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Abstract
As one of the earliest structures to degenerate in Alzheimer’s disease (AD), the hippocampus is the
target of many studies of factors that influence rates of brain degeneration in the elderly. In one of
the largest brain mapping studies to date, we mapped the 3D profile of hippocampal degeneration
over time in 490 subjects scanned twice with brain MRI over a 1-year interval (980 scans). We
examined baseline and 1-year follow-up scans of 97 AD subjects (49 males/48 females), 148 healthy
control subjects (75 males/73 females), and 245 subjects with mild cognitive impairment (MCI; 160
males/85 females). We used our previously validated automated segmentation method, based on
AdaBoost, to create 3D hippocampal surface models in all 980 scans. Hippocampal volume loss rates
increased with worsening diagnosis (normal=0.66%/year; MCI=3.12%/year; AD=5.59%/year), and
correlated with both baseline and interval changes in Mini-Mental State Examination (MMSE) scores
and global and sum-of-boxes Clinical Dementia Rating scale (CDR) scores. Surface-based statistical
maps visualized a selective profile of ongoing atrophy in all three diagnostic groups. Healthy controls
carrying the ApoE4 gene atrophied faster than non-carriers, while more educated controls atrophied
more slowly; converters from MCI to AD showed faster atrophy than non-converters. Hippocampal
loss rates can be rapidly mapped, and they track cognitive decline closely enough to be used as
surrogate markers of Alzheimer’s disease in drug trials. They also reveal genetically greater atrophy
in cognitively intact subjects.

Introduction
There is a great interest in developing powerful methods to track the progression of Alzheimer’s
disease (AD) in the living brain. Clinically, patients develop worsening symptoms over a period
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of several months to years, with mild memory impairments initially, progressing to debilitating
decline in all cognitive domains. The medial temporal lobe structures, including the
hippocampus and entorhinal cortex, are among the first to degenerate, and atrophy spreads in
a characteristic sequence mirroring the spread of neurofibrillary tangles (Apostolova et al.,
2006a,b, submitted for publication) – the cellular hallmarks of AD pathology. The trajectory
of atrophy typically spreads from the medial temporal and limbic areas, to parietal association
areas, and finally to frontal and primary cortices only late in AD (Braak and Braak, 1991;
Thompson and Apostolova, 2007; Thompson et al., 2004).

The hippocampus is the target of many neuroimaging studies of AD (Barnes et al., in press),
as it is one of the earliest regions to degenerate structurally. Many studies have used sequential
MRI scanning to estimate rates of hippocampal volume loss, either by manually tracing the
hippocampus in every scan, or with automated segmentation methods (Khan et al., 2008; Morra
et al., 2008b,c, submitted for publication), or by using some combination of manual landmark
identification and automated extraction (Chupin et al., 2007; Hogan et al., 2000; Mueller et al.,
2007). Several computational anatomy studies have also modeled the hippocampus as a
geometrical surface in 3D, plotting statistics at each surface location regarding the rate or
significance of atrophy, differences in atrophic rates between groups, or factors that resist or
promote degeneration (Bansal et al., 2007; Csernansky et al., 2004; Thompson et al., 2004).
Such surface-based approaches can visualize 3D profiles of atrophy in AD populations. As the
hippocampus is highly differentiated functionally, selective hippocampal subregions can be
identified, such as the CA1 and CA2 subfields, where atrophy occurs first and correlates with
early cognitive decline (Csernansky et al., 1998; Thompson et al., 2004; Wang et al., 2003).
Surface-based modeling studies have even identified local atrophic patterns that predict future
decline (Apostolova et al., 2006b), and have charted the dynamic trajectory of atrophy as it
spreads in the hippocampus (Apostolova et al., 2006b, in press, submitted for publication).

A key goal of all AD morphometry methods is to track longitudinal brain changes with high
accuracy, providing numerical measures of disease burden that correlate with, or predict,
cognitive decline. Many morphometric methods employ maps to track the disease, including
tensor-based morphometry (Ashburner, 2007; Hua et al., 2008a,b; Leow et al., 2006;
Studholme et al., 2004), cortical thickness mapping (Dickerson et al., in press; Fischl and Dale,
2000; Lerch et al., 2008; Salat et al., 2004; Thompson et al., 2004), ventricular mapping
(Carmichael et al., 2007; Chou et al., 2008), voxel-based morphometry (Alexander et al.,
2006; Ashburner and Friston, 2000; Baron et al., 2001; Chetelat et al., 2005; Karas et al.,
2008; Teipel et al., 2005; Whitwell and Jack, 2005), and large deformation metric mapping
(Miller et al., in press). Head-to-head comparisons and meta-analysis of these methods is an
objective of several initiatives (Jack et al., 2008a). Optimal MRI-based measures for clinical
trials are urgently required, and each method reflects different aspects of the disease process
(Barnes et al., in press).

MRI can resolve the hippocampus at millimeter resolution. Even so, extracting the
hippocampus from a whole-brain MRI scan is time-consuming, and usually requires the work
of an expert. This is a rate-limiting step when one is attempting to associate clinical measures
with rates of hippocampal atrophy in hundreds of subjects longitudinally. Some automated
hippocampal segmentation methods have already been described (Barnes et al., 2004; Crum
et al., 2001; Fischl et al., 2002; Hogan et al., 2000; Powell et al., 2008; Wang et al., 2007;
Yushkevich et al., 2006), but it is fair to say that none is yet in wide use.

A promising approach for automated hippocampal segmentation is pattern recognition (Duda
et al., 2001). In a prior paper, we developed a pattern recognition approach for hippocampal
segmentation on MRI, which was shown to produce accurate, high-quality automated
segmentations in 400 subjects from the Alzheimer’s Disease Neuroimaging Initiative (Morra
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et al., 2008a,b,c). The approach has a high throughput and is efficient to apply, and can be
distinguished conceptually from other automated labeling approaches as it uses a powerful
variant of AdaBoost, a ‘machine learning’ method that learns features to guide segmentation
(Schapire et al., 1998). Our AdaBoost-based methods classify voxels as belonging to the
hippocampus based on thousands of features, which are learned from a training set of manually
delineated data (typically 20 hand-traced scans; see Morra et al. (2008c) for details). More
specifically, we used a cascaded version of the AdaBoost algorithm (Freund and Schapire,
1997) wrapped inside a different algorithm that we call the auto context model (ACM), which
updates the statistical prior distributions during the segmentation. Using that approach, our
recent cross-sectional study found that 40 scans were sufficient to distinguish AD patients from
controls (20 per diagnosis), using hippocampal maps, and we created several spatially detailed
maps of associations between diagnosis, genotype, and depression, on baseline hippocampal
structure (Morra et al., submitted for publication).

Here we used the same automated segmentation approach to analyze structural changes in the
hippocampus over time, using follow-up scans of 490 subjects acquired 1 year apart. These
scans were not available at the time of our first study (Morra et al., in press), but now allow us
to assess factors that influence rates of degeneration as it progresses over time.

In this paper, we first automatically segment the left and right hippocampus from 490
individuals at both baseline and 1-year follow-up using our automated approach. We then use
a statistical mapping approach to create parametric surface maps (Bansal et al., 2007;
Csernansky et al., 1998; Styner et al., 2000; Thompson et al., 2004; Wang et al., 2007) that
link the 3D profile of atrophy with various covariates of interest.

