculate that the increased signal observed in these areas in
PD patients is artifactual and unrelated to localized physiological changes in brain function. In this
commentary, we summarize what is currently known of the relationship between regional and global
metabolic activity in PD and experimental parkinsonism. Using SPM, we found that early PD patients
demonstrated significant elevations in globally normalized metabolic activity localized to a discrete
set of biologically relevant subcortical areas, despite virtually identical global metabolism in these
patients and age-matched healthy controls. Group differences in the corresponding absolute measures
were not detected because of their greater variability. Over time, abnormal increases in normalized
(but not absolute) metabolic activity in subcortical regions appeared earlier in the course of disease
and progressed faster than focal cortical reductions or declines in global values. These results indicate
that subcortical elevations in normalized regional metabolism are not artifactual. In fact, these
measures prove to be more sensitive than absolute values in detecting meaningful functional
abnormalities in this disease. Multivariate analysis revealed that the abnormal spatial covariance
structure of early PD is dominated by subcortical increases, which were not driven by reductions in
cortical or global metabolic activity. Because of the stability of the network measurements, these
indices are better suited for use as imaging biomarkers of PD progression and treatment efficacy.

In this issue of NeuroImage, Borghammer and colleagues (Borghammer et al., 2008a) report
the results of simulation experiments undertaken to determine whether the elevations in
subcortical cerebral blood flow (CBF) and metabolic rate for glucose (CMR) observed in
Parkinson’s disease (PD) are artifacts of the global normalization procedure. The simulations
were performed by artificially manipulating the distribution of regional activity in CBF PET
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images from healthy subjects to mimic different hypothetical functional abnormalities in the
brain. The main purpose was to create a lower global value by decreasing CBF in specific
cortical areas with and without concurrent increases in subcortical regions. The simulated
images were spatially normalized and smoothed by a Gaussian filter according to standard
practice. Differences in these simulated scans were then assessed voxel-wise using routine
statistical parametric mapping (SPM), and with the scaled subprofile model (SSM) a spatial
covariance method based on principal components analysis (PCA). Not surprisingly, lower
global values in the simulated images led to localized subcortical increases following ratio
normalization by the global mean. Based upon these findings, the authors opine that the
increases in subcortical metabolic activity seen consistently in rest state CBF and CMR scans
of PD populations (e.g., Eidelberg et al., 1994; Moeller et al., 1999; cf. Eckert et al., 2007 for
review) do not represent true physiological signals.

Glucose Metabolism in Parkinson’s Disease: Are Regional Elevations Really
Present?

Central to the authors’ argument is the notion that the global metabolic rate (GMR) is decreased
in PD, due primarily to extensive neurodegeneration in the neocortex. They further posit that
such global reductions often fail to reach statistical significance relative to control values
because of the small sample sizes typically encountered in functional imaging studies. While
such low-magnitude global reductions are not significant in the strict sense, normalization by
these values can spuriously elevate measurements of regional metabolic activity. The current
study emphasizes the impact of this potential error on the interpretation of metabolic findings
in PD. Nonetheless, this issue is likely to be generic in that the authors have advanced the same
concern with regard to CBF PET findings in hepatic encephalopathy (Borghammer et al.,
2008b).

Since the early days of functional brain imaging, it has been widely appreciated that
normalization by global values can introduce bias in comparisons of regional data from
populations not adequately matched for these measures (see e.g., Petersson et al., 1999). Similar
concerns also exist in the interpretation of within-subject changes when an intervention
(behavioral, pharmacologic, or surgical) alters both regional and global values. Notably, global
normalization can have a strong effect on the spatial covariance structure of a dataset (e.g.,
Ford, 1986). Indeed, data-driven statistical methods like SSM/PCA were designed originally
to mitigate this confound by estimating regional effects independent of global changes (Moeller
et al., 1987; Strother et al., 1995; cf. Alexander and Moeller, 1994). There can be little doubt
that this issue is critical to the interpretation of functional imaging data from patients with
neurodegenerative diseases like Alzheimer’s disease (AD) in which the pathology primarily
affects the cerebral cortex, and in which GMR is reduced rather early in the clinical course.
We note that localized increases in metabolic activity with concurrently declining GMR have
also been observed in healthy aging (e.g., Moeller et al., 1996). These aging-related changes
are, however, unrelated to the qualitatively similar regional abnormalities seen in PD (Moeller
and Eidelberg, 1997; cf. Tang et al., 2008).

