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*Mauna Kea Technologies,9 rue d’Enghien, 75010 Paris, France
bINRIA Sophia Antipolis, Asclepios Research Project, 2004 route des Lucioles - BP 93,
06902 Sophia Antipolis Cedex, France

Abstract

We propose an efficient non-parametric diffeomorphic image registration algo-
rithm based on Thirion’s demons algorithm. In the first part of this paper, we
show that Thirion’s demons algorithm can be seen as an optimization procedure
on the entire space of displacement fields. We provide strong theoretical roots
to the different variants of Thirion’s demons algorithm. This analysis predicts
a theoretical advantage for the symmetric forces variant of the demons algo-
rithm. We show on controlled experiments that this advantage is confirmed in
practice and yields a faster convergence. In the second part of this paper, we
adapt the optimization procedure underlying the demons algorithm to a space
of diffeomorphic transformations. In contrast to many diffeomorphic registra-
tion algorithms, our solution is computationally efficient since in practice it only
replaces an addition of displacement fields by a few compositions. Our exper-
iments show that in addition to being diffeomorphic, our algorithm provides
results that are similar to the ones from the demons algorithm but with trans-
formations that are much smoother and closer to the gold standard, available
in controlled experiments, in terms of Jacobians.

1. Introduction

Although non-rigid image registration has been a very active area of re-
search for some time, it is still widely accepted that more work is needed.
Typical research objectives aim at lowering the computational requirements,
increasing the robustness, and better constraining the registration. In this pa-
per, we build on the efficient tools presented in (Benhimane and Malis, 2004;
Vercauteren et al., 2007a,c) and show that Thirion’s demons algorithm (Thirion,
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1998) can be extended to provide a very efficient non-parametric diffeomorphic
image registration algorithm. To make this work available to a wide audience, we
proposed in (Vercauteren et al., 2007b) an open-source implementation based
on the Insight Toolkit (ITK) (Ibanez et al., 2005). It can be downloaded at
http://hdl.handle.net/1926/510.

We have shown in (Vercauteren et al., 2007a) that, for the problem of lin-
ear image registration, the efficient second-order minimization (ESM) algorithm
(Benhimane and Malis, 2004, 2007; Malis, 2004) provides a very interesting al-
ternative to classical schemes. Looking at non-rigid image registration, one
of the most efficient methods is the demons algorithm proposed by Thirion
(Thirion, 1998). Several variants of the algorithm have been proposed depend-
ing on how the forces are computed. In (Wang et al., 2005; Rogelj and Kovadic,
2006) an ad hoc symmetrization of the demons forces similar to the one proposed
by Thirion was shown to improve the results of the original demons algorithm.
In (Pennec et al., 1999; Cachier et al., 2003; Modersitzki, 2004), it has been
shown that the demons algorithm had connections with gradient descent and
variational schemes. However, to the best of our knowledge, the different vari-
ants of the demons have not been given a strong unified theoretical justification.

Our first contribution in this paper, Section 2, is to show that we can provide
a strong theoretical justification to the demons algorithm and that the different
variants are related to the use of different optimizers. One of the main results
of this theoretical analysis we initially presented in (Vercauteren et al., 2007a)
is to show that the symmetric forces variant can be related to the ESM scheme
of (Benhimane and Malis, 2004; Malis, 2004). This study thus explains, from a
theoretical point of view, why the symmetric forces demons algorithm appears
to be more efficient in practice. Another contribution of this paper in Section 2.5
is to provide evidence that, in practice, using symmetric forces indeed leads to
a higher convergence rate.

One of the main limitations of the demons algorithm is that it does not
provide diffeomorphic transformations contrarily to the algorithms developed in
(Ashburner, 2007; Avants et al., 2008; Beg et al., 2005; Hernandez et al., 2007;
Marsland and Twining, 2004; Trouvé, 1998). Diffeomorphic transformations are
a requirement in the growing field of computational anatomy. Invertibility is
also needed for the registration of diffusion tensor images (DTI) since deforming
a DTI typically uses a decomposition of the Jacobian of the spatial transforma-
tion to reorient the tensors (Yeo et al., 2008c). Such a decomposition can only
be performed if the Jacobian is non-singular. Diffeomorphisms are powerful for
other problems as well, as they preserve the topology of the objects and prevent
from introducing folding which is often physically impossible. Finally, diffeo-
morphisms are considered to be a good working framework when no additional
information about the spatial transformation is available. The main contribution
of this paper, in Section 3, is to show that the alternate optimization scheme of
the demons algorithm can be used in combination with the Lie group structure
on diffeomorphic transformations of (Arsigny et al., 2006). In contrast to many
diffeomorphic registration schemes, our diffeomorphic demons algorithm, which
we initially proposed in (Vercauteren et al., 2007c), is computationally efficient.
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Typical 3D MR images can indeed be registered in less than five minutes on a
desktop computer. In practice, our algorithm only replaces, within the classical
demons algorithm, an addition of displacement fields by a few compositions of
non-parametric transformations. Our approach is evaluated in Section 4 in both
a simulated and a realistic registration setup. We show that in addition to being
diffeomorphic, our algorithm provides results that are similar to the ones from
the demons but with transformations that are much smoother and closer to the
true ones (on controlled experiments) in terms of Jacobians.

In Section 5 some of the theoretical and practical properties of our diffeomor-
phic demons algorithm are discussed and compared to that of some alternative
approaches. Finally Section 6 concludes the paper and shows that our approach
has already been extended to handle different types of images (Peyrat et al.,
2008; Yeo et al., 2008¢,b) and to make it symmetric with respect to the order
of the input images (Vercauteren et al., 2008).

2. An Insight into the Demons Algorithm

In (Thirion, 1998), the author proposed to consider non-parametric non-rigid
registration as a diffusion process. He introduced demons that push according
to local characteristics of the images in a similar way Maxwell did for solving
the Gibbs paradox. The forces are inspired from the optical flow equations
(Barron et al., 1994) and the method alternates between computation of the
forces and regularization by a simple Gaussian smoothing. This results in a com-
putationally efficient algorithm compared to other non-rigid registration proce-
dures such as those based on linear elasticity (Christensen et al., 1997). Several
teams (Bro-Nielsen and Gramkov, 1996; Cachier et al., 2003; Modersitzki, 2004;
Pennec et al., 1999) have worked towards providing a theoretical framework for
the demons in order to understand and potentially modify the underlying as-
sumptions.