We had 3 main goals: (1) to map the 3D profile of tissue loss rates (as a percentage per year)
in AD, healthy comparison subjects, and in subjects with mild cognitive impairment (MCI),
an at-risk group of subjects with five-fold increased risk of conversion to AD in any given year
(Petersen, 2000); (2) to plot regions where progressive atrophy was statistically associated with
clinical decline on standardized tests, such as the mini-mental state exam (MMSE) (Folstein
et al., 1975), and clinical dementia rating (CDR) (Morris, 1993), and (3) to determine whether
loss rates in our subjects were associated with factors such as blood pressure measurements,
depression scores, educational level, and the ApoE genotype (2, 3, or 4). As it requires more
processing to create 3D maps than analyze hippocampal volumes, we also sought to identify
what added value maps might provide over simple volumetric measures. For that reason, we
present results based on both volumetric analysis and statistical mapping.

Materials and methods
Subjects

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Mueller et al., 2005a,b) is a large
multi-site longitudinal MRI and FDG-PET (fluorodeoxyglucose positron emission
tomography) study of 800 adults, ages 55 to 90, including 200 elderly controls, 400 subjects
with mild cognitive impairment, and 200 patients with AD. The ADNI was launched in 2003
by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging and
Bioengineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical
companies and non-profit organizations, as a $60 million, 5-year public–private partnership.
The primary goal of ADNI has been to test whether serial MRI, PET, other biological markers,
and clinical and neuropsychological assessment can be combined to measure the progression
of MCI and early AD. Determination of sensitive and specific markers of very early AD
progression is intended to aid researchers and clinicians to develop new treatments and monitor
their effectiveness, as well as lessen the time and cost of clinical trials. The Principal
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Investigator of this initiative is Michael W. Weiner, M.D., VA Medical Center and University
of California – San Francisco.

Subjects with 1-year follow-up scans
The maps in this paper are based on baseline and 1-year follow-up scans of 97 AD subjects
(49 males/48 females), 245 MCI subjects (160 males/85 females), and 148 healthy control
subjects (75 males/73 females). Tables 1 and 2 show the clinical scores and demographic
measures for our sample. Based on the available data in the ADNI database at the time of
writing (September 2008), we used the largest possible sample that we could assemble who
had both baseline and 1-year follow-up scans. To avoid possible issues with combining data
across field strengths, we analyzed 1.5 T scan data only. Only a quarter of the subjects enrolled
in ADNI are randomized to 3 T scans, so we will compare 3 T and 1.5 T in the future when
sufficiently many 3 T follow-up scans become available. We also note that 6-month follow-
up scans are available in ADNI, but here we focused on the 1-year follow-ups as we knew from
prior work (Thompson et al., 2004) that they would allow sufficient time for deterioration in
both cognition and structure for structure–function correlations to be readily established.

Cognitive testing
All subjects underwent thorough clinical/cognitive assessment at the time of baseline scan
acquisition, and again at follow-up 1 year later. As part of each subject’s cognitive evaluation,
MMSE was administered to provide a global measure of cognitive status (Cockrell and
Folstein, 1988; Folstein et al., 1975) where scores of 24 or less (out of a maximum of 30) are
generally consistent with dementia. Two versions of the CDR were also used as a measure of
dementia severity (Hughes et al., 1982; Morris, 1993). The global CDR represents the overall
level of dementia, and a global CDR of 0, 0.5, 1, 2 and 3, respectively, indicate no dementia,
questionable, mild, moderate, or severe dementia. The “sum-of-boxes” CDR score is the sum
of 6 scores assessing different areas: memory, orientation, judgment and problem solving,
community affairs, home and hobbies, and personal care. The sum of these scores ranges from
0 (no dementia) to 18 (very severe dementia). Memory impairment was assessed via education-
adjusted scores on the Wechsler Memory Scale-Logical Memory II (WMS-R LM II; Wechsler,
1987). Subjects with MCI had objective memory loss measured by education-adjusted scores
on the WMS-R LM II. AD diagnosis was made according to the National Institute of
Neurologic and Communicative Disorders and Stroke and the AD and Related Disorders
Association (NINCDS-ADRDA) criteria (McKhann et al., 1984). The normal subjects in our
sample had MMSE scores between 25 and 30, a global CDR of 0, a sum-of-boxes CDR between
0 and 0.5 and failed to meet criteria for MCI or AD. The MCI subjects had MMSE scores
ranging from 23 to 30, a global CDR of 0.5, a sum-of-boxes CDR score between 0.5 and 5,
and mild memory complaints. The AD subjects in our sample had MMSE scores between 20
and 26, a global CDR between 0.5 and 1, and a sum-of-boxes CDR between 1.5 and 9.0. As
such, these subjects would be considered as having mild AD. Detailed exclusion criteria, e.g.,
regarding concurrent use of psychoactive medications, may be found in the ADNI protocol
(page 29,
http://www.adni-info.org/images/stories/Documentation/adni_protocol_03.02.2005_ss.pdf).
Briefly, subjects were excluded if they had any serious neurological disease other than incipient
AD, any history of brain lesions or head trauma, or psychoactive medication use (including
antidepressants, neuroleptics, chronic anxiolytics or sedative hypnotics, etc.).

The study was conducted according to Good Clinical Practice, the Declaration of Helsinki and
U.S. 21 CFR Part 50-Protection of Human Subjects, and Part 56-Institutional Review Boards.
Written informed consent for the study was obtained from all participants before protocol-
specific procedures, including cognitive testing, were performed.
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Training and testing sample descriptions
As previously stated, when using a pattern recognition algorithm, a set of ground truth data
must be supplied in order to learn the patterns. In medical image segmentation, we typically
use a small set of brains manually segmented by an expert, that represent a variety of
hippocampi with features that are likely to be encountered when segmenting other brains. In
prior studies of the asymptotic behavior of the segmentation accuracy versus the size of the
training sample, we found that a training sample of size ~20 subjects’ scans was sufficient to
give good segmentation accuracy, if scans were delineated by a trained rater following a
standardized protocol with established inter-rater reliability as set out in Morra et al. (submitted
for publication). Since we are performing a longitudinal study of patients of various ages,
different sexes, and stages of disease, our training set should encompass as much variation as
possible. Therefore, we trained our segmentation algorithm on 21 subjects using scans at both
time points – baseline and 1 year (i.e., a total of 42 scans). The subjects were 7 AD, 7 MCI,
and 7 healthy controls with age ranges and sex ratios that matched that of all other ADNI
subjects. Using inter-rater reliability tests, we also found, in our validation studies (Morra et
al., 2008c), that the effect of using different trained raters for training the algorithm is relatively
small; intriguingly, the algorithm agrees with human raters (even those who were not involved
in training it) as well as two independent human raters agree with each other, which is a
reasonable benchmark for the target performance accuracy of a machine labeling a structure.
For the “testing” subjects (i.e., scans not used for training but used as the basis for the results),
we had 97 AD subjects (49 men/48 women), 245 MCI subjects (160 men/85 women) and 148
control subjects (75 men/73 women). Table 1 gives an overview of baseline statistics (including
cognitive scores, genotype, and other demographics) and Table 2 gives an overview of the
follow-up information 1 year later.