In this vein, one might ask whether these considerations pertain to disorders like PD in which
cortical neuronal loss/dysfunction occurs as a later feature of the neurodegenerative process
(e.g., Braak et al., 2003). In the following analyses, we will show that in keeping with the
histopathological evidence as well as our previous metabolic data (e.g., Huang et al., 2007b;
Eidelberg et al., 1994), absolute measurements of GMR are not reduced in the early clinical
stages of the disease. Moreover, the subcortical increases in regional activity, which the authors
consider to be artifactual, are in fact found to dominate the metabolic landscape of the disorder.
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Analysis 1: Metabolic Comparison of Early PD and Normal Controls
To determine whether abnormal elevations of subcortical metabolism in PD are an artifact of
reduced GMR, we analyzed FDG PET scans from 24 patients (age 57.1±10 years, mean±SD)
with early stage PD (Hoehn & Yahr Stage I-II; mean Unified Parkinson’s Disease Rating Scale
(UPDRS) motor score 18; mean duration 3.7 years). The imaging data from these subjects were
compared with those from 24 healthy volunteer subjects (age 57±12 years). The scans were
performed quantitatively with arterial blood sampling as described elsewhere (Fukuda et al.,
2001).

We found that GMR values were nearly identical for the two groups (PD: 6.8±1.9, NL: 6.9
±1.8 mg/min/100g; p=0.79, Student t-test). SPM 5 (Institute of Neurology, London, UK) was
used to contrast ratio-normalized scans from the two groups. The analysis revealed abnormal
increases (p<0.05, FWE-corrected) in regional metabolic activity in PD (Table 1). These
changes (Figure 1A) were localized to the globus pallidus, ventral thalamus, dorsal pons/
midbrain, and the sensorimotor cortex (SMC). By contrast, no regions with abnormal metabolic
reductions were identified in the PD group, even at a less stringent hypothesis-testing threshold
(p=0.01, uncorrected). These data are in accord with our previously published findings in early
stage PD patients (Eidelberg et al., 1994;Huang et al., 2007b) indicating that GMR is normal
in this group and that significant increases in metabolic activity are present in a specific set of
interconnected brain regions (cf. Eidelberg et al., 1997;Lin et al., 2008).

We also note that there was no evidence of significant regional differences in absolute measures
of glucose utilization. That is, voxel-based comparison of regional metabolism in the early PD
and control groups was negative without GMR normalization, even at very liberal uncorrected
thresholds. This point is illustrated by review of absolute and globally normalized metabolic
values for the regions that were found to have significant group differences on SPM analysis.
None of these regions (Table 1) exhibited significant group differences in absolute metabolism
(p>0.19), despite highly significant increases in the normalized values (p<0.0001, Student t-
tests). This was attributable to the marked reduction in between-subject variability achieved
by the normalization step (Absolute: mean coefficient of variation (COV)=29.3 % and 30.8
%; Normalized: 5.7% and 10.2% for PD patients and healthy controls). Apart from reducing
the dispersion of the data, global normalization also improved the within-subject stability of
the regional metabolic measurements. This was demonstrated by assessing the test-retest
reproducibility of the absolute and normalized values for each of these areas in the scans of 20
independent PD subjects who were studied twice with FDG PET over an eight week period
(Ma et al., 2007;Huang et al., 2007a). Indeed, we found that the globally normalized values
for the significant regions exhibited greater reproducibility (mean ICC=0.82, range: 0.73 –
0.97) than the corresponding absolute metabolic measures (mean ICC=0.65, range: 0.54 –
0.75). GMR exhibited similar reproducibility to the absolute regional values (ICC=0.67, 95%
confidence interval 0.34, 0.86). These findings indicate that when GMR values are carefully
matched across groups, global normalization enhances the sensitivity of PET to detect
meaningful regional differences. The normalization procedure can also improve the stability
of regional metabolic measurements in individual subjects, an essential requirement for use as
a disease biomarker. Whether normalized metabolic values are “physiological” will be
addressed later in this commentary.

