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Abstract
Computational Functional Anatomy (CFA) is the study of functional and physiological response
variables in anatomical coordinates. For this we focus on two things: (i) the construction of bijections
(via diffeomorphisms) between the coordinatized manifolds of human anatomy, and (ii) the transfer
(group action and parallel transport) of functional information into anatomical atlases via these
bijections. We review advances in the unification of the bijective comparison of anatomical
submanifolds via point-sets including points, curves and surface triangulations as well as dense
imagery. We examine the transfer via these bijections of functional response variables into
anatomical coordinates via group action on scalars and matrices in DTI as well as parallel transport
of metric information across multiple templates which preserves the inner product.

Introduction to Computational Functional Anatomy
Advances in the development of digital imaging modalities combined with advances in digital
computation are enabling researchers to investigate the precise study of the awesome biological
variability of human anatomy. This is the emergent field of computational anatomy (CA)
(Grenander and Miller, 1998; Thompson et al., 2004). CA, has three principal aspects: (a)
automated construction of anatomical manifolds , points, curves, surfaces, and
subvolumes; (b) comparison of these manifolds; and (c) the statistical codification of the
variability of anatomy via probability measures allowing for inference and hypothesis testing
of disease states.

The automated construction of anatomical manifolds is receiving tremendous focus by many
of the groups throughout the world supporting neuromorphometric analyses which are
becoming available with large numbers of anatomical samples. Deformable and active models
are being used in generating 1-dimensional manifold curves in 2,3 dimensions (Thirion and
Goudon,1996; Feldmar et al.,1997; Khaneja et al.,1998; Bartesaghi and Sapiro,
2001;Montagnat et al., 2001, Lorigo et al., 2001; Rettmann et al., 2002; Cachia et al., 2003).
The differential and curvature characteristics of curves and surfaces have been examined as
well with active and deformable surface models for the neocortex and cardiac systems
(Montagnat et al., 2001; Dale and Sereno, 1993; Joshi et al., 1997; Dale et al., 1999; Fischl et
al., 1999; Xu et al., 1999; Pham et al., 2000). Local coordinate representations for cortical
manifolds have included both spherical and planar representations for studying the brain (Dale
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and Sereno, 1993; Dale et al., 1999; Fischl et al., 1999; van Essen et al.,1998; Wandell,1999;
Bakircioglu et al.,1999; van Essen et al., 2001; Gu et al., 2004; Hurdal and Stephenson,
2004; van Essen, 2004; Mangin et al., 2004; Wang et al., 2005; van Essen, 2005). A great deal
of effort has focused on methods of segmentation of anatomical volumes into 3-dimensional
submanifolds. Automatic methods for maximum-likelihood and Bayesian segmentation are
being developed across the whole brain as well as focus on particular gyri (Wells et al.,
1996; Teo et al., 1997; Crespo-Facorro et al., 2000; Shattuck et al., 2001; Fischl et al., 2002;
Han et al., 2002; Ratnanather et al., 2003; Dumoulin et al., 2003; Fischl et al., 2004).

There has also been great emphasis for studying anatomical shape variability via vector
comparison. The earliest vector mapping of biological coordinates via landmarks and dense
imagery was pioneered in the early 1980s and continues today by Bookstein (1978; 1991;
1996) and Bajcsy et al. (1983), Bajcsy and Kovacic (1989), Dann et al. (1989), Gee and Haynor
(1999), Gee (1999), and Avants and Gee (2004). Comparison via vector maps based on dense
imagery is being carried on with vector mappings restricted to the cortical manifold are being
computed as well (Feldmar et al., 1997; Evans et al., 1991; Toga et al., 1991; Collins et al.,
1994; Friston et al., 1995; Davatzikos, 1996; Iosifescu et al., 1997; Thompson and Toga,
1999; Warfield et al., 1999; Ashburner, 2007).

Our own contribution in CA has largely focused on large deformation diffeomorphisms as a
method for constructing bijective correspondences between anatomical coordinate systems.
They are generated by flows as originally proposed (Christensen et al., 1996), which are not
additive and provide guaranteed bijections between anatomical configurations. This
framework has been formulated as a complete metric space (Grenander and Miller, 1998;
Dupuis et al., 1998, Trouvé, 1995a,b, Joshi and Miller, 2000, Miller and Younes, 2001, Miller
et al., 2002, Glaunès et al., 2004), providing the mapping methodology with a least-energy
(shortest path) and symmetry property.

Currently, the principal focus in the generalized area of the medical image analysis is the study
of function as well as structure in the local anatomical coordinates. We refer to this as
Computational Functional Anatomy (CFA), which is the extension of the field of CA in the
sense that CFA is the mathematical study of anatomical configurations and signals associated
with structure and function in anatomical coordinates. The localized manifolds in anatomy are
curved coordinate system resulting from the dense packing and interconnection of structures
in the body and their functional interrelationship. There is no better illustration of this than in
the deep nuclei as well as cortical areas of the brain with its many interconnections. The local
curved coordinate systems are evolutionarily stable, and uniquely defined by the micro and
macrostructural properties as well as functional properties. Regions of the human body are
named and locally defined because of their functional and structural specificity. There are
fundamentally two challenges in trying to understand function in anatomical coordinates: (i)
signal processing such as filtering, smoothing, interpolation on curved manifolds is simply not
as obvious as it is in Euclidean spaces, and (ii) all anatomical structures are different in shape,
and therefore local analysis which accommodates statistical variation in populations of
individuals is a significant challenge. Therefore, CFA must handle these issues.

This article reviews several of the basic methods in CFA. The first half begins by focusing on
the construction of bijective correspondences between anatomical coordinates; both point-set
LDDMM as well as dense image methods are presented. The random orbit model is presented,
including dense image template estimation. The second half focuses on the transfer of
physiological and functional response variables. In particular we show the transfer of fMRI
response, cortical thickness, and myelination and track direction as measured in diffusion
tensor imagery (DTI). Then we examine the transfer of metric information via parallel transport
that preserves the inner product information from one template coordinate system to another.
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The approach taken here is to define for each anatomical manifold the functional signals
F∈F, with . To study populations of functional response in atlas space the
bijections g: X↔Xatlas are used to carry or transfer the functional measures according to g:
F↦g·F defined through group actions and parallel transport.

The metric shape space
We consider a shape as a generalized image (in the sense of Grenander) indexed over the
background space  as an element in the metric shape space I ∈I. This space is constructed
as an orbit I =G· Iα of exemplars or templates Iα under groups of transformations G, the groups
transforming the objects. The images I ∈I are of two types: (i) point-sets corresponding to
landmarks, curves, surfaces, and segmented sub-volumes, and (ii) images corresponding to
dense imagery or vectors or tensors, I (x), x∈X. The basic model is that the metric space is a
collection of orbits under the transformations of the exemplar templates I=∪αG·Iα. Flows are
used to generate the diffeomorphisms, which connects CA directly to classical mechanics.

The approach constructs the diffeomorphisms g∈G as a flow of ordinary differential equations
(ODEs) (Christensen et al., 1996), with gt, t∈[0, 1] controlled by the Lagrangian evolution
according to

(1)

The forward and inverse maps are linked through the fact that for all

, with the d×d Jacobian matrix  then the inverse
evolution becomes

(2)

Throughout we will require the composition of forward and inverse maps denoted
.

Unlike the matrix groups which are identified with a finite number of parameters, the vector
fields vt, t∈[0, 1] parameterize the flow of Eq. (1). The vector fields are constrained to be
smooth. Over finite time, for sufficiently smooth vt, t∈[0, 1], Eq. (1) is integrable and generates
diffeomorphisms. The smoothness follows from control on the integral square of the
derivatives by forcing the indexed family of vector fields vt, t∈[0, 1] to be in a smooth Hilbert
space (Sobolev spaces) (V,‖·‖V), with s-derivatives having finite integral square and zero
boundary. See Trouvé (1995a,b) and Dupuis et al. (1998) for discussion of these issues. For
all of our applications we model V as a reproducing kernel Hilbert space with kernal K
associated with the norm ‖·‖V.

The smoothness conditions are dimension dependent: for , the number of derivatives
s required in the Hilbert space with sufficient smoothness is s≥d/2+1 (Dupuis et al., 1998;
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Trouvé, 1995a,b). The group of diffeomorphisms G(V) are the solutions of  with

vector fields that satisfy  finite.