MRI acquisition and pre-processing
The MRI acquisition and pre-processing steps were exactly as in Morra et al., (2008b), but
they are summarized here for completeness. All subjects were scanned with a standardized
MRI protocol, developed after a major effort evaluating and comparing 3D T1-weighted
sequences for morphometric analyses (Jack et al., 2008a; Leow et al., 2006).

High-resolution structural brain MRI scans were acquired at multiple ADNI sites using 1.5 T
MRI scanners manufactured by General Electric Healthcare, Siemens Medical Solutions, and
Philips Medical Systems. ADNI also collects data at 3.0 T from a subset of subjects, but, as
noted earlier to avoid having to model field strength effects in this initial study, only 1.5 T
images were used. All scans were collected according to the standard ADNI MRI protocol
(http://www.loni.ucla.edu/ADNI/Research/Cores/index.shtml). For each subject, two T1-
weighted MRI scans were collected using a sagittal 3D MP-RAGE sequence. Typical 1.5 T
acquisition parameters are repetition time (TR) of 2400 ms, minimum full excitation time (TE),
inversion time (TI) of 1000 ms, flip angle of 8°, 24 cm field of view, acquisition matrix was
192×192×166 in the x-, y-, and z-dimensions yielding a voxel size of 1.25×1.25×1.2 mm3

(Jack et al., 2008a). In-plane, zero-filled reconstruction (i.e., sinc interpolation) yielded a
256×256 matrix for a reconstructed voxel size of 0.9375×0.9375×1.2 mm3. The ADNI MRI
quality control center at the Mayo Clinic (in Rochester, MN, USA) selected the MP-RAGE
image with higher quality based on standardized criteria (Jack et al., 2008a). Additional
phantom-based geometric corrections were applied to ensure spatial calibration was kept within
a specific tolerance level for each scanner involved in the ADNI study (Gunter et al., 2006).

Additional image corrections were also applied, using a processing pipeline at the Mayo Clinic,
consisting of: (1) a procedure termed GradWarp for correction of geometric distortion due to
gradient non-linearity (Jovicich et al., 2006), (2) a “B1-correction”, to adjust for image intensity
non-uniformity using B1 calibration scans (Jack et al., 2008a), (3) “N3” bias field correction,
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for reducing intensity inhomogeneity (Sled et al., 1998), and (4) geometrical scaling, according
to a phantom scan acquired for each subject (Jack et al., 2008a), to adjust for scanner- and
session-specific calibration errors. In addition to the original uncorrected image files, images
with all of these corrections already applied (GradWarp, B1, phantom scaling, and N3) are
available to the general scientific community, as described at
http://www.loni.ucla.edu/ADNI. Ongoing studies are examining the influence of N3 parameter
settings on measures obtained from ADNI scans (Boyes et al., 2008).

Image pre-processing
To adjust for global differences in brain positioning and scale across individuals, all scans were
linearly registered to the stereotactic space defined by the International Consortium for Brain
Mapping (ICBM-53) (Mazziotta et al., 2001) with a 9-parameter (9P) transformation (3
translations, 3 rotations, 3 scales) using the Minctracc algorithm (Collins et al., 1994). Globally
aligned images were resampled in an isotropic space of 220 voxels along each axis (x, y, and
z) with a final voxel size of 1 mm3. Both baseline and follow-up scans were independently
registered to the same ICBM template.

Algorithm description
Throughout this paper we use an automated segmentation approach derived from AdaBoost to
segment the hippocampus from a whole brain MRI. For a complete description of the algorithm
including statistical motivations, please see our previous work (Morra et al., 2008c). We used
the exact same feature database, along with the same method, a cascade of AdaBoosts wrapped
inside of the auto context model (ACM), and the same model parameters. Fig. 1 gives an
overview of AdaBoost, while Fig. 2 gives an overview of ACM.

Statistical maps
After segmentation was completed, we created various maps to link different disease-related
factors with the rate of hippocampal atrophy over time. This is accomplished by first creating
3D parametric surface maps of each individual’s hippocampus; a medial curve is then threaded
down the center of the hippocampus. For each surface model, a medial curve was derived from
the line traced out by the centroid of the boundary for each hippocampal surface model
(Thompson et al., 2004). The local radial size was defined as the radial distance between each
boundary point and its associated medial curve. This radial measure may be interpreted as a
local measure of thickness, and has been shown to be sensitive to the volumetric atrophy at
different locations along the anterior to posterior axis. Both this method (Thompson et al.,
2004) and others (Liu et al., 2008; Shi et al., 2007; Terriberry et al., 2007; Vaillant and Glaunes,
2005; Wang et al., 2007) are currently under development to link radial atrophy with covariates
of interest.

The current method has been proven capable of detecting disease-related differences in AD
(Apostolova and Thompson, 2007; Thompson et al., 2004), MCI (Apostolova et al., 2007;
Becker et al., 2006; Morra et al., 2008c), pre-MCI (Apostolova et al., in press), frontotemporal
dementia (Frisoni et al., 2006), and in other neurobiological or neuropsychiatric disorders such
as epilepsy, depression, bipolar illness, psychopathy, and autism (Ballmaier et al., 2008;
Bearden et al., 2008; Boccardi et al., submitted for publication; Lin et al., 2005; Nicolson et
al., 2006; Ogren et al., submitted for publication).

Mapping atrophic rates
To create spatially detailed maps of atrophic rates, the parametric meshes imposed on each
subject’s hippocampal anatomy were compared between baseline and follow-up scans, and at
each surface point, a measure of the estimated change in radial distance over time was plotted
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as a percentage of the baseline value. As in prior work (Thompson et al., 2004), group average
maps of hippocampal loss rates were computed by using the parametric grids to associate
corresponding anatomy across subjects, pooling data on atrophic rates, by averaging the
percentage loss rates across subjects (other definitions of average loss are possible, but this is
a reasonable operational definition). These maps were color-coded and visualized separately
for each hippocampus and for each group, prior to making statistical comparisons, as detailed
next.

Mapping statistical effects on rates of atrophy
Rates of surface contractions over time were statistically compared between groups at
equivalent locations using Student’s t-tests (1-tailed), and were correlated with different
clinical characteristics including diagnosis, ApoE genotype, cognitive scores, and declines in
these scores over the 1-year interval. Because multiple covariates were assessed, we divided
them into two categories – those for which prior hypotheses and some prior evidence exist
regarding the association (e.g., change in MMSE should link with change in volume), and
others that were more exploratory (e.g., blood pressure may be associated with rates of volume
loss); for the exploratory correlations, a Bonferroni correction for multiple comparisons was
enforced, to avoid inflating the probability of false positive findings.

In each statistical map, a p-value was assigned to each surface point that associates the rate of
change (in percent per year) in the radial distance at that point to the covariate of interest. For
visualization, the associated p-values describing the uncorrected significance of these statistics
were plotted onto geometric average hippocampi created from the surface models of all subjects
involved in each statistical test.