Spatial Covariance Analysis: SSM/PCA
The reported simulation experiments also suggest that lowered global values can produce
specious network contributions (i.e., false positive voxel weights) from metabolically
preserved subcortical regions (cf. Moeller et al., 1996). Before discussing the relevance of this
concern to the abnormal spatial covariance topography of PD (cf. Moeller and Eidelberg,
1997; Eckert et al., 2007), we thought it helpful to review the multivariate technique that was
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employed in these analyses. The scaled subprofile model (SSM) was introduced by Moeller
and colleagues (Moeller et al., 1987; Moeller and Strother, 1991; cf. Alexander and Moeller,
1994; Strother et al., 1995) to examine subject×region interactions in functional brain images,
while disambiguating global and region-specific effects in the data. Although this data-driven
approach was initially applied to metabolic scans acquired in the resting state using region-of-
interest (ROI) data, it was ultimately extended to voxel-wise analyses of functional images
acquired in both the resting and activated states (e.g., Strother et al., 1995; Alexander et al.,
1999; Nakamura et al., 2001; Carbon et al., 2003b; Habeck et al., 2005; cf. Friston et al.,
2008). A detailed review of the mathematical principles and basic theoretical assumptions
underlying this method and its relationship to mass-univariate approaches like SPM has
appeared recently (Moeller and Habeck, 2006).

In the SSM, it is assumed that after removing the between-subject and between-region
variability in the natural log-transformed imaging data, the residual regional values are small
but contain relevant biological information independent of the global mean. Following the
initial “double normalization” step, principal components analysis (PCA) is applied to these
residuals (termed “subject residual profiles”, SRP) to characterize the spatial covariance
structure of the subject groups. This method quantifies the expression of the obtained
covariance patterns in each subject; it can also be used to assess the expression of a given
pattern on a prospective single case basis. SSM/PCA refers to the subject scores for each
principal component (PC) as subject scaling factors (SSFs). These values can be compared
across groups and/or correlated with demographic and clinical descriptors of disease (e.g.,
Eidelberg et al., 1994; 1995; cf. Alexander and Moeller, 1994). Specific covariance patterns
are considered to be “disease-related” if the SSF values distinguish the patient and control
groups at a threshold of p<0.001, Student t-test (see e.g., Moeller et al., 1999; Ma et al.,
2007). The model also computes a multiplicative global scaling factor (GSF) that is
independent of the topographic effects embodied in the SSFs.

All voxels included in the analysis are assigned weights reflecting the salience of their
contribution to the spatial covariance pattern network. For high eigenvalues, the magnitude
and sign of the correlation between subject expression of the pattern (i.e., the SSF) and globally-
normalized metabolic activity at each voxel determines the regional loadings (voxel weights)
of the network. Voxels with significant positive correlations between these variables are
assigned positive weights such that as pattern expression increases, metabolic activity in the
positively weighted voxels increases as well. Likewise, negative voxel weights indicate
decreases in local metabolic activity with increasing pattern expression. By convention, voxels
with positive weights are displayed on a red color scale; those with negative weights are
displayed on a blue color scale.

Voxels not participating in the network, i.e., those in which the correlation between SSF and
globally normalized regional metabolism is not significant at a prespecified threshold, are
assigned weights of zero. These regions represent the “baseline” for interpreting the positive
and negative voxel weights within the network. In other words, the non-zero loadings reflect
the covariance structure of the voxels that participate in the pattern. These voxel weights
describe relative metabolic activity at the different network nodes; they do not represent
regional metabolic rates for glucose in the absolute sense. Quite importantly, the definition of
“zero” on the region weights of a particular network is not arbitrary. The authors suggest that
in our work positive loadings were incorrectly assigned to null regions through a shift of the
network baseline. Such an error would in fact be tested by our model and accordingly rejected.