The metric of mathematical morphometry and conservation law for geodesics
To establish metrics on the space of shapes I,I′∈I, we associate group elements g,h∈G to them
and then define metric distances in the group G. This induces the metric on the orbit I. We
define the metric distance between target shape I ′ and template shape I as the length of the
geodesic curves gt · I,t∈[0, 1] carrying one to the other. These curves gt · I,t∈[0, 1] are
generalizations of simple finite dimensional curves. The length is measured via the tangents

pulled back to the origin or template coordinates , integrating norms of the vector
fields in the Hilbert space:

(3)

The metric between shapes I, I ′ is induced by the infimum over lengths of all curves connecting
the shapes according to

(4)

Now we follow Miller et al. (2006) for the Euler equation describing the shortest path geodesics
connecting elements g,h∈G(V) with length Eq. (3). Since the Euler equation is a force equation,
it is natural to explicitly work with the momentum, a linear function of the vector field. Defining
A to be the essential inverse of the Green's kernel KV of V, the momentum is Mt=Avt. While
the vector fields are smooth ‖vt‖V<∞, there are substantive technical difficulties with the
momentum since in general it is not smooth enough to be in square-integrable functions.
However, it acts as a 1-form on smooth objects such as elements of V. We must often interpret
it weakly, although throughout we interpret it as a function.

Since the “data” for correspondence enters only through the start and endpoint g0=g, g1=h, the
geodesic shortest path curves gt, t∈[0, 1] connecting g,h∈G(V) have a conservation law; the
path is encoded via the initial direction of the flow at time t=0. The conserved quantity is
Mt=Avt interpreted throughout as a function of the vector field which when acting against the
vector field gives energy in the metric . The momentum at the identity Av0 on
the geodesic determines the entire flow gt, t∈[0, 1], where ġt = vt(gt).

Theorem 1. (Miller et al., 2002, 2006)—1. Euler equation: Geodesics connecting with
boundary conditions g0=g, g1=h∈G(V) with Mt=Avt minimizing

are solutions of the Euler equation
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(5)

with divergence operator div  and div(M⊗v)=(DM)v+(div v)M.

2. Momentum conservation: The momentum Mt= Avt, which satisfies the Euler equation, acting

against vector fields transported from the identity  is conserved according
to

(6)

the momentum Mt=Avt is determined by the initial momentum M0 at the identity

(7)

The momentum is a conserved object which is natural for statistical modeling. It reduces the
complexity of the vector fields to the level lines of the template (Miller et al., 2006). We will
see this in the next section when we examine estimation of the initial momentum for shooting
one object onto another. Also, for anatomical images consisting of uniformly contrasting
subvolumes, then while the vector fields are smooth (resulting from the Green's kernel), the
momentum is concentrated on the boundaries of the homogeneously contrasting subvolumes
and point normally to the level lines. This is illustrated in Fig. 1 which shows the result of
shooting the simple template (panel 1) onto the target (panel 2). Panel 3 shows the template
transformed by the geodesic. Panel 4 shows the vector field v0 which flows the template to the
target. Notice how smooth it is in all of space. Panel 5 shows the momentum M0=Av0. Notice
how the momentum is concentrated on the boundary of the object. The momentum M0=Av0
and vector field v0 were retrieved using the LDDMM shooting algorithm of Beg which is
described in the dense image matching LDDM on Dense Images.

Constructing bijections between objects by initial momentum construction via LDDMM
With the data only at the start and end points along the geodesic, the momentum is determined
by the momentum at the identity, Eq. (7). The central question becomes, where does the initial
momentum M0=Av0 specifying the geodesic connection of one shape to another come from?
Naturally, it arises by solving the variational problem of shooting one object towards another,
or inexact matching of the shapes via geodesic connection. The solution of these inexact
matching variational problems are termed large deformation diffeomorphic metric mapping
(LDDMM).

Here, the data or observables ID which represent the target are introduced, and modeled as a
noisy version of the template carried by the unknown deformation g· I. The optimizing
diffeomorphic flow is generated which carries the template onto the observables. A distance
or disparity d(g· I,ID)∈R is introduced measuring the closeness between the images I ∈I and
the target observable ID∈ID. The geodesic connection is constructed to minimize the distance
between the transformed shape at the endpoint of the flow and the target observable.
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Point-set LDDMM
First examine the anatomical mapping of points (landmarks), linked lists (sulcal and gyral
curves) and triangulated meshes (surfaces) in a unified framework termed point-set LDDMM.
Assume we are given observations of coordinate objects through finite sets of point locations
or features, x1,x2,…,xn ⊂ X in the orbit. We consider these objects as n-shapes (compared to
the dense images). The point-set LDDMM problem is to send one set of points onto another
set of points via diffeomorphic flow of the background coordinates. The classic formulation is
based on “labeled” pairs of landmarks for which the correspondence between each anatomical
point is known (xi,xi′),i=1,…,n. The second version is unlabeled landmark matching in which
there is no identification between points, and there may be different numbers of points x1,
…,xn and x1′,…,xm′. The crucial breakthrough that Glaunès et al. (2004) observed was to view
the unlabeled landmarks as the matching atomic measures, or distributions. In this “unlabeled
setting”, it is very much like the dense image matching problem in which the algorithm must
find the correspondence.

Begin with the finite point reduction of the vector fields following from the basic spline
argument, the vector fields vt∈V,t∈[0, 1] corresponding to optimum trajectories of the finite
points must have the property they are a linear combination of reproducing kernels to be of
minimum norm-square , with linear weights chosen to satisfy constraints.

Theorem 2.(Miller et al., 2006)—Associate the Green's kernel K to A with momentum
Mt = Avt defining the inner product and norm according to 〈vt, vt〉V = 〈Mt,vt〉. The geodesic
vector fields connecting the n-shapes are splines

(8)

with momentum atomic defined by δgt(xi) Dirac measure at locations gt(xi) according to

(9)

Defining the 3×3 matrices K=(K1,K2,K3) with kth column Kk,k=1,…,3, then the point-set
LDDMM has βit satisfying the differential equation

(10)

(11)

with boundary condition βi1 at time t=1.

Proof Based on the conservation law of momentum in Eq. (6), we have 〈Avt,wt〉2=〈Av0,

w0〉2, and replacing  yields
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For the point sets, the momentum satisfies , giving

It yields

Taking derivative with respect to time t on both sides we obtain

Notice, the vector field is smooth inheriting the smoothness of the Green's kernel; the
momentum is not and must be interpreted weakly.

Now examine the point-set LDDMM mapping algorithms for landmarks, curves, and surfaces,
requiring the construction of a distance (Glaunès et al., 2008; Qiu, 2006). In labeled landmark
matching, assumes there are n corresponding sets of paired points between the template and

target (xi,xi′), i=1,…,n; the distance . In unlabeled matching the number
of points varies and the correspondence is not known with the distance becoming a measure
distance.

Proposition 1—Define the atoms in the dual space δ∈W* with associated smooth functions
f∈W with reproducing kernel with the property 〈kW(x,·), f〉W=f(x). The norm-squared distance
between atoms (measures) takes the form

(12)

where αi are weights.

For the vector case, assume the atoms in the dual space αδ∈W* are vector valued and αδ∈W*
such that for any smooth vector-valued functions f ∈W and d×d reproducing kernel associated
with W we have the property 〈kW(x,·)α,f〉W=α·f(x). The norm-squared distance between vector
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valued atoms takes the form as in Eq. (12). α·β the vector dot product (see proof in Appendix
A).

Throughout we shall model KW to be a diagonal matrix, KW (·,·)=kW (·,·)id, id a 3×3 matrix
with gradient ∇ik(·,·) the gradient in the i=1,2 variable.

For smooth curves x(s),x′(s),s∈[0, 1], associate discrete samples xi, i=1,…,n, xi′, i=1,…,m.
These become the principal point set that we track, with the vector field written as a
superposition spline according to Eq. (8) around these trajectories, gt(xi), i=1,…,n interpolating
the cost function involving the tangent vector on the discretely sampled curves, interpolate the

curve sample points to its midpoints , , and

approximate the tangents at the midpoint, , .