The goal of this section is not to propose a novel non-rigid image registration
algorithm but rather to build on previous work and improve the understanding
of the demons algorithm. We first expand the alternate optimization framework
of (Pennec et al., 1999) and show that the different variants of the algorithm
can all be cast into a unique image registration framework. The symmetric
forces variant was first proposed (but not analyzed) by Thirion as one possible
expression of the demons forces. In (Rogelj and Kovadi¢, 2006; Wang et al.,
2005) a similar ad hoc symmetrization of the forces proved to boost the results
of the demons algorithm. One of the main results of our theoretical analysis is
to show that the symmetric forces demons can be cast to the ESM framework
of (Benhimane and Malis, 2004; Malis, 2004). We therefore have both empirical
and theoretical evidences that this variant should be the most efficient one. Our
second goal is to verify this evidence in a practical case study.

2.1. A Deeper Understanding of the Alternate Optimization of the Demons
Given a fized image F(.) and a moving image M (.), non-parametric image
registration is treated as an optimization problem that aims at finding the dis-



placement of each pixel so as to get a reasonable alignment of the images. The
transformation s(.), p — s(p), models the spatial mapping of points from the
fixed image space to the moving image space. In many cases, non-parametric
spatial transformations will be described by a displacement field s which is
simply added to an identity transformation to get the non-parametric transfor-
mation s:
s:pr—p+s(p)

The similarity criterion Sim (.,.) measures the resemblance of two images. In
this paper we will only consider the mean squared error which forms the basis
of intensity-based registration:

Sim (F, M o s) = % IF - Mos|®
1
= S X 1F0) = M), "
peEQP

where 2 p is the region of overlap between F and M os. Our approach could also
be extended to other intensity relationships by borrowing ideas from (Avants et al.,
2008; Cachier et al., 2003; Hermosillo et al., 2002).

A simple optimization of (1) over the space of non-parametric transforma-
tions leads to an ill-posed problem with unstable and non-smooth solutions.
To avoid this and possibly add some a priori knowledge, a regularization term
Reg (s) is often introduced to get the global energy

E(s) = iz Sim (F, M o s) + %Reg (s),
g; or
where o; accounts for the noise on the image intensity, and o7 controls the
amount of regularization we need.

This energy indeed lead to a mathematically sound framework but the mix-
ing of the similarity and the regularization terms leads in general to computa-
tionally intensive optimization steps. On the other hand the demons algorithm
of (Thirion, 1998) provides a very efficient registration scheme. It has however
often been considered as somewhat ad hoc.

In order to cast the demons algorithm into a minimization of a well posed
criterion, it was proposed in (Cachier et al., 2003) to introduce a hidden variable
in the registration process: correspondences. The idea is to consider the regular-
ization criterion as a prior on the smoothness of the transformation s. Instead
of requiring that point correspondences between image pixels, a non-parametric
spatial transformation ¢, be exact realizations of the spatial transformation s,
one allows some error at each image point. Considering a Gaussian noise on
displacements, we end up with the global energy:

1 1 1
E(c,s) = || (F = Moc)|[* + — dist (s,)* + — Reg(s) (2)
4 T T

where o, accounts for a spatial uncertainty on the correspondences. We classi-
cally have dist (s, ¢) = ||c — s|| and Reg (s) = ||Vs||* but the regularization can,



for example, also be modified to address fluid-like constraints (Cachier et al.,
2003).

The interest of this auxiliary variable is that an alternate optimization over
c and s decouples the complex minimization into simple and very efficient steps.
The first step solves for the correspondences by optimizing || U%(F —Moo)|?+

é dist (s, 0)2, with respect to ¢ and with s being given, by making a step from
¢ = s. The second step solves for the regularization by optimizing %2 dist (s, c)2+

U% Reg (s), with respect to s and with ¢ being given.
T

This second minimization has a closed-form solution using a single convolu-
tion when the regularization is quadratic and uniform. Given the harmonic regu-
larization criteria ||Vs||, for example, it can be shown that the optimal regular-
ized deformation field is the convolution of the correspondence field by a Gaus-
sian kernel. More elaborate regularization terms can lead to advanced vectorial
filters (Cachier and Ayache, 2004). In this work, we focus on the first step of
this alternate minimization and refer the reader to (Bro-Nielsen and Gramkov,
1996; Cachier et al., 2003; Modersitzki, 2004) for a detailed coverage of the reg-
ularization questions.

2.2. Compositive and Additive Demons

Let us consider the complete space of non-parametric spatial transforma-
tions. As with any type of spatial transformations, mapping a point through a
first transformation and then through a second one is equivalent to mapping the
point through the composition of the two spatial transformations. As such, the
most natural and geometrically meaningful operation we can endow the space
of non-parametric spatial transformations with, is the composition. To opti-
mize for the correspondences, it is thus relevant to look for a small deformation
that will be composed with the current estimate. Let this small deformation
be described by a dense displacement field w. In his seminal paper (Thirion,
1998), the author proposed to make, at each iteration what we call a compos-
itive adjustment: s o (Id+u). The compositive demons algorithm can then be
described by the following iterations:

Algorithm 1 (Compositive Demons Iterations)
e Given the current transformation s, compute a correspondence update

field w by minimizing E< (u) = |[F — M o s o (Id+u)|” + Z—z | u||* with
respect to u ’

e For a fluid-like regularization let u «— Kgyuiq * u. The convolution kernel
will typically be a Gaussian kernel.

e Let ¢ — so (Id +u)

e For a diffusion-like regularization let s « Ky *x ¢ (else let s < ¢). The
convolution kernel will also typically be a Gaussian kernel. [

A different approach relies on the fact that the space of dense displacement
fields forms a simple vector space with respect to the addition. Several teams



have thus been using an additive adjustment rule s + w instead of the compos-
itive update rule (Cachier et al., 2003; Ibafiez et al., 2005; Modersitzki, 2004;
Pennec et al., 1999). This type of additive update is closer to the classical up-
date rules used in Newton methods on vector spaces. It should however be noted
that it disregards the fact that we work on spatial transformations. While it
is natural to compose spatial transformations, their addition has no geometric
meaning. From a more practical point of view though, it can be argued that the
composition s o (Id +u) requires to warp the dense displacement field s with
and to add the result with u. The addition rule is therefore less computation-
ally expensive. We show however in our experiments that using this additive
structure (which is not consistent with the spatial transformation space) leads
to slower convergence with solutions that are further away from the gold stan-
dard available on controlled experiments. Let us however give an overview of
how these additive adjustments have been used within the demons algorithm.
From an initial non-parametric transformation s, the following iterations are
performed until convergence:

Algorithm 2 (Additive Demons Iterations)
e Given the current transformation s, compute a correspondence update
2
field w by minimizing B (u) = ||F — M o (s + u)||” + % || with re-
spect to u ’

e For a fluid-like regularization let w <« Kgyjq * u. The convolution kernel
will typically be a Gaussian kernel.

e Jetc—s+u

e For a diffusion-like regularization let s «— Kqix * ¢ (else let s < ¢). The
convolution kernel will also typically be a Gaussian kernel. ]

In the current work, the demons iterations in Algorithm 1 and Algorithm 2
are simply run for a specified number of iterations. Future work should aim at
evaluating more advanced stopping criteria.