Analysis 2: Abnormal Spatial Covariance Pattern in Early PD
SSM/PCA was applied to the combined FDG PET data of the 24 early PD patients and 24
healthy controls described in Analysis 1. The computational procedure that was used has been
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described elsewhere (e.g., Ma et al., 2007; Habeck et al., 2008). The first principal component
(PC1) accounted for 16% of the subject×voxel variability. Subject scores for this pattern
accurately differentiated patients from controls (p<0.00001; Student t-test); these scores did
not correlate with GMR (r2=0.02, p=0.8). Voxel weights on PC1 are displayed in Figure 1B.
This early disease-related spatial covariance pattern was characterized by positive
contributions (p<0.005) from the same brain regions that were found to be abnormally
overactive on the SPM analysis (Analysis 1). At this threshold, the pattern also included a
negative contribution from the posterior parietal cortex (BA 7/40) and from a small area of the
prefrontal cortex (BA 9/10). In all contributing regions, voxel weights on the pattern proved
to be stable by bootstrap resampling (|ICV|>2.75, p<0.005; 1000 iterations). Subject scores on
this pattern exhibited excellent test-retest reliability (ICC 0.97, 95% confidence interval: 0.91,
0.99; p<0.001) when computed prospectively in the FDG PET scans from the test-retest cohort
of 20 independent PD patients described above (Ma et al., 2007; cf. Huang et al., 2007a).

Thus, the metabolically overactive regions identified with SPM also make significant positive
contributions to the disease-related spatial covariance topography. Interestingly, spatial
covariance analysis also identified negative network contributions from posterior parietal and
prefrontal cortex. We have recently reported increases in the metabolic activity of these areas
following stereotaxic subthalamic nucleus (STN) surgery for PD, without change in global
values (e.g., Trošt et al., 2006; Asanuma et al., 2006). This suggests that the metabolic
reductions observed in these cortical regions in the untreated state are likely to be the
consequence of abnormal signaling from functionally overactive subcortical regions.

PD-Related Covariance Pattern in Later Stage Patients
When SSM/PCA is applied to combined group FDG PET datasets that include non-demented
PD patients with advanced motor symptoms (Hoehn & Yahr Stage 3 or greater), the resulting
disease-related covariance patterns are characterized by greater negative contributions from
parietal association regions and from premotor and prefrontal cortex (Ma et al., 2007; cf.
Moeller et al., 1999; Carbon et al., 2003a). Borghammer and colleagues hypothesize that
cortical changes are the main regional drivers of PDRP activity. If indeed the subcortical and
SMC “red” areas of the network are truly neutral from a functional standpoint (i.e., their voxel
weights are at or near zero, rather than positive), one would predict that a subnetwork comprised
only of these regions will exhibit little if any change with disease progression. One would also
predict highly significant longitudinal changes in the expression of a subnetwork comprised
solely of the cortical “blue” regions. The latter possibility is particularly compelling in that an
incorrect assignment of baseline could lead to an underestimation of the negative contributions
of these areas.

Analysis 3: The Time Course of Positive and Negative PDRP Subnetworks
To explore this possibility, we utilized the longitudinal FDG PET data from a recent natural
history study in which 15 early stage PD patients were scanned three times over a four year
period (Huang et al., 2007b). Using a validated PDRP biomarker identified in PD patients with
both early and more advanced disease (Ma et al., 2007) (Figure 3B) we computed pattern
expression in every subject at each time point. However, unlike the published progression
study, in this analysis we performed these computations in separate brain masks corresponding
to the spaces defined by the positive and negative voxel weights (i.e., the respective PDRP
subnetworks). We found that pattern expression increased over time in both masks (positive:
F(2, 23)=15.99, p<0.0001; negative: F(2,23)=6.06, p<0.01; RMANOVA). Further analysis
confirmed the graphical impression (Figure 2) that the rate of progression was relatively greater
in the positive mask relative to the negative one (p=0.07; time×mask interaction). Indeed,
significant abnormal elevations in the expression of the positive subnetwork were evident at
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all three time points relative to healthy controls. By contrast, the expression of the negative
subnetwork did not differ from controls at any of the three time points. As previously reported
in early stage PD patients, GMR values in the longitudinal cohort did not change significantly
over the four years of follow-up (F(2,23)=0.9, p=0.44; RMANOVA). Moreover, these values
did not differ from those of controls at any of the three time points (Huang et al., 2007b).