For the surface matching problem the vector information comesthrough the normal to the
surface. Let S and S′ be template and target surfaces of dimension 2 discretely sampled as
triangular meshes in R3. Let i,j index the faces in S,S′, with face i having vertices  and

oriented edges . Denote the centers as 

and associated normals  with length equal to its area. Define

 and . Define F(i) as set of
faces containing vertex i on M.

Theorem 3—1. Given labeled landmark pairs (x1,x1′), (x2,x2′),…(xn,xn′), the optimizing flow
gt, t∈[0, 1] minimizing (Miller et al., 2006)

(13)

has momentum of the geodesic satisfying the conservation law Eq. (7) with βit in Eq. (9) given
by

(14)

.

2. Given unlabeled point sets {x1, x2, …xn} and {x1′, x2′, …xm′}, the optimizing flow gt, t ∈
[0, 1] minimizing (Glaunès et al. 2004)

(15)
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has momentum of the geodesic satisfying the conservation law Eq. (7) with βit in Eq. (10) given
by

(16)

3. Given unlabeled (no correspondence) atoms and tangent pairs 
the optimizing flow gt, t ∈ [0, 1] minimizing (Qiu et al., 2008a,b)

(17)

has momentum of the geodesic satisfying the conservation law Eq. (7) with βit given by the
solution of the ordinary differential equation of Eq. (10) with boundary condition at time t=1,

4. Given surface S, S′ with unlabeled atomic points and normals (xi, Nci), i = 1, …, n,

 the optimizing flow gt, t ∈ [0, 1] minimizing (Vaillant and Glaunès,
2005)

(18)

with the norm-squared distance between normals is given by Eq. (12) for α=N.

The momentum of the geodesic satisfies the conservation law Eq. (7) with βit given by the
solution of the ordinary differential equation of Eq. (10) with boundary condition at time t=1,
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Whole brain sulcal landmark mapping
Fig. 2 shows results of the LDDMM-unlabeled landmark matching on whole brains.
Landmarks were extracted from sulcal curves that were generated via dynamic programming
on the gray–white matter surface. The left column shows the surface with the eight sulci
embedded in the template and target brains. The right column shows the mapped sulcal curves.
Notice that the third curve corresponding to the template deformation is virtually identical to
the target curve.

Fusing points, curves, and surfaces
We examined the accuracy of the point-set LDDMM on twenty cingulate cortices (Qiu et al.,
2007). Panel 1 of Fig. 3 shows the location of the cingulate cortices. The accuracy of these
methods were quantified on the twenty cingulate surfaces by mapping them g: X→Xatlas with
distances calculated between each vertex on the target surface M compared to the vertices of
the template Xatlas moved through the diffeomorphism. The bottom left panel shows the
cumulative distribution functions (CDFs) of the vertex distances between template and mapped
target surfaces based on the three different matching procedures. The black curve denotes the
distance between each surface after rigid alignment only. Blue, green, and red curves show the
CDF for LDDMM-landmark, curve, and surface mappings. Improvement of the alignment
after the point based mappings compared to the rigid alignment as indicated.

The LDDMM-surface mapping algorithm gives accurate registration in terms of the surface-
to-surface distance measurement. The LDDMM landmark and curve mappings are
computationally less intensive than LDDMM-surface mapping. Also the selection of
landmarks and curves can be guided by previous knowledge derived from postmortem studies
(Qiu et al., 2007).

Compared to the spherical brain mapping approaches (van Essen and Drury, 1997; van Essen
et al., 2001; Tosun et al., 2004; van Essen, 2004, 2005), LDDMM-surface mapping does not
require an intermediate spherical representation of the brain. This intermediate step would
introduce large distortion of the brain structure, which does not appear consistently across
subjects. As a consequence, matchings would begin with such a distortion error. Furthermore,
LDDMM-surface mapping can map two surfaces with boundaries from one to the other and
the boundaries of two surfaces need not match if the geometries near the boundary are quite
different from one another. This is particularly attractive because it allows us to study more
local variation of anatomies due to effects of diseases in cortical substructures.

Cross modality histology and MRI
The LDDMM methodology can be used to transfer dense cross modalities (Ceritoglu et al.,
2007). Shown in Fig. 4 are LDDMM mappings based on point-set and dense MRI imagery in
the histological sections of area 46 superimposed on a macque atlas generated from MRI whole
brain. The top row shows a coronal histological section of a Macaque brain, its gray matter
white matter segmentation, and its registration to the corresponding MRI section after LDDDM
transformation with landmarks. The bottom row shows the same coronal section of the
Macaque MRI brain and the LDDMM mapped superimposed histological section. Shown
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overlayed in red is the prefrontal cortex transformed from histology and overlayed in blue is
Area46 transformed from histology.

LDDMM on dense images
For dense image matching quadratic distance models have been used at the endpoint with only
approximate correspondence enforced. Defining g·I=I°g−1, the distance between the
transformed examplar image, I, and an observed image, I′, is defined as

.

The dense matching corresponds to minimizing this distance function solved by Beg et al.
(2005)via the LDDMM-image algorithm. We present the multi-modality LDDMM developed
more recently by Ceritoglu (2008).

Theorem 4—Dense image matching: LDDMM-image Given observed images I(1), I(2),…

with smooth templates , , … with gradient are well defined

, the flow gt, t∈[0, 1] with boundary condition g0=id minimizing
the inexact matching problem [Miller et al. 2006; Ceritoglu, 2008]

(19)

satisfies for t∈[0, 1] the Euler Eq. (5) with inexact matching endpoint condition

(20)

The momentum of the geodesic satisfies the conservation law Eq. (7) with momentum Mt

=Avt at t=0 given by , with momentum for all time t∈[0,
1],

(21)

The initial momentum has the property that it is normal to the level lines (Miller et al., 2006).

Multichannel fractional anisotropy
Fig. 5 examines multichannel LDDMM from Ceritoglu and Mori. Top row shows sections
from B0 and fractional anisotropy (FA) imagery demonstrating the different contrasts available
with multiple modalities. The B0 images were acquired with minimal diffusion weighting
(b=33 mm2/s where b-value is the diffusion weighting constant). Defining (λ1, λ2, λ3) as the
eigenvalues at each point of the diffusion tensor matrix, the FA image becomes

(22)
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The bottom row shows the results of using both B0 and fractional anisotropy imagery for the
LDDMM mapping for the white matter areas of fiducial markers (panel 3) and the cortical
areas (panel 4). The errors between the 237 fiducial markers were calculated between the
template and target before and after mapping. The errors are based on only using FA (black),
using only B0 (green), and using both modalities (blue).

The variability of human hippocampal anatomy
Human anatomy is highly variable. Fig. 6 depicts the alignment of the hippocampus structure
from a population of 15 normal subjects depicting normal hippocampal variability after
Talairac alignment to the common atlas coordinates. Results of averaging the hippocampal
mappings to common template coordinates are shown in coronal (left) and sagittal (right)
cropped slices. For each participant, both their structural scan and a binary version of the ROI
rough segmentation of their entire hippocampus were transformed. The average hippocampal
segmentations across participants are shown. The overlaid colors range from red (1.0,
indicating all participants agree this voxel is in the hippocampus) to blue (0.07, indicating only
one participant labels this voxel as part of the hippocampus).

The bottom row of Fig. 6 (right column) demonstrates the anatomical agreement after LDDMM
alignment based on the segmentations. The overlaid color being almost completely red implies
that all participants agree on almost all the template voxels after LDDMM alignment. The only
disagreement – yellow turning to blue – occur at the boundary of the hippocampus. The results
indicate that the high local dimensions of LDDMM provide increased power in terms of
accommodating anatomical variation. As illustrated in the functional anatomy section, the
accurate registration increases statistical power in fMRI studies.

Time series
The time-series models have been discussed previously for dense imagery for continuous
observation (Miller, 2004). Beg has examined the case when given discrete time samples during
the atrophy process.

Proposition 2—Given smooth template Itemp=It0 denoting the template corresponding to the
baseline image, with observations I(tk), k=1… N image time-points representing the
longitudinal time-sequence, with flow minimizing the variational problem

(23)

has momentum satisfying

(24)

with 1A(t) the indicator function with value 1 if t∈A.