2.8. Demons Forces

We see that, in Algorithm 1 and Algorithm 2, the minimization of ES™ (u)
is very close to a simple mean squared error image registration problem. The
goal is to find an optimal update field w. Since we deal with a least-square
problem, the methods we use in this paper rely on a linearization of the first
inner term in E$°*(u) and are based on Gauss-Newton-like approaches.

Let us consider the intensity difference at a given point, ¢,(s) = F(p) —
M o s(p). Let p,(u) = F(p) — M o so (Id+u)(p) in the compositive case and
@s(u) = F(p) — M o (s +u)(p) in the additive case. Let us assume that the
following linearization is available:

ep(u) ~ ¢, (0) + JP.u(p) = F(p) — M o s(p) + J".u(p). (3)



Such a linearization can be used to rewrite the correspondence energy used in
the demons algorithm:

Egorr( 2|QP‘ Z H F(P) MOS P)] |:ol(p) i| u(p)‘

where we recall that Qp is the overlap between F' and M o s.

As opposed to global transformation cases (e.g. 2D rigid body transforma-
tions) we see that here, the approximations given for each pixel are independent
from each other. This greatly simplifies the minimization of ES°™ by splitting
it into very simple systems for each pixel. We indeed only need to solve, at each
pixel p, the following normal equations:

2

)

(77 20 | ol | ulp) = — [T 24r] [FOI7300x0 ]

ox

which simplifies into

pT 1p 01'2 (p) _ pT
JPEJP + 7] u(p) = —(F(p) — M os(p)).JP .
From the Sherman-Morrison formula, a.k.a. matrix inversion lemma, we finally
get (Vercauteren, 2008):

F(p) = Mos(p) ppr

u(p) = — 52
771" + 75

(4)

If we use the local estimation of the image noise o;(p) = |F(p) — M o ¢(p)|, we
end up exactly with the expression of the demons forces proposed by Thirion.
Note that this choice of image noise allows us to control the maximum step
length by choosing o, (Cachier et al., 2003):

lup)l < 5 (5)

2.4. Linearization of the Intensity Difference

In the above explanation of the demons forces we have assumed that a lin-
earization of ¢; was available. In (Vercauteren, 2008) we have demonstrated
that the different demons forces could all be cast into a unified framework. We
established a correspondence between different types of optimizers and different
variants of the demons forces.

Obviously the linearization depends on the type of update rule, compositive
or additive, that we use. The simplest linearization is given by a ﬁrst order Tay-

lor expansion: w;(u) = @;(0)+pr.u+0(||u|| ), where [J7]; = o (pp( )|u:0.



We see that for the compositive update rule:

auzzq)T w0 ou(q)T ‘u:O
~ OM o s(p +u(p)) ’
ou(q)T u=0

M o s(p)

0ps(u) B OMos ((Id +u) (p))

’p:p
= _5p7qV$(M °s),

where 0, , is the Kronecker delta. This gives us a simple first order expansion
of ¢y
ep(w) = 95(0) = Vi (M o 5).u(p) + O(|[ul®). (6)

By plugging J? = —V,(M o s) into (4), we thus get a Gauss-Newton step for
the compositive update rule.

In (Vercauteren, 2008), we provided a full mathematical derivation of several
other variants of the demons forces. In practice, changing the expression of
JP in the demons forces can be explained by different optimization strategies.
To simplify the reading of this manuscript, we only provide the outcome of
the derivations and refer the interested reader to (Vercauteren, 2008) for the
technical part. One of the most interesting conclusions of these derivations was
to show that the symmetric forces could be linked to the efficient second-order
minimization (ESM) framework.

In (Benhimane and Malis, 2004; Malis, 2004), the authors have shown that,
in the specific context of image registration, a Hessian-free second order approx-
imation of the mean squared error similarity criterion could be obtained thanks
to some nice properties of the image registration problem. More specifically,
the ESM scheme uses the fact that when the images are aligned with the op-
timal spatial transformation, the fixed image and the warped image as well as
their gradient should be very close to each other. The main idea is that we can
use this information to improve the search direction of the Newton methods.
Classical optimizers work by building a polynomial approximation of the cost
function. The Newton-Raphson uses the value of the cost function, its first
and second derivatives around 0 to build a second-order polynomial approxi-
mation which is typically unstable and expensive to compute. To alleviate the
computational burden and improve numerical stability, the Gauss-Newton and
Levenberg-Marquardt methods discard the second derivative and can thus only
build a first-order polynomial approximation. In contrast, the ESM uses the
value of the cost function, its first derivative around 0 as well as its first deriva-
tive around the optimum to build a numerically stable second-order polynomial
without the need of a computationally expensive second derivative information

Extending the work of (Benhimane and Malis, 2004; Malis, 2004), we have
shown in (Vercauteren, 2008) that by plugging J? = —4(VI(M o s) + VI'F)
into (4), we obtained an ESM-like step for the compositive update rule. This
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Figure 1: Original image (FCM) of a normal human colonic mucosa image (image courtesy of
PD. Dr. A. Meining, Klinikum rechts der Isar, Munich) and one example random warp used
in our controlled experimental setup. Size: 465 x 375 pixels. FOV: 229 x 184 pm.

implies that we get a second-order approximation in the demons forces instead
of a first-order when using a Gauss-Newton step.

In Section 3.2, we will see that the demons algorithm can be extended to
provide diffeomorphic spatial transformations. We will also see that the same
optimization framework can be used to derive several variants of the forces
for the diffeomorphic demons algorithm. A summary of the correspondence
between demons forces, update rules (compositive, additive or diffeomorphic)
and optimizers will be shown in Table 2.

2.5. Experiments: Practical Advantage of the Symmetric Forces

We have just highlighted the theoretical advantage of the symmetric forces
variant of the demons algorithm in the compositive adjustment case. On the
other hand, previous studies that have used (but not theoretically justified) a
very similar symmetrization of the demons forces have reported the practical
advantage of this variant (Rogelj and Kovadi¢, 2006; Wang et al., 2005) even
with the additive adjustment rule. In this section, we provide some more evi-
dences by comparing the different variants of the demons algorithm on both a
synthetic and a realistic case study.