Permutation and multiple comparisons correction
Overall p-values, for the spatial pattern of effects observed in each map, were computed using
a permutation testing approach. Permutation methods measure the distribution of features in
statistical maps that would be observed by accident if the subjects were randomly assigned to
groups (Thompson et al., 2003) and provide a p-value for the observed effects that is corrected
for multiple comparisons. All our permutation tests are based on measuring the total area of
the hippocampus with suprathreshold statistics, after setting the threshold at p<0.01. To correct
for multiple comparisons and assign an overall p-value to each p-map (Nichols and Holmes,
2002; Thompson et al., 2003), permutation tests were used to determine how likely the observed
level of significant atrophy (proportion of suprathreshold statistics, with the threshold set at
p<0.01) within each p-map would occur by chance (Thompson et al., 2003, 2004). The number
of permutations N was chosen to be 100,000, to control the standard error SEp of the omnibus
probability p, which follows a binomial distribution B(N, p) with known standard error
(Edgington and Onghena, 2007). When N=8000, the approximate margin of error (95%
confidence interval) for p is around 5% of p; to improve upon this, we ran 100,000 permutations,
with 0.01 chosen as the significance level. We prefer to use the overall extent of the
suprathreshold region, as we know that atrophy is relatively broadly distributed over the
hippocampus, and a set-level inference is more appropriate for detecting diffuse effects with
moderate effect sizes at many voxels, rather than focal effects with very high effect sizes (which
would generally be better detected using a test for peak height in a statistical map).

When reporting permutation test results, one-sided hypothesis testing was used, i.e., we only
considered statistics in which the AD or MCI group showed more rapid atrophy than the
controls, in line with prior findings. Likewise, the correlations are reported as one-sided
hypotheses, i.e., statistics are shown in the map where the correlations are in the expected
direction, e.g., greater atrophy associated with lower MMSE scores, and with higher CDR
scores.
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Throughout this paper we report whether or not a linkage is detected between the local rate of
hippocampal atrophy and different covariates of interest, including diagnosis (normal, MCI,
AD), MMSE, global CDR, sum-of-boxes CDR, changes (over 1 year) in these scores, the ApoE
genotype, depression severity assessed using the Geriatric Depression Scale (GDS) (Yesavage
et al., 1982), systolic and diastolic blood pressure, plasma homocysteine levels, and educational
level.

Results
Volumetric analyses

First we performed a volumetric analysis of overall hippocampal volumes. We aimed to
confirm that the volumetric loss rate for each group was (1) progressively greater, in the order:
control<MCI<AD, and (2) in the expected numerical range based on a recent MRI-based meta-
analysis of hippocampal loss rates (Barnes et al., in press).

Fig. 3 shows that, in line with many prior longitudinal studies of AD versus controls (Jack et
al., 1998,2004) and versus MCI subjects (Jack et al., 2000,2004), hippocampal tissue loss is
detected in all 3 diagnostic groups. As noted in Fig. 3, the mean hippocampal loss rate increases
with worsening diagnosis (AD=5.59%/year [95% confidence interval, CI: +/−1.44%];
MCI=3.12%/year [95% CI: +/−0.79%]; healthy controls=0.66%/year [95% CI: +/−0.96%]).

When comparing baseline volume to follow-up volume, all groups were losing tissue with
statistical significance (p<0.01) except for the normals on the right side, where no significant
change was detected. This is not entirely surprising as many prior studies report low or
undetectable rates of loss in cognitively intact, healthy controls. These values are marginally
higher than those reported in the meta-analysis by Barnes et al. (in press), who included nine
studies from seven centers, with data from a total of 595 AD and 212 matched controls. In
Barnes et al. (in press), mean (95% CIs) annualized hippocampal atrophy rates were found to
be 4.66% (95% CI 3.92, 5.40) for AD subjects and 1.41% (0.52, 2.30) for controls. The
difference between AD and control subjects in this rate was 3.33% (1.73, 4.94). These slight
differences may depend on the anatomical definition of the hippocampus, or on the severity of
dementia in the AD group. Also, the left/right asymmetry in the loss rates proved to be
statistically significant (p<0.05) in the normal and MCI group, at least in this sample. Although
a left/right difference in rates has been found before, what is surprising is that the asymmetry
is reversed in MCI compared to controls (and compared to AD for that matter). This reversal
was not hypothesized and requires independent confirmation; if true, it may suggest that the
right hemisphere may lag behind the left in its rate of atrophy initially, but then may accelerate
in MCI to exceed that on the left.

Clinical correlations
Next, we examined the correlations between annual hippocampal volume loss and annual
change in MMSE, global CDR and sum-of-boxes CDR across the full sample and separately
within each diagnostic group (Tables 3 and Table 4). All correlations were highly significant,
and in the expected directions. Their absolute values were in the range |r|=0.10–0.23 for all
measures. In the full sample with all diagnostic groups combined (N=490), there is a strong
correlation between every clinical score and the rate of change in hippocampal volume. Even
so, this is not surprising as there is a group difference in atrophic rate and the clinical data
strongly correlate with group. It is more useful to know whether these correlations were
maintained when the sample is broken down by diagnosis – Table 4 shows that correlations
are generally maintained in the non-AD groups. This suggests that progressive hippocampal
degeneration is more strongly correlated with clinical scores in individuals who have not yet
lost a large proportion of their hippocampus (non-AD subjects). Also, the power to detect these
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correlations depends on the sample size, and the MCI sample size was almost twice as large
as the number of AD subjects.

Genetic influences on volumetric loss rates
An active area of AD research focuses on whether the ApoE4 genotype predicts future mental
decline, whether the ApoE2 genotype is protective against dementia, and whether the
characteristic morphometric signatures of AD (such as profiles of loss rates) differ by genotype.
Answering this question has practical value, because a drug may be more effective in patients
with a certain genotype, or, it may be easier to detect a drug effect in genetic subgroups for
which the annual rate of decline is greater. For all experiments involving ApoE, individuals
with the 2/4 genotype (one protective and one high-risk allele) were excluded because it is not
clear how to group these subjects. First, Table 5 shows that there is a highly significant
correlation between the ApoE4 genotype and the rate of decrease in hippocampal volume,
when all individuals are pooled together. This is somewhat expected, as individuals with
ApoE4 were more likely to have AD (Table 1). As such, this correlation is not as interesting,
as it simply reflects the over-representation of E4-carriers in the AD group. What is more
interesting is that this same correlation (on the left side; Table 5, top row) was still detected in
the healthy normal group. This suggests that even cognitively intact individuals carrying
ApoE4 have faster hippocampal loss. In groups split by diagnosis, E4-carriers lost hippocampal
tissue faster than non-carriers, except in the case of the right hippocampus in MCI (Table 4).

It has also been hypothesized that ApoE2 is a protective factor against the development of AD;
in prior studies with a related morphometric technique, called tensor-based morphometry, we
found that ApoE2 gene carriers – 1/6 of the normal group – showed reduced ventricular
expansion, suggesting a protective effect (Hua et al., 2008b). Here we found no significant
effects of ApoE2, perhaps due to the low number of individuals with the ApoE2 genotype
(Table 6). The association between ApoE2 and left hippocampal loss rates in normals was just
outside of trend level (p=0.109), but may be detectable in an even larger sample (Fig. 4).