Khan and Beg (2008) have examined the longitudinal growth model in the caudate nucleus of
a Huntington's disease patient scanned on five separate occasions over a 71 month period in
intervals of 24, 13, 8 and 26 months. Manual segmentations of the left and right caudate nucleus
were used, smoothed with a Gaussian convolution filter (mask size: 5×5, σ=1), and discretized
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the longitudinal time-flow proportional to the actual time-between scans as one time-step per
month. Segmentations of the left and right structures are combined into a single image volume
(76×80×48) with image time-point rigidly registered to the baseline image. Fig. 7 shows the
evolution of the template image along the time-flow and the corresponding input data.

The random orbit model and template estimation
Population study of functional and structural response always involve extrinsic coordinate
systems, i.e. atlases or templates. Throughout this section we shall assume the random objects
I ∈I are dense scalar images, and we will model them as conditional Gaussian random fields
centered around the template. This is a local model in shape space, local to the template.
Concurrently work is proceeding on developing these random models for surfaces as well.

The random orbit
The momentum conservation indicates that the momentum Mt=Avt along the geodesic is
conserved (Miller et al., 2006), implying the initial momentum M0 encodes the geodesic
connection. This reduces the problem of studying shapes of a population in a nonlinear
diffeomorphic metric space to a problem of studying the initial momenta in a linear space
(Vaillant et al., 2004). This momentum parameterization is the basis for our Miller–Trouve–
Younes (MTY) random orbit model on shapes which we now describe.

We take as elements anatomical configurations I ∈I, functions indexed over X ⊂R3, I(x),
x∈X. We assume the orbit is generated from an exemplar Itemp∈I. The template is unknown
and must be estimated. All elements I ∈I are generated by the flow of diffeomorphisms from
the template for some gt, I=g1 · Itemp.

As illustrated in Fig. 8, our random model has two parts. The first part assumes the anatomies
I(i)∈I, i=1, 2, …, n, are generated via geodesic flows of the diffeomorphism equation

, t∈[0, 1] from Itemp, so that the conservation equation holds and the flow satisfies

the conservations of momentum. Thus, when , i=1, 2, …, n are considered as hidden
variables, our probability law on I(i)∈I is induced via the random law on the initial momenta

 in a linear space, which are modeled as independent and identically distributed Gaussian
random fields (GRF) with zero mean and covariance matrix K/λ. The second part is the
observable data ID(i)∈I, the medical imagery. We assume the ID(i) are conditional Gaussian

random fields with mean fields  with variance σ2. The goal is to estimate the template
Itemp and σ2 from the set of observables ID(1), ID(2), …ID(n).

The EM algorithm for template construction
Study of responses in populations involve atlases or template. For constructing templates from
populations of dense imagery, we follow Ma et al. (2008). Given measured anatomical data

sets ID(i), i=1, …, n, with unknown mean field , our goal is to estimate the
unknown template Itemp and σ2. To solve for the unknown template, an ancillary initial
template, I0, is introduced so that our template is generated from it via the flow of
diffeomorphisms of gt such that Itemp=g1 · I0. Realizations from the random momentum process
M0 are denoted m0. We use the Bayesian strategy to estimate initial momentum m0 from the
set of observations ID(i), i=1, …, n by computing the maximum a posteriori (MAP) of f(m0|

ID(1), ID(2), … ID(n). To estimate f(m0|ID(1), ID(2), … ID(n), we include  associated

with , i=1,2, …n as hidden variables with K0 and K the covariances of m0, , respectively,
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that are known and correspond to the kernel of Hilbert space of velocity fields. Thus, the log-

likelihood of the complete data ( ) is written as

(25)

where I0 is the initial template and ID(i) is the i-th subject. The paired (gt, m0) and ( )
satisfy the shooting equation (Miller et al., 2006). σ2 estimates the variance of the difference

between  and ID(i) among n subjects.

The E-step computes the expectation of the log-likelihood of the complete data given the old
template  and variance σ2old

(26)

The M-step generates the new template by maximizing the Q-function with respect to m0,
σ2, giving the update equation

and with  a constant this yields

(27)

(28)

Shown in Fig. 9 are the results of generating a template of multiple subcortical structures
including the hippocampus and basal ganglia. Depicted next to each set of structures are the
metric distances from the initial template to the final resulting template.
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Shown in Figs. 10 are the heart templates generated from the initial templates. Depicted on the
metric distances between the template and each element of the population are shown with the
second number the converged metric distance.

Transferring functional and physiological variables via group action
In CFA, the study of functional signals in common anatomical coordinates is defined by the
way the functional signals are carried by the bijective transformation between coordinate
systems g:X↔Xatlas. We denote all the signals, scalars, vectors, tensors as F∈F indexed over
the anatomical manifolds X⊂R3, with F(x),x∈X. The principal challenge is the fact that the
structures of anatomy are curvilinear, and anatomical structures from one subject to another
are not the same shape.

This approach understands the functional statistics of populations in the coordinate of the atlas
Xatlas by applying dense diffeomorphisms carrying the physiological signals g:F↦g·F.

Group actions for transferring scalar information
Our group has used group actions for transferring scalar and vector valued information. When
the functional information is dense imagery, then the group action used is the right action by
the inverse.

Proposition 3—Let F be dense scalar imagery, then

(29)

this is a group action.

Transfer of fMRI bold response into atlas coordinates
Such group actions may be used for transferring fMRI responses into common coordinates.
Fig. 11 depicts such an example in the medial temporal lobe depicting the high resolution
structural coordinates associated with the MRI coupled to the within subject functional MRI
(fMRI) response. The overall approach carries the fMRI response from the population into the
atlas or template coordinates.

To demonstrate the use of LDDMM mapping for transferring the functional information,
shown in Fig. 12 are the basal ganglia structures being studied in an fMRI study. The left
column shows the structures for one of the subjects; the middle column show the template
structural coordinates.

Shown in the right column of Fig. 12 are the associated fMRI signal transferred via the bijection
into atlas coordinates (top row) along with the change in coordinate system (bottom row).

Transferring bold response in populations of functional memory task in the medial temporal
lobe

We now examine population averaging of the functional MRI responses in template or atlas
coordinates associated with memory tasks in the medium temporal lobe (MTL). The major
difficulty for fMRI study in subregions of the brain is that structures demonstrate significant
variability across individuals. Stark et al. (2004), Miller et al. (2005), and Kirwan et al.
(2007) have been examining the MTL in responses to memory tasks in the medial temporal
lobe (MTL) in populations of normals.

Miller and Qiu Page 15

Neuroimage. Author manuscript; available in PMC 2010 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Shown in Fig. 13 are results of LDDMM-image mapping of the MTL structures. The left panel
shows the MTL structures which were registered with the functional response transferred via
the group action of the bijection to template coordinates. The right panel shows the
hemodynamic response from a 39-voxel (609 mm3) cluster within the right perirhinal cortex
(voxel-wise p<0.02) following Talairach and LDDMM transformations. The beta coefficient
(magnitude of response) is plotted representing the general linear model's estimate of the fMRI
activity as a function of time associated with incidental encoding of stimuli during the memory
retrieval task. This result demonstrates the enhancement of the activity within the region itself
using LDDMM alignment versus Talairach. A similar fMRI study in the auditory cortex has
been done by other researchers and shown good separation of functional activities using
LDDMM-landmark mapping when comparing with spherical registration (Desai et al., 2005).

Transferring vectors and DTI matrices via group action in the heart and brain
Often times the functional information is either vector or matrix information. Now examine
vector and tensor information from diffusion tensor imaging applications.

When the functional information are tensor matrices, then we use the action of Alexander and
Gee (2000) preserving the determinant using the Gram–Schmidt orthogonalization.

Proposition 4—1. Let F be a 3×3 tensor matrix, then with F having eigenelements λi, ei,

i=1,2,3, the action is defined by  where

(30)

Let F be the 3×1 first eigenelement vector λ1e1 of the diffusion tensor matrix, the action is

defined by  where

(31)

These are group actions.

DTI vector information in brain development
Lee and Mori (2008) have been studying growth, examining the contrast changes in the imagery
independent from the geometric changes. To study changes during growth the eccentricity of
the principal eigenvectors are reconstructed in the template coordinates. The diffeomorphisms
are used to transfer the DTI vector images according to the group actions of Eqs. ((30)–(31)).
To accomplish this 237 fiducial points were defined in each of a time sequence of brains along
with the corresponding 18 year old template. The LDDMM landmark procedure was carried
out for each brain. The diffeomorphism was used to carry the DTI imagery into the template
coordinates using the vector group action from which registered imagery was generated for
comparing the DTI contrasts independent of the geometric changes of the tissue.