Choosing a right combination of parameters is always a difficult and appli-
cation dependent problem. In the particular case of the demons algorithms,
the most important parameter to be tuned is the sigma, ogig, of the Gaussian
diffusion-like regularization. Standard values for the maximum step length (be-
twen 0.25 and 2 pixels) and the Gaussian diffusion-like regularization (between
no diffusion-like regularization at all and cgqig = 1) work well in most of the
cases. In this work we follow the example of (Thirion, 1998; Wang et al., 2005)
and use ogig = 1. A more elaborate way of tuning this parameter would be to
evaluate the registration result for a variety of values and choose the best trade-
off. Such an approach is for example clearly presented in (Yeo et al., 2008a).
The same set of parameters is used for all the experiments: a maximum step
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Figure 2: Registration on 100 random experiments such as the one in Fig. 1. Note the faster
convergence of the symmetric forces demons in terms of images intensities agreement (MSE),
smoothness of the non-rigid spatial transformation (harmonic energy) and more importantly
in terms of distance to the actual spatial transformation (measured in pixels).
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Table 1: Comparison (Dice similarity coefficient * 100) of the discrete segmentations obtained
from the registration with the additive demons (most common update type) of the synthetic
T1-weighted MR images shown in Fig. 7. For each tissue class, the best segmentation is

obtained with the symmetric forces variant.

CSF | GM | WM | Fat |Muscle| Skin | Skull | Vessels | Fat2 | Dura | Marrow
No reg. 41.73163.06 |61.51(19.30| 20.14 |66.65|42.75| 14.26 | 6.06 |14.74| 28.19
Add Fix. |[63.41[78.99|79.2347.74| 36.40 |78.57|64.91| 27.21 |14.75|23.13| 45.05
Add Sym. || 69.75|83.78 | 84.58 | 52.81 | 41.41 |82.94|71.28| 35.21 |17.25|29.79| 51.85

length of 2 pixels, a Gaussian fluid-like regularization with ogyq = 1 and a
Gaussian diffusion-like regularization with oq;¢ = 1. The emphasis is on the
comparison of the various schemes and not on the final performance. Therefore,
no multi-resolution scheme was used.

The first experiments provide a completely controlled setup. We use a fibered
confocal microscopy image as our original image. For each random experiment,
we generate a smooth displacement field with a Markov random field (MRF)
sampler and warp the original image. We add some random noise to the in-
tensities of both the original and the warped image. We then run the different
demons algorithms starting with an identity spatial transformation. Two con-
clusions can be drawn from Fig. 2. First, we see that, for a given type of demons
forces, the compositive and additive demons converge almost at the same pace
in terms of MSE. However, if we look at the harmonic energy and at the dis-
tance to the actual field, we see that, for all demons forces, the compositive
demons converges faster than its additive counterpart. The second interesting
fact we see here, for both the compositive and the additive demons, is the fact
that the symmetric forces variant converges faster in terms of visual appearance,
i.e. MSE. It also behaves well in terms of smoothness of the displacement field.
Finally, it is the fastest to converge in terms of distance to the actual field.

Our second setup is a more realistic case study were a gold standard is
still available. We use synthetic T1 MR images from two different anatomies
available from BrainWeb (Aubert-Broche et al., 2006). These datasets are dis-
tributed along with a segmentation of eleven different tissue classes. The goal of
this experiment is to show that on this more realistic case we can also draw the
conclusion that symmetric forces are an advantageous option in practice. To
ease the reading of the results, we simply compare the most widely used version
of the demons, additive update rule and fixed image force, with its symmetric
forces counterpart. We see on Fig. 3, that, on this dataset also, the symmetric
forces variant converges faster in terms of MSE on the images intensities and
smoothness of the displacement field. In Table 1, we compare the agreement be-
tween the segmentation of the fixed image and the segmentation of the moving
image warped by the non-parametric spatial transformation found by the regis-
tration of the T1-weighted MR images. Segmentation agreement is commonly
measured with the Dice similarity coefficient (DSC). Given two segmentations

A and B, the DSC is calculated as |2 A‘?ﬂgl‘. It can be viewed as a measure of

11
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Figure 3: Comparison of the fixed image forces demons algorithm with the symmetric forces
demons algorithm on the BrainWeb images (shown in Fig. 7). To ease the reading, only the
most widely used update type, i.e. the additive one, is shown. Note the faster convergence of
the symmetric forces demons in terms of images intensities agreement (MSE) and smoothness
of the non-rigid transformation (harmonic energy).

overlap between the two segmentations. If A and B completely overlap, the
DSC is equal to one. If there is no overlap, then the DSC is equal to zero. In
Table 1, we show the Dice similarity coefficient of the eleven tissue classes before
any registration and after registration with the two variants of the demons we
consider. We see that, for each tissue class, the best segmentation is obtained
with the symmetric forces variant.

3. Introducing Diffeomorphisms into the Demons

One of the main limitations of both the additive and compositive demons
algorithm is that it does not ensure the invertibility of the output transfor-
mations contrarily to diffeomorphic image registration algorithms. It may not
be a requirement to get such diffeomorphic transformations. However, this
framework may be relevant and powerful for many image registration prob-
lems. It indeed preserves the topology of the objects in the image and prevents
from introducing folding which is often physically impossible. Diffeomorphisms
are also considered to be a good working framework when no additional infor-
mation about the spatial transformation is available. With the development
of computational anatomy and in the absence of a justified physical model of
inter-subject variability, statistics on diffeomorphisms also become an important
topic (Arsigny et al., 2006; Lepore et al., 2008; Vaillant et al., 2004; Xue et al.,
2006). Diffeomorphic registration algorithms are at the core of this research
field since they often provide the input data. Invertible spatial transformations
are also required for the registration of diffusion tensor images (DTI) as shown
in (Yeo et al., 2008c).

Diffeomorphic image registration usually relies on the computationally heavy
solution of some partial differential equations (Avants et al., 2008; Beg et al.,
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2005; Christensen et al., 1996; Joshi and Miller, 2000; Leow et al., 2007; Marsland and Twining,
2004; Miller et al., 1998; Trouvé, 1998; Vaillant et al., 2004) or uses very small

optimization steps such as in the approach of (Chefd’hotel et al., 2002). In

(Rueckert et al., 2006), the authors proposed a parametric approach by com-

posing a set of constrained B-spline transformations. Since the composition and

inversion of B-spline transformations cannot be expressed on a B-spline basis,

the advantage of using a parametric approach is not clear in this case. A com-

plex optimization scheme on constrained B-splines has also been proposed in

(Noblet et al., 2005) for this problem.

In this section, we propose a non-parametric diffeomorphic image registra-
tion algorithm based on the demons algorithm. We have just shown that the
original demons algorithm could be seen as an optimization procedure on the
entire space of displacement fields. The main idea of our algorithm is to adapt
this optimization procedure to a space of diffeomorphic transformations. We
show that a Lie group structure on diffeomorphic transformations that has re-
cently been proposed in (Arsigny et al., 2006) can be used in combination with
optimization tools on Lie groups to derive our diffeomorphic image registration
algorithm.