Subject scores for the positive and negative subnetworks correlated closely with those of the
composite PDRP parent network (p<0.0001). Interestingly, the two subnetworks had a much
weaker correlation (p=0.03) with one another, suggesting that the positive and negative
elements of the PDRP represent different manifestations of the disease. This notion is supported
by the results of within-subject correlations (Bland and Altman, 1995) between the time course
of subject scores for the two subnetworks and concurrent longitudinal changes in clinical motor
ratings and global values (Table 2). Strong correlations (p<0.005) were present between
longitudinal increases in subject scores for the positive pattern (and for the early PD covariance
pattern described in Analysis 2) and concurrent changes in UPDRS motor ratings. By contrast,
correlations between these variables were weaker (p=0.02) for the negative subnetwork.
Longitudinal changes in the expression of the two subnetworks (and the parent PDRP network)
did not correlate with concurrent GMR measurements (p>0.16).

These results are in keeping with those from a previous FDG PET study in which SPM was
used to demonstrate significant correlations between clinical motor ratings and increases in the
metabolic activity of the putamen and globus pallidus (Lozza et al., 2002). These findings also
accord with SPM analysis of the same dataset showing that early disease progression is
dominated by significant increases (p<0.001) in normalized metabolic activity in the globus
pallidus, subthalamic nucleus, and dorsal pons/midbrain (see Figure 4 and Table 2 in Huang
et al., 2007b). Over time, changes in normalized metabolic activity in these regions correlated
with concurrent deterioration in motor ratings (GPi: p=0.01; STN: p=0.0005; pons/midbrain:
p=0.001). By contrast, significant metabolic reductions in the neocortex (and reduced GMR)
were evident with more advanced disease, emerging after the initial subcortical increases.
Longitudinal changes in the absolute regional values and GMR were not significant and did
not correlate with the motor ratings. This is consistent with the lower within-subject
reproducibility of the absolute measures relative to their normalized counterparts (see above).

Relationship to Experimental Animal Studies
The authors discuss published data from experimental animal models suggesting that
subcortical hypermetabolism is not a consistent functional by-product of nigrostriatal
dopamine depletion. This literature is overall difficult to evaluate cohesively because of
methodological variation as well as interspecies differences. Moreover, the authors do not cite
recent reports demonstrating such findings in methyl-4-phenyl-1,2,3,6 tetrahydropyridine
(MPTP) primates (Guigoni et al., 2005; cf. Emborg et al., 2007). In one experimental study,
[3H] 2-DG autoradiography was used to demonstrate abnormally increased radiotracer uptake
in the internal and external GP, STN, and ventral thalamus in macaques with bilateral MPTP-
induced parkinsonism (Guigoni et al., 2005). Of note, absolute metabolic increases in these
regions as well as in the pedunculopontine nucleus (PPN) and SMC have been specifically
identified with quantitative [11C]-2-DG autoradiography in the 6-OHDA rodent model
(Carlson et al., 1999). In any event, no previously published data exist to demonstrate the
presence of abnormal spatial covariance patterns analogous to the PDRP in experimental
animal models.

Analysis 4: Parkinsonism-Related Spatial Covariance Pattern in MPTP Primates
To determine whether such patterns are expressed in parkinsonian macaques, we used high
resolution FDG PET (ECAT HRRT, CPS Innovations, Knoxville, TN, USA) to scan eight
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monkeys with bilateral parkinsonism following chronic intravenous MPTP (Peng et al.,
2008; cf. Doudet et al., 2004). Six healthy monkeys served as controls. Images from both groups
were spatially normalized to a standard macaque template (Black et al., 2001).

We found that global values were similar for the two groups (p=0.44, Student t-test). Significant
(p<0.001, uncorrected; SPM) increases in globally-normalized metabolic activity were present
in the GP/thalamus, pons, and cerebellum of the parkinsonian animals, along with a single area
of reduced metabolic activity in the posterior parietal cortex. SSM/PCA revealed a spatial
covariance pattern (PC1, 25% VAF) that was characterized by positive and negative
contributions (Figure 3A) from the same brain regions that were found to have abnormal
metabolic increases and decreases on SPM analysis. The expression of this pattern was
significantly increased (p<0.0005, Student t-test) in the MPTP group relative to control
animals. These subject scores did not correlate with global values (r2=0.010, p=0.67). These
experimental data indicate that an abnormal spatial covariance pattern is present in the
parkinsonian primate, which topographically resembles the human PDRP (Figure 3B). There
is also no evidence to suggest that the primate pattern is an artifact of disparities in GMR across
the lesion and control groups. Moreover, in both species pattern expression was found to be
completely independent of the corresponding global values.