Other factors associated with hippocampal volume loss rates
In addition to severity of disease measures and ApoE genotype, we investigated associations
between other clinical factors and hippocampal loss rates. We chose to examine conversion
from MCI to AD (treated as a binary variable over the 1-year follow-up interval), the Geriatric
Depression Rating scale (GDS) (Yesavage et al., 1982), homocysteine levels, baseline systolic
and diastolic blood pressure, and years of education. As multiple measures were tested, these
correlations should be regarded as exploratory and were subjected to a Bonferroni-type
correction for multiple comparisons. Table 7 shows the correlation between these covariates
and atrophic rates in all subjects tested; Table 8 shows them broken down by diagnosis. First,
those MCI subjects who converted to AD showed a faster rate of reduction in hippocampal
volume on the right side. This effect, only significant on the right side, is consistent with an
independent study (Apostolova et al., in press), in which we found that the right CA1 radial
distance is predictive (increases the hazards) of conversion to AD in MCI. None of the other
correlations were significant in the whole sample; some correlations were detected in the
subgroups broken down by diagnosis. Although failure to detect a correlation does not mean
that there is no correlation in the overall population, the fact that correlations were not
detectable in a sample of N=490 subjects scanned twice suggests that effects of these covariates
on hippocampal loss rates is likely to be relatively small, or that a longer follow-up interval,
more than 1 year, or a more accurate measurement method, may be required to detect their
influence on hippocampal degeneration.
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3D hippocampal maps
Linking volumetric measurements to clinical covariates is interesting, but fails to give a picture
of how the hippocampus is degenerating, and which specific regional changes link with
worsening cognition. Therefore in this section we present a complementary analysis to the
volumetric measures using 3D statistical maps (p-maps). First, percent change maps are
presented, broken down by diagnosis, to show how the hippocampus is changing. Next, we
have investigated, in 3D, the correlations between disease severity and other clinical covariates
and atrophic rates. The global significance levels for all p-maps, adjusted for multiple
comparisons, were established by permutation testing (Table 9).

The first statistical maps to look at are the correlations between baseline and follow up. Fig. 5
shows that for all three diagnostic groups baseline hippocampi were significantly different
from follow up, which is to be expected due to the volumetric results of Fig. 3.

Diagnostic and clinical maps
Between-group comparisons of hippocampal loss rates and correlations with various other
clinical covariates are shown in Fig. 6 and Fig. 7 respectively.

First, Fig. 6 shows differences in atrophic rates between the two most diagnostically dissimilar
groups (AD and normals); AD patients lost hippocampal tissue more rapidly than normals, in
line with our volumetric results (Fig. 3). No other comparisons proved significant by
permutation testing, although there was a trend on the left for faster loss rates in AD v. MCI
groups (p=0.07; Table 9), suggesting an acceleration in the loss rate between these stages.
Consistent with this, AD and MCI groups showed a greater difference in hippocampal volume
on the left side than the right side (Fig. 3).

Next, Fig. 7 shows the statistically significant correlations between atrophic rates and various
clinical covariates. The four clinical tests (MMSE, global CDR, sum-of-boxes CDR, and
change in sum-of-boxes CDR) showed correlations with numerically greater effect sizes on
the left side than the right suggesting either that the left hippocampus is changing more as the
disease progresses, or that such changes have a greater impact on cognition. When educational
level was used as the covariate, years of education were linked with atrophic rates for the right
hippocampus only. The correlation between education and hippocampal loss rates was only
detected in the p-maps, and not in the overall volumetric analysis, underscoring the fact that
volumetric comparisons and p-maps may reveal different linkages, but requiring future
confirmation in independent samples.

ApoE maps
Our last set of p-maps, in Fig. 8, show hippocampal regions where atrophic rates differed
according to the presence of the ApoE4 gene. Only when all subjects are pooled was the map
significant (and only on the left side). However, as noted before, this is not an especially
meaningful association as ApoE4 carriers are present in higher proportions among those with
AD than among controls, so that over-representation in the disease group alone would explain
the gene effect on rates of atrophy. What is more interesting is whether ApoE4 carriers show
faster atrophic rates if we split up the groups diagnostically – and none of the split maps proved
significant. Nevertheless the same area showed genotype effects at the voxel level in each
diagnostic split (see the top of the left hippocampal head of both the control group and MCI
group). Because this same area appears to be correlated with hippocampal decline in all
diagnostic groups, it may serve as a region of interest for independent confirmation in future
studies.
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We also attempted to show that ApoE2 was a protective factor, but no maps proved significant,
perhaps due to the small number of ApoE2 individuals in this study.

To better understand whether the relatively faster atrophic rates in the healthy ApoE4 risk gene
carriers was simply because the ApoE4 carriers in the group were more cognitively impaired
than the non-carriers, we ran a logistic regression to determine what percentage of the variation
in baseline MMSE scores was explainable based on the subjects’ genotype. Intriguingly, in the
healthy controls, genotype did not explain a significant proportion of variance in baseline
MMSE scores (r=0.049; p=0.58; N=126), nor was there any association between genotype and
baseline MMSE scores in the MCI group (r=0.08; p=0.23; N=228) or in the AD group (r=0.015;
p=0.88; N=92).

This means that the ApoE4-carrying controls had significantly faster atrophic rates than non-
carriers even without any detectable cognitive differences on the MMSE test at the time of the
baseline scan. This should underscore the potential relevance of genetic testing in identifying
those with genetically accelerated but latent neurode-generation especially at a time when no
sign of accelerated decline can be detected on a global cognitive test such as the MMSE.

Discussion
Here we presented the largest hippocampal mapping study to date (using 980 scans from 490
subjects). There were four main findings. First, our results with an automated analysis
technique agreed well with prior studies in smaller samples, performed using manual or other
relatively labor intensive methods. We found that the mean hippocampal volume loss rates
increased with worsening diagnosis (AD: 5.59%/year; MCI: 3.12%/year; normal: 0.66%/year).
Our estimated hippocampal loss rates in AD are a little high compared to some other studies
(Du et al., 2003; Jack et al., 2000, 1998), but are nonetheless close to the average rates reported
in a recent meta-analysis. Barnes et al. (in press) included nine studies from seven centers,
pooling data from a total of 595 AD and 212 matched controls. They found that mean (95%
CIs) annualized hippocampal atrophy rates were 4.66% (95% CI 3.92, 5.40) for AD subjects
and 1.41% (0.52, 2.30) for controls. Factors that might affect these rates include differences
in anatomic delineation criteria — for example, some protocols include the hippocampal tail
and others do not. Also, if hippocampal loss rates truly accelerate as the disease progresses, it
is plausible that any study of AD patients who are more severely affected may find a greater
mean rate of atrophy. Even so, this is not a compelling argument in our case, as our AD patients
are relatively mildly impaired and yet show atrophic rates slightly higher than the average rate
in the Barnes et al. meta-analysis. Second, all of our change measures were correlated with
MMSE, global and sum-of-boxes CDR, and with changes in these measures. All such
correlations were in the anticipated directions. The automated measures satisfied a further
criterion expected of a reliable measure of disease progression — reliable correlation with
cognitive decline. Third, we found that ApoE4 carriers had faster rates of volume loss, both in
the full sample of 490, and when only cognitively intact controls were examined. This finding
may have a practical benefit for treatment trials, because samples pre-selected to over-represent
E4 carriers may show greater interval changes on MRI and may therefore be better powered
to detect a statistical reduction in loss rates (Jack et al., 2008b). In addition, one might argue
that those carrying the risk gene are better candidates for early intervention as an accelerated
disease process is already detectable on MRI, at least at the group level. Even so, the case for
using ApoE4 as an enrichment criterion in addition to using information on baseline cognitive
deficits also depends on whether the knowledge of a person’s genotype provides added
information for predicting atrophic rates relative to what can be predicted from cognition alone;
this requires further study. Fourth, of the 245 MCI subjects examined, those who converted to
AD during the 1-year evaluation period had greater loss rates than non-converters.
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We presented several analyses using both hippocampal volumes and 3D significance maps, to
determine whether maps provide more information than simple volumetric summaries. For the
main effects, both maps and volumes gave similar results, for example regarding the changes
over time in all 3 diagnostic groups, and the correlations with MMSE, CDR scores and interval
changes in the scores. The map data also showed similarly localized regions of ongoing
hippocampal loss in controls, MCI and AD groups (Fig. 5).