8.1. A Lie Group Structure on Diffeomorphisms

Like most spatial transformation spaces, diffeomorphisms do not form a vec-
tor space with respect to classical operations, e.g. adding two diffeomorphisms
may lead to non-invertibility. However, diffeomorphisms can be smoothly com-
posed and inverted. It is therefore possible to provide a Lie group structure
on the space of diffeomorphisms®. The most straightforward way to adapt the
demons algorithm to make it diffeomorphic, is to optimize the global energy (2)
over a space of diffeomorphisms instead of the complete space of non-parametric
spatial transformations. We thus need to perform an optimization procedure
on a Lie group such as in (Benhimane and Malis, 2004; Mahony and Manton,
2002).

Newton methods for Lie groups: — Optimization problems on Lie groups can
often be related to constrained optimization by embedding the Lie group in an
Euclidean space. The classical way of dealing with the geometric structure of
the Lie group is to use Lagrange multipliers or when the constraints are sim-
ple to have an ad hoc procedure to preserve the constraints (e.g. renormalize
a quaternion to have a unit quaternion). In this work we use an alternative
strategy known as geometric optimization which uses local canonical coordi-
nates (Mahony and Manton, 2002). This strategy intrinsically takes care of the
geometric structure of the group and allows the use of unconstrained optimiza-
tion routines.

Let us first recall that a Lie group G is a smooth manifold together with a
smooth composition map usually denoted as multiplication (z — sox for z and

n theory, we should clearly state that we do not have an actual Lie group but only a
pseudo-group. These technical details should be addressed by future work.
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Figure 4: Schematic view of the intrinsic update step used in Newton methods for Lie groups.
An unconstrained update u is computed on the Lie Algebra and is projected back onto the
Lie group through the exponential map.

s in G), and a smooth inverse map (z — x~! for z in G), that satisfy the group
axioms: closure, associativity, existence of a neutral element (denoted hereafter
as Id) and existence of an inverse. We refer the reader to the standard textbooks
for a detailed treatment of Lie groups, see e.g. (Helgason, 2001). To any Lie
group can be associated a Lie algebra g, whose underlying vector space is the
tangent space of G at the neutral element Id. This Lie algebra captures the
local structure of G. The Lie group and the Lie algebra are related through the
group exponential which is a smooth mapping from a neighborhood of 0 in g to a
neighborhood of Id in G2. Canonical coordinates provide local coordinate charts
so that for any z € G in some neighborhood of s, there exists a vector u such
that x = soexp(u). These coordinates can be used to get the Taylor expansion
of a smooth function ¢ on the Lie group G: ¢ (s o exp(u)) = ¢(s) + J¢.u where
[J£)i = g5 0 exp(u))],_,

In (Vercauteren et al., 2007a), we presented a number of Newton methods
for optimization problems on Lie groups. The main idea of these methods is to
find, from the current transformation s, an update step w on the Lie algebra
based on an expansion of the cost function and to use an intrinsic update rule
on the Lie group through the exponential map (cf. Fig. 4):

s« soexp(u).

Newton methods for diffeomorphic registration:  Newton methods for Lie
groups seem in theory to be a good candidate for diffeomorphic image registra-
tion. In practice however, they can only be used if a fast and tractable numerical

2In the finite dimensional case, the exponential mapping is one-to-one and invertible. We
should however mention that, on the entire infinite dimensional space of diffeomorphisms, this
is not the case anymore, even around zero. This may be problematic for some algorithms,
for example if the logarithm is needed. In our case, we do not rely on such a mathematical
property since we only require the exponential to be well defined.
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scheme for the computation of the exponential is available. We would indeed
have to use it at each iteration. Such an efficient scheme clearly relies on a good
parameterization of the Lie group and the Lie algebra.

In the context of image registration, it has been proposed, in (Miller et al.,
1998) for landmarks and (Beg et al., 2005) for images, to parameterize the space
of diffeomorphic transformations using time-varying speed vector fields. This
has the advantage of fully using the group structure. However, the computa-
tion of a displacement field requires the numerical integration of a time-varying
ODE (Trouvé, 1998). In (Arsigny et al., 2006) the authors proposed a practi-
cal approximation of such a Lie group structure on diffeomorphisms by using
stationary speed vector fields only. This has the significant advantage of yield-
ing very fast computations of exponentials. It becomes indeed possible to use
the scaling and squaring method and compute the exponential with just a few
compositions of spatial transformations (Arsigny et al., 2006).

By generalizing to vector fields the equivalence that exists in the finite di-
mensional case between one-parameter subgroups and the exponential map, the
exponential exp(u) of a smooth vector field w is defined in (Arsigny et al., 2006)
as the flow at time one of the stationary ODE,

W — (o).

From the properties of one-parameters subgroups (t — exp(tu)), we know that
for any scalars ¢ and ¢’ we have exp ((t 4 t')u) = exp(tu) o exp(t'u). We thus
see that, for any integer K,

exp(u) = exp(K~ )

where the power operation relates to the composition of spatial transformations.
Using this property in a recursive manner, this yields the following efficient
algorithm for the computation of vector fields exponentials:

Algorithm 3 (Fast Vector Field Exponentials)
e Choose N such that 2~V is close enough to 0, e.g. max, H2*Nu(p) || <0.5

e Perform an explicit first order integration: v(p) < 2~ Nu(p) for all pixels.
As previously we use v = Id +v

e Do N (not 2M!) recursive squarings of v: v < vow u

It should be noted that since we deal with an infinite dimensional group,
this framework poses some theoretical problems that are yet to be completely
solved. For example, we do not strictly deal with a Lie group but only with a
pseudo-group. We do however have sufficient evidence of its well-foundedness
and its effectiveness to consider this framework as one of the most efficient ways
of dealing with diffeomorphisms.

8.2. Diffeomorphic Demons Algorithm
Let us now derive our non-parametric diffeomorphic image registration al-
gorithm. As in Section 2.1, we focus on the first step of the minimization rather
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than on the regularization step. Let us assume that we have a first order ex-
pansion of the intensity difference of the form:

F(p) — M osoexp(u)(p) = F(p) — Mo s(p) + J*.u(p).

To get a computationally tractable expression of the correspondence energy and
optimize (2), we choose the following distance between two diffeomorphisms:
dist (s,¢) = |[Id —s~* o ¢[|. We then get

dist (s, s o exp(u)) = ||Id — exp(u)]|| = ||u]| .

By using these two expansions, we see that we get the following expression for
the approximation of the correspondence energy:
2
a; ..
E©™(u) = |F — M o s oexp(u)||® + U—; dist (s, s 0 exp(u))?
x

1 —Mos JP 2
S o] [ i
P pENP ’

We thus have the same expression (4) as in the classical demons for the demons
forces. The difference is in how we compute the Jacobian JP and how we
consider w. In the classical demons u is a dense displacement field whereas in
the diffeomorphic demons, u is considered as a speed vector field.