Fig. 14 depicts the transport of DTI myelination response variables as encoded via the
eccentricity of the eigenvectors of the DTI tensor. Shown are time samples 0, 7, 24, 36, and
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60 months of original section (top row) then carried via bijection into template coordinatese
(bottom row). Here the bijective correspondence is transporting the DTI eccentricity measure
to the template coordinates for statistical examination.

DTI matrix information in the heart
Many groups have been examining the structure and function of the heart at multiple scales.
Fig. 15 shows results from recent efforts of Beg et al. (2004),Helm et al. (2006) and Helm et
al. (2005) from exvivo dog hearts upon which high resolution structural MRI and DTI was
performed. In the top row, panels 1 and 2 show normal hearts, and panel 3 shows a failing
heart. Notice the variability of global size as well as local structural shape. Each of the normal
and abnormal hearts were mapped to a common extrinsic atlas using LDDMM-image mapping,
from which principal components were calculated on the initial momentum Av0.

The bottom left panel shows the method for calculating the relative wall thickness RWT = h/
r parameters. Rightmost block of panels depicts the RWT superimposed in atlas coordinates
of the normal population (top row) and the abnormal population (bottom row).

Parallel transport of metric information between multiple templates
The basic questions we examine in this section is how to transport information between
multiple local representations in shape space, i.e. between templates that each represent
subpopulations. We have already seen that transporting information via bijections is nuanced,
we might even say tricky. For points it is left action similar to matrices acting on vectors g:x
↦ g(x), for dense imagery viewed as functions it acts on the right via the inverse g:I ↦ I °
g−1, and for DTI matrices it is defined to preserve the determinant and to rotate the
eigenfunctions based on the orthogonalization procedure.

We now examine the cases for transferring vector fields in the tangent space associated with
the template, along with their associated inner product, for example when we have multiple
templates with their eigenfunction representations.

We have studied at least two cases involving transfer of metric information between template
representations of populations. The first one arises when studying different cohorts of groups
and or illnesses where there are multiple templates with different eigenfunctions. The question
becomes how do we share that information from one template to another. Fig. 16 depicts the
multiple template case for different population cohorts and illnesses. Panel 1 shows the EM
algorithm generated hippocampus template generated in the BIRN study (Miller et al., 2008)
from a population of 101 hippocampi which were segmented using FreeSurfer. The vector
fields and principal components were determined for studying morphometric change of the
Alzheimer's population. Superimposed are the metric distances between template and
population. Panel 2 shows the Csernansky template used in hippocampus studies for
schizophrenia. The natural question is how do we share template centered information.

The second scenario occurs for growth and or atrophy in which each time series naturally
carries its own template which optimally represents the within subject sequence variation; we
call this the subject's anatomical coordinate system. In the obvious sense, you are your own
best template. The question becomes then how do we perform population averages across
sequences when there are multiple subject anatomical coordinate systems. Depicted in Fig. 17
are a sequence of hippocampi observed over time (Qiu et al., in press). The first element in
each sequence is used as the subject's anatomical coordinate system (template).

In Euclidean space, the operation of transferring vector fields is the standard translation of
vectors. In curved spaces such as shape space, we use parallel transport following the original
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developments of Younes based on Jacobi fields (Younes, 2007) (see Younes et al., 2008; Qiu
et al., in press) for derivations of algorithms for computing parallel transport for point-sets).
The coordinate system which collects the information we call the hypertemplate. Parallel
transport is used since it has the advantage that the vector information (such as the momentum)
encoding each of the sequences is transferred to the common hypertemplate coordinate system
so that the metric (inner products on the vector information being transferred) is maintained.
Therefore inner products associated with principal components and random fields
representations will be preserved when transferred to the hypertemplate. We shall focus solely
on point-set transfer of the metric information here; for transferring the dense imagery this is
described in Younes et al. (2008).

Parallel transport of point sets
The goal is to calculate Ft,t∈[0, 1], F0 = F, which transports the metric vector field information
F along the geodesic flows ht,t∈[0, 1] connecting the within subject sequences to the
hypertemplates. Throughout assume the kernel is diagonal K(x,y)=k(x,y)id, id a 3×3 identity
matrix, and we use the shorthand notation hit=ht(xi) to denote the location of a particle in the
point-set xi at time t. The geodesic connection to the hypertemplate, ht and the ODE Eq. (11)
simplifies to

(32)

(33)

In curved spaces such as described by the geodesics in shape space, the principal tool Younes
introduced for parallel transport of the vector fields along the geodesics so as to preserve the
inner products are perturbation of the exponential maps by the vector fields being transported
given by the Jacobi field (Younes, 2007; Younes et al., 2008).

Younes's idea for generating the transport is given Ft the transport of F to time t, then for small

s,  with J the Jacobi field to perturbation direction Ft. The Jacobi field is the directional
derivative of the geodesic; perturbing vt→vt+εδvt gives the perturbation of the geodesic flow
ht→ht+εδht. The Jacobi field is the ε limit and therefore a tangent vector to the curve.

Since we are in the point setting, the vector fields are parameterized in their local coordinate
representation involving the particle paths with the perturbations in terms of the perturbation
of the particle momenta. The Jacobi field is calculated via the perturbation α→α+εδα of the
flow Eq. (32) giving

(34)
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with . The ODE on the local coordinate evolution δαjs+s is computed
according to the perturbation of Eq. (33) given by

(35)

The algorithm becomes, given Ft the transported vector F to time t, then Ft + s for small s is
computed from the Jacobi field with the algorithm cycling to the next small increment.

Hippocampal atrophy at two time points
We present a longitudinal study on hippocampal shape in aging and AD to demonstrate the
use of parallel transport in time-dependent anatomical characterization for assessing disease
stages (Qiu et al., 2008). Hippocampal surface structure was assessed twice two years apart in
26 nondemented subjects (CDR 0), in 18 subjects with early AD (CDR 0.5), and in 9 subjects
who converted from the nondemented (CDR 0) to the demented (CDR 0.5) state. The objective
was to distinguish converters from healthy subjects and subjects with AD using the pattern of
hippocampal shape changes during the two-year time interval.

All hippocampi were delineated. We assessed within-subject hippocampal shapes at the two
time points using LDDMM-surface mapping. We translated the within-subject hippocampal
shape variation from the subject's anatomical coordinate system to the hypertemplate
coordinate system using parallel transport for statistical testing. Our results from random field
analysis revealed that inward surface deformation across time occurred in a non-uniform
manner across the hippocampal surface in subjects with early AD relative to the healthy
controls. As illustrated in Fig. 18, the lateral aspect of the left hippocampal tail showed inward
surface deformation in the converters and whole hippocampal body showed inward surface
deformation in the early AD when compared with the healthy controls. Using surface
deformation patterns as features in a classification analysis, we were able to respectively
distinguish converters and patients with early AD from healthy controls at classification rates
of 0.77 and 0.87.

Signal processing and statistical inference in anatomical coordinates
Performing classical signal filtering, smoothing and statistical inference on the physiological
signals F∈F on curved manifolds X is challenging. We unify these issues by essentially
constructing the Hilbert space, H(X), in the anatomical coordinate X with the physiological
signals elements F∈H(X). The construction of H(X) requires the generation of a complete
orthonormal (CON) base {ϕ(·)} indexed over X. Given such a base then least-square smoothing
and splines on X all become available. In the statistical testing, our observations include both
anatomical manifold X and physiological signal F defined on X, (F, X). The analysis for
understanding the functional and structural pair (F, X) is to place them in atlas coordinates
Xatlas via the dense diffeomorphism g:X→Xatlas, the mapping of tha anatomical manifold X to
the atlas Xatlas. For each pair (F, X), g is applied according to g:(F,X)→(Fatlas, Xatlas). Thus,
given a basis ϕ(x), x∈Xatlas and diffeomorphism g, statistical inference via random fields built
on the atlas coordinates becomes convenient.
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We model the physiological and structural signals F(x), x∈X⊂Rd indexed over the manifolds
as arising from a Hilbert space, F, with inner product and a complete set of orthonormal bases
ϕ. For all F∈F, we have

(36)

Constructing the Hilbert space F in local anatomical coordinates
We have two ways of generating complete orthonormal (CON) bases in submanifolds. The
first which we shall describe and have used extensively for surfaces is based on the
eigenfunctions of the Laplace–Beltrami operator. The second approach is to directly perform
principal component analysis (PCA) thereby generating the “principal components” which
describe anatomical variation with respect to a privileged CON base.