The cases where maps and volumes gave different answers were typically when detecting
effects of subtle factors that were associated with loss rates with borderline significance. In the
full sample, a higher educational level was associated with slower right hippocampal loss rates
(p=0.0051), an effect detected in the maps but not in the volumetric analysis. This significance
level is borderline when corrected for multiple comparisons (0.0051×10=0.051), so it requires
independent replication.

ApoE4 gene carriers showed faster loss rates in the volumetric analysis, even in controls, but
these effects did not reach the corrected significance threshold in the maps (after correction
for multiple comparisons by permutation testing). Even so, local effects of genotype were
consistently found in the same regions in controls, MCI and AD groups, providing a possible
search region for future studies of gene effects.

A major surprisewas that the maps comparing atrophy rates between diagnostic groups did not
differentiate MCI from controls. The volumetric analyses showed that atrophy rates increased
in the order CTL, MCI, AD, and all groups showed progressive loss (except for normals on
the right side). While both the volumetric and the 3D analyses showed that AD subjects have
significantly greater atrophy rates vs. controls, only the volumetric data showed a difference
between MCI and controls. While maps tend to outperform volumetric summaries when
detecting effects that are relatively concentrated or localized, as the most affected subregions
may show higher effect sizes than an overall volumetric measure, maps may not outperform
overall numerical summary measures when the effects are relatively diffuse. Numeric
summaries such as hippocampal volume often involve an implicit averaging that may
counteract any highly localized boundary segmentation errors, which can deplete the power of
maps in the same regions. In addition, the inability to distinguish MCI from controls based on
the maps alone may reflect the clinical heterogeneity of the MCI group, as a combination of
various conditions in a sample likely yields a regionally diffuse mean atrophy pattern for the
group as a whole. This highlights the need for both volumetric measures and map-based
statistical analysis.

To obtain the most powerful statistics from map-based statistical analysis, it may be beneficial
in the future to use these thresholded maps as search regions of interest for factors that influence
the rates of atrophy. By focusing on the regions that are changing the most, it may be possible
to statistically define surface subregions of interest in training samples to develop more
powerful or precise measures of hippocampal atrophy in future independent samples. In this
sense, this is the same logic as using AdaBoost to label the hippocampus, by combining
classifiers with the greatest capacity for error reduction.

Some comparison is warranted between this approach and other methods for hippocampal
mapping. Other hippocampal mapping studies by our group have contrasted the atrophy
patterns in Lewy Body dementia, vascular dementia (Scher et al., in press), amnestic MCI
(Becker et al., 2006), fronto-temporal dementia (Frisoni et al., 2006), and in those at genetic
risk for AD (Boccardi et al., 2004) revealing morphometric signatures characteristic of each
condition. These prior reports used the same surface parameterization methods and radial
distance measures as were used in this report (statistics of radial atrophy), but the studies relied
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on manual tracing rather than automated segmentation, which greatly accelerates the rate at
which scans can be analyzed.

Our work is related to that of Styner, Gerig, and Yushkevich on M-reps (medial representations)
(Styner et al., 2003, 2005; Yushkevich et al., 2005), in which a medial curve is defined through
a structure, and distances of boundary points to the centerline are examined. The radial atrophy
mapping technique is robust to small rotational or translational errors in registering the images
across time, as the radial distances are always measured with respect to a central line threading
down the center of the structure. Other methods, such as voxel-based morphometry, for
example, may incorrectly pick up global shifts of the hippocampus as compressions or
expansions inside the hippocampus, as the nonlinear deformations that register structures are
spatially regularized (smooth) and may not be precise enough to register the hippocampal
boundaries exactly. As radial atrophy is measured with respect to the medial curve, the distance
measure reflects the thickness of the hippocampus in a given section, and it is not exactly the
same as a volume difference. For example, any anterior-to-posterior shortening of the
hippocampus would be detected by a volume measure, but the radial distance measure is not
sensitive to this type of change — it only measures the radial thickness of the structure relative
to a centerline. This may in general be considered a benefit rather than a limitation, as there
are some variations across normal subjects in the anterior–posterior extent of the hippocampus,
and these variations will be discounted by the radial mapping approach and will not be a source
of confounding variance. Even so, discounting information on the anterior–posterior extent of
the hippocampus may not be beneficial when measuring within-subject rates of change, unless
the benefit of the information is outweighed by variations in segmentation accuracy across
time that tend to cause errors in reproducibly defining the posterior limit of the hippocampus.