From these derivations, we thus obtain our non-parametric diffeomorphic
image registration algorithm:

Q

Algorithm 4 (Diffeomorphic Demons Iterations)
e Given the current transformation s, compute a correspondence update
field w by minimizing E°™ (u) with respect to u

e For a fluid-like regularization let u « Kgqyuiq * u. The convolution kernel
will typically be a Gaussian kernel.

o Let ¢ «— soexp(u)

e For a diffusion-like regularization let s « Ky x ¢ (else let s < ¢). The
convolution kernel will also typically be a Gaussian kernel. [ ]

As in Section 2.4, we now need a linearization of the intensity difference to
put in the expression of the demons forces (4). In (Vercauteren, 2008) we have
shown that the unified framework we used to explain the different demons forces
in the compositive and additive case, could also be extended to relate different
variants of the demons forces used in the diffeomorphic demons with different
types of optimizers. The complete set of variants of the demons is summarized
in Table 2. We also showed in (Vercauteren, 2008) that the symmetric forces
can be explained with the ESM framework.

Even though from a practical point of view these forces are rather obvious,
their mathematical derivation is quite technically involved. To ease the reading
of this manuscript, we omit it from the current discussion and refer the interested
reader to (Vercauteren, 2008).
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Table 2: Demons variants according to the different adjustment rules and the demons forces.
In this table, Thirion refers to the variants proposed in (Thirion, 1998), ITK refers to the
implementation of the Insight Toolkit (Ibafiez et al., 2005), Diffeo. Dem. refers to our pro-
posed diffeomorphic demons (Vercauteren et al., 2007c) and Pennec 99 refers to the variant
proposed in (Pennec et al., 1999). The schemes that can readily be explained by a Gauss-
Newton scheme are appended with (GN) while those that fit in the ESM framework are
denoted by (ESM). The variants that are implemented in ITK can only be seen as approx-
imate gradient schemes as they use an additive adjustment rule with forces derived for the
compositive demons.

Adjustment Compositive Additive Diffeomorphic
Used J? ¢ — so (Id+u) c—s+u ¢+ soexp(u)
~VI(Mos) Thirion Mov. (GN) Diffeo. Mov. (GN)
~-VI'F Thirion Fix. ITK Fix. Diffeo. Fix.
—(V,F+V/}(Mos))/2 | Thirion Sym. (ESM-like) ITK Sym. Diffeo. Sym. (ESM)
fVST(p)M Pennec 99 (GN)

4. Experiments: Diffeomorphic Registration Can Be Fast

As a first test to evaluate the usefulness of the diffeomorphic demons with
respect to the additive demons, we have used the classical “Circle to C” reg-
istration problem. We used a multi-resolution strategy and used the same set
of parameters for both the additive and diffeomorphic demons: Thirion’s rule
(JP = VZ:F ) with a maximum step length of 2 pixels was used in the demons
force (4), a Gaussian fluid-like regularization with og,q = 1 and a Gaussian
diffusion-like regularization with oq;¢ = 1. As is clearly shown in Fig. 5, the
additive demons gets trapped and is not able to correctly register the images.
Moreover, we can see that the final spatial transformation is spurious and shows
foldings. Contrastingly, on this classical “Circle to C” example, the diffeomor-
phic demons algorithm is able to register the images and does it with a smooth
invertible transformation.

To further measure the performance of the diffeomorphic demons algorithm
with respect to the additive and compositive demons algorithm, two sets of re-
sults are presented. We used the same set of parameters for all the experiments:
Thirion’s rule with a maximum step length of 2 pixels, oguiqa = 1 and oqig = 1.
Since the emphasis is on the comparison of the various schemes and not on the
final performance, no multi-resolution scheme was used.

The first experiments are very similar to the ones presented in Section 2.5
and Fig. 1. In this section, we use this setup to compare the different variants of
the adjustment rule instead of the different demons forces. These experiments
provide a completely controlled setup. We use a fibered confocal microscopy
image as our original image. For each experiment, we generate a random dif-
feomorphic spatial transformation (by passing a Markov random field through
the exponential) and warp the original image. We add some noise both to the
original and the warped image. We then run the registration algorithms start-
ing with an identity spatial transformation. We see on Fig. 6 that, in terms
of MSE, the performance of the additive demons, the compositive demons and
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Additive demons

Figure 5: Classical Circle to C registration example. With the same set of parameters the
additive demons fails to converge and shows foldings in the registration results whereas the
diffeomorphic demons converges with a smooth invertible transformation.

the diffeomorphic demons algorithm are similar. However, the distance to the
true field, the harmonic energy and the minimum and maximum values of the
determinant of the Jacobian of the transformation show that both the com-
positive demons and the diffeomorphic demons clearly outperform the additive
scheme by providing much smoother spatial transformations. We also see that
our diffeomorphic algorithm provides better results in terms of distance to the
true Jacobian of the transformation. Note that this is accomplished with a
reasonable 50% increase of computation time per iteration with respect to the
computationally efficient additive demons algorithm. We could also have pre-
sented for all the adjustment rules, a comparison of the different demons forces.
We chose however not to show these results as the conclusions are very similar to
the ones found in Section 2.5. Namely, the symmetric forces variant outperforms
the other demons forces.

Our second setup is the same as the second setup of Section 2.5. It is a
more realistic case study were a gold standard is still available. We use syn-
thetic T1 MR images from two different anatomies available from BrainWeb
(Aubert-Broche et al., 2006). These datasets are distributed along with a seg-
mentation of eleven different tissue classes. The goal of this experiment is to
show that, on this more realistic case, we can also draw the conclusion that dif-
feomorphic demons are an advantageous option in practice. To ease the reading
of the results, we simply compare the most widely used version of the demons,
additive update rule and fixed image force with its diffeomorphic counterpart.
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Figure 6: Registration on 100 random experiments such as the one presented in Fig. 1. We
compare the three types of update rule with Thirion’s demons forces based on the gradient
of the fixed image. Note that for similar performance in terms of MSE and distance to
the true field (measured in pixels), the compositive and diffeomorphic demons algorithm
provides much smoother results than the additive demons algorithm. We also see that we
provide diffeomorphic transformations whereas min(|Jac(s)|) goes way below zero with the
additive demons algorithm. Furthermore, in terms of distance to the true Jacobian of the
transformation, the diffeomorphic demons provide a large gain with respect to the additive
demons and a small gain with respect to the compositive demons.