First examine CON bases generated with self-adjoint differential operators. Since many of the
manifolds of CFA are volumes and surfaces the differential operator used for inducing the
orthonormal basis is the generalization to the Laplace–Beltrami operator (Qiu et al., 2006). In
cubic volumes and on the sphere it is complex exponentials and spherical harmonics.

Proposition 5—Given smooth manifold X⊂Rd, then eigenfunctions of the Laplace–Beltrami
(LB) operator solving the spectral problem below generate a complete set of orthonormal bases
in the Hilbert space F on X⊂Rd.

The LB spectral problem with Neumann boundary conditions for X is posed as

(37)

where Δ is the LB operator, with  the normal vector on the boundary of X. Such bases ϕ are
only dependent on the geometry of X.

Fig. 19 shows examples of the first several eigenfunctions of open surfaces the occipital (top
row) and central sulcus (bottom row)

Shown in Fig. 20 are eigenfunctions from closed surfaces including the hippocampus, putamen
amygdala and globus pallidus.

Principal components in anatomical coordinates
Now examine the second method for generating complete orthonormal (CON) bases in
submanifolds based on PCA. Fig. 21 shows the first eigenfunction on the hippocampus
reconstructed from PCA on vector fields mapping normal elderly subjects to candidates with
Alzheimer's disease (Wang et al., 2003). Panel 2 of top row shows the reconstruction in the
1st, 2nd, and 5th eigenfunctions of the differences between the two populations. The second
row of Fig. 21 shows the 1st eigenfunction on the thalamus generated from PCA on vector
fields mapping controls to schizophrenics (Csernansky et al., 2004). The bottom row shows
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the reconstructions of the difference between the two population in the 1,8, and 10th
eigenfunctions.

Fig. 22 shows PCA results from the MRI and DTI heart data from Fig. 15 (Beg et al.,
2004;Helm et al., 2006;Helm et al., 2005). Each of the normal and abnormal hearts were
mapped to a common atlas using LDDMM-image mapping, from which principal components
were calculated on the initial momentum M0 = Av0. The two rows show geodesic shooting of
the momentum according to Eq. (21) using only the first principal component Av0=αϕ for the
normal (top row) and failing populations (bottom row), with α varied from positive to negative
one and running the conservation equation for one time unit. These vectors point in the
directions of the highest geometric variability. Notice for the normal the variation of the right
ventricle insertion point and the change in left ventricular shape. The failing population shows
its principal change as ventricular dilation and wall thinning. The bottom two rows of Fig. 22
show evolution of normal template mouse heart within 2 standard deviations (SD) along the
direction of highest geometric variance estimated for normal (row 3) and failing mice hearts
(row 4) at end systole. The middle column in each row represents the normal template. The far
left and right columns in each row represents images synthesized at −2 and +2 SD, respectively.
In comparison to the normal population, there are more prominent changes in chamber
diameter, wall thickness, and right ventricle insertion point. (The colors were added to enhance
structural details and do not represent any quantitative measures.)

Spline interpolation in anatomical coordinates
Processing the signals directly in the local coordinates is powerful because it represents the
local geometry. For smoothing and filtering, distances within the anatomical structure are
preserved and respected. In the case of the brain, signals far away in gyral or sulcal length
should not be averaged, or only averaged weakly. The classical spline model takes the following
form on F.

Proposition 6—Spline Interpolation Problem Let Y(x), x∈X be the observation of F(x),

x∈X with mean field μF and covariance , where ϕ is the orthonormal basis of the
Hilbert space H(Xatlas). Then the “smoothed spline representation” of F given by

(38)

satisfies

(39)

Given X as a 2-dimensional manifold embedded in R3 (e.g., surface), we choose (λi, ϕi) as the
eigenelements of the Laplace–Beltrami operator. The solution to F0 and βk is obtained by
minimizing
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(40)

for fixed γ>0.

Fig. 23 depicts the local spline representation of functional responses to ring stimuli in the
visual cortex (Qiu et al., 2006). Column 1 shows the occipital cortical reconstruction. Column
2 shows the two ring stimuli used for obtaining the functional maps with a fixation disk at
rings' centers. The red circles mark the centers of the rings. Column 3 shows the smoothed
functional statistical maps (t-value) for the two different stimuli generated via the spline model
on the cortical manifold X using the spline interpolation. Bright color represents the high t-
value region, while dark color denotes the low t-value region. The right column show the
functional response with the ridge corresponding to the center of the ring tracked using dynamic
programming on the planar view (Qiu et al., 2006).

Random field models for statistical analysis
To accommodate a statistical analysis, the most general approach is to consider that
observations arise from an infinite dimensional random process (X, F) that includes the
manifold X and the physiological signal F that is carried by X. In the extrinsic atlas analysis,
(X, F) are studied in a common atlas coordinate system Xatlas via diffeomorphic
correspondences g:X→Xatlas. The random field modeling performs hypothesis testing in the
coordinates of the atlas.

Proposition 7—Given atlas X, and associated orthonormal bases ϕ(x), x∈Xatlas, let F
transformed by g to Xatlas be modeled as

(41)

then in extrinsic analysis with F1, F2,… Gaussian variables, F on Xatlas is a Gaussian random
field with mean and covariance induced according to

(42)

This is a powerful methodology for analyzing brain function since the choice of the basis ϕ is
done once for the atlas, and then transported to the observed manifolds. In this approach of
course the inference depends on the implemented registration algorithm. In Qiu's thesis work
(Qiu, 2006) intrinsic methods were studied which are independent of the diffeomorphic
mapping.
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Alzheimer's shape change via momentum mapping in atlas coordinates
The geodesics determining the metric in the LDDMM connection of one shape to another is
encoded via the initial momentum denoted M0 (Miller et al., 2006). It is natural to compute the
statistically significant locations of the shape change between the populations as characterized
by these initial vector fields. The Av0 completely determines the LDDMM maps from the atlas
onto the target shapes. The initial momentum has the added attractive property that it is normal
to the level lines of the atlas (Miller et al., 2006). For surface mapping it is normal to the atlas
surface and specified by a scalar field indexed over it according to

(43)

with N(·) is the normal field to the surface. Population shape variation is represented by the
length of the scalar fields μ(x),x∈Xatlas with positive sign pointing outward motion and negative
pointing inward motion relative to the atlas coordinates. For statistics we model μ(x), as a
Gaussian field in the form of

(44)

where the Uk are Gaussian random variables and ϕk(x) are chosen as the k-th eigenfunction of
a complete orthonormal base generated from the Laplace–Beltrami operator on Xatlas (Qiu et
al., 2006). The eigenfunctions for the hippocampus are exemplified by those depicted in the
top row of Fig. 20.

Using the scalar of the initial momentum and Gaussian random field model, we studied
hippocampus shape change in Alzheimer's disease in population of 57 healthy elder controls
(age: 75.5±7.72, 31 males and 26 females) and 38 patients with very mild Alzheimer's patients
(age: 73.6±5.98, 23 males and 15 females). We estimated an atlas from the population (Ma et
al., 2008) and deformed it to all hippocampi in the study using LDDMM-surface mapping to
obtain initial momenta. Then the initial momentum from each hippocampus was modeled as
Gaussian field on the atlas in Eq. (44). To compare the shape difference between the two
populations, two-sample student t-test was performed on each of the first twenty expansion
coefficients Uk. The statistically significant group difference occurs in the 1st, 5th, 20th
components at a significance level of 0.05. Fig. 24 shows the statistically significant shape
differences between the normal and Alzheimer's disease populations constructed in the basis
representation indexed over the template coordinate Xatlas. The warm and cool colors
respectively denote regions where the hippocampus has compressed or expanded in the
Alzheimer's population. The statistical results suggest that the subiculum of the hippocampus
is most affected by the disease.