Physiological Correlates of the PDRP and Related Metabolic Patterns
The authors maintain that the PDRP and related spatial covariance patterns have no inherent
physiological meaning. This assertion does not take into account recent published work in
which a close relationship was demonstrated between regional metabolic activity and STN
firing rates recorded intraoperatively in awake, unmedicated PD patients (Lin et al., 2008).
These invasive measures of cell activity, adjusted for individual differences in disease duration
and severity, correlated significantly (r2 = 0.39, p < 0.007) with PDRP expression and with
globally-normalized regional metabolism in the putamen, GP/thalamus, and the motor cortex.
The firing rates did not correlate with GMR (r2=0.11, p=0.2). Although the regional
correlations with firing rate remained significant without global normalization (r2=0.34,
p<0.02), their magnitude was lower than for the corresponding normalized values.

Thus, metabolic activity at the key subcortical nodes of the PDRP network correlates with STN
discharge firing rate, a direct physiological index of circuit dysfunction in PD (see e.g.,
Wichmann and DeLong, 2003). In this regard, it is not surprising that stereotaxic surgical
interventions that target these regions are effective in treating this disorder (Eckert and
Eidelberg, 2005). Moreover, clinical improvement following these procedures has been shown
to correlate with reductions in the basal metabolic overactivity of these areas, as well as with
concurrent declines in PDRP expression (see Fukuda et al., 2001; Carbon et al., 2003a; Trošt
et al., 2006; Asanuma et al., 2006). Indeed, analogous metabolic changes at both the regional
and network levels have been reported recently following STN gene therapy for advanced PD
(Feigin et al., 2007a; Kaplitt et al., 2007). As with more routine surgical interventions for PD,
clinical outcome in individual subjects undergoing this novel intervention correlated with the
degree of PDRP modulation that was achieved, not with operative changes in global values.

Closing Comments
It is uncertain whether robust conclusions regarding the biology of brain disease can be made
based upon idealized simulations of data from healthy subjects. It is important to note that the
current study by Borghammer and colleagues involved the analysis of real and simulated
[15O]-PET images, which have lower signal-to-noise than those of [18F]-PET tracers.
Inferences regarding statistical power derived from such exercises may therefore not be strictly
applicable to FDG PET studies. Indeed, this difference is reflected in the use of a large filter
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width (14mm) to suppress the excessive noise inherent in the CBF PET images. Over-
smoothing PET images to such a degree worsens effective image resolution, and because of
partial volume effects, limits the reliable detection of functional changes in small subcortical
regions. Moreover, the presumed tight coupling between CBF and CMR in PD may not be
valid for subjects scanned while on dopaminergic treatment, or in whom medication washout
is incomplete (Hirano et al., 2008).

In summary, systematic imaging research in PD and related disorders has revealed consistent
patterns of altered brain function at both the regional and network levels. These abnormalities
have been found to be independent of the global measures used in image normalization. Apart
from the PDRP, distinct quantifiable spatial covariance patterns have been identified in a
variety of neurodegenerative conditions (e.g., Habeck et al., 2008; Feigin et al., 2007b).
Particularly relevant are disease-related metabolic patterns associated with atypical
parkinsonian syndromes like multiple systems atrophy (MSA) and progressive supranuclear
palsy (PSP), which can clinically resemble classical PD (Eckert et al., 2008). In these
conditions, subcortical contributions to the respective networks are not hypermetabolic as in
PD. Indeed, the regional metabolic changes that characterize MSA and PSP are distinctive
enough to be used as biomarkers in an automated network-based diagnostic algorithm
(Spetsieris et al., 2006). Indeed, like the PDRP, these disease-related metabolic patterns may
ultimately serve as objective descriptors of disease severity in clinical trials of new treatment
strategies (e.g., Feigin et al., 2007a; cf. Eckert and Eidelberg, 2005).