We see on Fig. 8 and Table 3 that, on this dataset also, the additive demons
algorithm and our algorithm provide very similar results in terms of visual ap-
pearance, MSE and segmentation accuracy. However, we see that our algorithm
does it with much better spatial transformations. We indeed get smoother de-
formations that are diffeomorphic.

Thanks to our open-source implementation of the diffeomorphic demons al-
gorithm (Vercauteren et al., 2007b), our registration scheme has also been tested
by an independent group, cf. (Urschler et al., 2007). They proposed a non-rigid
registration evaluation framework and benchmarked six different open-source
non-rigid registration algorithms. According to their findings, “the overall best
results on the evaluation experiments are given by the diffeomorphic demons
algorithm.” Given the small number of tested algorithms and the current eval-
uation framework used in (Urschler et al., 2007), these results do not, by any
means, provide a definite ranking. They can however be considered as a fur-
ther evidence to support the value of our approach. A more advanced tool for
benchmarking non-rigid registration algorithms might also be available in the
future (Christensen et al., 2006).

19



Figure 7: Registration of two synthetic T1 MR images of distinct anatomies. The focus is
on the evaluation of our proposed update rule (diffeomorphic) with the most popular one

(additive). For visually similar results, our algorithm provides smoother diffeomorphic trans-
formations.

Table 3: Comparison (Dice similarity coefficient * 100) of the discrete segmentations obtained
from the registration of the synthetic T1-weighted MR images in Fig. 7.

CSF

GM | WM | Fat |Muscle| Skin | Skull | Vessels | Fat2 | Dura | Marrow
No reg. 41.73163.06 |61.51(19.30| 20.14 |66.65|42.75| 14.26 | 6.06 |14.74| 28.19
Add Fix ||63.41|78.99(79.23|47.74| 36.40 |78.57(64.91| 27.21 |14.75]23.13| 45.05
Diffeo Fix || 64.37 | 78.94 | 78.43 | 47.22| 36.11 [79.39|65.02| 27.25 |14.70|24.56 | 43.92
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Figure 8: Comparison of the additive demons algorithm with the diffeomorphic demons algo-
rithm on the BrainWeb images shown in Fig. 7. To ease the reading, only the most widely
used demons force (fixed image force) is used and the compositive update rule is omitted. For
similar performance in terms of MSE, our algorithm provides much smoother transformations
than the additive demons algorithm. Most importantly we see that we provide diffeomorphic
transformations whereas min(|Jac(s)|) goes way below zero with the additive demons.

Even though no multi-resolution scheme was used in the quantitative ex-
periments we showed in this work, real-life studies usually benefit from such a
strategy as it increases robustness and lowers the computational cost. With the
setup given hereafter, the registration of two 256 x 256 x 181 BrainWeb images
runs in 2 minutes and 30 seconds on a 2 x 2.8 GHz quad-core Intel Xeon Apple
Mac pro computer: 3 multi-resolution levels with 20 diffeomorphic demons iter-
ations at the coarsest level, and 10 diffeomorphic demons iterations for the two
others; symmetric forces with a maximum step length of 2 pixels; oguiq = 1 and
oaift = 1. We believe that such computation times makes our algorithm well-fit
for real-life problems.

5. Discussion

In this section, we discuss some of the theoretical properties of our dif-
feomorphic demons. Recent works proposed diffeomorphic image registration
algorithms that are close to our proposition in the sense that they use the expo-
nential of a stationary vector field to get a diffeomorphic spatial transformation
(Ashburner, 2007; Hernandez et al., 2007). To provide a more objective view,
the present discussion is organized around how the work in (Ashburner, 2007;
Hernandez et al., 2007) and our diffeomorphic demons address some of the the-
oretical issues differently. A complementary discussion can also be found in
(Hernandez et al., 2008).

Discretization Questions: ~ We have provided a principled approach to the
problem of non-parametric diffeomorphic registration. However our discussion
is based on spatial transformations and vector fields defined on a continuous do-
main. In practice of course, we need to discretize the problem. In this work, this
is simply done by using the sampling grid of the images to represent the spatial
transformations and the vector fields. Trilinear interpolation is then commonly
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used to interpolate between the sampling point. It should however be noted that
this discretization is, in theory, not necessarily consistent with the continuous
diffeomorphic framework. It might even be argued that diffeomorphisms are
not well-posed in the context of discrete grid (Bazin et al., 2007). A somewhat
more rigorous approach might be to integrate the interpolation, within the mod-
eling of the problem such as in (Ashburner, 2007) and some finite element based
methods. However, since our approach is based on the composition of trans-
formations and that the composition of finite element based transformations
cannot in general be represented by a similar finite element based transforma-
tions it is not clear what the advantage would be. Furthermore, this would
induce a larger computational cost.

In our results, we have shown that, in general, the diffeomorphic demons
provided spatial transformations whose Jacobians remain positive. It might
however not be always the case. The way we compute the Jacobian is by finite
difference on the sampling grid. This computational framework is however, in
theory, not necessarily consistent with the continuous diffeomorphic setup. It
might indeed well be the case that a true continuous diffeomorphism has negative
Jacobians when evaluated by finite difference on a sampling grid. This would
simply mean that, in some sense, our sampling grid does not meet the Nyquist
criterion for the spatial transformation we consider. In (Ashburner, 2007), the
author proposed to use a computation of the Jacobian of the transformation
that is more consistent with the composition of spatial transformations. If
we know the Jacobian of two transformations, the analytical Jacobian of the
composition at a given point can be computed through matrix multiplication.
This has the advantage of better estimating the true Jacobian. However, since
we still represent the composed transformation on the sampling grid, it can in
this case be argued that the Jacobian is not consistent with the representation of
the transformation. This would also result in a more computationally intensive
scheme as we would need to compute and store the Jacobian at each iteration.
In our setting, we also use a smoothing of the transformation. Because of this
smoothing, it is in the end difficult to get an analytical form of the Jacobian of
the spatial transformation.

Since statistical analysis and its biological interpretation often relies on the
assumption that the Jacobian determinant is positive, potential negative values
might appear like a true possible problem. A real solution to this issue would
rely on a more powerfull representation of spatial transformations that would
be consistent with the composition and the computation of the Jacobian. In
practice though, negative Jacobians appear very seldom and if they do, they are
only so slightly negative that dismissing them should not lead to any problems
for biological interpretation.

Compositive Demons as an Approximate Diffeomorphic Demons:  In the
results we showed in Section 4, we saw that the compositive demons algorithm
provides results that are very close to the results of the diffeomorphic demons,
with a slight advantage to the diffeomorphic demons.

This conclusion should in fact not be so surprising. A different way of looking
at the compositive demons is to realize that the compositive and diffeomorphic
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adjustment rules are equivalent up to the first-order:
soexp(u) = so (Id+u) + O(|Jul?).