To quantify the reliability of the method, we split subjects into two subsets. The first subset
had 45 subjects including 27 healthy comparison controls and 18 very mild AD patient. The
second subset had 50 subjects including 30 healthy comparison controls and 20 very mild AD
subjects. Gender and age are matched in the two subsets. We applied the same statistical
analysis procedure as described above. Fig. 24 shows results from the two subsets that are in
close agreement with the one used from the entire population.

Statistical inference via cortical thickness in planum temporale atlas coordinates for
schizophrenia

Cortical thickness F(·)=thickness is a scalar field indexed over the cortical submanifold
X⊂R3 which is transferred via to the template. We have been studying cortical thickness
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variation of the left planum temporale (PT) between 20 healthy comparison subjects and 20
schizophrenia patients (Qiu et al., 2008). The left PT was selected since it is the auditory
association cortex responsible for language and speech processing function and has received
great attention in schizophrenia research. To investigate the group difference in thickness, we
first selected a template from the healthy control group and then applied the LDDMM-surface
mapping to deforming the template to all other left PT surfaces. The thickness maps Fthick of
each subject were transformed to the template based on the closest vertices on the template to
vertices on other surfaces. The average thickness maps within each group are illustrated in
columns 1 and 2 of the first row in Fig. 25. Cortical thickness maps indicate that thickness
varies across the PT from 1.5 mm to 4 mm. The PT is thin at the bottom of Heschl's sulcus
(HS), then progressively thicker away from HS, and finally thinner towards the posterior ramus.
The variation in cortical thickness may be related to the geometry of the PT cortical surface in
the sense that regions with high curvature (perhaps gyral regions) have larger thickness value
while regions with low curvature (sulcal regions) have smaller thickness value. The bottom
row of Fig. 25 (c) shows the difference in the average thickness maps between the control and
schizophrenia groups.

To investigate the non-uniform changes, we constructed the Gaussian random field (GRF)
model on the template as in Eq. (41). The rightmost column shows the second and third basis
generated in the template coordinates. Then, the Hotelling's T2 test was performed on
coefficient vectors under the null hypothesis that the coefficient vectors are equal in both
control and schizophrenic groups. Table 1 lists T2 statistics and the corresponding p-values
shown as a function of the progressive increase in the number of coefficients each time. These
p-values determined from F-distribution suggest that the pattern of significant difference in
the thickness map between the control and schizophrenic groups is caused by the second basis.
Such a pattern can be reconstructed by subtracting the mean coefficient in the schizophrenic
group from one in the control group, and then multiplying this basis (see Fig. 25(d)).

Comparison of random field models and point-wise based testing
Point-wise hypothesis testing has been widely used in neuroimaging studies, including volume-
based and surface-based fMRI, cortical thickness and gray matter density (Chung et al.,
2005; Genovese et al., 2002) False discovery rate (FDR) (Genovese et al., 2002) and random
field theory (RFT) (Chung et al., 2005; Worsley et al., 2004, 1996) approaches are applied to
seeking objective and effective threshold for point-wise statistics derived from neuroimaging
data. However, the threshold determined by both approaches is dependent on the smoothness
of data. In the following, we first explore thickness difference between the healthy comparison
control and schizophrenia groups from the point-wise hypothesis testing approach thresholded
using FDR or RFT at two different smooth scales. Then, we compare the findings with those
using the random field model. The same dataset as one in the previous section was examined.
In the point-wise hypothesis testing, we first applied the heat kernel smoothing procedure
(Chung et al., 2005) to our thickness data on the left PT template surfaces using smoothing
kernel of full width half maximum (FWHM) at levels of 20 mm, and 30 mm. Rows (a,b) in
Fig. 26 illustrate the average thickness maps over the healthy comparison control and
schizophrenia groups at different smooth levels. As FWHM increases, the thickness value at
each location of the left PT template surface gets close to each other. However, the heat kernel
smoothing procedure may not guarantee the convergence to the sample mean of the thickness
data on a surface with boundary when a large FWHM is applied (Chung et al., 2005). We next
hypothesized that the thickness at each location of the left PT template is equal in both healthy
comparison control and schizophrenia groups against the thickness is larger in the healthy
comparison control group than in the schizophrenia. We performed two-sample t-test on the
thickness data at each vertex of the left PT template surface. The t-value threshold was obtained
using both FDR at a desired FDR bound of 0.10 and the random field theory at a significance
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level of 0.05 when considering smoothness of the data in multiple comparisons. For instance,
when FWHM is chosen as 20 mm, the t-value threshold is 2.08 via FDR and 2.40 via RFT.
Vertices where the t-value is above the threshold represent the locations where the thickness
is larger in the healthy comparison control group than in the schizophrenia group. Rows (c,d)
in Fig. 26 respectively show the t-value maps thresholded using FDR and RFT, respectively.
The t-values below the threshold were replaced by zero and remained otherwise. Red denotes
the region where the thickness is statistically significantly larger in the healthy control group
than in the schizophrenia group. Each column corresponds to one level of the data smoothness.
Both FDR and RFT gave the roughly same region with statistically significantly larger
thickness in the control group than in the schizophrenia group. However, as the smoothness
increases, such a region becomes smaller via FDR (see row (c)) while it becomes larger via
RFT (see row (d)). In summary, the statistical conclusion drawn from the FDR or RFT methods
is dependent on the smoothness of the data. As a comparison with our random field model, the
smoothness of the data is automatically taken into account in the random field model and
determined by the number of bases in the model. Our result shown in Fig. 25(d) captures the
pattern that is observed in Fig. 25(c). It shows that thickness is larger in the control than in the
schizophrenia in the same region as FDR and RFT detected as well as some other region on
the PT template surface.

Conclusions
This paper focuses on the use of bijections for transferring functional and physiological
response variables into anatomical coordinates. Functional information comes in many forms,
from scalar information such as cortical thickness and BOLD response in fMRI, vector
information such as encoded in DTI, as well as metric information associated with template
coordinates for encoding population properties. Methods are examined for transferring such
functional information using both group actions as well as parallel translation.

Similarly, for signal processing and performing inference in anatomical coordinates methods
built for curved coordinate systems are examined. The two methods discussed for building
CON bases are from differential operators and PCA. Statistical inference have been shown
using both of these representations for inferring response properties based on physiological
signal representations in various anatomical coordinate systems.
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Appendix

A Norm of measure
We prove the norm of measures taking the form

(45)
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Proof 2
The norm-square between atoms is given by viewing it as an operator using the operator-norm
and the Cauchy–Schwartz inequality.

(46)