It is also worth noting that the topography of disease-related patterns can change in the course
of the disease process. For instance, in a recent longitudinal FDG PET study of presymptomatic
carriers of the Huntington’s disease (HD) mutation, we found that initially abnormal
increases in thalamic glucose utilization gave way to metabolic reductions in the same region
as clinical onset neared, without corresponding changes in GMR (Feigin et al., 2007b). Thus,
systematic studies of patients, non-manifesting carriers of disease mutations, and healthy
controls, ideally with longitudinal follow-up, are warranted to understand the full biological
meaning of disease-related imaging signals. Simulations of disease states using scans from
normal subjects are no substitute for such “real life” patient investigations.
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Figure 1. Metabolic changes in early Parkinson’s disease
A. Voxel-based comparison of [18F]-fluorodeoxyglucose (FDG) positron emission
tomography (PET) scans from 24 early stage Parkinson’s disease (PD) patients and 24 age-
matched normal (NL) subjects. Global rates of glucose metabolism (GMR) were similar for
the two groups (see text). Significant regional metabolic increases (p<0.05, corrected) were
evident in PD that were localized to the putamen/globus pallidus, thalamus, pons, cerebellum,
and sensorimotor cortex (see Table 1). No areas of reduced metabolic activity were noted at a
hypothesis-testing threshold of p<0.01, uncorrected). [SPM(t) display was overlaid on a
standard MRI brain template and thresholded at p<0.001 (uncorrected) with cluster cutoff of
100 voxels].
B. Voxel-based SSM/PCA analysis of the same FDG PET dataset revealed a significant spatial
covariance pattern (PC1, 16% VAF) characterized by positive contributions from the areas that
were found to be hypermetabolic on the SPM analysis. The pattern also included negative
contributions from prefrontal and posterior parietal association areas. Subject scores for this
pattern were elevated in PD patients relative to controls (p<0.00001); these values did not
correlate with GMR (see text).
[Voxel weights on PC1 overlaid on a standard MRI brain template. The display represents
voxels that contributed significantly to the pattern (p<0.005), and that were reliable on
bootstrap resampling (see text). Voxels with positive region weights are color-coded from red
to yellow; those with negative region weights are color-coded from blue to purple].
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Figure 2. Longitudinal time course of positive and negative subnetwork expression
Subject scores (mean ± SE) for the positive and negative subnetworks of the PD-related spatial
covariance pattern (PDRP) (Ma et al., 2007) were separately computed in scans acquired at
each time point as part of a longitudinal PD imaging study (Huang et al., 2007b). The expression
of both subnetworks increased over time, but at a faster rate for the positive subnetwork. We
found that patient values for the positive subnetwork were abnormally elevated at all three
longitudinal time points; those for the negative subnetwork did not differ from control values
at any of these time points. [Values for the positive and negative subnetworks at each time
point (filled circles and squares, respectively) were displayed relative to mean values measured
in 15 age-matched healthy subjects. Subject scores were z-transformed and offset so that the
control mean was zero. The shaded area represents 1 SE above the control mean. *p<0.05,
**p<0.001, ***p<0.0001, relative to normal values].
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Figure 3. Abnormal metabolic covariance patterns in parkinsonian monkeys and PD patients
A. Voxel-based SSM/PCA of high resolution FDG PET images from parkinsonian and healthy
age-matched macaques. This analysis revealed a spatial covariance pattern (PC1, 25% VAF)
that discriminated the two groups of animals (p<0.0005; see text). The pattern was
characterized by positive metabolic contributions from pallidothalamic, pontocerebellar and
motor cortical regions, and negative contributions from the posterior parietal cortex.
B. This abnormal primate covariance pattern resembles the PDRP topography that has been
observed consistently in human subjects with PD (e.g., Ma et al., 2007; cf. Moeller et al.,
1999; Eckert et al., 2007). [Both spatial covariance patterns were displayed on standard MRI
brain templates. Voxels with positive region weights are color-coded from red to yellow; those
with negative region weights are color-coded from blue to purple].
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