A related approach using large-deformation diffeomorphic metric mapping (Joshi and Miller,
2000) has been used to deform labeled anatomical templates of the hippocampus onto new
images, using a combination of manual landmarking of points on the hippocampus and 3D
fluid image registration (Csernansky et al., 2000; Haller et al., 1996; Wang et al., 2007). The
surface of the hippocampus was parcellated a priori on a neuroanatomical template into three
zones approximating the locations of underlying subfields, and Large Diffeomorphic Metric
Mapping (LDDMM) was used to generate the hippocampal surfaces of all subjects and to
register the surface zones across subjects. In a cross-sectional study, Wang et al. (2006) found
that inward deformities of the hippocampal surface in proximity to the CA1 subfield and
subiculum may be used to distinguish subjects with questionable AD from nondemented
subjects. In a longitudinal study similar to ours, Wang et al. (2003) used LDDMM to analyze
hippocampal change over time in 18 subjects with questionable AD (CDR 0.5) and 26 age-
matched nondemented controls (CDR 0) scanned 2 years apart. In CDR 0 subjects, they
observed shape changes between baseline and follow-up largely confined to the head of the
hippocampus and subiculum, while in the CDR 0.5 subjects, shape changes involved the lateral
body of the hippocampus as well as the head region and subiculum. In a subanalysis of 9
subjects from the same sample, who converted from the nondemented (CDR 0) to the
questionable AD (CDR 0.5) state, Qiu et al. (2008) found that compared to the non-converters,
the lateral aspect of the left hippocampal tail showed inward surface deformation in the
converters. With a similar method, Csernansky et al. (2005) found that inward deformation of
the left hippocampal surface in a zone corresponding to the CA1 subfield is an early predictor
of the onset of DAT in nondemented elderly subjects. This is consistent with our finding of
more rapid hippocampal loss rates in MCI converters than non-converters. Surface-based maps
may be used in the future to define hippocampal subregions where changes predict imminent
cognitive decline or the onset of dementia. Using the radial distance method we have likewise
demonstrated that CA1 and subicular atrophy associates with future conversion from MCI to
AD (Apostolova et al., 2006b) and from normal cognition to MCI (Apostolova et al., in
press).
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Related shape modeling studies have involved modeling the hippocampal surface using
spherical harmonic functions (SPHARM) (Styner et al., 2004; Thompson and Toga, 1996),
and using the coefficients of the harmonic expansion to infer shape differences between
dementia patients and controls. In Gutman et al. (2008), we used a support vector machine
classifier based on spherical harmonics to classify 49 AD patients and 63 controls with 75.5%
sensitivity and 87.3% specificity, with 82.1% correct overall. This approaches the 89–96%
classification accuracy of the best diagnostic predictors (Vemuri et al., 2008). Given the
proliferation of new MRI-based measures of hippocampal degeneration based on automated
surface matching methods (Wang et al., 2005), automated partitions of surfaces (Shi et al.,
2007), random field theory on surfaces (Bansal et al., 2007) and machine learning methods
(Li et al., 2007), future studies will likely focus on defining which MR-based measures provide
optimal statistical power for detecting factors that slow the progression of AD, to optimize the
power of future interventional trials.
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Fig. 1.
An overview of the AdaBoost algorithm. The x vectors are the feature vectors at each voxel
(there are N voxels), and the y values are the ground truth classifications (+1 for hippocampus,
−1 for non-hippocampus). Weak learners are defined to be classifiers that give binary outputs
regarding a voxel’s class, based on one single feature and a threshold value for that feature.
Weak learners are classification functions based on any feature that can help to classify a
structure correctly with an accuracy slightly better than chance. The algorithm gives an update
rule for the weightings given to each of the labeled examples, in training this set of weak
learners, and the epsilon terms are the sum of the weights. The Dt vector represents the
importance of each example, and examples misclassified at one iteration of the algorithm
receive more weight on subsequent iterations, and those that are correctly classified receive
less weight in the subsequent iterations. 1 is an indicator function, returning 1 if the expression
is true and 0 otherwise. The function f is a function combining the outputs of all the weak
learners using weights (the alpha terms). P is a probability function that gives the Bayesian
maximum a posteriori (MAP) estimate of the labeling (Morra et al., 2008c). The H function
thresholds the posterior distribution P at the threshold of 1/2, returning a decision as to whether
each voxel x belongs to the hippocampus (1 for yes and 0 for no).
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Fig. 2.
An overview of the auto context model. Here, H() is a cascade of AdaBoosts. Essentially, the
labeling at each iteration of AdaBoost is fed back into the learning process as a new feature
along with neighborhood-based information calculated on this map, which allows neighboring
voxels to influence each other probabilistically. Convergence criteria and more details are
presented in our previous work (Morra et al., 2008c).
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Fig. 3.
The percentage of hippocampal volume loss over a 1-year interval. As expected, the AD group
had the most rapid tissue loss, followed by MCI and then normal subjects.
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Fig. 4.
Hippocampal loss rates broken down by ApoE genotype. Values here correspond to Table 5;
for all cases except MCI on the right side, ApoE4 carriers lost hippocampal volume more
rapidly than non-carriers. One surprising aspect here is the left/right difference in the effect of
ApoE4 in MCI: as seen in Fig. 3, the MCIs have right faster than left atrophy, overall. Within
this MCI group, the E3 carriers (green bars) have right faster than left atrophy, but the E4
carriers (purple bars) have atrophy on the left that is almost as fast as on the right. Most
investigators would be surprised to see a lateralized effect of ApoE, but it remains possible
that the left hippocampus, which atrophies significantly faster than the right hippocampus in
controls, maintains its rate of atrophy in MCI E3 carriers, but accelerates its rate of atrophy in
MCI E4 carriers. If this is true, then the accelerative effect of the ApoE4 risk genotype may
not be simply superimposed on the rate of atrophy in all groups uniformly in both hemispheres,
but may accelerate the pregression of left hippocampal atrophy more than the right in MCI. As
these asymmetries in the ApoE4 effect were not expected, they require independent replication.
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Fig. 5.
Statistical maps (p-maps) showing the significance of progressive atrophy over 1 year broken
down by diagnosis. All maps showed significant changes overall by permutation testing (Table
9).
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Fig. 6.
P-maps showing between-group differences in atrophic rates. Overall only the two most
diagnostically different groups proved to be significantly different (AD vs. Normals) as shown
in Table 9.
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Fig. 7.
Maps of clinical and demographic factors that could be associated with hippocampal atrophy
rates. These maps show the significance of correlations between a change in radial distance at
each hippocampal surface point and various clinical covariates. Each map presented here was
statistically significant, on at least one side, after multiple comparisons correction by
permutation testing (Table 9). Maps are shown for all clinical covariates that proved significant,
among those examined in this study. The maps for the sum-of-boxes CDR change were based
on only 489 subjects (one less than the other maps) because one subject’s sum-of-boxes CDR
score was not obtained at follow-up.
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Fig. 8.
P-maps of the effect of ApoE4 status on hippocampal loss rates. For these maps, subjects that
had a genotype of 3/3 were categorized as ApoE3, and those that had 3/4, 4/3, or 4/4 were
considered as ApoE4. Only when all subjects are pooled is the gene effect significant – on the
left side. Even so, the same area of the hippocampus has low p-values in all groups (even when
normal and MCI patients are split), suggesting that this area may be a region of interest for
gene effects in future samples.

Morra et al. Page 28

Neuroimage. Author manuscript; available in PMC 2009 August 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Morra et al. Page 29
Ta

bl
e 

1
D

em
og

ra
ph

ic
 a

nd
 c

lin
ic

al
 d

at
a 

ar
e 

sh
ow

n 
fo

r t
he

 su
bj

ec
ts

, b
ro

ke
n 

do
w

n 
in

to
 th

e 
3 

di
ag

no
st

ic
 g

ro
up

s, 
at

 th
e 

tim
e 

of
 th

ei
r b

as
el

in
e 

sc
an

A
ge

 (y
ea

rs
)

M
M

SE
G

lo
ba

l C
D

R
Su

m
-o

f- 
B

ox
es

 C
D

R
A

po
E

N
or

m
al

 (N
=1

48
)

75
.9

2 
(4

.9
0)

29
.1

4 
(0

.9
3)

0.
0 

(0
.0

)
0.

03
 (0

.1
1)

19
/8

7/
39

M
C

I (
N

=2
45

)
74

.9
9 

(7
.1

7)
26

.9
8 

(1
.7

8)
a

0.
5 

(0
.0

)a
1.

55
 (0

.8
7)

a
11

a /1
03

/1
25

a

A
D

 (N
=9

7)
75

.7
7 

(7
.3

3)
23

.3
9 

(1
.8

6)
a

0.
74

 (0
.2

5)
a

4.
19

 (1
.5

8)
a

3a /2
8/

64
a

St
an

da
rd

 d
ev

ia
tio

ns
 a

re
 in

 p
ar

en
th

es
es

, a
nd

 th
e 

p-
va

lu
e 

co
m

pa
re

s e
ac

h 
di

se
as

ed
 g

ro
up

 w
ith

 n
or

m
al

s. 
Fo

r t
he

 A
po

E 
co

lu
m

n,
 th

e 
th

re
e 

nu
m

be
rs

 a
re

 th
e 

nu
m

be
r o

f s
ub

je
ct

s t
ha

t (
1)