where equality is achieved by the upper bound of Cauchy–Schwartz. For the vector case, it
simply requires working with the vector dot product.
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Fig. 1.
Results from shooting one heart structure onto another (Ardekani and Winslow). Top row
shows the template (panel 1), target (panel 2), and the template transformed to the target (panel
3). Bottom row shows the vector field at the origin of the template v0 (panel 4) and the
momentum M0=Av0 (panel 5), respectively.
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Fig. 2.
Shown are LDDMM-unlabeled landmark whole brain maps based on the points on the sulcal
curves generated via dynamic programming. Column 1 shows the two views of the brain with
the template and target sulcal curves embedded. Column 2 shows the additional template curves
deformed to the targets. The deformed template curves virtually overlay the targets.
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Fig. 3.
Panel 1 highlights the cingulate gyrus. Panels 2, 3, 5, and 6 show template (top row) and target
(bottom row) used in landmark and curve matching. Panel 4 demonstrates the average
cumulative distribution function (CDF) of cingulate surfaces to the template surface distances
among twenty control subjects; black, blue, green, and red curves show the CDF for rigid
transformation, LDDMM-landmark, curve, and surface mappings, respectively (Qiu et al.
2007).
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Fig. 4.
Top row shows a coronal histological section of a Macaque brain, its gray matter white matter
segmentation, and its registration to the corresponding MRI slice after LDDDM transformation
with landmarks. Middle row shows the same coronal section of the Macaque MRI brain and
the LDDMM mapped superimposed histological section. Shown overlayed in red is the
prefrontal cortex transformed from histology and overlayed in blue is Area46 transformed from
histology. Bottom row shows another section. Data from the Lynn Selemon laboratory at Yale
University.
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Fig. 5.
Panel 1 shows B0 image and panel 2 shows fractional anisotropy (FA) image. Bottom row
shows the resulting mapping errors using Ceritoglu's multichannel LDDMM for the white
matter (panel 3) and cortical fiducials (panel 4), respectively. The errors between the 237
fiducial markers are depicted for using FA (black) only, B0 (green) only, and both (blue).
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Fig. 6.
Figure depicts anatomical variability of human hippocampus for 15 normal subjects. in both
coronal (left) and sagittal (right) cropped sections. The top row shows the averaging of
segmentations of the 15 participants which have been Talairach aligned. The bottom row shows
the segmentation agreement after LDDMM alignment. The overlaid colors range from red (all
participants agree for that voxel) to blue (one participant labels this voxel in the template as
part of the hippocampus).
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Fig. 7.
Longitudinal growth model results for Huntington's Disease examining the caudate nucleus
(Khan and Beg, 2008) where the subject has been scanned five times over the course of six 6
years. The time-flow is discretized to satisfy 20 time-steps per year. Input shapes are shown
along with the baseline shape as deformed along the flow, colored with , with values
below 1 indicating localized loss of tissue.
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Fig. 8.
Random orbit model of dense imagery. The momentum M0 is modeled as a Gaussian random
field, inducing the probability law on images I generated as random deformations of the
template. The observed MRI imagery ID are conditionally Gaussian random fields with mean
field g·Itemp.
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Fig. 9.
Panels show template of multiple structures including hippocampus and basal ganglia (pallidus,
caudate, putamen) along with metric distances between the initial template and targets in the
population as well as the EM algorithm generated template and the shapes in the population.
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Fig. 10.
Panels shows heart population and heart template along with metric distances between the
initial template and the resulting template.
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Fig. 11.
Figure depicts the procedure for transferring or transporting via the diffeomorphisms the within
subject fMRI functional responses back to the template coordinates Matlas via the dense
correspondence diffeomorphisms g. The structures shown here are from the medial temporal
lobe (Ceritoglu, 2008).
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Fig. 12.
Columns 1 and 2 show structural representations in the target and template, respectively, for
the basal ganglia structures. Column 3, top panel shows the functional map after transfer via
the bijection into the template coordinates g·fMRI; bottom panel shows a section through the
bijection on the coordinate system.
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Fig. 13.
Left panel shows the MTL structures studied including the hippocampus (red), temporopolar
cortex (green), perirhinal cortex (yellow), entorhinal cortex (blue), and parahippocampal cortex
(cyan). Right panel plots the hemodynamic responses as represented by the beta coefficient of
response from a 39-voxel (609 mm3) cluster within the right perirhinal cortex following
Talairach (left) and LDDMM (right) (Stark et al., 2004; Miller et al., 2005; Kirwan et al.,
2007).
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Fig. 14.
Transfer of DTI myelination response variables as encoded via the eccentricity of the
eigenvectors of the DTI tensor. Top row shows are 0, 7, 24, 36, and 60 month time samples
via color coding of the principal eigenvector. The bottom row shows the color coding of the
principal eigenvector in the DTI. Here the bijective correspondence is transforming the
principal axis via group action on the vector carried into the template coordinates. Data taken
from the laboratory of Dr. Susumu Mori of Johns Hopkins University.
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Fig. 15.
Top row shows sections through the 3D hearts depicting heart variability in the anatomical
sections. The bottom left panel shows the method for calculating the relative wall thickness
RWT=h/r parameters. Rightmost block of panels depicts the RWT superimposed in atlas
coordinates of the normal population (top row) and the abnormal population (bottom row)
(Beg et al., 2004; Helm et al., 2006; Helm et al., 2005).
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Fig. 16.
Shown in panel 1 is a sample population of hippocampi from the BIRN study (Miller et al.
2008) of an Alzheimer's population with generated template and metric distances between the
subpopulation of shapes and the template. Shown in panel 2 is the Csernansky template used
for studying the schizophrenia population along with a depiction of the vector information
determining the effect size for separating the two populations.

Miller and Qiu Page 46

Neuroimage. Author manuscript; available in PMC 2010 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 17.
Framework for handling growth and atrophy with multiples subjects each corresponding to a
different sequence. The first element in each time series is taken as the template for its sequence.
LDDMM geodesic connection is calculated between each element in the sequence with its own
template (Qiu et al., in press). Parallel transport is used to transform all of the geometric
information encoded in each subject's sequence template to the common hypertemplate which
collects all of the results (Qiu et al., in press) in the population.

Miller and Qiu Page 47

Neuroimage. Author manuscript; available in PMC 2010 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 18.
Statistically significant shape difference between diagnostic groups. The warm color denotes
that the outward surface deformation in the former group relative to the latter group, while the
cool color corresponds to inward surface deformation. The color bar indicates the strength of
the surface deformation in terms of the local rate of volume loss during the two year period.
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Fig. 19.
Top rows shows eigenfunctions of the Laplace–Beltrami operator generated from the open
surfaces the occipital cortex; bottom row shows the central sulcus. The central sulcus is shown
in planar coordinates because it is highly curved. The regions change in sign from red to blue.
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Fig. 20.
Rows show eigenfunctions of the Laplace–Beltrami operator generated from closed surfaces
including the hippocampus, putamen, amygdala and globus pallidus.
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Fig. 21.
Top row shows the 1st eigenfunctions of the hippocampus (Wang et al.2003) (panel 1) and
difference between normal and Schizophrenics expanded in the 1st, 2nd, and 5th eigenfunctions
generated via PCA. The second row shows the first eigenfunction of the thalamus (Csernansky
et al.2004) reconstructed from PCA on vector fields mapping normals to Alzheimer's. Row 3
shows the reconstructions in the thalamus in 1st, 8th, and 10th eigenfunctions of the differences
between the normals and Alzheimer's (Csernansky et al.2004).
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Fig. 22.
Top two rows show geodesic shooting of the momentum using only the principal component
M0=Av0=αϕ for the normal (row 1) and failing ex-vivo populations (row 2), with α varied from
positive to negative one and running the conservation equation for one time unit (Helm et al.,
2006; 2005). Bottom two rows show evolution of normal template mouse heart within 2
standard deviations (SD) along the direction of highest geometric variance estimated for normal
(row 3) and failing mice hearts (row 4) at end systole. The middle column in each represents
the normal template. The far left and right columns in each row represents images synthesized
at −2 and +2 SD, respectively.
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Fig. 23.
Column 1 illustrates the location of the occipital lobe in the brain. Column 2 shows the ring
stimulus with fixation disks and center marked by red circles. Columns 3 and 4 show the
functional responses on the surface of the visual cortex generated via the spline interpolation
solution and in the planar coordinates respectively, with ridges corresponding to the centers of
the rings (Qiu et al.2006). Bright color represents the high t-value region, while dark color
denotes the low t-value region.
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Fig. 24.
Panel (a) shows statistically significant shape difference expanded in the three statistically
significant coefficients Σk∈{1,5,20}Ukϕk between 38 patients with Alzheimer's disease and 57
comparison controls. Panels (b,c) show statistically significant shape differences using subsets
of sample subjects. Red color denotes the region where the hippocampus is compressed; blue
is the region where the hippocampus is expanded in the group of patients with Alzheimer's
disease.
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Fig. 25.
Panels 1 and 2 show the mean cortical thickness maps in the control and schizophrenic groups
on the planum temporale. Panel 3 shows the cortical difference between the control and
schizophrenic groups. Panel 4 shows the statistically significant group difference (Qiu et al.
2008) reconstructed from the basis functions of the Laplace–Beltrami like those shown in Fig.
19.
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Fig. 26.
Rows (a, b) show average thickness maps within the healthy comparison control and
schizophrenia groups at different smooth scales (FWHM= 20, 30 mm) via heat kernel
smoothing. Row (c) shows the t-value maps where t-value remains when it is higher than the
threshold obtained using FDR correction and t-value is assigned to zero when it is lower than
the threshold. The region denoted by red is where the thickness is statistically significantly
larger in the healthy control group than in the schizophrenia group. Similarly, row (d) illustrates
the t-value maps corresponding to the correction using the random field theory. Each column
corresponds to the result at different smooth scales.
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Table 1

The Hotelling's T2 statistics and their corresponding p-values for the tests involving the first N coefficients

N CON vs. SCZ

TN
2 p-value

1 5.4072 0.0255

2 5.4083 0.0853

3 5.4366 0.1809

4 6.1440 0.2494

5 6.1677 0.3766

Control and schizophrenia are respectively abbreviated as CON and SCZ.
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