And since we only use small adjustments, the first-order approximation can
provide good results. On a similar point, it is shown in (Arsigny et al., 2006;
Ashburner, 2007) that, for a given speed vector field, there is an optimal number
of steps to compute the exponential. If too many steps are used, we introduce
too much numerical errors. Because, in our case, we only use small speed vector
fields, it might be better to use very small number of scaling and squaring steps.
As Id +u can also be seen as an exponential computed with zero scaling and
squaring steps, it might explain that the compositive demons performs well.

In contrast, if we try to get such a retrospective view of the additive demons,
we see that a crude approximation is necessary. We indeed have at the first
order,

soexp(u)(p) = s(p) + Jac(s)(p).u(p),

which basically implies that the additive demons can be seen as an approxima-
tion of the diffeomorphic demons if we disregard the influence of the Jacobian
of the current transformation. This Jacobian can actually be quite far from the
identity.

All in all, we do believe that even if the results of the diffeomorphic demons
are only slightly better when compared to the compositive demons, the algo-
rithm we developed leads to a mathematically sound framework for dealing with
diffeomorphisms. Future work should aim at finding how to automatically com-
pute the number of steps in the exponential. It might well be the case that,
since we only use small velocity fields, most of the time the optimum number
should be zero.

Different Ways of Using the Exponential: =~ We have seen that the param-
eterization of diffeomorphic transformations through a stationary speed vector
field presented in (Arsigny et al., 2006), provides a very efficient framework for
dealing with diffeomorphisms. It is thus not surprising to see that several groups
have started using it. In the diffeomorphic demons, we chose to use this pa-
rameterization to encode an adjustment that needs to be made to the current
transformation. In (Ashburner, 2007; Hernandez et al., 2007), the authors pro-
pose to use a complete transformation parameterized by a speed vector field.

The approaches of (Ashburner, 2007) and (Hernandez et al., 2007) have
several advantages as well as several drawbacks. First of all, it is argued in
(Arsigny et al., 2006) that the exponential is a smooth one-to-one mapping be-
tween an open neighborhood of the zero speed vector field and an open neigh-
borhood of the identity transformation. It is still not clear which elements of
the group of diffeomorphic transformations can be reached with the exponen-
tial, i.e., what is the size of the target open neighborhood. In our approach,
as we iteratively compose the current transformation with a small exponential
update, we don’t suffer from this problem. In the finite-dimensional case, for
example, even if all the elements of the Lie group cannot be directly reached
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through the exponential, they can still all be reached through a composition
of two exponentials (Wiistner, 2003). When using a single parameterization
in the Lie algebra, it might therefore be useful to investigate the image of the
exponential map.

In the diffeomorphic demons, we chose to use a regularization through a
Gaussian smoothing on the spatial transformation. This may, in theory, not al-
ways be consistent with the diffeomorphic framework. It does however provide
a very efficient regularization in terms of computation time. It is also familiar
to many people in the field of biomedical image analysis. The most important
benefit we get from it is, however, that it allows us to decouple the minimization
problem into an alternate scheme composed of very easy steps. In (Ashburner,
2007), the author chose to introduce a regularization term on the speed vector
field that is used to parameterize the complete diffeomorphisms. While this is
consistent with its use of the exponential and allows him to propose an inverse
consistent scheme, it is somewhat difficult to interpret the meaning of this reg-
ularization and, most importantly, it introduces coupling in the minimization
problem. Similarly, since the exponential is not used around zero, we need to
compute the derivative of the exponential far from the identity. This introduces
additional tight coupling. It is therefore necessary to solve a very large system
of equations with a non-trivial sparsity pattern. For typical MR images, in our
case, one optimization step requires a time of the order of a second, whereas in
(Ashburner, 2007) the author reports a computation time of around a minute.

In between these approaches we recently proposed in (Vercauteren et al.,
2008) a symmetric diffeomorphic registration algorithm that also parameterizes
the entire spatial transformation with a stationary speed vector field. An effi-
cient demons-based scheme could however still be applied thanks to the Baker-
Campbell-Hausdorff (BCH) approximation proposed in (Bossa et al., 2007).

It should also be mentioned that the exponential of (Arsigny et al., 2006) is
not the only option available to work with diffeomorphisms when time-varying
velocity fields are considered to be too demanding from a computational and
memory requirement point of view. Another approach, could for example, rely
on constraining the large deformation setting by using transformations that sat-
isfy the initial momentum conservation (Marsland and McLachlan, 2007; Younes,
2007). Such representations may also help reducing the influence of the numer-
ical issues involved with the exponential but may at the same time have a
computational price.

6. Conclusions

We showed that the demons algorithm could be seen as an optimization
procedure on the entire space of displacement fields. By using the efficient
second-order minimization (ESM) framework of (Benhimane and Malis, 2004;
Malis, 2004), the matrix inversion lemma and a local estimation of the image
noise, we improved the current understanding of the demons algorithm. A
pertinent comparison between the different variants of the demons was provided.
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Our analysis predicted a theoretical advantage for the symmetric forces variant
of the demons algorithm which we confirmed on the practical side.

The final goal of understanding an algorithm is to improve it. One of the
main limitations of the demons algorithm is that it does not provide diffeomor-
phic transformations. By combining a recently developed Lie group framework
on diffeomorphisms and an optimization procedure for Lie groups, we showed
that the framework in which we cast the demons algorithm could be adapted to
provide non-parametric diffeomorphic transformations. Our experiments have
shown that our algorithm provides, with respect to the additive demons al-
gorithm, very similar results in terms of visual appearance. This is however
achieved with diffeomorphic transformations that are smoother and closer to
the true transformations in terms of Jacobians.

Thanks to the open-source implementation of our diffeomorphic demons we
proposed in (Vercauteren et al., 2007b), our algorithm has been successfully
tested by several independent groups. In (Urschler et al., 2007), the authors
reported that our algorithm outperformed several other non-rigid registration
schemes. Our algorithm has also been integrated into MedINRIA, the free
medical image navigation and research tool of Asclepios research group, INRIA
Sophia Antipolis (Toussaint et al., 2007).

In this paper, we have focused on a rather specific registration problem since
we only used the simplest image similarity criterion, the mean squared error.
Nevertheless, the framework we proposed showed to be versatile enough to be
extended to many types of images such as DTI (Yeo et al., 2008c), Cortical
surfaces (Yeo et al., 2008b) or 4D time series of cardiac images (Peyrat et al.,
2008). By borrowing some ideas from (Avants et al., 2008; Cachier et al., 2003;
Hermosillo et al., 2002), other similarity criteria could also be used. Finally,
a symmetric extension of the diffeomorphic demons was recently proposed in
(Vercauteren et al., 2008).
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