 c
ar

ry
 a

t l
ea

st
 o

ne
 c

op
y

of
 th

e 
A

po
E2

 g
en

ot
yp

e,
 w

hi
ch

 is
 c

on
si

de
re

d 
pr

ot
ec

tiv
e 

ag
ai

ns
t A

D
; (

2)
 a

re
 h

om
oz

yg
ou

s f
or

 th
e 

A
po

E3
 g

en
ot

yp
e 

an
d 

ca
rr

y 
no

 c
op

ie
s o

f E
2 

or
 E

4,
 a

nd
 (3

) c
ar

ry
 a

t l
ea

st
 o

ne
 c

op
y 

of
 th

e 
A

po
E4

 g
en

ot
yp

e,
w

hi
ch

 is
 c

on
si

de
re

d 
to

 b
e 

a 
ris

k 
fa

ct
or

 fo
r A

D
. A

s E
2 

is
 re

ga
rd

ed
 a

s p
ro

te
ct

iv
e 

an
d 

E4
 a

s a
 ri

sk
 fo

r A
D

, t
he

 v
er

y 
fe

w
 su

bj
ec

ts
 (N

=1
1)

 w
ho

 c
ar

rie
d 

bo
th

 E
2 

an
d 

E4
 a

lle
le

s (
i.e

., 
on

e 
of

 e
ac

h)
 w

er
e 

ex
cl

ud
ed

fr
om

 th
e 

A
po

E 
an

al
ys

is
. B

ec
au

se
 th

es
e 

2/
4-

ca
rr

ie
rs

 w
er

e 
ex

cl
ud

ed
, t

he
 g

en
ot

yp
e 

gr
ou

p 
si

ze
s d

o 
no

t a
dd

 u
p 

to
 th

e 
to

ta
l s

am
pl

e 
si

ze
 fo

r e
ac

h 
gr

ou
p.

 F
or

 c
om

pa
rin

g 
th

e 
A

po
E 

st
at

us
 o

f g
ro

up
s w

e 
us

ed
 a

ch
i-s

qu
ar

ed
 te

st
. A

s e
xp

ec
te

d,
 th

e 
cl

in
ic

al
 m

ea
su

re
s r

ef
le

ct
 p

oo
re

r p
er

fo
rm

an
ce

 in
 th

e 
M

C
I a

nd
 A

D
 g

ro
up

s v
er

su
s c

on
tro

ls
.

a p<
0.

01
.

Neuroimage. Author manuscript; available in PMC 2009 August 27.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Morra et al. Page 30

Table 2
This table summarizes the change from baseline after 1 year for the same subjects whose baseline data is shown in
Table 1

Age (years) MMSE Global CDR Sum-of-boxes CDR

Normal 1.078 (0.076)a −0.027 (1.30) 0.034 (0.161) −0.010 (0.779)

MCI 1.074 (0.064)a −0.689 (2.57)b 0.035 (0.197)a,b 0.727 (1.26)a,b

AD 1.072 (0.064)a −1.88 (4.08)b 0.201 (0.425)a,b 1.42 (1.82)a,b

Standard deviations are in parentheses, and the p-values compare each diseased group with normals. The The ApoE column is not reported here as it does
not change with age.

a
p<0.01 – with respect to baseline measurements.

b
p<0.01 – with respect to normals.
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Table 3
Correlations (Pearson’s r values) associating clinical covariates (and changes in the same clinical covariates over 1
year) and the rates of hippocampal atrophy in percent per year

Left Right N

MMSE −0.191a −0.168a 490

Change in MMSE 0.117a 0.136a 490

gCDR 0.134a 0.225a 490

Change in gCDR −0.171a −0.100b 490

sobCDR 0.173a 0.181a 490

Change in sobCDR −0.174a −0.171a 489

Since higher MMSE scores tend to indicate a more cognitively intact individual, the observed negative correlation, in the case of MMSE, is to be expected.
The opposite is true for both of the CDR measurements (global and sum-of-boxes CDR scores), where higher scores indicate greater cognitive impairment.
For the change in a score, one would expect an opposite correlation also (i.e., more change in MMSE would be expected to be associated with a greater
rate of loss in the hippocampus), and this is borne out by all the data; all of these correlations are in the expected directions. One subject did not have a
sum-of-boxes CDR score at follow-up, so we included 489 subjects for that one measure.

a
p<0.01.

b
p<0.05.
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Table 5
Associations (Pearson’s r) ApoE genotype and hippocampal atrophy rates

Left Right N

ApoE 3v4 NC 0.164a 0.120 126

ApoE 3v4 MCI 0.131a −0.001 228

ApoE 3v4 NC & MCI 0.144b 0.085 354

ApoE 3v4 All 0.187b 0.111b 446

ApoE4 carriers had faster atrophic rates in the left hippocampus in all groups, and effect sizes were generally greater for the left hippocampus. Even
healthy ApoE4 carriers showed faster decline in hippocampal volume (at least on the left).

a
p<0.05.

b
p<0.01.
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Table 6
Correlations (Pearson’s r) between atrophic rates and having the ApoE2 allele (2/3, 3/2, 2/2) versus the ApoE3 allele
(3/3)

Left Right N

ApoE 2v3 NC 0.121 0.054 106

ApoE 2v3 MCI −0.065 0.000 114

ApoE 2v3 NC and MCI 0.024 0.057 220

ApoE 2v3 All −0.022 0.052 251

None of these values is significant, and the correlation with atrophic rates in the left hippocampus in normals is just outside trend level (p=0.109). In a
future studies with more ApoE2 subjects, correlations may be detectable (Hua et al., 2008b).

Neuroimage. Author manuscript; available in PMC 2009 August 27.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Morra et al. Page 35

Table 7
Pearson’s r values associating a decline in volume (hippocampal loss rates in percent per year) with conversion from
MCI to AD, geriatric depression (GD) scores, change in GD scores, homocysteine level (Homocys), systolic blood
pressure, diastolic blood pressure, and years of education

Left Right N

MCI to AD 0.093 0.130a 245

GDS −0.020 0.063 490

GDS change −0.114 −0.070 490

Homocysteine −0.044 0.002 490

Systolic BP 0.012 −0.033 490

Diastolic BP 0.058 −0.007 490

Education −0.060 −0.064 490

The MCI to AD converters were the only type of conversion tested because there were too few subjects with any other types of change in diagnosis. Over
our 1-year interval, 47 subjects converted from MCI to AD, which is marginally higher than the annual conversion rate typically reported for MCI. The
significant association with conversion is in line with prior hypotheses.

a
p<0.05.
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Table 9
Factors associated with hippocampal loss rates

Left Right

AD baseline vs. follow up 0.0091 0.0006

MCI baseline vs. follow up 0.0018 0.0001

Normal baseline vs. follow up 0.0001 0.0003

AD vs. normal 0.0022 0.0161

AD vs. MCI 0.0741 0.4712

MCI vs. Normal 0.1788 0.1943

MMSE 0.0002 0.0231

Global CDR 0.0024 0.0421

Sum-of-boxes CDR 0.0003 0.0646

Change in sum-of-boxes CDR 0.0484 0.1027

Years of education 0.3335 0.0051

ApoE3 vs. 4 (Normals) 0.3532 0.2411

ApoE3 vs. 4 (MCI) 0.3042 0.7694

ApoE3 vs. 4 (Normals and MCI) 0.1292 0.8491

ApoE3 vs. 4 (All) 0.0071 0.4886

Overall significance levels for all the p-maps shown, after correction for multiple comparisons by permutation testing. Values below 0.05 are shown in
bold font, and below 0.01 are shown in bold italics. All changes over time are significant, and the rate of change is statistically faster in AD than in controls.
Lower baseline MMSE and CDR scores were associated with faster loss rates over the subsequent year. The ApoE4 gene was associated with faster
atrophic rates on the left, and more years of education were associated with slower atrophic rates on the right.
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